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Figure 1. Images from VAR-d30 (Tian et al., 2024) fine-tuned with group relative policy optimization. At the top, samples from the model
fine-tuned with an aesthetic reward. In the middle, samples from the model fine-tuned to produce paintings optimized with CLIP score.
At the bottom, the model is fine-tuned with a combination of the two rewards. Given the notable scarcity of artworks in the ImageNet
dataset used for pre-training VAR, the artistic patterns observed in the images should primarily be attributed to discoveries made during
fine-tuning through reinforcement learning.
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Abstract
Fine-tuning pre-trained generative models with
Reinforcement Learning (RL) has emerged as
an effective approach for aligning outputs more
closely with nuanced human preferences. In this
paper, we investigate the application of Group Rel-
ative Policy Optimization (GRPO) to fine-tune
next-scale visual autoregressive (VAR) models.
Our empirical results demonstrate that this ap-
proach enables alignment to intricate reward sig-
nals derived from aesthetic predictors and CLIP
embeddings, significantly enhancing image qual-
ity and enabling precise control over the gener-
ation style. Interestingly, by leveraging CLIP,
our method can help VAR models generalize be-
yond their initial ImageNet distribution: through
RL-driven exploration, these models can gener-
ate images aligned with prompts referencing im-
age styles that were absent during pre-training.
In summary, we show that RL-based fine-tuning
is both efficient and effective for VAR models,
benefiting particularly from their fast inference
speeds, which are advantageous for online sam-
pling—an aspect that poses significant challenges
for diffusion-based alternatives.

1. Introduction
For Artificial Intelligence (AI) systems to integrate suc-
cessfully into real-world applications and products, it is
crucial to design intelligent systems that support effective
user interaction, align with human preferences, and exhibit
ethical, user-centric behaviors. This alignment is particu-
larly challenging in generative modeling; although recent
breakthroughs have dramatically advanced image synthe-
sis, ensuring generated images adhere to nuanced human
aesthetic and semantic criteria remains difficult. In this con-
text, Reinforcement Learning (RL)-based fine-tuning has
emerged as a powerful tool for aligning pre-trained gener-
ative models with human preference, gaining prominence
first in language (Ouyang et al., 2022), and more recently in
the image domain (Yang et al., 2024; Black et al., 2024).

Current methods predominantly apply RL to diffusion-based
models due to their state-of-the-art generation quality. How-
ever, these models typically incur substantial computational
costs during sampling, significantly hampering their effi-
ciency for online RL fine-tuning. Autoregressive models,
particularly those leveraging a next-scale approach such
as VAR (Tian et al., 2024), provide a promising alterna-
tive by enabling much faster inference while maintaining
competitive image quality. Motivated by the advantages of
autoregressive modeling, we explore Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024), a newly in-

troduced RL variant based on Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), to fine-tune VAR. GRPO
eliminates the need for a separate value function estimator
through grouped sampling, enhancing both efficiency and
training stability. Concretely, our contributions are the fol-
lowing:

• We propose the first framework integrating GRPO with
next-scale visual autoregressive models (VAR), lever-
aging the computational efficiency and sampling speed
of VAR.

• We empirically demonstrate that VAR models fine-
tuned with GRPO significantly improve image aesthet-
ics and alignment with complex reward signals derived
from CLIP and human-rated aesthetic preferences.

• We provide evidence that GRPO fine-tuning enables
VAR models to generalize beyond the original Im-
ageNet training distribution, effectively aligning to
prompts referencing unseen concepts and aesthetic cri-
teria through RL-driven exploration.

2. Related Work
Before presenting our approach, we first discuss related
work in image generative modeling and RL-based alignment
of generative models, both in the context of language and
image modeling.

2.1. Image Generative Models

Autoregressive (van den Oord et al., 2017), diffusion (Sohl-
Dickstein et al., 2015), and flow matching models (Lip-
man et al., 2023), distinguish themselves from other gen-
erative modeling approaches, such as Variational Autoen-
coders (VAEs) (Kingma & Welling, 2013) and Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014), by
simplifying the task of generating samples from complex
data distributions in a single forward pass into a series of
smaller, more tractable intermediate predictions.

