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ABSTRACT

Traditional End-to-End deep learning models typically enhance feature represen-
tation capabilities by increasing network depth and complexity. While such an
approach improves performance, it inevitably leads to issues such as parameter
redundancy and inefficient resource utilization, which become increasingly pro-
nounced as the network deepens. Existing methods have attempted to alleviate these
problems by skipping or removing redundant layers. However, they often rely on
complex manual designs, which may result in performance degradation, increased
computational costs, and reduced memory efficiency. To address these challenges,
we propose a novel training paradigm termed Replacement Learning. This method
selectively removes certain layers from the network and substitutes them with
additional computing layers in an efficient and automated manner, thereby com-
pensating for the potential performance loss caused by layer removal. Specifically,
a computing layer is inserted between the neighboring layers of the removed layer,
and it utilizes parameters from the adjacent layers to construct a transformed param-
eter representation through a simple and efficient learnable block. This transformed
representation is then used to perform additional computation on the output of
the preceding layer, yielding the final output passed to the subsequent layer. Fur-
thermore, to accommodate architectural variations such as feature map sizes and
channel dimensions in different network types, we design a tailored, lightweight
learnable block accordingly. Replacement Learning leverages the contextual flow
of information between adjacent layers to eliminate unnecessary computation,
significantly reducing computational complexity, saving GPU memory usage, and
accelerating training. More importantly, it achieves a balanced integration of
historical context and newly introduced features, thereby enhancing the overall
model performance. We validate the effectiveness of Replacement Learning on
five benchmarks—CIFAR-10, STL-10, SVHN, ImageNet, and COCO—across
classification and detection tasks using both CNNs and ViTs architectures. Results
demonstrate that our method not only significantly reduces the number of network
parameters, shortens training time, and lowers memory consumption, but also
surpasses traditional End-to-End trained models in performance.

1 INTRODUCTION

Updating learnable parameters is fundamental for training deep learning models|Yang et al.|(2019).
The most common method, global backpropagation Mostafa et al.| (2018), is widely applied in fields
like computer vision |Yoo|(2015)); Voulodimos et al.| (2018]), natural language processing |(Goldberg
(2016;2017), and speech processing/Ahmad et al.|(2004); [Chauvin & Rumelhart| (2013). However,
increasing model capabilities inevitably raise network depth and complexity, sharply escalating
the computational and parameter demands of global backpropagation Nawi et al.| (2008)), which
challenges GPU processing power and memory capacity Bragagnolo et al.| (2022)). Moreover, high
similarity in learning patterns between neighbouring layers [Kleinman et al.| (2021)) causes parameter
redundancy and inefficient resource usage. With large models becoming prevalent, developing
effective training methods to reduce computation time and save GPU memory while preserving
performance is urgently needed.

To tackle the challenges of traditional backpropagation (BP) Mostafa et al.| (2018)), researchers have
explored alternatives such as feedback alignment |Lillicrap et al.| (2014])); Ngkland (2016), forward
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Figure 1: Comparison between different backbones with Replacement Learning and End-to-End
training regarding GPU memory and Test accuracy. The diameter of the symbol is obtained based on
GPU Memory at the same scale.

gradient learning |Dellaferrera & Kreiman| (2022); |[Ren et al.| (2022), and local learning Su et al.
(2024aib)). These methods aim to update network weights without fully relying on BP Rumelhart et al.
(1985)), thereby reducing training costs. However, they each have limitations. Feedback alignment
struggles with training effectiveness due to inaccurate gradient estimation. Forward gradient learning
requires extra forward passes, increasing computational overhead. Local learning divides the network
into independently trained modules, but this often leads to suboptimal local performance and longer
training times. Recent work on Vision Transformers (ViTs) |Dosovitskiy et al.|(2021) revealed strong
inter-layer correlations from self-attention, leading to the skip attention |[Venkataramanan et al.| (2023)
approach to reduce complexity by reusing attention computations. However, this method requires
manually designed auxiliary modules, making it complex and hard to generalize. Additionally,
it risks error propagation, negatively impacting model performance. As a result, alternatives to
backpropagation Rumelhart et al.|(1985) and skip attention |Venkataramanan et al.|(2023]) still face
challenges in balancing training efficiency and computational cost while maintaining performance.

