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ABSTRACT

Large language models (LLMs) exhibit strong in-context learning (ICL) ability,
which allows the model to make predictions on new examples based on the given
prompt. Recently, a line of research (Von Oswald et al., 2023; Akyürek et al.,
2023; Ahn et al., 2023; Mahankali et al., 2023; Zhang et al., 2024a; Vladymyrov
et al., 2024) considered ICL for a simple linear regression setting and showed that
the forward pass of Transformers is simulating some variants of gradient descent
(GD) algorithms on the in-context examples. In practice, the input prompt usu-
ally contains a task descriptor in addition to in-context examples. We investigate
how the task description helps ICL in the linear regression setting. Consider a
simple setting where the task descriptor describes the mean of input in linear re-
gression. Our results show that gradient flow converges to a global minimum for
a linear Transformer. At the global minimum, the Transformer learns to use the
task descriptor effectively to improve its performance. Empirically, we verify our
results by showing that the weights converge to the predicted global minimum and
Transformers indeed perform better with task descriptors.

1 INTRODUCTION

Transformer-based large language models (LLMs) have exhibited surprising abilities. One of their
most remarkable abilities is to perform well even on tasks that they are not explicitly trained on.
This is partially attributed to in-context learning (ICL) mechanism, where in-context examples are
provided to significantly improve the prediction of LLM on a new query input (Brown et al., 2020).
For langauge models, a classical example of ICL adapted from Brown et al. (2020) is illustrated
as in Figure 1, where we instruct the language model to translate English to French by providing
examples.

Please translate English into French: 

hello => bonjour 
  

many => beaucoup 

apple => 

task description

in-context example #1

in-context example #2

query example

Figure 1: An input with both task descriptions and in-context examples.

To understand ICL mechanism without getting into the difficulty of language modeling, Garg et al.
(2022) investigated the simpler problem of learning a function class H in-context. In this setup,
the Transformer is given a sequence S = (x1, h(x1), . . . , xn, h(xn), xquery). Here (xi, h(xi))(i =
1, 2, ..., n) are n in-context examples where h is a function in class H, and xquery is new input (the
query) that we want to evaluate h on. The goal of the Transformer is to output a prediction that is
equal to h(xquery). Garg et al. (2022) found that Transformers pretrained to perform this task can
successfully in-context learn many concept classes. Later works (Von Oswald et al., 2023; Akyürek
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et al., 2023; Ahn et al., 2023; Mahankali et al., 2023; Zhang et al., 2024a;b; Wu et al., 2024) focused
more on in-context learning linear models, where h(xi) = w⊤xi for an unknown vector w and the
goal of in-context learning is to predict yquery = w⊤xquery.

These existing theoretical works focuses entirely on leveraging in-context examples. However, as
we saw in Figure 1, in practice we often provide an additional task descriptor (“Translate English to
French.”). Such descriptors improve the ICL performance for language models (Brown et al., 2020).
While the prefix before in-context examples could contain various information, this work focuses
on descriptions containing distributional information about inputs. In this paper, we investigate
whether such task descriptors can help in-context learning for linear models.

1.1 OUR RESULTS

We consider a new family of mean-varying linear regression problems. For these problems, the
in-context examples (x1, y1), (x2, y2), ..., (xn, yn) are generated based on two parameters µ and w.
Here w is the underlying linear relation and we have yi = w⊤xi. The vector µ specifies the mean
of xi’s, that is, xi’s are sampled from a Gaussian N (µ, I) with mean µ. The mean µ will be given
as the task descriptor in the main paper 1. Given µ and in context examples (xi, yi)’s and a query
xquery, the goal of the Transformer is to estimate yquery = w⊤xquery.

We first show that with a specific embedding of the input (see Section 2.1), a 1-layer linear self-
attention (LSA) network can indeed leverage the task descriptor. We can formally construct the
optimal parameters for 1-layer LSA network for any number of samples n. When n is large (going
to infinity), the linear Transformer uses the mean µ straight-forwardly to remove the mean of xi’s,
leading to a better solution than previous constructions without task descriptor. When n is small,
the optimal solution is more complicated (see Theorem 4.1). In this case, we show that the training
loss function can be decomposed into two terms and 1-layer linear Transformers leverage its full
capacity to minimize both of them.

For all values of n, we also prove that gradient flow training from a reasonable initialization is guar-
anteed to converge to the global optimal solution. Even though the training loss is nonconvex, we
give a detailed characterization for the set of all global optimal solutions, and show that the training
dynamics maintain useful invariants that help the algorithm avoid saddle points and converge to a
unique global minimum.

Finally, we empirically verify our findings in Section 5. For 1-layer Transformers, we show that the
weights indeed converge to the global optimal solution that we have constructed. We also consider
different settings where the Transformer may have multiple layers, or use a different embedding. We
empirically observe that Transformers with task descriptor always outperform Transformers without
task descriptors in all these settings.

1.2 RELATED WORKS

In-context learning for linear regression Garg et al. (2022) investigated the function classes that
Transformers can learn in-context, finding that they can learn various function classes, including lin-
ear functions. Later works Von Oswald et al. (2023); Ahn et al. (2023); Mahankali et al. (2023); Bai
et al. (2023) proposed that, under certain parameters, one forward pass of a Transformer is equivalent
to a single step of some variant of gradient descent on linear models. Specifically, Ahn et al. (2023)
showed that Transformers learn to simulate preconditioned GD, which is optimal for one-layer lin-
ear Transformers. Vladymyrov et al. (2024) and Fu et al. (2023) demonstrated that preconditioned
GD can serve as a second-order optimization algorithm. Zhang et al. (2024b) found that with an ap-
pended linear MLP layer, Transformers can learn an initialization for GD. Wu et al. (2024) explored
the task complexity bounds for in-context learning in linear regression. Zhang et al. (2024a) inves-
tigated how Transformers can be trained for ICL by proving that one-layer linear Transformers with
appropriate initialization will converge to the global minimum under gradient flow dynamics. Huang
et al. (2023) showed that Transformers with softmax non-linearity can be trained to learn linear re-
gression on distinct features and analyzed the training dynamics. Chen et al. (2024a) investigated
the scenario of multiple-head Transformers and multiple-task linear regressions.

1Experiments in Appendix B.5 explore one-hot encoding as an alternative form of task descriptors.
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Task descriptor To the best of our knowledge, there is a lack of theoretical studies on how trans-
formers make use of task descriptors. Many empirical studies demonstrate their effectiveness. For
example, adding a token that indicates the domain from which the data originates helps LLMs learn
from context more efficiently (Allen-Zhu & Li, 2024). Brown et al. (2020); Honovich et al. (2023)
found that incorporating natural language task descriptions helps GPT models improve in-context
learning.

Other in-context learning works There is a line of works on in-context learning with latent
variable models within a Bayesian framework (Xie et al., 2022; Zhang et al., 2023; Wang et al.,
2023; Jiang, 2023). Another line of works focus on mechanisms of induction heads. Olsson
et al. (2022) proposed that two-layer Transformers can be induction heads, which complete the
prompt [A,B,A,B, · · · , A] → B. Some generalized versions of induction heads were later stud-
ied: Nichani et al. (2024) explored the mechanism and training dynamics of Transformers learning
causal graphs in-context, and Chen et al. (2024b) analyzed the setting of in-context learning n-gram
Markov chains. There are other works showing Transformers can in-context learn various algorithms
and tasks, such as sparse token selection (Wang et al., 2024), CFGs (Yao et al., 2021; Allen-Zhu &
Li, 2023; Zhao et al., 2023), discriminative scanning (Tian et al., 2023) and Transformers (Panigrahi
et al., 2024).

2 PRELIMINARIES

In this section we first introduce basic notations, then we describe the mean-varying linear regression
problem in Section 2.1. Details about linear self-attention architecture and training are given in
Section 2.2. Finally in Section 2.3 we briefly review how previous work understood ICL for linear
regression as doing (preconditioned) gradient descent.

Notations We lowercase letters to denote variables and vectors and uppercase letters for matrices.
For a matrix A, we use A−1,−1 to denote the bottom-right entry (the last row and the last column).
We use ∥ · ∥ to denote ℓ2 norm of a vector and and ∥ · ∥F denotes the Frobenius norm of a matrix.
We use Id to denote the d × d identity matrix and 0d, 0d×d to denote the zero vector and the zero
matrix of size d and d × d respectively. We omit the subscripts if the size can be inferred from the
context. We denote Sym(A) := 1

2 (A+A⊤) the symmetrized version for any real square matrix A.

2.1 MEAN-VARYING LINEAR REGRESSION

Following the previous line of work (Von Oswald et al., 2023; Akyürek et al., 2023; Ahn et al.,
2023; Mahankali et al., 2023; Zhang et al., 2024a), we introduce the mean-varying linear regressions
problem.

In this problem there are different linear regression tasks. For each linear regression task τ , we first
sample a mean µτ ∼ N (0, Id) and the linear weight wτ ∼ N (0, Id). We then independently sample
in-context examples xτ,i and the query example xτ,query from Gaussian distribution N (µτ ,Λ). The
input with task descriptors is Sτ = (µτ , xτ,1, w

⊤
τ xτ,1, . . . , xτ,n, w

⊤
τ xτ,n, xτ,query). The goal of the

Transformer is to compute yτ,query = w⊤
τ xτ,query.

Embedding matrix Eτ . There are many ways to encode the input as a series of tokens for the
transformer. For most parts of the paper, we consider the following embedding matrix Eτ which
duplicates the task descriptor before each stack of (x, y)⊤. That is,

Eτ =

(
µτ µτ . . . µτ µτ

xτ,1 xτ,2 . . . xτ,n xτ, query
yτ,1 yτ,2 . . . yτ,n 0

)
. (1)

Here we set the last query stack to be (µτ , xτ,query, 0)
⊤ and the zero entry remains to be filled with

the prediction of the model. This particular embedding is chosen to simplify the optimal solution
and optimization process. One can of course think of alternative embeddings. For example, we also
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consider the following prefix embedding Epre
τ in experiments:

Epre
τ =

 1 0 0 · · · 0 0
0 1 1 · · · 1 0
µτ xτ,1 xτ,2 · · · xτ,n xτ, query
0 yτ,1 yτ,2 · · · yτ,n 0

 . (2)

In this embedding the task descriptor µτ is just represented in the first token. The first two rows
serve as a simplified version of positional encoding that distinguishes the task descriptor, in-context
examples and the query example.

2.2 TRAINING DETAILS

To do training on the mean-varying linear regressions problem, we first describe the linear self-
attention layer, and then give the training loss and initialization details.

Model Architecture. A standard self-attention Transformer layer with one head computes the fol-
lowing update to the embedding E:

f(E;W ) = E +WPWV EM · softmax

(
(WKE)⊤WQE

ρ

)
.

Here ρ is a normalizing factor, E is the input embedding matrix and M is a masking matrix. Similar
to previous results(Ahn et al., 2023; Von Oswald et al., 2023; Zhang et al., 2024a)., we consider a
simplified version of one-layer linear self-attention (LSA) Transformer. Specifically, the projection
matrix and the value matrix are merged into a projection-value matrix WPV ∈ RdE×dE , and the
key matrix and query matrix are merged into a key-query matrix WKQ ∈ RdE×dE . Here dE is the
embedding dimension. The attention is also restricted to the first n tokens that represent in-context
examples (and excludes the query token):

fLSA(E;W ) = E +WPV EM · E
⊤WKQE

n
, M =

(
In 0n
0⊤n 0

)
. (3)

Here W =
(
WKQ,WPV

)
and the normalizing factor is set to be the number of in-context examples

n. Note that the masking matrix M excludes attentions to the query token.

Model Prediction. For input embedding E = Eτ , the prediction is read out from the bottom-right
entry of the output

ŷτ,query = fLSA(Eτ ;W )−1,−1. (4)

Training Loss. Let ℓ(W, τ) be the expected least-square error for task τ . That is,

ℓ(W, τ) :=
1

2
Exτ,i,xτ,query,wτ

[(
fLSA(Eτ ;W )−1,−1 − w⊤

τ xτ,query
)2]

. (5)

Note that different tasks may have different expected loss as they have different µτ . In training we
take expectation over all tasks:

L(W ) := Eµτ∼N (0,Id) [ℓ(W, τ)] (6)
This represents the population loss for training. In practice, we can generate m sequences
Sτ1 , Sτ2 , ..., Sτm , and the empirical loss is just the mean-squared error for all the sequences

L̂(W ) :=
1

m

m∑
i=1

[
(fLSA(Eτi ;W )−1,−1 − w⊤

τixτi,query)
2
]
. (7)

Initialization. We make the following assumption on the initialization. The assumption is motivated
by the initialization in Zhang et al. (2024a).
Assumption 2.1 (Initialization). We assume the initialization of the Transformer satisfies

WKQ(0) =

 Σ11 Σ12 0d
Σ21 Σ22 0d
0⊤d 0⊤d 0

 ,WPV (0) =

 0d×d 0d×d 0d
0d×d 0d×d 0d
0⊤d 0⊤d σ


where Σ11,Σ22,Σ12,Σ21 are PSD matrices and σ satisfies the equation:

σ :=
(
∥Σ11∥2F + ∥Σ12∥2F + ∥Σ21∥2F + ∥Σ22∥2F

) 1
2 > 0.
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A simple way to satisfy the requirement is to take Σ11 = Σ12 = Σ21 = Σ22 = Id and σ = 2
√
d.

As we will later see in Section 3.2, setting σ this way ensures that thoughout training WKQ and
WPV matrices are always balanced – they always have the same Frobenius norm. This invariant is
important for our analysis since, as demonstrated in Section 3.2, among the infinite global optimal
solutions, we need only work with those that are balanced.

Training procedure. We run gradient flow on the population loss L(W ) from the initialization
above.

dW

dt
= −∇L(W ). (8)

It is possible to use standard techniques to discretize the process and run gradient descent, and it is
also possible to use a polynomial number of samples to estimate the gradient. For simplicity in this
paper we only work with the population loss and gradient flow.

2.3 1-LAYER LSA PERFORMING PRECONDITIONED GRADIENT DESCENT

As Ahn et al. (2023) observed, in the standard linear regression setting where µτ is always set to 0,

if the input data just consists of E =

(
x1 x2 · · · xn xquery
y1 y2 · · · yn 0

)
, then the optimal one layer

LSA network computes a preconditioned gradient descent step. That is, they construct weights for
1-layer LSA network such that the predicted ŷquery can be computed by

ŷquery = ⟨xquery,Λ
−1

n∑
i=1

yixi⟩.

Here the vector
∑n

i=1 yixi is just a multiple of the gradient of a least squares objective f(ŵ) =
1
2

∑n
i=1(yi − ŵ⊤xi)

2. The matrix Λ−1 is related to the covariance matrix of xi’s and serves as a
preconditioner. As we will see later, with task descriptors 1-layer LSA networks can discover more
complicated strategies for the mean-varying linear regression problem.

3 WARM UP: LARGE SAMPLE SIZE

The global optimal solution and analysis for the general case are complicated. To highlight our main
ideas we first describe our results in the limit of infinitely many samples n → ∞.

3.1 MAIN RESULTS

Our main results for infinitely many samples are summarized in the following theorem. As we will
see, trained Transformers learn to use task descriptors to “standardize” keys by removing the mean.
Theorem 3.1 (Main result). Using initialization as in Assumption 2.1, if the number of samples
n → ∞ and σ satisfies 0 < σ < α for some constant α 2, then the gradient flow (8) will converge3

to the global minimizer W∗ = (WKQ
∗ ,WPV

∗ ) and the corresponding loss lim
n→∞

L(W∗) = 0. Here
we have

WKQ
∗ =

1

u∗

 0d×d −Λ−1 0d
0d×d Λ−1 0d
0⊤d 0⊤d 0

 and WPV
∗ =

 0d×d 0d×d 0d
0d×d 0d×d 0d
0⊤d 0⊤d u∗

 (9)

where u∗ =
(
2∥Λ−1∥2F

) 1
4 .