Diffusion and Flow Matching Diffusion (Sohl-Dickstein
et al., 2015) and flow matching (Lipman et al., 2023) (or
rectified flows (Liu et al., 2023)) have been highly success-
ful in image generation using large scale models (Rombach
et al., 2022; Podell et al., 2023; Esser et al., 2024). However,
they require generating intermediate trajectories between
the base and target distributions with the same dimension-
ality as their final output, which can become increasingly
computationally expensive as the dimensionality of the data
they are training on grows (even when operating in the latent
space of an autoencoder). This can also make RL fine-tuning
challenging due to slow sampling, as we will discuss later.
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Autoregressive Image Models Autoregressive model-
ing (van den Oord et al., 2017), on the other hand, relies on
a language-modeling-style next-token prediction approach,
which can make inference substantially faster. Autoregres-
sion achieves this by representing the data as a token se-
quence and predicting each element successively. For in-
stance, the original DALL-E model (Ramesh et al., 2021)
was based on such an approach. In particular, a next-scale
based variant of the original autoregressive paradigm has
gained recent attention in the literature with the introduction
of class-conditioned image models such a VAR (Tian et al.,
2024), as well as text-to-image models like Infinity (Han
et al., 2024), and Switti (Voronov et al., 2024), to name a
few. This will be the focus of our paper.

2.2. Generative Model Alignment with Reinforcement
Learning

Using RL to steer the behavior of large pre-trained models
has proven very successful in language and has only recently
gained traction in other data modalities.

Large Language Model Alignment Defining what a hu-
man considers to be a ‘good’ text sample can be very chal-
lenging to do via a loss function. Instead, LLMs are first
pre-trained on a vast corpus of internet-scraped text data,
minimizing a cross-entropy loss to acquire their base knowl-
edge, and then later aligned through fine-tuning on instruc-
tions. Since the introduction of Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al., 2022) to
turn base language models into chatbots (e.g. GPT-3 (Brown
et al., 2020) into ChatGPT), there has been a plethora of
follow-up research that has ultimately lead to using RL to
teach LLMs how to reason. RLHF leverages a reward model,
that is, a neural network that takes in text tokens and returns
a scalar value that numerically represents human preference.
In this setup, the policy is the language model itself, gen-
erating text sequences based on a given prompt. Its action
space is the token vocabulary size, and its observation space
is all possible input token sequences. Finally, the reward
function guides the learning process, combining feedback
from the aforementioned reward model with a mechanism
to prevent drastic changes to the policy, often based on the
Kullback–Leibler (KL) divergence. We will be working
with a similar setup in Section 4.

Image Model Alignment Aligning image diffusion mod-
els with similar techniques presents a challenge: their
intractable exact likelihood computation makes it diffi-
cult to directly apply many conventional RL algorithms.
While recent literature has proposed diffusion-specific
frameworks—such as reward-weighted likelihood maxi-
mization (Lee et al., 2023), Direct Preference for Denoising
Diffusion Policy Optimization (D3PO) (Yang et al., 2024),

Denoising Diffusion Policy Optimization (DDPO) (Black
et al., 2024), and very recently, GRPO-based approaches
like Flow-GRPO (Liu et al., 2023) and Dance-GRPO (Xue
et al., 2025)—we argue that this overcomplication would be
removed if the image generative model were autoregressive.
Additionally, the latter significantly improves the computa-
tional amenability of RL fine-tuning due to its fast sampling
speed. Although recently (Wang et al., 2025) explored the
use of GRPO in a simple autoregressive multi-modal model,
the application of RL in next-scale autoregressive prediction
remains unexplored.

3. Preliminaries
In this section, we review the next-token prediction
paradigm and the next-scale formulation for image gen-
eration.