In this paper, we propose a novel method: Replacement Learning, which aims to significantly reduce
the computational overhead and resource consumption of deep neural networks while maintaining—or
even improving—model performance. The core idea of Replacement Learning is to selectively remove
specific layers of the network and replace them with a lightweight computing layer that features a
simple structure and minimal parameter count. Specifically, the computing layer synthesizes new
computational parameters by integrating information from the parameters of the layers immediately
preceding and succeeding the removed layer. This integration is accomplished through a specially
designed, lightweight, learnable block. The fused parameters are then used to reprocess the output of
the preceding layer, which is subsequently fed into the succeeding layer. This mechanism effectively
compensates for the potential feature loss resulting from layer removal. The design notably enhances
the network’s capacity to capture local features in shallow layers and global representations in deeper
layers, thereby promoting a more effective integration of low-level and high-level features. Moreover,
we introduce an optimized interval strategy to regulate the frequency at which layers are removed and
optimized, striking a desirable balance between computational efficiency and model performance. By
leveraging two specially designed learnable blocks within the computing layer, Replacement Learning
achieves efficient fusion of adjacent layer information and dynamically balances the retention of
historical context with the incorporation of new feature representations, thereby further boosting
overall performance. We comprehensively evaluate the effectiveness of Replacement Learning on five
widely used benchmark datasets-CIFAR-10 Krizhevsky et al.|(2009), STL-10|Coates et al.|(2011)),
SVHN Netzer et al.| (2011)), ImageNet Deng et al.[(2009), and COCO |Lin et al.|(2015)—across image
classification and object detection tasks, employing both CNNs and ViTs Dosovitskiy et al.|(2021)
architectures. Experimental results demonstrate that, compared with traditional End-to-End training
methods Rumelhart et al.| (1985)), Replacement Learning not only significantly reduces the number of
trainable parameters, training time, and GPU memory usage, but also achieves superior performance
in terms of model accuracy.

We summarize our contributions as follows:
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Figure 2: Comparison of (a) End-to-End training and (b) our proposed Replacement Learning.

* We propose a novel and general training method, Replacement Learning, which achieves
performance comparable to or even surpassing that of traditional End-to-End training
methods [Rumelhart et al.[(1985), while significantly reducing the number of parameters,
training time, and GPU memory consumption.

* Replacement Learning is architecture and task-agnostic, exhibiting strong generalizability.
It can be flexibly applied to models of varying depths and across different domains.

* We conduct extensive experiments on several widely-used image classification and object
detection benchmarks, including CIFAR-10 Krizhevsky et al.[|(2009), STL-10 Coates et al.
(2011), SVHN |Netzer et al.| (2011), ImageNet |Deng et al.| (2009), and COCO |Lin et al.
(2015). Results demonstrate that Replacement Learning consistently outperforms traditional
End-to-End training methods in both computational efficiency and model performance.

2 METHOD

We present Replacement Learning (RepL), which replaces every k-th block in a deep model with
a lightweight learnable block that synthesizes an operator from the two neighbors’ parameters and
applies it in place of the removed block. This section specifies the exact implementation we use in
our experiments for CNNs and ViTs: shapes, synthesis, forward computation, backward propagation.

2.1 PREPARATIONS

Let the network have depth n and input x; after operation j the activation is h; (hg = x). The
standard forward is

hj:fj(hj—l;wj)a j:]-a"'vna (1)

where f; is a convolutional or transformer block with learnable weights W ;. We replace every k-th
site (except the last if n is a multiple of k):

}':{i|imodk:0,i<n}. 2

For i € F, f; is not executed. Instead we run a learnable block that synthesizes an operator from
W,_; and W, and applies it to h;_;, with normalization and nonlinearity preserved to match the
baseline.
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2.2 CNN LEARNABLE BLOCK

Shapes. At a replaced site i € F, the incoming feature is h;_; € RC-1*HXW  The neighbor
kernels (same kx k and stride in our settings) are

Wifl c chillXC;"ilkak:7 Wi+1 € RC:ﬂ;lXC;&leXk’ (3)
and the next site expects C;‘}rl input channels.
Synthesis via channel-mode learnable blocks. We introduce two tiny learnable blocks acting on

kernel channel modes:

out

in in in
Tioy: R(Jiflxciflxkxk _>RC’iJrGCﬁiflxlxl7 4)
out

7;+1: chJrGC,‘i‘Lrlxkxk _>R0;‘Lrl><0,‘i‘:rl><1><1_ 5)

Implementation: grouped 1x 1 channel mixers (depth-wise 1x1), i.e., per-output-channel affine maps
on the kernel tensor; parameter counts are only C7™, and C7}",, respectively.