Keys standardization. To understand what the Transformer is doing in this case, we notice that
the WKQ

∗ matrix can be decomposed as the product of two matrices. Let C and W̃KQ
∗ be

C =

 0d×d 0d×d 0d
−Id Id 0d
0⊤d 0⊤d 1

 , W̃KQ
∗ =

 0d×d 0d×d 0d
0 1

u∗Λ
−1 0d

0⊤d 0⊤d 1

 . (10)

2Please see Lemma A.4 in the appendix for the value of α.
3Here the gradient flow becomes dW

dt
= −∇ lim

n→∞
L(W ).
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Then we have WKQ
∗ = C⊤W̃KQ

∗ . Here W̃KQ
∗ is in fact the optimal solution for 1-layer LSA

without task descriptors (see Zhang et al. (2024a)) and C is the standardization operator. The effect
of matrix C suggests that when computing the key for the attention, the optimal solution will first
standardize the xi by removing its mean component to get CEτ , which has form

CEτ =

(
0 0 · · · 0 0
z1 z2 · · · zn zquery
y1 y2 · · · yn 0

)
. (11)

Here we call zi = xi − µτ the standardized versions of xi. Doing this helps remove the spurious
correlations introduced by the nonzero mean µτ . More precisely, we compute the output ŷquery as:

ŷquery = x⊤
queryΛ

−1 1

n

n∑
i=1

ziyi

= x⊤
queryΛ

−1

(
1

n

n∑
i=1

zix
⊤
i

)
w

→ x⊤
queryw as n → ∞.

(12)

The last step uses the fact that 1
n

∑n
i=1 zix

⊤
i converges to Λ as n goes to infinity, so we see that

the transformer outputs the correct estimate and achieves 0 loss. On the other hand, if we did not
have the C matrix (and hence did not use the task descriptor), the corresponding matrix would
be 1

n

∑n
i=1 xix

⊤
i which only converges to Λ + µτµ

⊤
τ . This matrix is different for different µτ

and it is impossible to invert it by changing the weight matrix (the weight matrices need to work
simultaneously for all tasks).

3.2 PROOF SKETCH FOR THEOREM 3.1

Now we discuss how to prove the convergence result in Theorem 3.1. Several steps of our proof are
similar to the proof in Zhang et al. (2024a) for the case without task descriptors, but as we shall see
having task descriptors introduces additional challenges to the proof.

We first characterize the set of global minimum and give a lowerbound of the gradient when the
current solution is not globally optimal. As we shall see, there are actually infinitely many global
optimal solutions and it would be difficult to lowerbound the norm of the gradient by the distance to
the particular optimal solution in Theorem 3.1. We get around this issue by showing that the training
dynamics maintain several invariant properties, and the only global optimal solution that satisfies all
these invariant properties is the solution in Theorem 3.1.

Characterizing global minima and gradient lowerbound Our main lemma below gives a strong
characterization of global minima and show that the gradient can be lowerbounded if we are away
from the set of global minima.
Lemma 3.2. If our initialization satisfies Assumption 2.1 and n → ∞, then we have

∥∇L(W )∥2F ≥c

(∥∥∥Sym(WKQ
11 +WKQ

12 +WKQ
22 +WKQ

21 )
∥∥∥2
F
+

∥∥∥∥WKQ
22 +WKQ

21 − Λ−1

u

∥∥∥∥2
F

+∥WKQ
12 +

Λ−1

u
∥2F + ∥WKQ

22 − Λ−1

u
∥2F
)

(13)
for some constant c > 0.

All four terms in the lemma above needs to be equal to 0 in order to achieve a global optimal
solution. After examining the four equations, we can show that there are two types of symmetry for
the loss function. First, if WKQ is scaled by factor κ and WPV is scaled by factor 1/κ, then the
function computed by the LSA layer does not change. Second, if we add skew-symmetric matrices
U (U⊤ = −U ) to the 11 block of WKQ, it also doesn’t change the solution. The second type of
symmetry is unique to the setting with task descriptors. Every global minimum is equivalent to the
minimum we constructed in Theorem 3.1 up to these transformations.
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To make the training process easier to analyze and allow use to focus on the particular global min-
imum in Theorem 3.1, we compliment Lemma 3.2 with the following invariant result of training
dynamics:
Lemma 3.3. If the initialization follows Assumption 2.1, then throughout gradient flow training, the
following invariants are maintained:

1. Balancing condition:

u2 = ∥WKQ
11 ∥2F + ∥WKQ

12 ∥2F + ∥WKQ
21 ∥2F + ∥WKQ

22 ∥2F . (14)

2. WKQ is a symmetric matrix.

3. u,WKQ
11 ,WKQ

12 ,WKQ
21 and WKQ

22 are the only non-zero weights.

4. If u is smaller than some positive constant α at initialization, then u > β for another
positive constant β throughout training.

This shows that with the initialization in Assumption 2.1, we never need to worry about the blocks
except for u,WKQ

11 ,WKQ
12 ,WKQ

21 and WKQ
22 . The first symmetry of scaling is now fixed because

u and WKQ
11 ,WKQ

12 ,WKQ
21 ,WKQ

22 are always balanced. The second symmetry also cannot happen
because WKQ

11 remains symmetric. By combining invariants from training trajectory (Lemma 3.3)
and the landscape result of lowerbounding the gradient (Lemma 3.2) we can get Theorem 3.1.

4 OPTIMAL SOLUTION FOR FINITE NUMBER OF SAMPLES

Surprisingly a 1-layer LSA network comes up with a much more complicated strategy when the
sample size n is finite. In fact the optimal solutions differ significantly from that of infinitely many
samples when n is not much larger than d. In this section for simplicity we assume that the covari-
ance matrix for xi’s are identity (Λ = Id), and summarize the results in theorem below:
Theorem 4.1 (Main theorem, finite sample). Under Assumption 2.1, if the number of samples n ≥ 2
and σ satisfies 0 < σ < α for some constant α, then the gradient flow (8) will converge to a global
minimizer W∗ = (WKQ

∗ ,WPV
∗ ). If the covariance matrix Λ = Id, then the global minimizer

W∗ = (WKQ
∗ ,WPV

∗ ) satisfies

WKQ
∗ =

 a11Id a12Id 0d
a21Id a22Id 0d
0⊤d 0⊤d 0

 ,WPV
∗ =

 0d×d 0d×d 0d
0d×d 0d×d 0d
0⊤d 0⊤d b

 . (15)

Here b, a11, a21, a12, a22 are all numbers depending only on n, d. For z ∈ {b, a11, a21, a12, a22} we
denote z = fz(n, d), the exact formulas for fz’s are given Theorem A.8 in Appendix.

As we can see, the optimal solution here makes use of two new blocks in WKQ
∗ corresponding to

a11Id and a21Id. Intuitively, these two blocks leverage the descriptors µτ in queries, which is equal
to Ezquery [xτ,query] and thus can be help reduce the bias introduced by zquery. To see this, we need a
careful way to decompose the training loss function.

Decomposition of the training loss Taking expectation over zquery and decomposing the loss into
bias and variance terms, we have

L(W ) =
1

2
Exi,µτ ,wτ

[(
Ezquery [ŷτ,query − yτ,query]

)2]︸ ︷︷ ︸
bias:L2

+
1

2
Exi,µτ ,wτ

[
Ezquery [(ŷτ,query − yτ,query)

2
]−
(
Ezquery [ŷτ,query − yτ,query]

)2]︸ ︷︷ ︸
variance:L1

.

(16)

We will show that the L1 and L2 terms can achieve their individual optimal value independently. To
do that we rely on a reparametrization trick to separate the variables used in L1 and L2.
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Simplify the loss in the new parametrization. First we note that wKQ
31 = wKQ

32 = wPV
31 =

wPV
32 = 0d is the critical point and they are zero at initialization. We show that this is maintained

throughout training. This allows us to simplify the prediction ŷτ,query. Denote µ̂τ = 1
n

∑n
i=1 xi and

Λ̂ = 1
n

∑n
i=1 xix

⊤
i . We can then simplify the prediction to be

ŷτ,query = bw⊤
τ

(
a11∥µτ∥2w⊤

τ µ̂τ + a21Λ̂µτ + a12µ
⊤
τ µ̂τxτ,query + a22Λ̂xτ,query

)
. (17)

Intuitively, for this to predict w⊤
τ xτ,query, it makes sense to use a12 and a22 – this is exactly what

happens in the infinite sample regime because there Λ̂ = µτµ
⊤
τ + Id and µ̂τµ

⊤
τ = µτµ

⊤
τ , so it is

possible to get xτ,query just by combining these two terms. However this is no longer true for the finite
sample case as the empirical mean µ̂ and second moment Λ̂ are different from their expectations,
and the first two terms provide useful information about them that helps reducing the loss.

Recall zi = xτ,i − µτ is the standardized version of the i-th sample. We can in turn write the
empirical variance matrix Ẑ := 1

n

∑
ziz

⊤
i and standardized mean ẑ := 1

n

∑n
i=1 zi. Substitute the

simplified prediction ŷτ,query back to (16) and we reach

L(W ) =
1

2
Ezi,µτ

[∥∥∥(b(a11 + a12 + a21 + a22)∥µτ∥2µ̂τ + b (a21 + a22)
(
µτ ẑ

⊤ + Ẑ
)
µτ − µτ

)∥∥∥2]︸ ︷︷ ︸
L2

+
1

2
Ezi,µτ

[∥∥∥b (a12 + a22) µ̂τµ
⊤
τ + ba22

(
µτ ẑ

⊤ + Ẑ
)
− Id

∥∥∥2
F

]
︸ ︷︷ ︸

L1

.

(18)

Therefore we can write the loss L(W ) in the new parametrization θ:
θ1 = b(a11 + a12 + a21 + a22)
θ2 = b(a21 + a22)
θ3 = b(a12 + a22)
θ4 = ba22.

(19)

Note that for any values of θ1, θ2, θ3, θ4, there are always values of b, a11, a12, a21, a22 that can
achieve these θ-values (indeed, the θ parameters are just a full rank linear transformation of
ba11, ba12, ba21, ba22). Therefore for the optimal solution it suffices to consider the parametriza-
tion of θ1, θ2, θ3, θ4. Since L1 only depends on θ3 and θ4 and L2 only depends on θ1 and θ2, we can
simply consider the optimal solution for the following two functions separately:

L1(θ3, θ4) =
1

2
Ezi,µτ

[∥∥∥θ3µ̂τµ
⊤
τ + θ4

(
µτ ẑ

⊤ + Ẑ
)
− Id

∥∥∥2
F

]
,

L2(θ1, θ2) =
1

2
Ezi,µτ

[∥∥∥(θ1∥µτ∥2µ̂τ + θ2

(
µτ ẑ

⊤ + Ẑ
)
µτ − µτ

)∥∥∥2] .
No need of non-zero a11 and a21 if n = ∞. In the infinite sample regime, notice that µ̂τ → µτ ,
Ẑ → Id and ẑ → 0d as n → ∞, the decomposition becomes even simpler

lim
n→∞

L(θ) =
1

2
Ezi,µτ

[∥∥(θ1∥µτ∥2µτ + θ2µτ − µτ

)∥∥2]︸ ︷︷ ︸
L2

+
1

2
Ezi,µτ

[∥∥θ3µτµ
⊤
τ + (θ4 − 1) Id

∥∥2
F

]
︸ ︷︷ ︸

L1

.

(20)

To minimize both L1 and L2 here, it suffices to choose θ2 = θ4 = 1 and θ1 = θ3 = 0, which
corresponds to the optimal solution in Theorem 3.1 where a11 = a21 = 0.

Non-zero a11 and a21 to minimize bias for finite n. When n is finite, Ẑ and ẑ deviate from their
limits hence just setting θ2 = θ4 = 1 and θ1 = θ3 = 0 are not sufficient to minimize L1 and L2

8
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at the same time. That is, there will be a tradeoff between bias and variance if only using ba12 and
ba22. To avoid the tradeoff and minimize both, Transformers need to learn a more delicate structure
where ba11 and ba21 are also used to better estimate µτ . These requirements give us the closed form
formulas for θi’s and then we can solve for the optimal solutions for b, a11, a12, a21, a22. The final
result is in Section A.2 Appendix.

The optimization of the finite sample case follows from similar ideas as the infinite sample case,
except that the calculations are more complicated. We leave the details in Section A.2 in Appendix.

5 EXPERIMENTS

In this section we show that Transformers can indeed leverage the task descriptor in the mean-
varying linear regression problem. For 1-layer Transformers with descriptor embedding, the trained
Transformer converges to the optimal solution as our theory predicts. Deeper Transformers can
further improve the performance both with or without task descriptors, but the Transformers with
task descriptors can always leverage that information to achieve lower loss.

5.1 EXPERIMENT SETUP

Model architecture. We train L-layer LSA Transformers parametrized as below:

Hℓ+1 = Hℓ +WPV
ℓ MHℓ ·

H⊤
ℓ WKQ

ℓ Hℓ

n
for ℓ = 0, 1, . . . , L− 1.

Here H0 is the input matrix, set to be the embedding matrix and the prediction is read out from the
bottom-right entry of the output ŷτ,query = [HL]−1,−1. Recall M is the masking for attention that
restricts attention to in-context tokens (excluding the query). We have also done experiments with
separate WK ,WQ,WP ,WV matrices in Section B.1 at Appendix and results are similar.

Embedding matrix. Our weight matrices WKQ,WPV are both dE × dE matrices. We use three
types of input embedding matrices: embedding with task descriptor Eτ in (1), prefix embedding
Epre

τ in (2) and embedding without task descriptor

E =

(
1 1 · · · 1 0

xτ,1 xτ,2 . . . xτ,n xτ, query
yτ,1 yτ,2 . . . yτ,n 0

)
. (21)

The first row of E and first two rows of Epre
τ serve as a simplified version of positional encoding.

Data hyperparameters. We generate 4096 i.i.d. input sequences for each episode of training. For
all experiments in this section, the data dimension d = 5 and the covariance matrix Λ = Id. We
leave experiments for different d and Λ to Section B.2 at Appendix.

Training algorithms. For all experiments, we use Adam optimizer (Kingma & Ba, 2015) to train
Transformers. We also use ℓ2 gradient clipping to stabilize training.

5.2 EXPERIMENT RESULTS

We first show that for different number of layers and embeddings, Transformers can find ways to
leverage the additional information in task descriptor.

We plot the ICL training loss curves in Figure 2. First we note that embedding with task descriptors
have smaller loss values than embedding without descriptors for 1, 2, 3-layer Transformers.

Single-layer Transformers trained on prefix embeddings and embeddings without descriptors exhibit
comparable performance. However, as the depth of the Transformer increases, models trained on
prefix embeddings achieve lower loss. Surprisingly, 3-layer Transformers outperform those trained
on embeddings without descriptors and even surpass those trained on embeddings with duplicated
descriptors. This suggests that with prefix embeddings, deeper Transformers may be able to use
the descriptor more efficiently. We explore some possibilities by observing the attention matrices in
Section B.3 at Appendix.

9
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Figure 2: The MSE loss curves for Transformers in different depths. We display mean and std of 5
random seeds. The number of samples in each sequence n = 50 and data dimension d = 5.

Figure 3: The heat map of WPV
−1,−1 ·WKQ for a well-trained Transformer with task descriptors µτ

in the training sequences. The number of in-context examples n vary from 100 to 600.

Next we show that 1-layer LSA network indeed finds the optimal solution as our theory predicts. To
do that, we plot heat maps of the product WPV

−1,−1 ·WKQ of trained Transformers in Figure 3. As
Theorem 4.1 suggests, in the heat maps there are four blocks in forms of multiples of Id. The two
left blocks fade while the two right blocks remain prominent as n grows large, which is consistent
with the infinite sample regime in Theorem 3.1. Detailed formulas for parameters in Theorem 4.1
(appearing in Theorem A.8 in appendix) suggest that ba11 will converge to 0 from above as n → ∞
and ba21 will converge to 0 from below as n → ∞. The two other values ba12 and ba22 will be
approximately equal to −1 and 1 respectively as long as n is much larger than d. These trends are
all observed in Figure 3.

6 CONCLUSIONS

In this work, we investigate how Transformers leverage task descriptions for in-context learning.
Specifically, we consider the mean-varying linear regression problem where the task descriptors can
be set to be the mean µτ for each task τ . We give a global convergence result for Transformers
trained with task descriptors. Our theoretical result shows that even 1-layer linear Transformers can
discover interesting ways to leverage the task descriptor. We empirically show that Transformers can
achieve much lower loss for ICL when task descriptors are provided. We also find a clear pattern
in the parameters of well-trained Transformers, which verifies our theoretical result. Immediate
open problems include understanding how Transformers can make use of task descriptors when
the embedding does not duplicate the descriptor, as well as what happens for multi-layer and/or
nonlinear versions of Transformers. As future work, it would also be interesting to explore how
Transformers leverage more general task descriptors across a broader range of ICL tasks.
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A OMITTED PROOFS

In this section, we assume E[·] is taking expectation over all randomness without specifying. We
denote λmin(A) and λmax(A) the smallest and largest eigenvalue for any matrix A. For any PSD
matrix A, denote

√
A the unique PSD matrix such that (

√
A)2 = A. Sometimes we also write

√
A

as A
1
2 . We denote [k] = {1, 2, · · · , k}.