Next-token Prediction We use the term token to denote
the index of an entry in the codebook (or vocabulary used by
our model). Consider a sequence of tokens [e1, e2, . . . , eT ],
where T denotes the sequence length. The next-token
(causal) autoregressive model formulation assumes that the
probability of a token et is conditioned solely on the pre-
ceding tokens [e1, e2, . . . , et−1], establishing a one-way de-
pendency among them. This allows the likelihood of the
entire sequence to be factorized as: p([e1, e2, . . . , eT ]) =∏T

t=1 p(et | [e1, e2, . . . , et−1]). Autoregressive models
learn to model data by maximizing the likelihood of
observed sequences during training, pθ([e1, e2, . . . , eT ]).
Specifically during large-scale pre-training, the model’s
parameters θ are adjusted to minimize the negative log-
likelihood, typically through the use of cross-entropy
loss: L(θ) = −

∑N
i=1 log pθ([e1, e2, . . . , eT ]i), where

[e1, e2, . . . , eT ]i refers to the i-th training sequence out of a
total of N . By minimizing L(θ), the model learns to predict
each token in the sequence based on its preceding context,
a process commonly known as next token prediction. Af-
ter training, the model can generate new sequences based
on the learned probability distribution. This formulation
is especially natural in language modeling, where the text
exhibits a clear causal structure.

Visual Autoregressive Modeling Traditionally, the next-
token prediction paradigm has been adapted for image gen-
eration by flattening visual samples, predominantly using a
raster-scan approach, where image patches are arranged
into a sequence (van den Oord et al., 2017). This dis-
rupts the local spatial correlations in images and other vi-
sual data, such as videos, hinders the model’s ability to
learn bidirectional correlations within the sequence, and
may also negatively affect zero-shot generalization. For
instance, it restricts lower-right image patches to depend
on upper-left patches but not vice versa. Visual AutoRe-
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gressive modeling (VAR) (Tian et al., 2024) suggests using
a more natural multi-scale, coarse-to-fine representation
for images. In VAR the likelihood of the data sample is
modeled as follows: p([r1, r2, . . . , rK ]) =

∏K
k=1 p(rk |

[r1, r2, . . . , rk−1]), where rk is used to denote an autore-
gressive unit at each scale k of the visual data representation
consisting of hk × wk tokens, where hk, wk ∈ N+ and
hK > hK−1 > ... > h1 and wK > wK−1 > ... > w1. In
short, in this formulation we impose a causal autoregressive
dependency at the resolution (or scale) level, rather than at
the token level. That is, rk is a collection of tokens instead
of a single token. This, in turn, requires to construct an
alternative latent space, where the continuous embedding
is represented using quantized multi-scale residual embed-
dings. Similar to next-token prediction, once the transition
probabilities have been learned, it can be used to generate
new data samples via the token-to-codebook mappings and
passing the final embedding reconstruction to a decoder.

4. Method
As mentioned, we specifically focus on applying RL to
next-scale autoregressive image models. Inspired by suc-
cessful RL applications in language modeling, we observe
a natural alignment since both language models and autore-
gressive image generators follow a next-token prediction
paradigm. Additionally, the superior efficiency and speed of
autoregressive models make them particularly well-suited
to online RL, where online sampling typically presents the
main computational challenge.

4.1. Group Relative Policy Optimization (GRPO)

Among the techniques that were recently proposed to fine-
tune LMMs with RL, Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) has emerged as a particularly
effective method, offering improved training efficiency and
greater stability by replacing the PPO value function esti-
mator with group sampling. More specifically, given a class
label c and a set of G outputs {o1, o2, . . . , oG} sampled
from the policy πθold , the objective of GRPO is to update
πθ by maximizing the following function:

J (θ) = Eoi∼πθold

[
1

G

G∑
i=1

min

(
πθ(oi | c)

πθold(oi | c)
,

clip
( πθ(oi | c)
πθold(oi | c)