We fuse the aligned kernels into a valid 1 x 1 operator:
W\i = Tic1 (Wi—l) + Tita (Wi+1) € RC;"“ X Oy Ix1 (6)

Forward. The learnable block applies the synthesized operator and then matches the baseline
nonlinearity/topology (BN + ReLU in our CNNs):

% = Wxh_y, h; = §BN(xy)). (7
Note: Eq. equation[§]is the linear part; the block mapping itself is nonlinear due to BN and ReLU.

Backward. Let the error arriving at X; be §; and G; := §; h?_l (channel-wise outer product). Then
the learnable blocks receive gradients

oL oL
= Gi7 Wi— channel y
Dot tebamels B

and the neighbor kernels get ¢ ® G; in addition to their own.

= <G17 Wi+1>channeh (8)

2.3 VIT LEARNABLE BLOCK

Which weights are used. All transformer submodule linears act in R%*?. From the previous
block, we collapse attention linears (Q/K/V and W,) into A;_, € R4*¢ and the MLP linears into
M;_1 € R¥*?; similarly obtain A; 1, M1 from the next block/]

Synthesis via learnable blocks implemented as parameters. For ViTs, the learnable block is
implemented as a pair of learnable parameters per fused operator:

Ap = iAo+ BiAiga, M; = a; M;_ + Bi M1, 9

with «;, 8; € R trained jointly with the model.

Forward. We apply two dxd linear transforms with LN + GELU and residual kept (as in our code
and experiments):

H; = LN(GELU(M; Hi1) + A Hyot ) + Hioo. (10)

Backward. Let G; := §; H]_, at the two linear sites. Then

oL oL
Da; (Gi, Ai—q) + (G, M _q), a5,

and neighbor weights receive a;G; and (3;G; contributions.

= (Gi, Aix1) + (Gi, Mi1q), (11)

'Residual connections and LayerNorm remain outside and are kept.
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2.4 GLOBAL FORWARD WITH LEARNABLE BLOCKS

The network with RepL executes
h; = { ABN(W;(h;-1))), j € F (CNN), (12)
LN(GELU(M;hy 1) + Ajhy 1) + by, j € F (ViT).

with /Wj from Eq. equationlEIand (gj, Z\/Zj) from Eq. equation @

2.5 OPERATOR LEDGER

CNNes.

* Removed: two kxk convs at depth ¢ and their intermediate BN activations.

* Added: two channel-mode 1x1 learnable blocks in weight space that synthesize /V[Z and one
BN+ReLU site to match topology.

* Run-time effect: conv MACs at site ¢ change from two kxk to two 1x1 applications; saved
activations at this depth decrease accordingly.

ViTs.

* Removed: attention path (Q/K/V projections, W,) and MLP (d — 4d — d).

* Added: two dxd linears built by a learnable block (parameters «a;, 3;), with LN + GELU and
residual kept.

* Run-time effect: arithmetic and saved activations at site % drop to those of two dxd linear sites.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We conduct classification and detection experiments using different architectures on five benchmark
datasets: CIFAR-10 Krizhevsky et al.|(2009), STL-10|Coates et al.|(2011), SVHN |Netzer et al.|(2011),
ImageNet|Deng et al.|(2009), and COCO |Lin et al.| (2015).

During the experiment, we do not utilize pre-trained models. Instead, we train from scratch. We set
k = 4 as the interval for the removed layer. All layers compute the loss using gradient descent and
update the parameters via backpropagation Rumelhart et al.| (1985).

3.2 COMPARISON WITH THE E2E RESULTS

3.2.1 RESULTS ON CIFAR-10, SVHN, AND STL-10

We evaluate our method on CIFAR-10 Krizhevsky et al.[(2009), SVHN |Netzer et al.[(2011), and
STL-10Coates et al.| (2011), with results in Table [I] Replacement Learning (RepL) consistently
outperforms End-to-End training |Rumelhart et al.| (1985) across all architectures: On CIFAR-10
Krizhevsky et al.| (2009), ResNet-32/110 He et al.|(2016) test accuracy rises from 93.17 to 93.43
and 93.49 to 94.01, while ViT-Tiny/8 |Dosovitskiy et al.| (2021)) gains 0.94; on SVHN [Netzer et al.
(2011), accuracy increases by 0.13 at least across networks; on STL-10|Coates et al.|(2011), gains
range from 0.52 to 1.58, with consistent significant improvements across datasets. Table [I] also
shows RL’s advantages on CIFAR-10 |Krizhevsky et al.|(2009): ResNet-32/110 He et al.|(2016)) and
ViT-Tiny/8 Dosovitskiy et al.|(2021) reduce GPU memory by 0.69/1.69/0.73 GB, and training time
per epoch by 21.5%, 20.1%, 17.0% respectively. Similar trends hold for SVHN [Netzer et al.| (2011)
and STL-10|Coates et al| (2011}, where RL cuts memory and training time while maintaining or
improving performance.