We first prove the main result for infinite number of samples in Section A.1, then we extend the
result to the more complicated finite sample setting in Section A.2.

A.1 PROOF FOR THEOREM 3.1

In this section we proof Theorem 3.1, which we restate here.
Theorem A.1. Using initialization as in Assumption 2.1, if the number of samples n → ∞ and σ
satisfies 0 < σ < α for some constant α 4, then the gradient flow (8) will converge to the global
minimizer W∗ = (WKQ

∗ ,WPV
∗ ) and the corresponding loss lim

n→∞
L(W∗) = 0. Here we have

WKQ
∗ =

1

u∗

 0d×d −Λ−1 0d
0d×d Λ−1 0d
0⊤d 0⊤d 0

 and WPV
∗ =

 0d×d 0d×d 0d
0d×d 0d×d 0d
0⊤d 0⊤d u∗

 (22)

where u∗ =
(
2∥Λ−1∥2F

) 1
4 .

A.1.1 PROOF SKETCH

Here we give the sketch of our proof to Theorem 3.1, which follows the proof framework in Zhang
et al. (2024a). Before we start, let’s write WPV and WKQ into blocks:

WPV =

 WPV
11 WPV

12 wPV
13

WPV
21 WPV

22 wPV
23

(wPV
31 )⊤ (wPV

32 )⊤ wPV
33

 (23)

and

WKQ =

 WKQ
11 WKQ

12 wKQ
13

WKQ
21 WKQ

22 wKQ
23

(wKQ
31 )⊤ (wKQ

32 )⊤ wKQ
33

 (24)

where all the W11,W12,W21,W22 ∈ Rd×d, w13, w23, w31, w32 ∈ Rd and w33 ∈ R. By expand-
ing the prediction ŷτ,query = fLSA(Eτ ;W )2d+1,n+1, we know the prediction only depends on the
weight blocks WKQ

11 ,WKQ
12 , wPV

31 ,WKQ
21 ,WKQ

22 , wPV
32 , wKQ

31 , wKQ
32 and wPV

33 . Therefore we will
only consider the training dynamics of these relevant blocks. To simplify notation we gather all the
relevant parameters in the following block matrix U .

U =

 U11 U12 u13

U21 U22 u23

u⊤
31 u⊤

32 u−1

 :=

 WKQ
11 WKQ

12 wPV
31

WKQ
21 WKQ

22 wPV
32

(wKQ
31 )⊤ (wKQ

32 )⊤ wPV
33

 . (25)

As we mentioned in Section 3, the proof of Theorem 3.1 relies on Lemma 3.3, which we restate here
Lemma A.2. If the initialization follows Assumption 2.1, then throughout gradient flow training,
the following invariants are maintained:

1. Balancing condition:

u2 = ∥WKQ
11 ∥2F + ∥WKQ

12 ∥2F + ∥WKQ
21 ∥2F + ∥WKQ

22 ∥2F . (26)

2. WKQ is a symmetric matrix.

3. u,WKQ
11 ,WKQ

12 ,WKQ
21 and WKQ

22 are the only non-zero weights.

4Please see Lemma A.4 for the value of α.
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4. If u is smaller than some positive constant α at initialization, then u > β for another
positive constant β throughout training.

We split Lemma 3.3 into Lemma A.3 and Lemma A.4. We start with the dynamics of u13, u23, u31

and u32, which shows that these parameters stick to 0 during the training phase so the dynamics of
U could be simplified. Then we show that there is a balance between u−1 and U11, U12, U21, U22.
Specifically, we have the following lemma.
Lemma A.3. If our initialization satisfies Assumption 2.1, then we have both

u13(t) = u23(t) = u31(t) = u32(t) = 0 (27)
and

u−1(t)
2 = ∥U11(t)∥2F + ∥U12(t)∥2F + ∥U21(t)∥2F + ∥U22(t)∥2F (28)

for all t ≥ 0. Additionally, we have U11 remains symmetric throughout the training.

Given the balanced condition, we can prove u−1 could be lower bounded by some positive constant
during the training phase in Lemma A.4, which suggests the trajectory of u−1 is away from the
saddle point u−1 = 0.
Lemma A.4. If our initialization satisfies Assumption 2.1, n → ∞ and σ satisfies 0 < σ < α where
α is equal to (

d+ 2

2∥Λ∥F (∥Λ∥2F + 2tr (Λ) + 3d2) + 28dtr (Λ) + 60d3

) 1
2

, (29)

then we have u−1(t) ≥ β > 0 for all t ≥ 0. Here

β =

(
(d+ 2)σ2(

4 + 2
√
2
)
(∥Λ∥2F + 2tr(Λ) + d2 + 2d)

) 1
2

. (30)

Combining Lemma A.3 and Lemma A.4, we have the Lemma 3.3 in the main paper.

With the lower bound β of u−1, we are finally able to give an error bound (Luo & Tseng, 1993) of
our loss L(U) in Lemma A.5, which is the Lemma 3.2 in the main paper.
Lemma A.5. If our initialization satisfies Assumption 2.1 and n → ∞, then we have

∥∇L(U)∥2F

≥c

(
∥Sym (U11 + U12 + U22 + U21)∥2F +

∥∥∥∥U22 + U21 −
Λ−1

u−1

∥∥∥∥2
F

+∥U12 +
Λ−1

u−1
∥2F + ∥U22 −

Λ−1

u−1
∥2F
) (31)

where

c = β2 min

(
λmin(Λ)

2

270d3
,

1

270d3
,
λmin(Λ)

4

90d2
,

1

90d2

)
.

With Lemma A.5 in hand, we can finally prove Theorem 3.1.

Given these supporting lemmas, we are now ready to prove the main theorem.

Proof of Theorem 3.1. Since L(U) ≥ 0 is bounded below, we know L(Ut) the loss over gradient
flow will converge. Any stationary point U∗ of the gradient flow must satisfy ∇L(U∗) = 0. There-
fore, combining with the error bound (31) we have ∥U∗

22 + U∗
21 − Λ−1

u∗
−1

∥2F = ∥Sym(U∗
11 + U∗

12 +

U∗
22 + U∗

21)∥2F = ∥U∗
12 +

Λ−1

u∗
−1

∥2F = ∥U∗
22 − Λ−1

u∗
−1

∥2F = 0, which implies that U∗
22 = Λ−1

u∗
−1

, U∗
12 =

−Λ−1

u∗
−1

, U∗
21 = 0d×d and Sym(U∗

11) = 0d×d. By lemma A.3 we know this implies U∗
11 = 0d×d.

Finally by direct computation we know the corresponding loss is L(U∗) = 0, which implies that U∗

is a global minimizer. Combining (28), we have u∗
−1 =

(
2∥Λ−1∥2F

) 1
4 . Translating U back to W

according to (25), we obtain Theorem 3.1.

The rest of this section will give detailed proofs for the supporting lemmas.
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A.1.2 PROOFS OF LEMMA A.3, LEMMA A.4 AND LEMMA A.5

The proof of Lemma A.3 mostly relies on calculations of gradients. We will show that (i) gradients
are always 0 for certain blocks and (ii) the growths of WKQ and WPV are balanced in training
dynamics.

Proof of Lemma A.3. We first prove (27) by showing 0 is the critical points for certain blocks.

Part 1: critical points at zero. The gradient of the loss is

∂ℓ(U, τ)

∂U
= E[(ŷτ,query − w⊤

τ xτ,query)
∂ŷτ,query

∂U
].

To give the detailed gradient formulation, we need to expand ŷτ,query in terms of U first. Denote
Λ̂ = 1

n

∑n
i=1 xτ,ix

⊤
τ,i and µ̂τ = 1

n

∑n
i=1 xτ,i. Then we have

ŷτ,query =
(
u⊤
13 u

⊤
23 u−1

) µτµ
⊤
τ µτ µ̂

⊤
τ µτ · w⊤

τ µ̂τ

µ̂τµ
⊤
τ Λ̂ Λ̂wτ

µ⊤
τ · w⊤

τ µ̂τ w⊤
τ Λ̂ w⊤

τ Λ̂wτ

 U11 U12

U21 U22

u⊤
31 u⊤

32

( µτ

xτ,query

)
= u⊤

13

(
µτµ

⊤
τ U11 + µτ µ̂

⊤
τ U21 + w⊤

τ µ̂τµτu
⊤
31

)
µτ

+ u⊤
13

(
µτµ

⊤
τ U12 + µτ µ̂

⊤
τ U22 + w⊤

τ µ̂τµτu
⊤
32

)
xτ,query

+ u⊤
23

(
µ̂τµ

⊤
τ U11 + Λ̂U21 + Λ̂wτu

⊤
31

)
µτ

+ u⊤
23

(
µ̂τµ

⊤
τ U12 + Λ̂U22 + Λ̂wτu

⊤
32

)
xτ,query

+ u−1 · (µ⊤
τ w

⊤
τ µ̂τU11µτ + w⊤

τ Λ̂U21µτ + w⊤
τ Λ̂wτu

⊤
31µτ )

+ u−1 · (µ⊤
τ w

⊤
τ µ̂τU12xτ,query + w⊤

τ Λ̂U22xτ,query + w⊤
τ Λ̂wτu

⊤
32xτ,query).

(32)
If letting u13 = u23 = u31 = u32 = 0, then we have

ŷτ,query = u−1(µ
⊤
τ w

⊤
τ µ̂τU11µτ + w⊤

τ Λ̂U21µτ + µ⊤
τ w

⊤
τ µ̂τU12xτ,query + w⊤

τ Λ̂U22xτ,query). (33)

The gradient on u13 is

∂ℓ(U, τ)

∂u13
= E

[
(ŷτ,query − w⊤

τ xτ,query)
(
µτµ

⊤
τ U11 + µτ µ̂

⊤
τ U21

)
µτ

]
+ E

[
(ŷτ,query − w⊤

τ xτ,query)
(
µτµ

⊤
τ U12 + µτ µ̂

⊤
τ U22

)
xτ,query

]
.

Note that

ŷτ,query−w⊤
τ xτ,query = u−1w

⊤
τ ·(µ̂τµ

⊤
τ U11µτ+Λ̂U21µτ+µ̂τµ

⊤
τ U12xτ,query+Λ̂U22xτ,query−

xτ,query

u−1
)

is degree-1 with respect to wτ . Also note that
(
µτµ

⊤
τ U11 + µτ µ̂

⊤
τ U21

)
µτ and(

µτµ
⊤
τ U12 + µτ µ̂

⊤
τ U22

)
xτ,query do not contain wτ . Since E[wτ ] = 0 and wτ is independent

with all other random variables, we have ∂ℓ(U,τ)
∂u13

= 0.

Similarly, we have ∂ℓ(U,τ)
∂u23

= 0 given that u13 = u23 = u31 = u32 = 0.

Let ∆ := (µ̂τµ
⊤
τ U11µτ+Λ̂U21µτ+µ̂τµ

⊤
τ U12xτ,query+Λ̂U22xτ,query− xτ,query

u−1
)µτ . Then the gradient

on u31 is

∂ℓ(U, τ)

∂u31
= E

[
u−1w

⊤
τ Λ̂wτ (ŷτ,query − w⊤

τ xτ,query)µτ

]
= E

[
u2
−1w

⊤
τ Λ̂wτw

⊤
τ ∆
]

= 0.
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Similarly, we have ∂ℓ(U,τ)
∂u32

= 0 given that u13 = u23 = u31 = u32 = 0. Taking expectation over

µτ , we have ∂L(U)
∂u13

= ∂L(U)
∂u23

= ∂L(U)
∂u31

= ∂L(U)
∂u32

= 0 given that u13 = u23 = u31 = u32 = 0.

Now we prove (28) by showing the dynamics of u2
−1 and ∥U11∥2F + ∥U12∥2F + ∥U21∥2F + ∥U22∥2F

are balanced.

Part 2: Balancing condition. We can simplify the prediction ŷτ,query by letting u13 = u23 =
u31 = u32 = 0 in (32), which gives the prediction

ŷτ,query = u−1wτ
⊤
((

µ̂τµ
⊤
τ U11 + Λ̂U21

)
µτ +

(
µ̂τµ

⊤
τ U12 + Λ̂U22

)
xτ,query

)
.

This implies that

ŷτ,query − yτ,query = u−1w
⊤
τ (
(
µ̂τµ

⊤
τ U11 + Λ̂U21

)
µτ +

(
µ̂τµ

⊤
τ U12 + Λ̂U22 −

1

u−1
Id

)
xτ,query).

(34)
Now we can compute the dynamics of U by the chain rule ∂ℓ(U,τ)

∂U =

E
[
(ŷτ,query − yτ,query)

∂(ŷτ,query−yτ,query)
∂U

]
.

Therefore, we have the dynamics of U11, U12, U21, U22 and u−1 as follows:

•
∂ℓ(U, τ)

∂U11
= E

[
(ŷτ,query − yτ,query)u−1w

⊤
τ µ̂τµτµ

⊤
τ

]
; (35)

•
∂ℓ(U, τ)

∂U21
= E

[
(ŷτ,query − yτ,query)u−1Λ̂wτµ

⊤
τ

]
(36)

•
∂ℓ(U, τ)

∂U12
= E

[
(ŷτ,query − yτ,query)u−1w

⊤
τ µ̂τµτx

⊤
τ,query

]
(37)

•
∂ℓ(U, τ)

∂U22
= E

[
(ŷτ,query − yτ,query)u−1Λ̂wτx

⊤
τ,query

]
(38)

•
∂ℓ(U, τ)

∂u−1
= E

[
(ŷτ,query − yτ,query)wτ

⊤
(
M2µτ +

(
M1 +

1

u−1
Id

)
xτ,query

)]
. (39)

Here M1 := µ̂τµ
⊤
τ U12 + Λ̂U22 − 1

u−1
Id and M2 := µ̂τµ

⊤
τ U11 + Λ̂U21. Therefore we have

∂ℓ (U, τ)

∂u−1
· u−1 = tr

(
U⊤
11

∂ℓ(U, τ)

∂U11
+ U⊤

12

∂ℓ (U, τ)

∂U12
+ U⊤

21

∂ℓ (U, τ)

∂U21
+U⊤

22

∂ℓ(U, τ)

∂U22

)
. (40)

Taking expectation over µτ , we have the same thing holds for L(U)

∂L (U)

∂u−1
· u−1 = tr

(
U⊤
11

∂L(U)

∂U11
+ U⊤

12

∂L (U)

∂U12
+ U⊤

21

∂L (U)

∂U21
+U⊤

22

∂L(U)

∂U22

)
. (41)

This implies that

du2
−1(t)

dt
=

d

dt
tr
(
U11(t)U

⊤
1 (t) + U12(t)U

⊤
22(t) + U21(t)U

⊤
21(t) + U22(t)U

⊤
22(t)

)
. (42)

Therefore if we set u−1(0)
2 = ∥U11(0)∥2F +∥U12(0)∥2F +∥U21(0)∥2F +∥U22(0)∥2F at initialization,

we have
u−1(t)

2 = ∥U11(t)∥2F + ∥U12(t)∥2F + ∥U21(t)∥2F + ∥U22(t)∥2F (43)
for all t ≥ 0.

Finally, the gradient of U11 as in (35) is obviously symmetric. Given that we also initialize U11 to
be symmetric, U11 will remain symmetric throughout the training.
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Now we prove Lemma A.4, which shows that u−1 is actually away from the saddle point at origin
with appropriate initialization. This proof relies on a careful analysis on loss L as a function of u−1.
We can rewrite the loss Lt(u−1) = a(t)u2

−1 − b(t)u−1 + c as a time-dependent degree-2 function
of u−1. Note that a and b depend on U11, U12, U21, U22 and are in turn time-dependent, while c is
a constant independent of time. If we set u−1(0) small enough (smaller than the b/2a but greater
than 0) at initialization, L0(u−1(0)) will be dominated by the degree-1 term, which has a negative
coefficient at time 0. Specifically, we will have an upper bound L0(u−1(0)) < L0(0) − ϵ = c − ϵ
for some positive number ϵ < c. Another important observation is that the gradient flow of U
guarantees that L will be no larger than L0(u−1(0)) throughout the training, which actually implies
that Lt(u−1(t)) < c−ϵ for all time t. For any time t, the set of u−1 that gives loss value at most c−ϵ
({u−1 : Lt(u−1) < c − ϵ}) will always have a support that is always positive and bounded away
from 0. We take a lower bound of Lt(u−1) over all time t to obtain the desired time-independent
lower bound of u−1. It is worth noting that to obtain time-independent lower and upper bounds
of Lt(u−1), we need the balancing condition between u−1 and U11, U12, U21, U22 to eliminate the
dependence of L on U11, U12, U21, U22.