, 1− ϵ, 1 + ϵ
)
Ai

)
− βDKL

]
,

(1)

where ϵ is the clipping threshold hyperparameter (Schul-
man et al., 2017), β controls the strength of the (per to-
ken) KL divergence regularization term with respect to the

pre-trained policy πθref DKL(πθ || πθref ) =
πθref

(oi|c)
πθ(oi|c) −

log(
πθref

(oi|c)
πθ(oi|c) ) − 1, and Ai represents the advantage es-

timate computed with the rewards obtained within each
output group:

Ai =
ri − mean({r1, r2, ..., rG})

std({r1, r2, ..., rG})
. (2)

4.2. GRPO for Next-Scale Autoregressive Image Models

Extending GRPO to next-scale autoregressive modelling is
straightforward by keeping the Vector Quantized Variational
Autoencoder (VQ-VAE) (van den Oord et al., 2017) decoder
frozen and fine-tuning only the VAR model operating in its
discrete latent space. Indeed, in this context, VAR functions
exactly like an LLM, except that at each inference step it
produces logits for a set of tokens (the next-scale tokens,
rk) rather than just one. Therefore, the same GRPO formal-
ization used for LLMs can be applied directly. Specifically,
in this context, πθref denotes the pre-trained VAR, while πθ

and πθold represents the VAR model that we are currently
optimizing and sampling from, respectively. The outputs
{o1, o2, . . . , oG} correspond to the set of tokens produced
autoregressively by πθold during sampling, which are subse-
quently decoded into images by the VQVAE and evaluated
by a specific image reward model.

It is important to note that during training, we use simple
multinomial sampling from the VAR output logits scaled
with a temperature value τ of 0.7 to balance exploration
and exploitation. We deliberately avoid using classifier-
free guidance (CFG) (Ho & Salimans, 2022), top-p or top-
k sampling, beam search, or other techniques that could
improve sample quality in order to maintain a tractable
sampling distribution during optimization. During inference,
however, we do use CFG along with top-p or top-k sampling.
More concretly, we employ the same hyperparameters as
those used in the original VAR model (Tian et al., 2024).

Since rewards are typically computed with respect to the
final image output, we encounter a credit assignment prob-
lem: the individual contribution of each token to the final
score is unknown. To address this, we compute the advan-
tages for each sample and apply the same advantage to all
tokens. This approximation enables us to maintain a per-
token KL penalty, which we found essential for preserving
the generation quality of the original model.

5. Experiments
For our experiments, we employed the original VAR pre-
trained on ImageNet. This model can generate images con-
ditioned on one of the 1,000 original ImageNet labels (it
is a class-conditioned image model). We focused on the
smallest and largest variants of the model, both of which
generate images at a resolution of 256 × 256: VAR-d16
(310M parameters) and VAR-d30 (2B parameters).

Unless otherwise explicitly stated, all experiments were
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conducted by sampling a batch of random labels from the
original 1k ImageNet labels and using 8 Nvidia H100 GPUs.
Additionally, for all experiments, the following hyperparam-
eters were used: a batch size of 32 labels for sampling, 16
groups, minibatch size of 32 during optimization, a learning
rate of 10−4, β = 0.2, temperature of 0.7, and ϵ = 0.2.

5.1. Preliminary Experiments: Brightness

In order to test our implementation, we designed a simple
toy experiment where we used GRPO to align the model to
generate images with high or low brightness. Brightness is
straightforward and inexpensive to compute, and it provides
a stable and clear reward signal: 1

HW

∑
i,j(0.2989Ri,j +

0.5870Gi,j + 0.1140Bi,j) where H = hK and W = wK

denote image height and width, respectively, and R,G,B
are the RGB channel values.
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Figure 2. Fine-Tuning VAR-d16 with GRPO on dark/bright align-
ment requires only 10 minutes with a single H100 GPU.