Furthermore, when compared to Skip-Attention [Venkataramanan et al.|(2023)) on ViTs|Dosovitskiy
et al.| (2021)), our method outperforms both in terms of performance and resource efficiency, making
it a more favorable choice for maintaining accuracy while reducing computational cost.
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Table 1: Performance of different backbones on various datasets. RepL represents Replacement
Learning. Training time is the average result of each epoch.

Dataset Backbone Method Test Accuracy (%) GPU Memory (GB) Training Time (sec)
ResNet-32 E2E 93.17+0.14 3.38 10.44
- RepL 93.43+0.19 (10.26) 2.69 (120.4%) 8.20 ({21.5%)
ResNet-110 E2E 93.49+0.29 9.31 26.19
CIFAR-10 RepL 94.01£0.17 (10.52) 7.62 (118.2%) 20.93 (420.1%)
E2E 72.77+1.31 2.81 6.81
ViT-Tiny/8 Skip-Attention 72.60+3.57(]0.17) 2.12(124.6%) 6.23(18.5%)
RepL 73.71£1.08 (10.94) 2.08 (26.0%) 5.65 (117.0%)
ResNet-32 E2E 96.83+0.15 3.38 13.89
RepL 96.9740.12 (10.14) 2.69 (120.4%) 11.94 (114.0%)
ResNet-110 E2E 96.93+0.24 9.31 37.38
SVHN ’ RepL 97.06£0.27 (10.13) 7.62 (118.2%) 30.08 (119.5%)
E2E 85.99+0.71 2.81 10.07
ViT-Tiny/8 Skip-Attention 86.22+1.51(10.23) 2.12(124.6%) 9.18(8.8%)
RepL 86.67+1.18 (10.68) 2.08 (126.0%) 8.08 (1.19.8%)
ResNet-32 E2E 79.81+0.51 3.38 5.11
RepL 80.33+0.42 (10.52) 2.69 (20.4%) 4.13 (419.2%)
ResNet-110 E2E 79.78+0.30 9.31 6.86
STL-10 ) RepL 80.45+0.51 (10.67) 7.62 (118.2%) 5.23 (123.8%)
E2E 49.08+3.39 2.81 2.93
ViT-Tiny/8  Skip-Attention 50.42+3.18(11.34) 2.12(124.6%) 2.68(18.5%)
RepL 50.66£3.18 (11.58) 2.08 (126.0%) 2.41 (117.8%)

Table 2: Results on the ImageNet validation set. RepL stands for Replacement Learning. Training
time is the average result of each epoch.

Top-1 Top-5 GPU Memory Training Time
Backbone  Method Accuracy (%) Accuracy (%) (GB) (sec)
ResNet-34 E2E 74.8241.43 91.04+£1.33 9.21 463.23
RepL 75.4441.27 (10.62) 91.47+2.01 (10.43) 8.06 (112.5% ) 410.53 (|11.4%)
ResNet-101 E2E 77.55+1.22 93.80+1.78 20.95 720.11
; RepL 78.13£1.65 (10.58) 94.02+1.34 (10.22) 18.05(}13.8% ) 616.23 (114.4% )
ResNet-152 E2E 78.16:1.56 94.03+£1.25 27.58 738.74
RepL 78.31£1.46 (10.15) 94.14=+1.14 (10.11) 24.19 (]12.3% ) 633.89 (114.2% )
E2E 60.23+1.52 82.38+1.32 12.17 357.66
ViT-T/16  Skip-Attn  60.51+£1.20(10.28) 82.724+1.09(10.34) 11.52(15.3%) 381.44 (16.7% )
RepL 60.93+1.19 (10.70) 82.88+1.07 (10.50) 9.59 (J21.2% ) 290.15 (|18.9% )
E2E 64.35+1.83 84.64+1.22 21.05 798.61
ViT-S/16 ~ Skip-Attn  61.65+1.25(42.70) 82.70+1.16(/1.94) 20.67 (11.8% ) 755.14 (15.4% )
RepL 65.09+1.41 (10.74) 85.42+1.73 (10.78) 16.22(122.9% ) 617.10(122.7% )
E2E 59.46+1.72 80.35+1.12 41.97 2566.70
ViT-B/16  Skip-Attn  58.944+1.25(]0.52)  79.70+£0.94(J0.65) 38.49(]8.3% ) 2393.81(16.7% )
RepL 60.18+1.27 (10.72) 81.97+1.15 (11.62) 29.94 (128.7% ) 1924.35(125.1%)