Proof of Lemma A.4. We first rewrite loss function ℓ(U, τ) as a function of u−1. By taking expec-
tation over µτ , we can obtain L(u−1) as a function of u−1.

Step 1: Rewrite loss as a degree-2 function of u−1. We will decompose the loss ℓ(U, τ) into
ℓ(U, τ) = ℓ1(U, τ) + ℓ2(U, τ) and rewrite ℓ1 and ℓ2 separately. Recall M1 = µ̂τµ

⊤
τ U12 + Λ̂U22 −

1
u−1

Id and M2 = µ̂τµ
⊤
τ U11 + Λ̂U21. Then we have

ℓ(U, τ) =
1

2
Ezi,zquery

[
(ŷτ,query − yτ,query)

2
]

(44)

=
u2
−1

2

(
Ezi

[
tr(M⊤

2 M2µτµ
⊤
τ )
]
+ Ezi

[
tr
(
M⊤

1 M1

(
Λ + µτµ

⊤
τ

))]
+2Ezi

[
tr
(
M⊤

1 M2µτµ
⊤
τ

)])
(45)

=
u2
−1

2
Ezi

[
tr
(
M⊤

1 M1Λ
)]

︸ ︷︷ ︸
ℓ1(U,τ)

+
u2
−1

2
Ezi

[
tr
(
(M2 +M1)

⊤
(M2 +M1)µτµ

⊤
τ

)]
︸ ︷︷ ︸

ℓ2(U,τ)

. (46)

As we can see in (45), when taking expectation over zquery given µτ , the variance term is
u2
−1

2 E
[
tr
(
M⊤

1 M1Λ
)]

, which is ℓ1. This implies that E[ℓ1] = L1 and E[ℓ2] = L2 where L2

and L1 are the bias and variance decomposition of the loss function. Now we compute the expec-
tation in ℓ1 and ℓ2. Define a positive value γ = ∥µτ∥2 + 1

n tr(Λ) and a positive definite matrix
Γ = n+1

n

(
Λ + µτµ

⊤
τ

)
+ 1

n

(
tr (Λ) + ∥µτ∥2

)
Id. By direct computation we have

ℓ1(U, τ) =
1

2
u2
−1 tr

(
γU⊤

12µτµ
⊤
τ U12Λ + U⊤

22Γ
(
Λ + µτµ

⊤
τ

)
U22Λ + 2U⊤

12µτµ
⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
U22Λ

)
− u−1tr

((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
+

1

2
tr (Λ)

:=− c1,1u−1 + c1,2u
2
−1 +

1

2
tr (Λ) .

(47)

Here c1,1 = tr
((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
is the coefficient of degree-1 term −u−1 and

c1,2 = 1
2 tr

(
γU⊤

12µτµ
⊤
τ U12Λ + U⊤

22Γ
(
Λ + µτµ

⊤
τ

)
U22Λ + 2U⊤

12µτµ
⊤
τ

(
Γ− 2

nµτµ
⊤
τ

)
U22Λ

)
is the

coefficient of degree-2 term u2
−1 in ℓ1.
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Similarly we have

ℓ2(U, τ) =
1

2
u2
−1 tr

(
γ (U12 + U11)

⊤
µτµ

⊤
τ (U12 + U11) + (U22 + U21)

⊤
Γ
(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

+2 (U12 + U11)
⊤
µτµ

⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
− u−1tr

(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
+

1

2
tr
(
µτµ

⊤
τ

)
:=− c2,1u−1 + c2,2u

2
−1 +

1

2
tr
(
µτµ

⊤
τ

)
.

(48)
Here c2,1 = tr

(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
is the coefficient of

degree-1 term −u−1 and

c2,2 =
1

2
tr
(
γ (U12 + U11)

⊤
µτµ

⊤
τ (U12 + U11) + (U22 + U21)

⊤
Γ
(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

+2 (U12 + U11)
⊤
µτµ

⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
is the coefficient of degree-2 term u2

−1 in ℓ2.

Note that coefficients c1,1, c1,2, c2,1, c2,2 are all time-dependent positive functions of µτ . Taking
expectation over µτ , we have

Lt(u−1) = Eµτ
[ℓ1 (U, τ) + ℓ2 (U, τ)]

= Eµτ

[
(c1,2 + c2,2)u

2
−1 − (c2,1 + c1,1)u−1

]
+

1

2
Eµτ

[
∥µτ∥2

]
+

1

2
tr (Λ) .

(49)

Step 2: bound the coefficients. Now we give several useful lower and upper bounds on c1,2+c2,2
and c2,1+c1,1. Denote ci,j(t) as the corresponding coefficient at time t under the gradient flow. The
first two bounds yield a upper bound of L0(u−1(0)) < L0(0)− ϵ for some ϵ > 0. The third bound
yields a lower bound for Lt(u−1). Specifically, we have the following claim.

Claim 1. We have the following three bounds:

1.
E[c1,1(0) + c2,1(0)] ≥ (d+ 2)u−1(0), (50)

2.
c1,2 + c2,2 ≤ u2

−1∥Λ + µτµ
⊤
τ ∥2F

(
2∥µτ∥2 + ∥Λ∥F

)
, (51)

3.
c1,1 + c2,1 ≤ (2 +

√
2)u−1∥Λ + µτµ

⊤
τ ∥2F . (52)

Step 3: Upper bound L0(u−1(0)). Now we can upper bound L0(u−1(0)).

L0(u−1(0)) = E [ℓ1 (U(0), τ) + ℓ2 (U(0), τ)]

= E
[
(c1,2 + c2,2)u−1(0)

2 − (c2,1 + c1,1)u−1(0)
]
+

1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ)

≤ u2
−1(0)E

[∥∥Λ + µτµ
⊤
τ

∥∥2
F

(
∥Λ∥F + 2∥µτ∥2

)
u2
−1(0)− (d+ 2)

]
+

1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ) ((50) and (51))

≤ −1

2
(d+ 2)u2

−1(0) +
1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ) .

(53)

The last inequality comes from that u−1(0) < α =

(
d+2

2E[∥Λ+µτµ⊤
τ ∥2

F (∥Λ∥F+2∥µτ∥2)]

) 1
2

at initializa-

tion.
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Step 4: Show u−1 is always positive. Note that when u−1 = 0, the loss Lt(0) =
1
2Eµτ

[
∥µτ∥2

]
+

1
2 tr (Λ) . Therefore, u−1 is non-zero whenever Lt(u−1) < 1

2Eµτ

[
∥µτ∥2

]
+ 1

2 tr (Λ) . Since
Lt(u−1(t)) is non-increasing in t and by (53) we know L0(u−1(0)) < 1

2Eµτ

[
∥µτ∥2

]
+ 1

2 tr (Λ),
we have Lt(u−1(t)) <

1
2Eµτ

[
∥µτ∥2

]
+ 1

2 tr (Λ) for all t ≥ 0, which implies that u−1 is non-zero
for all t ≥ 0. Further since we have u−1(0) > 0 and u−1(t) is continuous on t, we have u−1 > 0
for all t ≥ 0.

Step 5: Lower bound Lt(u−1(t)) for all t. Now we lower bound Lt(u−1(t)).

Lt(u−1(t)) = E
[
(c1,2 + c2,2)u

2
−1 − (c2,1 + c1,1)u−1

]
+

1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ)

≥ −u−1E [c2,1 + c1,1] +
1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ)

≥ −u2
−1E

[
(2 +

√
2)∥Λ + µτµ

⊤
τ ∥2F

]
+

1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ) (u−1 > 0 and (52))

(54)

Step 6: Combine lower and upper bounds together. Since Lt(u−1(t)) ≤ L0(u−1(0)), combin-
ing (53) and (54) we have

u−1 ≥

(
(d+ 2)u2

−1(0)

(4 + 2
√
2)E [∥Λ + µτµ⊤

τ ∥2F ]

) 1
2

= β > 0. (55)

Now we prove Claim 1.

Proof. Recall that
c1,1 = tr

((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
(56)

and
c2,1 = tr

(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
. (57)

Computing the expectation, we have

E[c1,1] = tr
(
U12Λ + U22Λ + U22Λ

2
)

(58)

and

E[c2,1] = (d+ 2)tr(U12 + U11 + U22 + U21) + tr((U22 + U21) Λ). (59)
By Assumption 2.1, at time t = 0 we have U12(0), U11(0), U22(0) and U21(0)
are PSD matrices. Therefore we have E[c1,1(0)] ≥ 0 and E[c2,1(0)] ≥ (d +
2)tr (U12(0) + U11(0) + U22(0) + U21(0)) , which implies that

E[c1,1(0) + c2,1(0)]
2

≥(d+ 2)2
(
∥
√
U12(0)∥2F + ∥

√
U11(0)∥2F + ∥

√
U22(0)∥2F + ∥

√
U21(0)∥2F

)2
≥(d+ 2)2

(
∥
√
U12(0)∥4F + ∥

√
U11(0)∥4F + ∥

√
U22(0)∥4F + ∥

√
U21(0)∥4F

)
≥(d+ 2)2

(
∥U12(0)∥2F + ∥U11(0)∥2F + ∥U22(0)∥2F + ∥U21(0)∥2F

)
(submultiplicativity)

=(d+ 2)2u−1(0)
2 (Assumption 2.1)

(60)

Therefore we have E[c1,1(0) + c2,1(0)] ≥ (d+ 2)u−1(0).

Recall that

c1,2 =
1

2
tr

(
γU⊤

12µτµ
⊤
τ U12Λ + U⊤

22Γ
(
Λ + µτµ

⊤
τ

)
U22Λ + 2U⊤

12µτµ
⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
U22Λ

)
(61)
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and
c2,2 =

1

2
tr
(
γ (U12 + U11)

⊤
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ

+2 (U12 + U11)
⊤
µτµ

⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
+

1

2
tr
(
(U22 + U21)

⊤
Γ
(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

) (62)

Note that Γ → Λ + µτµ
⊤
τ and γ → ∥µτ∥2 if n → ∞. Therefore we have

c2,2 ≤1

2
∥µτ∥2∥U12 + U11∥2F ∥µτµ

⊤
τ ∥2F +

1

2
∥U22 + U21∥2F ∥Λ + µτµ

⊤
τ ∥2F ∥µτµ

⊤
τ ∥F

+ ∥U12 + U11∥F ∥U22 + U21∥F ∥µτµ
⊤
τ ∥2F ∥Λ + µτµ

⊤
τ ∥F (Cauchy-Schwartz inequality)

≤1

2

∥∥Λ + µτµ
⊤
τ

∥∥2
F

∥∥µτµ
⊤
τ

∥∥
F
(∥U12 + U11∥F + ∥U22 + U21∥F )2

≤2
∥∥Λ + µτµ

⊤
τ

∥∥2
F

∥∥µτµ
⊤
τ

∥∥
F

(
∥U12∥2F + ∥U11∥2F + ∥U22∥2F + ∥U21∥2F

)
(Triangle inequality)

=2
∥∥Λ + µτµ

⊤
τ

∥∥2
F
∥µτ∥2 u2

−1 (Lemma A.3)
(63)

Here the second last inequality comes from ∥µτ∥2 = ∥µτµ
⊤
τ ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F .

Similarly, for c1,2 we have

c1,2 =
1

2
tr
(
∥µτ∥2U⊤

12µτµ
⊤
τ U12Λ + U⊤

22

(
Λ + µτµ

⊤
τ

)2
U22Λ + 2U⊤

12µτµ
⊤
τ

(
Λ + µτµ

⊤
τ

)
U22Λ

)
≤1

2
∥µτ∥2∥U12∥2F ∥Λ∥2F +

1

2
∥U22∥2F ∥Λ + µτµ

⊤
τ ∥2F ∥Λ∥F

+ ∥µτµ
⊤
τ ∥2F ∥Λ∥F ∥U11∥F ∥U12∥F (Cauchy-Schwartz inequality)

≤1

2

∥∥Λ + µτµ
⊤
τ

∥∥2
F
∥Λ∥F (∥U12∥F + ∥U22∥F )2

≤1

2

∥∥Λ + µτµ
⊤
τ

∥∥2
F
∥Λ∥F

(
∥U12∥F + ∥U22∥F + ∥U11∥2F + ∥U21∥2F

)2
≤
∥∥Λ + µτµ

⊤
τ

∥∥2
F
∥Λ∥F

(
∥U12∥2F + ∥U11∥2F + ∥U22∥2F + ∥U21∥2F

)
(Cauchy-Schwartz inequality)

=
∥∥Λ + µτµ

⊤
τ

∥∥2
F
∥Λ∥F u2

−1 (Lemma A.3)
(64)

Here the second inequality comes from ∥µτ∥2 ≤ ∥Λ + µτµ
⊤
τ ∥F and ∥Λ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F .

Adding (113) and (112) up, we have

c1,2 + c2,2 ≤ u2
−1∥Λ + µτµ

⊤
τ ∥2F

(
2∥µτ∥2 + ∥Λ∥F

)
. (65)

Recall that
c1,1 = tr

((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
(66)

and
c2,1 = tr

(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
. (67)

We have
c1,1 = tr

((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
≤ ∥µτµ

⊤
τ ∥F ∥Λ∥F ∥U12∥F + ∥Λ + µτµ

⊤
τ ∥F ∥Λ∥F ∥U22∥F (Cauchy-Schwartz inequality)

≤ (∥U12∥F + ∥U22∥F )
∥∥Λ + µτµ

⊤
τ

∥∥2
F

≤
√
2
(
∥U12∥2F + ∥U22∥2F

)∥∥Λ + µτµ
⊤
τ

∥∥2
F

(Cauchy-Schwartz inequality)

≤
√
2
(
∥U12∥2F + ∥U22∥2F + ∥U11∥2F + ∥U21∥2F

)∥∥Λ + µτµ
⊤
τ

∥∥2
F

=
√
2u−1

∥∥Λ + µτµ
⊤
τ

∥∥2
F

(Lemma A.3).
(68)
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Here the second inequality comes from ∥µτµ
⊤
τ ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F and ∥Λ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F .

Similarly we have

c2,1 = tr
(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
≤ ∥µτµ

⊤
τ ∥2F ∥U12 + U11∥F + ∥Λ + µτµ

⊤
τ ∥F ∥µτµ

⊤
τ ∥F ∥U22 + U21∥F (Cauchy-Schwartz inequality)

≤ (∥U12 + U11∥F + ∥U22 + U21∥F )
∥∥Λ + µτµ

⊤
τ

∥∥2
F

≤ (∥U12∥F + ∥U11∥F + ∥U22∥F + U21∥F )
∥∥Λ + µτµ

⊤
τ

∥∥2
F

(Triangle inequality)

≤ 2

√
∥U12∥2F + ∥U22∥2F + ∥U11∥2F + ∥U21∥2F

∥∥Λ + µτµ
⊤
τ

∥∥2
F

(Cauchy-Schwartz inequality)

= 2u−1

∥∥Λ + µτµ
⊤
τ

∥∥2
F
. (Lemma A.3)

(69)
Here the second inequality comes from ∥µτµ

⊤
τ ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F .