To align the model to generate images with high brightness,
we set up a scalar reward giving a value of 1 when brightness
is greater than or equal to 0.8, and 0 otherwise. For aligning
the model to generate dark images, we give a reward of 1
when brightness is lower than 0.2. As shown in Figure 2,
using GRPO we are able to perfectly align VAR to generate
bright or dark images in less than 10 minutes using a single
GPU. Despite the simplicity of the task, the method exhibits
surprisingly strong sample efficiency and stability, reinforc-
ing our hypothesis that the faster inference speed of VAR
makes it well-suited for online RL in image generation. The
results of this experiment are shown in Figure 3.

5.2. Improving Image Aesthetics

To evaluate the capability of GRPO to align the VAR model
to more complex scores, we employ LAION’s aesthetic
predictor V2 (Schuhmann et al., 2022) (AES) as a proxy for
human preferences. AES combines CLIP embeddings with
a multi-layer perceptron and was trained on 176,000 images
rated by users on an aesthetic scale from 1 to 10, with a
score of 10 marking an image as a work of art. For this task,
we trained both VAR-d16 and VAR-d30 for 40,000 steps,
which corresponds to a single epoch of VAR’s supervised

Pre Trained VAR

High Brightness Alignment

Low Brightness Alignment

Figure 3. Visual results of the toy experiment aligning the model
to generate only bright or dark images.

training on ImageNet. This amounted to 16 and 40 hours
of training, respectively, using 8 NVIDIA H100 GPUs. As
shown in Figure 4, both models improve their AES scores by
approximately 1 point, with VAR-d30 increasing from 4.80
(pre-trained) to 5.80. A progression of the outputs obtained
during the optimization process is shown in Figure 5.
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Figure 4. Fine-Tuning VAR-d16 and VAR-d30 with GRPO using
Aesthetic Reward.

In order to validate that the fine-tuned models are still ca-
pable of generating images corresponding to the ImageNet
labels, we can no longer rely on the FID score, as the RL
optimization has altered the generative distribution of Ima-
geNet. Instead, we employ a standard ImageNet classifier
(ResNet50 IMAGENET1K V2 (Vryniotis, 2021)) and ob-
serve the difference in accuracy between samples from the
reference and fine-tuned models. In Table 1, we report the
Aesthetic Score computed from 10,000 samples (10 per
class) for the pre-trained and fine-tuned models, along with
the ResNet50 top-5 accuracy. Notably, the models fine-
tuned with GRPO maintain an accuracy above 90% while
generating images with an Aesthetic Score approximately 1
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point higher than that of the ImageNet validation set. This
observation confirms that the model did not diverge signifi-
cantly from the ImageNet distribution during training.

In Table 1, we also report the scores for VAR-d16 fine-tuned
using only 50% of the ImageNet labels. In this case, the AES
score increased more moderately by 0.5 points. However,
it is noteworthy that the AES score also increased by 0.5
points for the labels not seen during training, suggesting
that the model generalized effectively during the fine-tuning
process.

Table 1. Comparison of models by Aesthetic Score and ResNet50
Accuracy@5. Notice that the very high accuracy observed for the
pre-trained model reflects its ability to reproduce the distribution
of the ImageNet training set, where ResNet50 IMAGENET1K V2
likely achieves near-perfect accuracy. VAR-d16 GRPO (seen 50%
labels) was fine-tuned using 50% of the ImageNet classes, while
the other GRPO models used all possible labels.

Model Aesthetic Score ResNet50 Accuracy@5
ImageNet Validation Set 4.91 95.43%
VAR-d16 (Tian et al., 2024) 4.64 97.8%
VAR-d16 GRPO (seen 50% labels) 5.10 97.7%
VAR-d16 GRPO (unseen 50% labels) 5.09 97.9%
VAR-d16 GRPO (seen 100% labels) 5.55 95.92%
VAR-d30 (Tian et al., 2024) 4.80 99.8%
VAR-d30 GRPO (seen 100% labels) 5.80 90%

Volcano

Fountain

Tench

Lighthouse

Eagle

  RL Training with Aesthetic Reward  

Figure 5. Sampling progress of VAR-d30 during GRPO optimiza-
tion with aesthetic reward.