3.2.2 RESULTS ON IMAGENET

We validate RepL’s effectiveness on ImageNet|Deng et al.|(2009) with ResNet-34/101/152 |He et al.
(2016) and ViT-Tiny/16, ViT-Small/16, and ViT-Base/16 |Dosovitskiy et al.[(2021)), and the results are
shown in Table@} For ResNet-34 |He et al.| (2016)), Top-1 Accuracy rises from 74.82 to 75.44 and
Top-5 from 91.04 to 91.47; the other five architectures also gain accuracy: Top-1 increases by 0.58,
0.15, 0.70, 0.74, 0.72 respectively, and Top-5 by 0.22, 0.11, 0.50, 0.78, 1.62 respectively.

Beyond accuracy, RepL reduces GPU memory usage and shortens per-epoch training time by 10%-
25% across all models, highlighting its effectiveness on large-scale ImageNet Deng et al.| (2009)
even for deeper networks. Similarly, experiments on ViTs Dosovitskiy et al.| (2021) with large
datasets confirm our method outperforms the existing Skip-Attention [Venkataramanan et al.| (2023)
mechanism.
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3.3 ABLATION STUDY

3.3.1 PERFORMANCE ANALYSIS OF COMPUTING LAYER USAGE

To demonstrate the necessity of removing certain layers and the role of the computing layer as a
replacement, we conduct comparative experiments on the CIFAR-10|Krizhevsky et al.| (2009)) using
ViT-Tiny/8 Dosovitskiy et al.| (2021)) and ResNet-110 He et al.| (2016). The performance of the
traditional E2E training Rumelhart et al.|(1985)), a network with one-quarter of its layers removed
according to the design with £ = 4, and the network with the insertion of computing layers was
evaluated and compared.

As shown in Table [3]and Tabled] after removing 25% of the layers, there is a significant reduction
in GPU memory usage, and the training time is also considerably shortened. This demonstrates the
positive impact of layer removal in terms of resource savings and efficiency enhancement. However,
this comes at the cost of a decrease in accuracy. To address this limitation, we designed the insertion
of computing layers in Replacement Learning to replace the removed layers. The results clearly
indicate that our design is effective, as it not only saves GPU memory and reduces training time but
also improves accuracy.

Table 3: Performance comparison on CIFAR-10.

Test Accuracy GPU Memory  Training Time
Backbone Method (%) (GB) (sec)
e BDE S BB
- 0 layers .02+2. . .
ResNet-110° computing layers 83.95+1.17 7.62 20.93
S, RED 3m 4
g - 25% layers 13+1. . .
VIT-Tiny/8 omputing layers  73.71+1.08 2.08 5.65
Table 4: Performance comparison on ImageNet.
Top-1 Accuracy Top-5 Accuracy GPU Memory Training Time
Backbone Method (%) (%) (GB) (sec)
E2E 74.82+1.43 91.04+1.33 9.21 463.23
ResNet-34 - 25% layers 72.99+1.82 90.12+1.31 7.75 392.21
+ computing layers  75.44+1.27 91.47+£2.01 8.06 410.53
SPEG,  RENE BREE wY e
T - o layers 2220, D1+l . .
VIT-Tiny/16 | o mputing layers  60.93+1.19  82.88%1.07 9.59 290.15

3.3.2 ANALYSIS OF INTERVAL SETTING FOR REMOVED LAYERS

In the experiments, we set k = 4 as the interval for the removed layers. To test the impact of different
values of k£ on our proposed Replacement Learning, we conduct multiple comparative experiments
on the CIFAR-10 Krizhevsky et al.| (2009) dataset using ViT-Tiny/8 |Dosovitskiy et al.| (2021) and
ResNet-110|He et al.[(2016).

As observed in Table[5] when k = 2, a larger number of layers are removed, resulting in greater GPU
memory savings and a significant reduction in training time. However, this also leads to a reduction
in the amount of learned information, which negatively impacts accuracy. When k = 6, although
the network performs well in terms of performance, it falls short in resource savings. Through
comparison, we find that k = 4 strikes the best balance between accuracy and resource efficiency.