Adding (68) and (69) up, we have

c1,1 + c2,1 ≤ (2 +
√
2)u−1∥Λ + µτµ

⊤
τ ∥2F . (70)

Finally we prove the gradient lower bound of ∥∇L(U)∥F . The high-level idea of this proof
is to expand L1 and L2 under new parametrizations Ũ = (u−1U12, u−1U22) and Û =
(u−1Sym (U11 + U12 + U21 + U22) , u−1 (U12 + U22)) respectively, where the two terms ad-
mit gradient lower bounds respectively. We can merge these two gradient lower bounds
by merging these two parametrizations into one parametrization Θ = (Ũ , Û) to obtain a
lower bound on ∥∇L(Θ)∥F . We then write out the Jacobian of the parameters transformation
(u−1U

⊤
12, u−1U

⊤
22, u−1U

⊤
21, u−1U

⊤
11)

⊤ → Θ and find its spectral norm is bounded by some con-
stant. Therefore, by combining the lower bound of u−1 we obtained in Lemma A.4, we can translate
the gradient lower bound of ∥∇L(Θ)∥F back to ∥∇U∥F up to some constant. Specifically, we use
the following lemma to relate the gradient norm bounds after reparametrization.
Lemma A.6 (Gradient lowerbound with reparametrization). Suppose f : Rp → Rp and g : Rp → R
are differentiable functions. Denote y = f(x) where f is a transformation between two parametriza-
tions y and x. Suppose g(y) has a gradient lower bound ∥∇yg(y)∥ ≥ δ(y). Denote Jf (x) ∈
Rp×p the Jacobian matrix of f at x. If Jf (x) is invertible and the spectral norm of the inverse
∥J−1

f (x)∥2 ≤ a for some constant a, then we have ∥∇xg(f(x))∥ ≥ a−1δ(y) for all y = f(x).

Proof of Lemma A.6. Easy to see through chain rule that ∇xg(f(x)) = Jf (x)∇yg(y). Since Jf (x)
is invertible, we obtain δ(y) ≤ ∥∇yg(y)∥ = ∥Jf (x)−1∇xg(f(x))∥ ≤ a∥∇xg(f(x))∥, which
completes the proof.

With the above lemma in hand, we can prove Lemma A.5.

Proof of Lemma A.5. We first develope a gradient lower bound on L1.

Step 1: gradient lower bound on L1. We take a new parameterization Ũ12 := u−1U12 and
Ũ22 := u−1U22. Denote L1(U) = E[ℓ1(U, τ)] and L2(U) = E[ℓ2(U, τ)]. Then we can simply
L1(U) in the new parameterization Ũ = (Ũ12, Ũ22) as L1(Ũ). Specifically, we have

L1(U) =L1(Ũ)

=
1

2
E
[
tr
(
∥µτ∥2Ũ⊤

12µτµ
⊤
τ Ũ12Λ + Ũ⊤

22

(
Λ + µτµ

⊤
τ

)
Ũ22Λ + Λ

+2Ũ⊤
12µτµ

⊤
τ

(
Λ + µτµ

⊤
τ

)
Ũ22Λ− 2µτµ

⊤
τ Ũ12Λ− 2

(
Λ + µτµ

⊤
τ

)
Ũ22Λ

)]
.

(71)

First we want to show that∥∥∥∇L1(Ũ)
∥∥∥
F
≥ 1

10
λmin(Λ)min{λmin(Λ)

3, 1}∥Ũ − Ũ∗∥F (72)
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for all t ≥ 0, where Ũ∗ := (−Λ−1,Λ−1).

By direct computation, we have the gradients

• ∂L1(Ũ)

∂Ũ12
=
(
(d+ 2)Ũ12 + (d+ 2)Ũ22 + ΛŨ22 − I

)
Λ;

• ∂L1(Ũ)

∂Ũ22
=
(
(d+ 2)Ũ22 +

(
Λ2 + 2Λ

)
Ũ22 + (d+ 2)Ũ12 + ΛŨ12 − I − Λ

)
Λ.

Therefore we have

∥∇L1(Ũ)∥F · ∥Ũ − Ũ∗∥F

≥

〈(
∂L1(Ũ)

∂Ũ12

,
∂L1(Ũ)

∂Ũ22

)
,
(
Ũ12 + Λ−1, Ũ22 − Λ−1

)〉

≥ tr

(
Λ

(
2
(
Ũ12 + Ũ22

)⊤ (
Ũ12 + Ũ22

)
+
(
Ũ22 − Λ−1

)
Λ
(
Ũ⊤
12 + Λ−1

)
+ (Λ + 2I)

(
Ũ22 − Λ−1

)
Λ
(
Ũ⊤
22 − Λ−1

)
+
(
Ũ12 + Λ−1

)
Λ
(
Ũ⊤
22 − Λ−1

)))

=tr

Λ

V V ⊤ +
(
Ũ12 + Λ−1

) 1

2
Λ2
(
Λ2 + 2Λ + 2I

)−1︸ ︷︷ ︸
P1

(
Ũ12 + Λ−1

)⊤

+
(
Ũ22 − Λ−1

)(
Λ2 + 2Λ + 2I − (Λ + 2I)2

(
2I − 1

2
Λ2
(
Λ2 + 2Λ + 2I

)−1
))

︸ ︷︷ ︸
P2


 .

(73)

In the last equation the matrix V is defined as

V :=
(
Ũ12 + Λ−1

)(
2I − 1

2
Λ2
(
Λ2 + 2Λ + 2I

)−1
) 1

2

+
(
Ũ22 − Λ−1

)
(Λ + 2I)

(
2I − 1

2
Λ2
(
Λ2 + 2 + 2I

)−1
)− 1

2

.

(74)

It is easy to see P1 is a PSD matrix. Actually P2 is also PSD. To see this, for any eigenvalue a of Λ,

the corresponding eigenvalue in P2 is a2+2a+2− 2(a2+2a+4)(a2+2a+2)
3a2+8a+8 ≥ 1

4a
2 ≥ 0. Furthermore

we have λmin(P2) ≥ 1
4λmin(Λ)

2. Similarly, we have λmin(P1) ≥ 1
10 min{λmin(Λ)

3, 1}. Removing
the term containing V in (73), we have

∥∇L1(Ũ)∥F · ∥Ũ − Ũ∗∥F

≥ tr

(
Λ
(
Ũ12 + Λ−1

)
P1

(
Ũ12 + Λ−1

)⊤
+ Λ

(
Ũ22 − Λ−1

)
P2

(
Ũ22 − Λ−1

)⊤)
≥ 1

10
λmin(Λ)min{λmin(Λ)

3, 1}∥Ũ12 + Λ−1∥2F +
1

4
λmin(Λ)

2∥Ũ22 − Λ−1∥2F

≥ 1

10
λmin(Λ)min{λmin(Λ)

3, 1}
(
∥Ũ12 + Λ−1∥2F + ∥Ũ22 − Λ−1∥2F

)
=

1

10
λmin(Λ)min{λmin(Λ)

3, 1}∥Ũ − Ũ∗∥2F .

(75)

Therefore we have

∥∇L1(Ũ)∥F ≥ 1

10
λmin(Λ)min{λmin(Λ)

3, 1}∥Ũ − Ũ∗∥F . (76)
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Step 2: gradient lower bound on L2. Now we derive a gradient lower bound for L2. We define
a new parameterization U1 := u−1Sym(U11 + U12 + U21 + U22) and U2 := u−1(U21 + U22).
By checking the dynamics of U11 in (35) and (37), we can find that U11 keeps symmetric for all
t ≥ 0. Therefore U1 = u−1(U11 + Sym (U12 + U21 + U22)). Note that for any d × d matrix A, it
holds that µ⊤

τ Aµτ = µ⊤
τ Sym(A)µτ . Therefore we can write L2 under the new parameterization as

L2(U1, U2):

L2(U) = L2(U1, U2) =
1

2
E
[∥∥(ΛU2 − I + µτµ

⊤
τ U1

)
µτ

∥∥2] . (77)

Therefore we know L2 is convex in terms of U1 and U2 since ΛU2 − I + µτµ
⊤
τ U1 is an affine

function of (U1, U2), f(X) = ∥Xµτ∥2 is a convex function and the expectation reserves convexity.
By setting U∗

2 = Λ−1 and U∗
1 = 0d×d in (77), we have L2(U

∗
1 , U

∗
2 ) = 0. Denote Û = (U1, U2),

Û∗ = (U∗
1 , U

∗
2 ).

By convexity, we have〈
∇L2(Û), Û − Û∗

〉
+ L2(U

∗
1 , U

∗
2 ) =

〈
∇L2(Û), Û − Û∗

〉
≥ L2(Û). (78)

Therefore expanding the expectation in (77), we have

L2(Û) = ∥ΛU2 − I∥2F + (d+ 4)
(
tr (U1)

2
+ tr

(
U2
1

)
+ ∥U1∥2F

)
+ 2

(
tr ((ΛU2 − I) (U1)) + tr

(
(ΛU2 − I) (U1)

⊤
)
+ tr (ΛU2 − I) tr (U1)

)
≥
∥∥∥∥ 1√

d+ 4

(
ΛU2 + U⊤

2 Λ− 2I
)
+
√
d+ 4 (U1)

∥∥∥∥2
F

+
d

d+ 4
∥ΛU2 − I∥2F + (d+ 4) ∥U1∥2F

+ (d+ 4) tr (U1)
2
+ 2 tr (ΛU2 − I) tr (U1)

≥
∥∥∥∥ 1√

d+ 4

(
ΛU2 + U⊤

2 Λ− 2I
)
+
√
d+ 4 (U1)

∥∥∥∥2
F

+

(
d

d+ 4
− d

d+ 5

)
∥ΛU2 − I∥2F +

1

d+ 5
tr (ΛU2 − I)

2

+ 4 ∥U1∥2F + (d+ 5) tr (U1)
2
+ 2 tr (ΛU2 − I) tr (U1)

+

(
1√
d+ 5

tr (ΛU2 − I) +
√
d+ 5 tr (U1)

)2

≥
(

d

d+ 4
− d

d+ 5

)
∥ΛU2 − I∥2F + 4 ∥U1∥2F

≥ 1

30d

(
∥ΛU2 − I∥2F + ∥U1∥2F

)
≥ min (λmin(Λ), 1)

2

30d

(
∥U1∥2F +

∥∥U2 − Λ−1
∥∥2
F

)
=

min (λmin(Λ), 1)
2

30d
∥Û − Û∗∥2F .

(79)

Here the first equation comes from that ∥A∥2F ≥ tr(A2) by taking A = ΛU2 − I . The second
equation comes from that U1 is symmetric hence tr

(
U2
1

)
= ∥U1∥2F . The first inequality comes

from that ∥A∥2F ≥ 1
d tr(A)2 for any d× d real matrix A by taking A = ΛU2 − I and A = U1. The

last inequality comes from that∥∥∥∥(U2 − Λ−1

U1

)∥∥∥∥
F

=

∥∥∥∥( Λ−1 0
0 I

)(
ΛU2 − I

U1

)∥∥∥∥
F

≤ 1

min (λmin(Λ), 1)

∥∥∥∥(ΛU2 − I

U1

)∥∥∥∥
F

.

Combining (78) by Cauchy-Schwartz inequality we have

∥∇L2(Û)∥F ∥Û − Û∗∥F ≥
〈
∇L2(Û), Û − Û∗

〉
≥ L2(Û) ≥ λmin(Λ)

2

30d
∥Û − Û∗∥2F , (80)
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which yields that

∥∇L2(Û)∥F ≥ min (λmin(Λ), 1)
2

30d
∥Û − Û∗∥F . (81)

Step 3: merge two lower bounds and parametrizations. Combine two types of parameteriza-
tions to get Θ = (Ũ⊤

12, Ũ
⊤
22, U

⊤
2 , U⊤

1 )⊤. Let Vec(A) be the vectorization operator in row-wise

order. For example, Vec

(
1 2
3 4

)
= (1, 2, 3, 4)⊤. We now give a gradient lower bound of

∥∇L(Vec(Θ))∥F by adding two gradient lower bounds (76) and (81):

∥∇L(Vec(Θ))∥2F
=∥∇L(Θ)∥2F
=∥∇L2(Û)∥2F + ∥∇L1(Ũ)∥2F
≥c′

(
∥U1∥2F +

∥∥U2 − Λ−1
∥∥2
F
+ ∥Ũ12 + Λ−1∥2F + ∥Ũ22 − Λ−1∥2F

)
.

(82)

where c′ := min
(

λmin(Λ)2

30d , 1
30d ,

λmin(Λ)4

10 , 1
10

)
.

Step 4: Translate the gradient lower bound to U -parametrization. We define W =
(u−1U

⊤
12, u−1U

⊤
22, u−1U

⊤
21, u−1U

⊤
11)

⊤. Then we have

Vec(Θ) =

 Id2

Id2

Id2 Id2

1
2 (Id2 + T ) 1

2 (Id2 + T ) 1
2 (Id2 + T ) Id2

Vec(W ) =: J Vec(W ). (83)

Here T ∈ Rd2×d2

is the transpose operator. That is T Vec(A) = Vec(A⊤) for any d× d matrix A.
It is easy to see T has exactly a 1 and d2 − 1 of zero in each row. So we have ∥Id2 + T∥2F ≤ 4d2.
We note that J is invertible and

J−1 =

 Id2

Id2

−Id2 Id2

1
2 (Id2 + T ) − 1

2 (Id2 + T ) − 1
2 (Id2 + T ) Id2

 .

Therefore we have ∥J−1∥2F ≤ 9d2, which yields a upper bound of spectral norm ∥J−1∥2 ≤ 3d.
Now we can invoke Lemma A.6 and obtain

∥∇L(W )∥2F
=∥∇L(Vec(W ))∥2F

≥ c′

9d2

(
∥U1∥2F +

∥∥U2 − Λ−1
∥∥2
F
+ ∥Ũ12 + Λ−1∥2F + ∥Ũ22 − Λ−1∥2F

)
.

(84)

Finally we translate the gradient lower bound back to U :

∥∇L(U)∥2F
≥∥∇U11

L(U)∥2F + ∥∇U12
L(U)∥2F + ∥∇U21

L(U)∥2F + ∥∇U22
L(U)∥2F

=u2
−1∥∇L(W )∥2F

≥β2∥∇L(W )∥2F
≥c
(
∥U1∥2F +

∥∥U2 − Λ−1
∥∥2
F
+ ∥Ũ12 + Λ−1∥2F + ∥Ũ22 − Λ−1∥2F

)
.

(85)

Here the second inequality comes from the lower bound u−1 ≥ β in Lemma A.4.
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A.2 FINITE SAMPLE PROOF

Now we consider the general setting where n is finite. We first give a global convergence result,
of which the proof follows the same framework as infinite samples. There are two differences
in the proof: (i) in the infinite-sample case, our converged solution has a population loss of 0,
which is automatically the optimal, while the converged loss is positive when n is finite. Hence we
need a new Lemma (Lemma A.10) which shows that fixing u13, u23, u31, u32 to be zero does not
lose optimality; (ii) as we will see later in Theorem A.8, the optimal solution have a much more
complicated form when n is finite. Therefore we use the form of gradient lower bound which does
not explicitly involve the form of the optimal solution as in Lemma A.11.
Theorem A.7 (Finite-sample convergence). Under Assumption 2.1, if the number of samples n ≥ 2
and σ satisfies 0 < σ < α for some constant α, then the gradient flow (8) will converge to a global
minimizer W∗ = (WKQ

∗ ,WPV
∗ ).

To give a characterization of the global minimizer when Λ = Id, we have the following theorem.
Theorem A.8 (Global minimizer). If the covariance matrix Λ = Id, then the global minimizer
W∗ = (WKQ

∗ ,WPV
∗ ) in Theorem A.7 satisfies

WKQ
∗ =

 a11Id a12Id 0d
a21Id a22Id 0d
0⊤d 0⊤d 0

 ,WPV
∗ =

 0d×d 0d×d 0d
0d×d 0d×d 0d
0⊤d 0⊤d b

 . (86)

where

b4 =

(
nd+ 2n− n2

n2 + nd2 + 5dn+ 4n+ d2 + d− 1
−

(
n− n2

)
(d+ 1)

n2(d+ 1) + 2d2n+ 6dn+ 2d2 + d− 1

)2

+

(
n(n− 1)

n2 + nd2 + 5dn+ 4n+ d2 + d− 1
+

n2(d+ 1) + n(d− 1)

n2(d+ 1) + 2d2n+ 6dn+ 2d2 + d− 1

)2

+

( (
n− n2

)
(d+ 1)

n2(d+ 1) + 2d2n+ 6dn+ 2d2 + d− 1

)2

+

(
n2(d+ 1) + n(d− 1)

n2(d+ 1) + 2d2n+ 6dn+ 2d2 + d− 1

)2

(87)

and 

a11 = 1
b

(
nd+2n−n2

n2+nd2+5dn+4n+d2+d−1 − (n−n2)(d+1)

n2(d+1)+2d2n+6dn+2d2+d−1

)
a21 = 1

b

(
n(n−1)

n2+nd2+5dn+4n+d2+d−1 − n2(d+1)+n(d−1)
n2(d+1)+2d2n+6dn+2d2+d−1

)
a12 = 1

b

(
(n−n2)(d+1)

n2(d+1)+2d2n+6dn+2d2+d−1

)
a22 = 1

b

(
n2(d+1)+n(d−1)

n2(d+1)+2d2n+6dn+2d2+d−1

)
.