5.3. Learning to Paint with CLIP Alignment

To further evaluate the capabilities of our method, we em-
ploy the CLIP Score (Radford et al., 2021) to measure the
similarity between the generated samples and a fixed text
prompt. In this experiment, our goal is to assess the ability
of GRPO to align a generative model with respect to a dif-
ferent modality (text), even though this modality does not
directly condition the generative process. Specifically, the
VAR model remains conditioned solely on the input labels,
while the CLIP Score is computed relative to a fixed text
prompt.

We begin by conditioning the CLIP score on the prompt “an
old picture”. Since the ImageNet training set contains im-
ages of this type, the model quickly generates samples that
align with the style. We therefore move to a more challeng-
ing prompt: “a painting”. Note that the original ImageNet
dataset discouraged paintings or drawings, since annotators
were instructed to collect: “photos only, no painting, no
drawings, etc.” (Deng, 2012). This means that, in order to
align with this kind of prompt, the model should in principle
generate samples that are out of the training distribution.
Nevertheless, as shown in Figure 6 after some iterations,
the policy finds ways to increase the “painting” CLIP Score.
This suggests that, at least in part, the model really learned
something new through RL exploration and exploitation,
i.e., it learned artistic patterns without demonstrations. Ob-
viously, this kind of hypothesis should be explored more
deeply, but the preliminary results obtained in this context
seem to indicate that online RL could, in principle, align
an image generative model even further than what has been
seen in the training data.

We display the results in Figure 9. These experiments
were performed with VAR-d30 fine-tuned for 10k steps,
corresponding to around 10 hours of compute in 8 H100
GPUs.
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Figure 6. CLIP Score measuring alignment with the prompt “A
painting” during fine-tuning, with and without the application of
the Aesthetic Reward bonus (excluded from the plots).
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5.4. Ablations

Finally, we provide a short discussion on hyperparameter
ablations which may be useful for future researchers.

KL Penalty The importance of the KL penalty in GRPO
for image generation is illustrated in Figure 7. Without suffi-
cient regularization, the model easily finds a reward-hacking
policy and loses the ability to generate images properly con-
ditioned on the labels. The KL term also acts as an entropy
bonus, discouraging the model from generating identical or
highly similar images even for different labels.

Black Swan Tibetan Terrier AccordionTiger Bettle Cinema Kimono

Figure 7. Effect of β KL coefficient when training with GRPO.

Group Optimization In Figure 8, we demonstrate how
group optimization effectively aids training. Fixing a com-
pute time budget, we find that increasing the number of
groups during sampling monotonically enhances the perfor-
mance of GRPO, at least up to 16 groups.
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Figure 8. Effect of varying the number of groups during the sam-
pling phase of GRPO (Aesthetic Reward optimization).

6. Conclusion
In this work, we have demonstrated the effectiveness and
efficiency of GRPO for aligning next-scale visual autoregres-
sive models. A natural next step is to extend this method to
text-to-image VAR-based models (Han et al., 2024; Voronov
et al., 2024).

CLIP Alignment: "a painting"

Pre Trained VAR

CLIP Alignment: "a painting" + Aaesthetic Score

CLIP Alignment: "an old picture"

Figure 9. Experiments conducted to align VAR with a fixed prompt
using the CLIP Score. In this setup, VAR itself is not conditioned
on the prompt; only the reward model is. Since VAR was trained on
ImageNet, the training data predominantly consists of photographs
(no paintings, no drawings). This means that the artistic effects
observed in the samples generated when aligning the model with
the caption “a painting” should be attributed primarily to RL-
driven exploration and optimization, as if the model effectively
“learned to paint” during fine-tuning. Notice how the model adopts
a simple yet effective approach to increase the “picture” reward by
incorporating a technique reminiscent of Caravaggio’s chiaroscuro.
This effect is suppressed when an Aesthetic Score is added to the
reward, resulting in more colorful and stylistically diverse images.
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