3.3.3 COMPARISON OF FEATURES IN DIFFERENT METHODS

To showcase the advanced capabilities of Replacement Learning, we conduct feature map analyses
on CIFAR-10[Krizhevsky et al.|(2009) with ResNet-32 He et al.|(2016). The resulting figures can be
found in Figure
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Table 5: Performance comparison on CIFAR-10 with different £ setting.

Backbone value léetting Test Accuracy (%) GPU Memory (GB) Training Time (sec)
k=2 81.58+1.89 6.25 18.05

RTINS = S ¢ S 4,
k=2 71.48+2.39 1.70 5.19

VITTiny8 {5 R 3% 63

Upon analyzing them, we can observe that (a) and (c), which use End-to-End training, are concentrated
in specific regions, indicating the presence of significant information within those areas. Conversely,
after using Replacement Learning, (b) and (d) capture more comprehensive global features, including
localized edge features. It follows that our method can compensate for the shortcomings of other
methods.

(a) (b) () (d)

Figure 3: Visualization of feature maps. (a) Feature map of ResNet-32 with End-to-End training.
(b) Feature map of ResNet-32 with Replacement Learning. (c) Feature map of ViT-Tiny/8 with
End-to-End training. (d) Feature map of ViT-Tiny/8 with Replacement Learning.

3.3.4 COMPARISON OF USING DIFFERENT PARTS OF PARAMETERS

To further validate the importance of leveraging the parameters from preceding and succeeding layers,
we conducted an ablation study. Following the main experimental setup, we used ViT-T/8 as the
backbone on the CIFAR-10 dataset. Specifically, we compared the results under four configurations:
(i) using both attention parameters (including the gkv and W, layers) and MLP parameters, (ii)
using only attention parameters, (iii) using only MLP parameters, and (iv) not using any parameters
from adjacent layers. The results in Table [findicate that incorporating more parameters consistently
leads to better performance. Moreover, attention parameters contribute more significantly than MLP
parameters, while excluding all parameters causes a substantial performance drop.

Table 6: Ablation of Parameters in Computing Layers.

Method Accuracy GPU Memory Training Time
RepL 73.71+£1.08 2.08G 5.65s
RepL (only Attention weights) 72.39+0.97 2.05G 5.59s
RepL (only MLP weights) 72.14+1.34 2.07G 5.53s
RepL (no weights) 69.30+2.11 2.02G 5.20s

3.3.5 COMPARISON OF USING DIFFERENT LAYERS

To validate our design, we conduct experiments with ResNet-110[He et al|(2016) and ViT-Tiny/8
Dosovitskiy et al.| (2021)) as the backbones, using End-to-End training [Rumelhart et al.| (1985) as the
baseline, and comparing three methods for the computing layers: outputs from the preceding layer,
outputs from the succeeding layer, and outputs from both the preceding and succeeding layers.

As shown in Table[7} when using only the outputs from either the previous or the subsequent layer,
there is a noticeable decline in accuracy. In contrast, utilizing both the preceding and succeeding
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layers simultaneously enhances the model’s performance, surpassing that of traditional End-to-End
training Rumelhart et al.| (1985). This demonstrates the importance of balancing historical and
new information in the design of Replacement Learning, which has a positive impact on model
performance.

Table 7: Performance comparison on CIFAR-10 using different layers.

ResNet-110 | ViT-Tiny/8
Prﬁ%e;%irng Suic;;(;iring Test Accuracy (%) Pr]eﬁe;%irng Suicae;glring Test Accuracy (%)
X X 83.21£1.29 X X 72.77+1.31
X v 82.14+£2.38 X v 72.18+1.93
v X 79.56+3.31 v X 69.37+4.85
v v 83.95+1.17 v v 73.71+1.08

3.4 DETECTION EXPERIMENTS AND ANALYSIS

To evaluate the performance of Replacement Learning on other tasks, we conduct experiments on
the COCO dataset|Lin et al.|(2015) using RetinaNet-R50 and RetinaNet-R101 [Lin et al.| (2018) as
backbones. In these experiments, we utilize 4 Nvidia A100 GPUs, with a batch size of 8, a learning
rate of 4e-5, and the Adam optimizer. The training is carried out for a total of 100 epochs. Detailed
results can be found in Table[§l

Table 8: Performance comparison on COCO using different backbones. * means the addition of
Replacement Learning.