(88)

Remark A.9 (Non-zero a11 and a21 to reduce bias under finite samples). As we see in (18), the
Transformer uses some a12 and a22 to minimize the variance term L1. In the infinite-sample case,
these a12 and a22 also minimize the bias term L2 to be 0. However, when n is finite, these a12 and a22
fail to minimize the bias term as Ẑ deviates from Id and ẑ deviates from 0d. Thus the Transformer
uses some non-zero a11 and a21 to better estimate µτ which in turn reduces the bias term L2.

Theorem A.8 can be simply proved by

1. Computing the critical point of the reparametrized optimization problem;
2. Translate the critical point condition back to the original parametrization along with the

balancing condition.

A.2.1 PROOF OF THEOREM A.7

Denote zi = xτ,i − µτ , zquery = xτ,query − µτ , ẑ = 1
n

∑n
i=1 zi, and Ẑ = 1

n

∑n
i=1 ziz

⊤
i the deviation

vectors, the empirical deviation vector and the empirical covariance matrix of the in-context samples.

Now we sketch the proof of Theorem A.7.
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Decompose the loss. Taking expectation over zquery and decomposing the result into bias and
variance terms, we have

L(U) =
1

2
Ezi,µτ ,wτ

[(
Ezquery [ŷτ,query − yτ,query]

)2]︸ ︷︷ ︸
L2

+
1

2
Ezi,µτ ,wτ

[(
Ezquery [(ŷτ,query − yτ,query)

2
]−
(
Ezquery [ŷτ,query − yτ,query]

)2)]︸ ︷︷ ︸
L1

.

(89)

Simplify the loss in the new parametrization. Noting that Lemma A.3 tells us that u13 = u23 =
u31 = u32 = 0d through the training regardless of how large n is, we can simplify the prediction to
be

ŷτ,query = µ⊤
τ w

⊤
τ µ̂τ Ũ11µτ + w⊤

τ Λ̂Ũ21µτ + µ⊤
τ w

⊤
τ µ̂τ Ũ12xτ,query + w⊤

τ Λ̂Ũ22xτ,query (90)

where Ũ := u−1U. Therefore, by algebra we have

L2(Ũ) =
1

2
Ezi,µτ

[∥∥∥((µτ + ẑ)µ⊤
τ

(
Ũ11 + Ũ12 + Ũ21 + Ũ22

)
µτ +

(
µτ ẑ

⊤ + Ẑ
)(

Ũ21 + Ũ22

)
µτ − µτ

)∥∥∥2]
(91)

and

L1(Ũ) =
1

2
Ezi,µτ

[∥∥∥(µτ + ẑ)µ⊤
τ

(
Ũ12 + Ũ22

)√
Λ +

(
µτ ẑ

⊤ + Ẑ
)
Ũ22

√
Λ−

√
Λ
∥∥∥2
F

]
. (92)

Note that for any skew-symmetric matrix A and vector x we have x⊤Ax = 0. Therefore by defining
Sym(A) = 1

2 (A+A⊤), we can further simplify the loss function to be

L(Ũ)

=
1

2
Ezi,µτ

[∥∥∥(µτ + ẑ)µ⊤
τ Sym

(
Ũ11 + Ũ12 + Ũ21 + Ũ22

)
µτ +

(
µτ ẑ

⊤ + Ẑ
)(

Ũ21 + Ũ22

)
µτ − µτ

∥∥∥2]︸ ︷︷ ︸
L2

+
1

2
Ezi,µτ

[∥∥∥(µτ + ẑ)µ⊤
τ

(
Ũ12 + Ũ22

)√
Λ +

(
µτ ẑ

⊤ + Ẑ
)
Ũ22

√
Λ−

√
Λ
∥∥∥2
F

]
︸ ︷︷ ︸

L1

.

(93)
Here we give a lemma ensuring that restricting u13, u23, u31 and u32 to be 0d does not affect the
global minimum of the loss.

Lemma A.10. Denote S := {U ∈ R(2d+1)×(2d+1) : u13 = u23 = u31 = u32 = 0d} the set
of simplified parameters. We have the global minimum of loss L in S equal to the original global
minimum:

min
U∈S

L(U) = min
U∈R(2d+1)×(2d+1)

L(U).

Now we introduce the new parametrization Θ:
Θ1 = Sym(Ũ11 + Ũ12 + Ũ21 + Ũ22)

Θ2 = Ũ21 + Ũ22

Θ3 = Ũ12 + Ũ22

Θ4 = Ũ22.

(94)

Therefore L1 is a function of Θ3,Θ4 and L2 is a function of Θ1,Θ2. Denote the new parameter
space P = {(Θ1,Θ2,Θ3,Θ4) : Θi ∈ Rd×d for 1 ≤ i ≤ 4 and Θ1 is symmetric}. The following
lemma shows that the loss L(Θ) is actually strongly-convex as a function in the convex parameter
space P .

28



Published as a conference paper at ICLR 2025

Lemma A.11. If the number of samples n ≥ 2, there exists constant c > 0, such that for any
Θ′,Θ′′ ∈ P , we have

∥∇L(Θ′)−∇L(Θ′′)∥F ≥ c∥Θ′ −Θ′′∥F . (95)

We can prove u−1 could be lower bounded by some positive constant during the training phase in
Lemma A.12, which suggests the trajectory of u−1 is away from the saddle point u−1 = 0.
Lemma A.12. If the initialization of one-layer LSA Transformer satisfies Assumption 2.1 and 0 <
σ < α where α2 is equal to

d+ 2

(1 + 1
n )∥Λ∥

3
F + (4 + d+4+tr(Λ)

n )∥Λ∥2F + (2d+ 4 + 3d+6+3tr(Λ)
2n )∥Λ∥F + 4(d+ 4 + tr(Λ)

n )(d+ 2)
,

(96)
we have

u−1 ≥ σ

(
α(

2 +
√
2
)
(∥Λ∥2F + 2tr (Λ) + d2 + 2d)

) 1
2

(97)

for all t ≥ 0.

With Lemma A.12 in hand, we can finally prove Theorem A.7.

Proof of Theorem A.7 . By setting Θ′ = Θ and Θ′′ to be the critical point Θ∗ of L(Θ) in Lemma
A.11, we have

∥∇L(Θ)∥F ≥ c∥Θ−Θ∗∥F (98)
for any Θ ∈ P .

To translate the above gradient lowerbound back to U -parametrization, we first note that (35) implies
that U11 keeps symmetric for all t ≥ 0. Therefore Θ1 = U11 + Sym(U12 + U21 + U22).

Rearrange the parameter matrices in a column to get Θ = (Θ⊤
4 ,Θ

⊤
3 ,Θ

⊤
2 ,Θ

⊤
1 )

⊤ and Ũ =

(Ũ⊤
22, Ũ

⊤
12, Ũ

⊤
21, Ũ

⊤
11)

⊤. Let Vec(A) be the vectorization operator in row-wise order. For example,

Vec

(
1 2
3 4

)
= (1, 2, 3, 4)⊤. It is easy to check that

Vec(Θ) =

 Id2

Id2 Id2

Id2 Id2

1
2 (Id2 + T ) 1

2 (Id2 + T ) 1
2 (Id2 + T ) Id2

Vec(Ũ) =: J Vec(Ũ). (99)

Here the transformation matrix J is invertible and

J−1 =

 Id2

−Id2 Id2

−Id2 Id2

1
2 (Id2 + T ) − 1

2 (Id2 + T ) − 1
2 (Id2 + T ) Id2

 . (100)

It is easy to see ∥J−1∥2 ≤ ∥J−1∥F ≤ 3d. Now we can invoke Lemma A.6 on the gradient lower
bound (98) to obtain

∥∇L(Ũ)∥F = ∥∇L(Vec(Ũ))∥ ≥ c

3d
∥Θ−Θ∗∥. (101)

Finally we translate the gradient lower bound on Ũ back to U :

∥∇L(U)∥2F
≥∥∇U11L(U)∥2F + ∥∇U12L(U)∥2F + ∥∇U21L(U)∥2F + ∥∇U22L(U)∥2F
=u2

−1∥∇L(Ũ)∥2F .
(102)

Therefore using the lower bound of u−1 in Lemma A.12, we have

∥∇L(U)∥F ≥ cσ

3d

(
α(

2 +
√
2
)
(∥Λ∥2F + 2tr (Λ) + d2 + 2d)

) 1
2

∥Θ−Θ∗∥F . (103)
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Since L(U) ≥ 0 is bounded below, we know L(U(t)) the loss over gradient flow will converge. Any
stationary point U∗ of the gradient flow must satisfy ∇L(U∗) = 0, which implies the corresponding
Θ(U∗) is a critical point of L(Θ). Since L(Θ) is strongly-convex on Θ, we have that the critical
point Θ(U∗) is a global minimizer of L under the restriction that u13 = u23 = u31 = u32 = 0.
Finally through Lemma A.10 we have the converged U∗ is a global minimizer of L.

A.2.2 PROOF OF LEMMA A.11 AND LEMMA A.12

The high-level idea of proof for Lemma A.11 is to lower bound the gradients of L1 and L2 respec-
tively and then combine the obtained bounds.

Proof of Lemma A.11. Given any Θ′,Θ′′ ∈ P , we want to show that

∥∇L(Θ′)−∇L(Θ′′)∥F ≥ c∥Θ′ −Θ′′∥F . (104)

Only need to show
⟨∇L(Θ′)−∇L(Θ′′),Θ′ −Θ′′⟩ ≥ c∥Θ′ −Θ′′∥2F . (105)

With slight abuse of notation, we denote Θ := Θ′ −Θ′′. It is equivalent to show

⟨∇L(Θ′)−∇L(Θ′′),Θ⟩ ≥ c∥Θ∥2F (106)

for some c > 0. Recall that we have decomposed the loss function into two parts under Θ-
parametrization L(Θ) = L2(Θ1,Θ2) + L1(Θ3,Θ4). Therefore it is sufficient to show that

⟨∇L1(Θ
′
3,Θ

′
4)−∇L1(Θ

′′
3 ,Θ

′′
4), (Θ3,Θ4)⟩ ≥ c · (∥Θ3∥2F + ∥Θ4∥2F ).

and
⟨∇L2(Θ

′
1,Θ

′
2)−∇L2(Θ

′′
1 ,Θ

′′
2), (Θ1,Θ2)⟩ ≥ c · (∥Θ1∥2F + ∥Θ2∥2F ).

Step 1. Getting the gradient lower bound for L1(Θ3,Θ4). By computation we have

∂L1

∂Θ′
3

− ∂L1

∂Θ′′
3

= (Θ3Λ + ΛΘ4Λ) +

(
d+ 1 +

tr(Λ)

n

)
Θ3Λ +

1

n
ΛΘ4Λ

and

∂L1

∂Θ′
4

− ∂L1

∂Θ′′
4

= ΛΘ3Λ + Λ2Θ4Λ +
1

n
Λ2Θ4Λ +

tr(Λ) + d

n
ΛΘ4Λ +

1

n
ΛΘ3Λ.

Therefore we have the gradient lower bound

⟨∇L1(Θ
′
3,Θ

′
4)−∇L1(Θ

′′
3 ,Θ

′′
4), (Θ3,Θ4)⟩

≥ tr

((
19

100
+

1

n

)
Λ2Θ4ΛΘ

⊤
4 +

tr(Λ)

n
ΛΘ4ΛΘ

⊤
4 +

(
d+ 2 +

tr(Λ)

n
−

100
(
1 + 1

n

)2
81

)
Θ3ΛΘ

⊤
3

)

≥
((

19

100
+

1

n

)
λmin(Λ)

3 +
tr(Λ) + d

n
λmin(Λ)

2

)
∥Θ4∥2F

+

(
d+ 2 +

tr(Λ)

n
−

100
(
1 + 1

n

)2
81

)
λmin(Λ)∥Θ3∥2F .

Note that d + 2 + tr(Λ)
n − 100(1+ 1

n )
2

81 > d − 1 if n ≥ 2. We have the gradient lower bound for
L1(Θ3,Θ4)

⟨∇L1(Θ
′
3,Θ

′
4)−∇L1(Θ

′′
3 ,Θ

′′
4), (Θ3,Θ4)⟩

≥ λmin (Λ)min

{
19

100
λmin (Λ)

2
, d− 1

}
︸ ︷︷ ︸

c1

(
∥Θ3∥2F + ∥Θ4∥2F

)
. (107)
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Step 2. Getting the gradient lower bound for L2(Θ1,Θ2). Again we first compute the gradient
difference

∂L2

∂Θ′
1

− ∂L2

∂Θ′′
1

= 2

(
d+ 4 +

tr(Λ)

n

)
Θ1 + 2

(
1 +

1

n

)
Sym(ΛΘ2)

+ tr

((
1 +

1

n

)
ΛΘ2 +

(
d+ 4 +

tr(Λ)

n

)
Θ1

)
Id

and

∂L2

∂Θ′
2

− ∂L2

∂Θ′′
2

=

(
1 +

1

n

)
Λ (2Θ1 + ΛΘ2) +

(
1 +

1

n

)
tr (Θ1) Λ +

d+ 2 + tr(Λ)

n
ΛΘ2.

Therefore we have the gradient lower bound

⟨∇L2(Θ
′
1,Θ

′
2)−∇L2(Θ

′′
1 ,Θ

′′
2), (Θ1,Θ2)⟩

≥1

2
tr (Θ1)

2
+ tr

(3

2
d+ 8 +

tr (Λ)

2n

)
Θ1Θ

⊤
1 + 2

(
1 +

1

n

)(
Sym(ΛΘ2)Θ

⊤
1 + ΛΘ1Θ

⊤
2

)
+

(
1 +

1

n

)
ΛΘ2Θ

⊤
2 Λ︸ ︷︷ ︸

∗


+ tr

((
1 +

1

n

)
tr (Θ1) ΛΘ

⊤
2 +

((
d+ 4 +

tr(Λ)

n

)
tr (Θ1) +

(
1 +

1

n

)
tr (ΛΘ2)

)
Θ1 +

d+ 2 + tr(Λ)

nλmax(Λ)
ΛΘ2Θ

⊤
2 Λ

)
.

The inequality comes from d∥Θ1∥2F ≥ tr(Θ1)
2 and tr(ΛΘ2Θ

⊤
2 ) ≥ 1

λmax(Λ)∥ΛΘ2∥2F .

We rewrite the ∗ term as(
1 +

1

n

)
ΛΘ2Θ

⊤
2 Λ

=

(
d
(
1 + 1

n

)2
d+ 4 + ξ

+

(
d
(
1 + 1

n

)2
d+ 4

−
d
(
1 + 1

n

)2
d+ 4 + ξ

)
+

(
1 +

1

n

)
4

d+ 4
−
(
1 +

1

n

)
d

(d+ 4)n

)
ΛΘ2Θ

⊤
2 Λ

where ξ > 0 will be determined later.