GPU Memory Training Time
Backbone mAP AP@50 AP@75 (GB) (sec)
RetinaNet-R50 30.42 51.72 30.80 6.85 3859.11

RetinaNet-R50* 30.64(10.22) 52. 44(TO 72) 31. 15(T0 35) 5. 82(¢15 04%) 3245. 23(¢15 91%)
RetinaNet-R101 32.36 5548.09
RetinaNet-R101* 32.76(10.40) 54. 80(TO 59) 32. 98(T0 07) 6. 65(¢18 80%) 4671.33(115.80%)

The table illustrates that the Replacement Learning model demonstrates significant performance
improvements across various depth detection models, while concurrently reducing both GPU memory
usage and training time. These results underscore the effectiveness and efficiency of the proposed
method, confirming its versatility in addressing a broad spectrum of deep learning tasks with diverse
requirements.

4 CONCLUSION

This paper introduces a novel learning approach called Replacement Learning, designed to address
the challenge of maintaining model performance while reducing computational overhead and resource
consumption. Replacement Learning effectively reduces the parameter count by removing specific
layers and replacing them with computing layers. These computing layers integrate the outputs of
the preceding and subsequent layers, enhancing the integration of low-level and high-level features,
thereby improving the overall performance of the model. We apply Replacement Learning to various
model architectures with different depths and evaluate their performance on five widely used datasets
in classification and object detection tasks. The results demonstrate that the proposed Replacement
Learning not only reduces training time and GPU usage but also consistently outperforms end-to-end
training in terms of overall performance.

Limitations and future work: While Replacement Learning reduces parameter computation, saves
memory, and shortens training time, all while outperforming End-to-End training, it has only been
tested on image-based tasks. It has yet to be applied to larger models in natural language processing
or multimodal settings. Future work will explore the impact of Replacement Learning on these tasks
to provide a more comprehensive evaluation of its effectiveness.
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A APPENDIX

A.1 USE OF LLMs

In the appendix’s theoretical analysis section, to verify the mathematical soundness and symbolic
accuracy of a few selected formulas.

A.2 RELATED WORK

Alternatives to backpropagation. To address the limitations of backpropagation, such as high
computational cost, various alternative methods have been proposed, including target propagation
Lee et al.|(2015); |Bartunov et al.|(2018]), feedback alignment |Lillicrap et al.[(2014); Ngkland, (2016),
and decoupled neural interfaces (DNI) Jaderberg et al.|(2017). These approaches bypass traditional
global backpropagation by directly propagating errors to individual layers, reducing memory usage
and enhancing efficiency. Forward gradient learning |Dellaferrera & Kreiman| (2022); |Ren et al.
(2022)) offers a new paradigm for training deep networks more effectively. Local learning |[Zhang
et al.|(2024); Zhu et al.| (2024) segments the network into smaller, independently trained modules,
optimizing local objectives to lower computational demands while preserving some global features
Su et al.|(2024aZb)). However, excessive segmentation can lead to coordination issues, harming overall
performance, especially on complex datasets like ImageNet.

Utilizing surrounding layers. Leveraging the high similarity in learning conditions of surrounding
layers, researchers have solved many problems in deep learning. Some studies have applied Residual
Networks (ResNets) |He et al.|(2016), by adding a shortcut connection to the activation function of
the next layer, this identity mapping enables ResNet to address the issues of degradation Philipp et al.
(2018)); Borawar & Kaur| (2023)), enhancing both the convergence speed and accuracy of the network
Zhang et al.[(2019); |Allen-Zhu & Li[(2019). Additionally, some researchers have proposed skipping
attention, reusing the self-attention calculations from one layer in the approximations for attention in
subsequent layers, achieving higher throughput|Venkataramanan et al.| (2023). However, due to the
repeated use of prior layers, this method carries the risk of error propagation and could potentially
cause losses during the learning process, impacting the model’s generalization ability.

A.3 EXPERIMENTAL SETUP DETAILS

We conducted experiments on small-scale datasets (CIFAR-10|Krizhevsky et al.|(2009), SVHN [Netzer
et al.| (2011), and STL-10|Coates et al.|(2011))) using ViT-Tiny/8 Dosovitskiy et al. (2021), ResNet-32,
and ResNet-110 He et al.| (2016), with training performed on a single Nvidia A100 GPU. For the ViT
models, we used a batch size of 512, the AdamW optimizer, and set the learning rate to le-3, training
for 250 epochs. For the ResNet models, the batch size was set to 1024, using the SGD optimizer with
a learning rate of 0.8, trained for 250 epochs. We follow these augmentation strategies: CIFAR-10:
4-pixel reflection padding followed by random cropping back to 32x32, and horizontal flipping with
a probability of 0.5; SVHN: random cropping to 32x32 (with 2-pixel padding), without horizontal
flipping; STL-10: random cropping to 96x96 (with 4-pixel padding) and horizontal flipping with a
probability of 0.5. On the ImageNet dataset|Deng et al.| (2009), we conducted experiments using 4
Nvidia A100 GPUs for ViT-Tiny/16 and ViT-Small/16 |Dosovitskiy et al.| (2021)), with a batch size
of 1024, the AdamW optimizer, and a learning rate of 7.5e-4. For the ResNet models (ResNet-34,
ResNet-101, and ResNet-152 He et al.| (2016)), we used a batch size of 512, the SGD optimizer, and
set the learning rate to 0.2, training for 90 epochs. For training samples, we use a 224 x 224 random
crop with random horizontal flips, while for test samples, we apply a 224 x 224 resize followed by a
central crop.