Substituting tr
(

d(1+ 1
n )2

d+4+ξ ΛΘ2Θ
⊤
2 Λ
)

⩾
(1+ 1

n )
2

d+4+ξ tr (ΛΘ2)
2 and tr

((
1 + 1

n

)
2

d+4ΛΘ2Θ
⊤
2 Λ
)

≥(
1 + 1

n

)
2

d+4 tr(ΛΘ2ΛΘ2) into tr(∗) and substituting the rewritten tr(∗) term back, we obtain

⟨∇L2(Θ
′
1,Θ

′
2)−∇L2(Θ

′′
1 ,Θ

′′
2), (Θ1,Θ2)⟩

≥
(
b tr (Θ1) +

1 + 1
n

b
tr (ΛΘ2)

)2

+

∥∥∥∥1 + 1
n

a
Θ1 + a

(
ΛΘ2 +Θ⊤

2 Λ
)∥∥∥∥2

F

+
tr(Λ)

n
tr (Θ1)

2
+

(
3

2
d+ 8 +

tr(Λ)

2n
−
(
1 +

1

n

)
(d+ 4)

)
∥Θ1∥2F

+

((
d+ 2 + tr(Λ)

nλmax(Λ)
−
(
1 +

1

n

)
d

(d+ 4)n

)
+

(
d
(
1 + 1

n

)2
d+ 4

−
d
(
1 + 1

n

)2
d+ 4 + ξ

))
∥ΛΘ2∥2F

where a :=
√
(1 + 1

n )/(d+ 4) and b :=
√
d+ 4 + ξ. After subtracting the first three positive

square terms at RHS and substituting ∥ΛΘ2∥F ≥ λmin(Λ)∥Θ2∥F , we reach

⟨∇L2(Θ
′
1,Θ

′
2)−∇L2(Θ

′′
1 ,Θ

′′
2), (Θ1,Θ2)⟩

≥
(
3

2
d+ 8 +

tr(Λ)

2n
−
(
1 +

1

n

)
(d+ 4)

)
∥Θ1∥2F

+

((
d+ 2 + tr(Λ)

nλmax(Λ)
−
(
1 +

1

n

)
d

(d+ 4)n

)
+

(
d
(
1 + 1

n

)2
d+ 4

−
d
(
1 + 1

n

)2
d+ 4 + ξ

))
λmin(Λ)

2 ∥Θ2∥2F .
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Since n ≥ 2, we can see the coefficient of ∥Θ1∥2 is positive and bounded below by 2. It remains to
pick some ξ such that the coefficient of ∥ΛΘ2∥2F is positive. It is easy to see

d+ 2 + tr(Λ)

nλmax(Λ)
−
(
1 +

1

n

)
d

(d+ 4)n
≥

d2 − 1
nλmax(Λ)d

nλmax(Λ)(d+ 4)︸ ︷︷ ︸
∗∗

.

Now we consider two complementary cases.

Case 1: If λmax(Λ) ≤ nd, then we have ∗∗ ≥ 0. So we can simply pick ξ = 4.5 and we have

⟨∇L2(Θ
′
1,Θ

′
2)−∇L2(Θ

′′
1 ,Θ

′′
2), (Θ1,Θ2)⟩ ≥ min{2, λmin(Λ)

2

55d
}
(
∥Θ1∥2F + ∥Θ2∥2F

)
.

Case 2: If λmax(Λ) > nd, we can then pick ξ = tr(Λ)
n and by computation we have

d2 − 1
nλmax(Λ)d

nλmax(Λ)(d+ 4)
+

(
d
(
1 + 1

n

)2
d+ 4

−
d
(
1 + 1

n

)2
d+ 4 + ξ

)
≥ d2

n(d+ 4)λmax(Λ)

when n ≥ 2.

Therefore with direct computation with the assumption λmax(Λ) > nd we reach

⟨∇L2(Θ
′
1,Θ

′
2)−∇L2(Θ

′′
1 ,Θ

′′
2), (Θ1,Θ2)⟩ ≥ min{2, d3λmin(Λ)

2

(d+ 4)λmax(Λ)2
}
(
∥Θ1∥2F + ∥Θ2∥2F

)
.

Combining both cases, we obtain the gradient lower bound of L2

⟨∇L2(Θ
′
1,Θ

′
2)−∇L2(Θ

′′
1 ,Θ

′′
2), (Θ1,Θ2)⟩ ≥ min{2, d3λmin(Λ)

2

(d+ 4)λmax(Λ)2
,
λmin(Λ)

2

55d
}︸ ︷︷ ︸

c2

(
∥Θ1∥2F + ∥Θ2∥2F

)
.

(108)

Step 3. Combine both gradient lower bounds (107) and (108). We finish the proof with

⟨∇L(Θ′)−∇L(Θ′′),Θ⟩ ≥ min{c1, c2}∥Θ∥2F . (109)

Now we prove Lemma A.12. The high-level idea of the proof is same as Lemma A.4. We again
write the loss Lt(u−1) = a(t)u2

−1 − b(t)u−1 + c as a time-dependent degree-2 function of u−1.
Note that b(t) is independent of n so we can re-use the previous bound on it. Since a(t) is dependent
on n, we re-calculate the upper bound of the coefficient for degree-2 term in this proof.

Proof. Rewrite loss as a degree-2 function of u−1. We first write loss function as a degree-2
polynomial of u−1. Recall that

L(Θ) =
1

2
Ezi,µτ

[∥∥∥((µτ + ẑ)µ⊤
τ Θ1µτ +

(
µτ ẑ

⊤ + Ẑ
)
Θ2µτ − µτ

)∥∥∥2]︸ ︷︷ ︸
L2

+
1

2
Ezi,µτ

[∥∥∥(µτ + ẑ)µ⊤
τ Θ3

√
Λ +

(
µτ ẑ

⊤ + Ẑ
)
Θ4

√
Λ−

√
Λ
∥∥∥2
F

]
︸ ︷︷ ︸

L1

.

Since Θ is degree-1 w.r.t. u−1, we can write L2 and L1 as degree-2 polynomials

L1 =: c1,2u
2
−1 − c1,1u−1 + constant,

L2 =: c2,2u
2
−1 − c2,1u−1 + constant.
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Here constant refers to the term that is constant w.r.t. u−1. By computation, we can write out the
coefficients c1,1, c2,1, c1,2, c2,2. After writing them out, as we did in proof of Lemma A.3, we will
give lower and upper bounds on c1,1 + c2,1 and an upper bound on c1,2 + c2,2. Now we denote
Θ̃ := 1

u−1
Θ. We have

c2,1 = tr
(
ΛΘ̃2

)
+ 2 tr

(
Θ̃1

)
+ d tr

(
Θ̃1

)
and c1,1 = tr

(
ΛΘ̃4Λ

)
+ tr

(
Θ̃3Λ

)
.

Note that these two coefficients are independent of n, which implies that previous bounds (50) and
(52) still holds when n is finite. We restate these bounds here as

c1,1(0) + c2,1(0) ≥ (d+ 2)u−1(0) and c1,1 + c2,1 ≤ (2 +
√
2)u−1

(
∥Λ∥2F + 2 tr(Λ) + d2 + 2d

)
.

The formulas for c1,2 and c2,2 are more complicated:

2c1,2 =(d+ 2) tr
(
Θ̃3ΛΘ̃

⊤
3

)
+

tr(Λ)

n
tr
(
Θ̃3ΛΘ̃

⊤
3

)
+

d

n
tr
(
ΛΘ̃4ΛΘ̃

⊤
4

)
+ tr

(((
1 +

1

n

)
Λ2 +

trΛ)

n
Λ

)
Θ̃4ΛΘ̃

⊤
4

)
+ 2 tr

(
Θ̃3ΛΘ̃

⊤
4 Λ
)
+

2

n
tr
(
ΛΘ̃3ΛΘ̃

⊤
4

)
,

(110)

2c2,2 =

(
d+ 4 +

tr(Λ)

n

)
·
(
tr
(
Θ̃1

)2
+ tr

(
Θ̃2

1

)
+ tr

(
Θ̃⊤

1 Θ̃1

))
+

d+ 2

n
tr
(
ΛΘ̃2Θ̃

⊤
2

)
+

(
1 +

1

n

)
tr
(
Λ2Θ̃2Θ̃

⊤
2

)
+

tr(Λ)

n
tr
(
ΛΘ̃2Θ̃

⊤
2

)
+ 2

(
1 +

1

n

)(
tr
(
Θ̃1ΛΘ̃2

)
+ tr

(
Θ̃⊤

1 ΛΘ̃2

)
+ tr

(
ΛΘ̃2

)
tr(Θ̃1)

(111)

Re-calculate the upper bounds for c1,2 + c2,2. We first upper bound c2,2.

2c2,2 ≤
(
d+ 4 +

tr(Λ)

n

)(
d
∥∥∥Θ̃1

∥∥∥2
F
+ 2

∥∥∥Θ̃1

∥∥∥2
F

)
+

d+ 2

n
∥Λ∥F

∥∥∥Θ̃2

∥∥∥2
F
+

(
1 +

1

n

)
∥Λ∥2F

∥∥∥Θ̃2

∥∥∥2
F

+
tr(Λ)

n
∥Λ∥F

∥∥∥Θ̃2

∥∥∥2
F
+ 2

(
1 +

1

n

)(
2∥Λ∥F

∥∥∥Θ̃1

∥∥∥
F

∥∥∥Θ̃2

∥∥∥
F
+ d∥Λ∥F

∥∥∥Θ̃2

∥∥∥
F

∥∥∥Θ̃1

∥∥∥
F

)
≤
((

d+ 4 +
tr(Λ)

n

)
(d+ 2) +

(
1 +

1

n

)
(d+ 2)∥Λ∥F

)
·
∥∥∥Θ̃1

∥∥∥2
F

+

(
d+ 2 + tr(Λ)

n
∥Λ∥F +

(
1 +

1

n

)∥∥Λ2
∥∥
F
+

(
1 +

1

n

)
(2 + d) ∥Λ∥F

)∥∥∥Θ̃2

∥∥∥2
F

≤ 4

((
d+ 4 +

tr(Λ)

n

)
(d+ 2) +

(
1 +

1

n

)
(2 + d)∥Λ∥F +

d+ 2 + tr(Λ)

n
∥Λ∥F

+

(
1 +

1

n

)
∥Λ∥2F +

(
1 +

1

n

)
(2 + d)∥Λ∥F

)
· ∥U∥2F

= 4

((
d+ 4 +

tr(Λ)

n

)
(d+ 2) +

(
1 +

1

n

)
(2 + d)∥Λ∥F +

d+ 2 + tr(Λ)

n
∥Λ∥F

+

(
1 +

1

n

)
∥Λ∥2F +

(
1 +

1

n

)
(2 + d)∥Λ∥F

)
· u2

−1.

(112)
The first inequality is because Cauchy-Schwartz inequality and tr(ΛΘ̃2) ≤

√
d∥ΛΘ̃2∥F ≤√

d∥Λ∥2F ∥Θ̃2∥ and tr(Θ̃1) ≤
√
d∥Θ̃1∥F . The second inequality is because ∥Θ̃2∥F ∥Θ̃1∥F ≤

1
2

(
∥Θ̃1∥2F + ∥Θ̃2∥2F

)
. The third inequality is because for i ∈ [2] we have ∥Θ̃i∥2F ≤

(∥U11∥F + ∥U12∥F + ∥U21∥F + ∥U22∥F )2 ≤ 4∥U∥2F as u−1. The last equality is because u−1

is balanced with U matrices.

33



Published as a conference paper at ICLR 2025

We next upper bound c1,2.

2c1,2 ≤
(
d+ 2 +

tr(Λ)

n

)
∥Λ∥F

∥∥∥Θ̃3

∥∥∥2
F
+

d

n
∥Λ∥2F

∥∥∥Θ̃4

∥∥∥2
F
+

(
1 +

1

n

)
∥Λ∥3F

∥∥∥Θ̃4

∥∥∥2
F

+
tr(Λ)

n
∥Λ∥2F

∥∥∥Θ̃4

∥∥∥2
F
+ 2

(
1 +

1

n

)
∥Λ∥2F

∥∥∥Θ̃3

∥∥∥
F

∥∥∥Θ̃4

∥∥∥
F

≤
((

d+ 2 +
tr(Λ)

n

)
∥Λ∥F +

(
1 +

1

n

)
∥Λ∥2F

)∥∥∥Θ̃3

∥∥∥2
F

+

(
d

n
∥Λ∥2F +

(
1 +

1

n

)
∥Λ∥3F +

tr(Λ)

n
∥Λ∥2F +

(
1 +

1

n

)
∥Λ∥2F

)∥∥∥Θ̃4

∥∥∥2
F

≤
(
2

(
d+ 2 +

tr(Λ)

n
+

(
1 +

1

n

)
∥Λ∥F

)
∥Λ∥F

+

(
1 +

d+ 1 + tr(Λ)

n
+

(
1 +

1

n

)
∥Λ∥F

)
∥Λ∥2F

)
u2
−1

(113)

The first inequality comes from Cauchy-Schwartz inequality and submultiplicativity of Frobenius
norm. The second inequality is true because 2∥Θ̃3∥F ∥Θ̃4∥F ≤ ∥Θ̃3∥2F+∥Θ̃4∥2F . The last inequality
is because ∥Θ̃3∥2F ≤ 2(∥U12∥2F + ∥U22∥2F ) ≤ 2∥U∥2F and ∥Θ̃4∥2F = ∥U22∥2F ≤ ∥U∥2F .
Now combining (113) and (112) we have

c1,2 + c2,2 ≤2

((
d+ 4 +

tr(Λ)

n

)
(d+ 2) +

(
1 +

1

n

)
(2 + d)∥Λ∥F +

d+ 2 + tr(Λ)

n
∥Λ∥F

+

(
1 +

1

n

)
(2 + d)∥Λ∥F +

(
d+ 2 +

tr(Λ)

n
+

(
1 +

1

n

)
∥Λ∥F

)
∥Λ∥F

+

(
1 +

1

n

)
∥Λ∥2F +

(
1 +

d+ 1 + tr(Λ)

n
+

(
1 +

1

n

)
∥Λ∥F

)
∥Λ∥2F

)
· u2

−1

=:c(d, n,Λ)u2
−1.

(114)

Upper bound L0(u−1(0)). Now we can first upper bound L0(u−1(0)) by
L0(u−1(0)) = (c1,2(0) + c2,2(0))u

2
−1(0)− (c1,1(0) + c2,1(0))u−1(0) + constant

≤ c(d, n,Λ) · u4
1(0)− (d+ 2)u2

−1(0) + constant

≤ − d+ 2

2c(d, n,Λ)
u2
−1(0) + constant.

(115)

The first inequality is simply combing the upper and lower bounds we just obtained. The second
inequality is because by assumption we have u−1(0)

2 ≤ d+2
2c(d,n,Λ) .

Lower bound Lt(u−1(t)). Then we lower bound Lt(u−1(t)) by
Lt(u−1(t)) = (c1,2 + c2,2)u

2
−1 − (c1,1 + c2,1)u−1 + constant

≥ − (c1,1 + c2,1)u−1 + constant

≥ −(2 +
√
2)
(
∥Λ∥2F + 2 tr(Λ) + d2 + 2d

)
u2
−1 + constant.

(116)

The first inequality is because c1,2 + c2,2 > 0. The second inequality is because we have the upper
bound on c1,1 + c2,1 and the fact that u−1 > 0. To see this, just noting that (115) implies that
L(U(0)) < constant and hence L(U) < constant throughout training. When u−1 = 0, the loss
is equal to the constant. This implies that u−1(t) ̸= 0 for all t > 0. Since u−1(0) > 0 and u−1

is continuous w.r.t. t, we have u−1(t) > 0 for all t; otherwise there will be some t0 such that
u−1(t0) = 0, which is impossible.

Combine both upper and lower bounds. Combining (115) and (116) and using L(U) ≤ L(U(0)),
we have

u−1 ≥
√

d+ 2

2c(d, n,Λ) · (2 +
√
2) (∥Λ∥2F + 2 tr(Λ) + d2 + 2d)

u−1(0), (117)

which finished the proof.
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A.2.3 PROOF OF LEMMA A.10

It remains to prove Lemma A.10. This proof is inspired by Ahn et al. (2023). The high-level idea of
this proof is to show the loss functions L1 and L2 are convex under a new parametrization, which is
the product of the last row of WPV and the first two d columns of WKQ. This implies the global
minimum is achieved at the critical point under the new parametrization. Note the value of the new
parameters also depend on u13, u23, u32 and u31. We then show that there exists a critical point
such that u13 = u23 = u32 = u31 = 0d, which completes the proof. When the covariance Λ is
non-diagonal, we use the SVD decomposition of Λ to reparametrize L1 and further simplify the
calculations on L1.

Proof. Reparametrize the loss function to be convex. We will show that setting u13 = u23 =
u32 = u31 = 0d does not lose optimality. Denote a := (u⊤

13, u
⊤
23, u−1)

⊤ ∈ R2d+1. Then we can
write prediction as

ŷτ,query =
1

n
a⊤EME⊤ (W1,W2)

(
µτ

xτ,query

)
.

Here E is the input embedding matrix and with slight abuse of notation W1,W2 ∈ R(2d+1)×d denote
the first d and the second d columns of WKQ respectively. Note that u32 and u31 are the last row of
W1 and W2 respectively.

Now we again decompose the loss into variance and bias

L =
1

2
Ezi,zquery,µτ

[(
ŷτ,query − w⊤

τ xτ,query
)2]

=
1

2
Ezi,µτ

[(
1

n
a⊤EME⊤W1uτ +

1

n
a⊤EME⊤W2uτ − w⊤

τ uτ

)2
]
+

1

2
E [tr (AΛ)]

=
1

2
Ezi,µτ

[
tr
(
Buτu

⊤
τ

)]
︸ ︷︷ ︸

L2

+
1

2
Ezi,µτ

[tr (AΛ)]︸ ︷︷ ︸
L1

(118)

where

A :=

(
1

n
W⊤

2 EME⊤a− wτ

)(
1

n
W⊤

2 EME⊤a− wτ

)⊤

and

B :=

(
1

n
W⊤

1 EME⊤a+
1

n
W⊤

2 EME⊤a− wτ

)(
1

n
W⊤

1 EME⊤a+
1

n
W⊤

2 EME⊤a− wτ

)⊤

.

Denote W1i ∈ Rd and W2i ∈ Rd the i-th column of W1 and W2 respectively. Denote wτi

the i-th coordinate of wτ . Next we will see that L is convex w.r.t. to a new parametrization
(aW⊤

11, · · · , aW⊤
1d, aW

⊤
21, · · · , aW⊤

2d).

We first claim that loss L is convex w.r.t. the parametrization (aW⊤
11, · · · , aW⊤

1d, aW
⊤
21, · · · , aW⊤

2d).
With a slight abuse of notation we denote this parametrization as aW . To see this, we first note that
L1 = tr(AΛ) is convex w.r.t. to the d-dimensional vector 1

nW
⊤
2 EME⊤a − wτ since Λ is a PSD

matrix. Additionally, we have 1
nW

⊤
2 EME⊤a − wτ is an affine function of

(
aW⊤

21, · · · , aW⊤
2d

)
∈

R(2d+1)×(2d+1)d since the j-th coordinate
[
1
nW

⊤
2 EME⊤a− wτ

]
j
=
〈
1
nEME⊤, aW⊤

2j

〉
− wτj

is an affine function of aW⊤
2j for j ∈ [d]. The desired convexity comes from the fact that the com-

position of a convex function and an affine map is a convex function. In the same way we can see
L2 = tr(Bµτµ

⊤
τ ) is convex w.r.t. the parametrization aW . Therefore, L(aW ) is a convex function.

Further simplify L2 for general covariance matrix. We write Λ := V ΣV ⊤ the SVD decomposi-
tion of covariance matrix Λ. Denote diag(σ1, · · · , σd) the diagonal matrix Σ. Let α1, β1, α2 and β2

be d-dimensional vectors to be determined later. Denote diag(a) the d × d diagonal matrix whose
diagonals are the vector a.
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Define w̃τ := V ⊤wτ , W̃2 :=

 V ⊤ 0d×d 0d
0d×d V ⊤ 0d
0⊤d 0⊤d 1

W2V and ã :=

 V ⊤ 0d×d 0d
0d×d V ⊤ 0d
0⊤d 0⊤d 1

 a.

For each in-context example i ∈ [n], we define x̃τ,i = V ⊤xτ,i and µ̃τ := V ⊤µτ . We can in turn
define

Ẽ :=

 V ⊤ 0d×d 0d
0d×d V ⊤ 0d
0⊤d 0⊤d 1

E =

(
µ̃τ µ̃τ . . . µ̃τ µ̃τ

x̃τ,1 x̃τ,2 . . . x̃τ,n xτ, query
yτ,1 yτ,2 . . . yτ,n 0

)
. (119)

We can simplify L1 by

L1 =
1

2

d∑
i=1

σiE

[[
V ⊤

(
1

n
W⊤

2 EME⊤a− wτ

)]2
i

]

=
1

2

d∑
i=1

σiE


V ⊤

 1

n
W⊤

2

 V 0d×d 0d
0d×d V 0d
0⊤d 0⊤d 1

 ẼMẼ⊤

 V ⊤ 0d×d 0d
0d×d V ⊤ 0d
0⊤d 0⊤d 1

 a− wτ

2

i


=

1

2

d∑
i=1

σiE

[[
1

n
W̃⊤

2 ẼMẼ⊤ã− w̃τ

]2
i

]
.

(120)

We can then write L1 as a convex function of new parameters ãW̃2 :=
(
ãW̃⊤

21, · · · , ãW̃⊤
2d

)
. To this

end, we have written L1 as a convex function of ãW̃2 and L2 as a convex function of aW .

Show the existence of critical point such that u13 = u23 = u32 = u31 = 0d. Since the critical
point for a convex function is a global minimizer, it is sufficient to show that there is a set of a,W1

and W2 satisfying u13 = u23 = u32 = u31 = 0d, such that the corresponding ãW̃ is a critical point
of L1(ãW̃ ) and the corresponding aW is a critical point of L2(aW ). It is equivalent to set u13 =
u23 = u32 = u31 = 0d and prove the existence of solutions to the equations ∇ãW̃⊤

1i
L1 = 0d×d and

∇aW⊤
1i
L2 = 0d×d for all i ∈ [d].

Now we construct such solution in the form of

a = e2d+1,W2 =

 V 0d×d 0d
0d×d V 0d
0⊤d 0⊤d 1

 −diag(α2)
diag(β2)
0⊤2d+1

V ⊤,W1 =

 −diag(α1)
diag(β1)
0⊤2d+1

−W2

where ej ∈ Rd is the vector such that the j-th coordinate is 1 and others are 0. Note that this
construction is consistent with the restriction that u13 = u23 = u32 = u31 = 0d since we have
made the first 2d elements of a and the last row of W2 and W1 zero.

We compute the corresponding gradient

∇ãW̃2j
L1 =

σj

n
E
[(〈

1

n
ẼMẼ⊤, ãW̃2j

〉
− w̃τj

)
ẼMẼ⊤

]
.

By direct computation we have

E
[
w̃τjẼMẼ⊤

]
=

 0 0 ej
0 0 (1 + σj) ej
e⊤j (1 + σj) e

⊤
j 0


and

E
[〈

1

n
ẼMẼ⊤, ãW̃2j

〉
ẼMẼ⊤

]
=

 0 0 pjej
0 0 qjej

pje
⊤
j qje

⊤
j 0


where npj = β2jσj−α2j(d+2+ tr(Σ)

n ) and nqj = β2jσj(1+σj)−α2j

(
3 + (1 + 1

n )σj +
tr(Σ)
n

)
.
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We can now decide the values of α2 and β2 by setting pj = 1 and qj = 1+ σj for all j ∈ [d]. Since
it is a full-rank linear system so the solution exists 5 and the corresponding ∇ãW̃2j

L1 = 0. Hence
the corresponding α2 and β2 is a global minimizer for L1. Therefore, the corresponding a and W2

is a global minimizer for L1.

Now we compute the gradient for L2.

∇aW2j
L2

=∇aW1j
L2

=
∑
i̸=j

1

2n
E
[
µτiµτj

(〈
1

n
EME⊤, a (W1i +W2i)

〉
− wτi

)
EME⊤

]

+
1

n
E
[
µ2
τj

(〈
1

n
EME⊤, a (W1j +W2j)

〉
− wτj

)
EME⊤

]
.

We have the sum of minus terms as

E

µ2
τjwτj +

1

2

∑
i ̸=j

µτiµτjwτi

EME⊤

 =

 0 0 d+1
2 ej

0 0 σjej
d+1
2 e⊤j σje

⊤
j 0


and the sum of plus terms as

E

µ2
τj +

1

2

∑
i ̸=j

µτiµτj

〈 1

n
EME⊤, a (W1i +W2i)

〉
EME⊤

 =

 0 0 sjej
0 0 tjej

sje
⊤
j tje

⊤
j 0

 .

Here

sj := −α1j

n

(
3d+ 12 +

tr(Σ)

n

)
+

β2j

n
(tr(Σ) + 2σj)

and

tj := −α1j

n

((
d+ 4 +

(
1 +

1

n

)
σj +

tr(Σ)

n

)
d+ 2d+ 8 + 2

(
1 +

1

n

)
σj +

2tr(Σ)

n

)
+

β1j

n

(
tr(Σ) + 2σj + σ2

j

)
.

A sufficient condition for critical point is sj = d+1
2 and tj = σj , from which we can solve out α1

and β1. Again it is a full-rank linear system so the solution exists.

A.3 PROOF OF THEOREM A.8.

Theorem A.8 give a characterization of the optimal solution when Λ = Id, which can simply be
proved by two steps: (i) Computing the critical point of the Θ-parametrized loss function; (ii) Trans-
late the critical point condition back to the original parametrization along with the balancing condi-
tion.

Proof. Since Λ = Id, we have

L1(Θ3,Θ4) =
1

2
Ezi,µτ

[∥∥∥µ̂τµ
⊤
τ Θ3 +

(
µτ ẑ

⊤ + Ẑ
)
Θ4 − Id

∥∥∥2
F

]
,

L2(Θ1,Θ2) =
1

2
Ezi,µτ

[∥∥∥(µ̂τµ
⊤
τ Θ1µτ +

(
µτ ẑ

⊤ + Ẑ
)
Θ2µτ − µτ

)∥∥∥2] .
Lemma A.11 implies that L(Θ) is strongly-convex. Hence the global minima is its critical point.
We write out the critical point condition ∇Θ1L2 = 0,∇Θ2L2 = 0,∇Θ3L1 = 0 and ∇Θ4L1 = 0

5Since we are only proving the existence of the solution, we do not need to solve α2 and β2 out explicitly.
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respectively:
2
(
d+ 4 + d

n

)
Θ1 + 2

(
1 + 1

n

)
Θ2 +

(
tr
((
d+ 4 + d

n

)
Θ1 +

(
1 + 1

n

)
Θ2

)
− 2− d

)
· Id = 0

2
(
1 + 1

n

)
Θ1 +

(
1 + 2d+3

n

)
Θ2 +

(
−1 +

(
1 + 1

n

)
tr (Θ1)

)
· Id = 0(

1 + 1
n

)
Θ4 +

(
d+ 2 + d

n

)
Θ3 − Id = 0(

1 + 1
n

)
Θ3 +

(
1 + 2d+1

n

)
Θ4 − Id = 0.

(121)
Combining (121) with reparametrization formula and balancing condition in (122), we can solve out
the optimal u−1, U11, U12, U21, U22 in Theorem A.8.


Θ1 = u−1Sym(U11 + U12 + U21 + U22)
Θ2 = u−1U21 + U22

Θ3 = u−1U12 + U22

Θ4 = u−1U22

u2
−1 = ∥U11∥2F + ∥U12∥2F + ∥U21∥2F + ∥U22∥2F .

(122)

B ADDITIONAL EXPERIMENTS

In this section, we discuss some additional experiments.

B.1 EXPERIMENTS FOR SEPARATE WEIGHTS MATRICES.

In this section, we report the results for separate WK ,WQ,WP ,WV matrices.

We plot the loss curves for Transformers with separate weights matrices in Figure 4. Results are
similar to those of merged-weights. We can see embedding with task descriptors have smaller loss
values than embedding without descriptors for 1, 2, 3-layer Transformers.

Figure 4: The MSE loss curves for Transformers with separate WK ,WQ,WP ,WV matrices in
different depths. We display mean and std of 5 random seeds. The number of samples in each
sequence n = 50, data dimension d = 5 and Λ = Id.

B.2 EXPERIMENTS FOR HIGHER DIMENSION d AND NON-SPHERICAL COVARIANCE MATRIX
Λ.

In this section, we report some results on d = 10 and Λ = diag(0.2, 0.5, 1, 2, 5) respectively.

In Figure 5 we plot loss curves for Transformers trained on different embeddings with data dimen-
sion d = 10. In Figure 6 we plot loss curves for Transformers trained on different embeddings with
covariance matrix Λ = diag(0.2, 0.5, 1, 2, 5). In both figures we can see that embedding with task
descriptors have smaller loss values than embedding without descriptors for 1, 2, 3-layer Transform-
ers.

To see how this performance gap will change across different dimension d, we further compare re-
sults on mean-varying linear regressions with different input dimensions d = 5, 10, 15, 20. In all ex-
periments, Transformers trained with descriptors achieve lower MSE loss at convergence compared
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Figure 5: The MSE loss curves for Transformers in different depths. We display mean and std of
5 random seeds. The number of samples in each sequence n = 50, data dimension d = 10 and
Λ = Id.

Figure 6: The MSE loss curves for Transformers in different depths. We display mean and std of
5 random seeds. The number of samples in each sequence n = 50, data dimension d = 5 and
Λ = diag(0.2, 0.5, 1, 2, 5).

with those trained without descriptors, where we denote Ldescriptors and Lno descriptors respectively. We
report the performance gap Lno descriptors − Ldescriptors for LSA Transformers with different depths at
Table 1. As we can see, as the ICL linear regression has higher dimension d, the performance gap
widens between transformers trained with and without descriptors.

d = 5 d = 10 d = 15 d = 20
1-layer 2.725±0.246 5.439±0.361 7.857±0.449 10.690±0.742

2-layer 0.473±0.179 1.168±0.098 3.548±2.017 4.429±1.657

3-layer 0.045±0.034 0.128±0.030 0.184±0.068 0.622±0.447

Table 1: The performance gap Lno descriptors − Ldescriptors between Transformers trained with and
without task descriptors. We report the mean and std of 5 random seeds.

B.3 EXPERIMENTS FOR TWO-LAYER TRANSFORMERS TRAINED ON PREFIX EMBEDDING

In this section, we discuss some results on two-layer Transformers trained on prefix embedding.

We plot the attention matrices for a 2-layer Transformer trained on prefix embedding in Figure
7. One incomplete explanation for the results is that when a descriptor is added as a prefix, the
Transformer initially uses one layer to attend to the descriptor and remove it from each in-context
example. Subsequent layers can then simulate variants of GD to make predictions. As observed in
the attention matrix, during the first layer, each in-context example attends to the descriptor in the
prefix. However, there are additional attention patterns, such as the prefix attending to the in-context
examples in the first layer, and the query token paying attention to the prefix token in the second
layer during prediction. These attention dynamics may contribute to improved predictions in other
ways. Notably, in Figure 2, the 2-layer Transformer trained on prefix embeddings outperforms6

the 1-layer Transformer trained on embeddings with duplicated descriptors, suggesting that these
additional attention patterns assist the Transformer in making more accurate predictions.

62-layer Transformers trained on prefix embedding converge to loss lower than 100 in the center figure
while 1-layer Transformers trained on Eτ converge to loss above 100 in the left figure.
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Figure 7: The attention matrices for a 2-layer Transformer trained on prefix embedding. The left
one is the attention matrix of the 1-st layer and the right one is the attention matrix of the 2-nd layer.

B.4 WEIGHTS PATTERNS FOR 3-LAYER TRANSFORMERS TRAINED ON Eτ

In this section we report some patterns found in 3-layer Transformers trained on embedding with
descriptors. We plot the heat maps of converged weights in Figure 8. We can roughly observe that
they use descriptors to remove the mean from in-context examples and simulate GD++ (Von Oswald
et al., 2023) as there are diagonals in WPV matrices at the first two layers.

Figure 8: The heat maps of WKQ and WPV for a 3-layer Transformer trained on embedding with
descriptors.

B.5 EXPERIMENTS FOR ONE-HOT TASK DESCRIPTORS

We extend our experiments by introducing one-hot vectors as descriptors to indicate different distri-
butions of x. We consider another mean-varying linear regression setting where there are k spherical
Gaussian distributions with different means µ1, . . . , µk. Each ICL linear regression task τ indepen-
dently samples a N (µi, Id) from them as the input distribution of x. Instead of directly using the
mean µi as the task descriptor, we assign an one-hot “task-identity” vector ei to each of the Gaussian
distributions N (µi, Id) and use this vector as the task descriptor.

As a summary, there are two key modifications:

1. The mean µτ for each task τ is uniformly drawn from a fixed set of k vectors
{µ1, µ2, · · · , µk}.

2. For each task τ, if µτ = µj for some 1 ≤ j ≤ k, we use the one-hot vector ej (1 at position
j, 0 elsewhere) as the task descriptor. The corresponding input embedding matrix with task
descriptors becomes

Eτ =


ei ei . . . ei ei

xτ,1 xτ,2 . . . xτ,n xτ, query

yτ,1 yτ,2 . . . yτ,n 0

 .
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We can see from Figure 9 that one-hot descriptors also improve the ICL performance of trained
Transformers.

Figure 9: The MSE loss curves for Transformers in different depths with one-hot descriptors. We
display mean and std of 5 random seeds. The number of samples in each sequence n = 50, data
dimension d = 5 and Λ = Id.
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