A.4 COMPARISON OF THE DISTRIBUTION OF CLASSIFIED DATA POINTS

To compare E2E Training Rumelhart et al.| (1985) and Replacement Learning in feature learning, we
perform t-SNE visualization |Van der Maaten & Hinton| (2008) on ResNet-110[He et al.|(2016) using
the SVHN dataset Netzer et al.|(2011)), as shown in Figure In the t-SNE plot for End-to-End training
(a), significant overlap between target and non-target classes indicates poor class discrimination. In
contrast, the Replacement Learning visualization (b) shows more compact and distinct target class
clusters, with clearer boundaries between target and non-target classes, reducing inter-class confusion.
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+ Target Class . g0 + TargetClass
+  Non-Target Class .

Figure 4: T-SNE visualization. (a) is t-SNE of E2E training, (b) is t-SNE of Replacement Learning.

These results demonstrate the superior classification performance of Replacement Learning over
End-to-End training Rumelhart et al.| (1985).

A.5 SUPPLEMENTARY EXPERIMENTS

A.5.1 COMPARATIVE EXPERIMENTS WITH RELATED METHODS

To verify the generality of our approach, we compared it against Stochastic Depth [Huang et al.| (2016
and Checkpointing (Chen et al|(2016), and further combined our method with these two techniques.
The experimental results are illustrated in the following Table. [0}

Table 9: Comparative Experiments with Stochastic Depth and Checkpointing, the results in the table
are based on a single run.

Dataset Backbone Method Acc@1 GPU(GB) Time (s/epoch)
E2E 93.25 3.38 5.24
RepL 93.29 2.69 4.37
Stochastic Depth 93.04 3.31 5.05

CIFAR-10 ResNet-32 g1 +Stochastic Depth ~ 93.17 2.67 4.18
Checkpointing 93.13 1.77 8.74
RepL+Checkpointing 93.24 1.64 7.22
E2E 78.19 20.95 720
RepL 78.43 18.01 616
Stochastic Depth 77.63 19.39 652

ImageNet  ResNet-101  po 7 | Stochastic Depth 7811 17.12 551
Checkpointing 78.25 14.47 1012
RepL+Checkpointing 78.29 12.93 819

A.5.2 EXPERIMENTS ON THE NLP TASK

We conduct the experiments on the NLP model, and the experimental configuration and results
are shown in the table [I0] below. The tokenization method adopts basic English tokenization. In
the process of building the vocabulary, only words with an occurrence frequency of no less than 2
are retained. Meanwhile, the <eos> token is appended at the end of each sentence. For sequence
segmentation, the backpropagation through time with a length of 128 is used. The experiment was
trained for 20 epochs, and the significant variance was obtained through 5 experiments (different
seeds).
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Table 10: Performance on WikiText-2 using Transformer-LM-12L-512d-8H-2048ff.

GPU Memory Time

Dataset Model Method Test PPL () (GB) (per epoch, sec)
WikiText-2 Transformer E2E  195.42+1.84 10.92 20.8
-LM-12L-512d-8H-2048ff RepL  193.31+3.39 9.61 17.7
Hardware: Single A100 Grad_clip: 1.0
C . Batch size: 64 Weight decay: 0.01
onfiguration

Optimizer: AdamW fp: 16
Learning rate: 3e-4

A.5.3 INFERENCE ON IMAGENET

We have conducted experiments on inference throughput, and the results are presented in the Table.
[IT] We used a single GPU, and the batch size is 128.

Table 11: Results on the GPU Memory Usage and Time during inference on ResNet-101 and
ViT-S/16.

Dataset Backbone Method GPU Memory Time
E2E 3.97G 39.12s

N ResNet-101 Repl. 3.65G 36265
& VITS/16 E2E 2.69G 48.29s

) RepL 2.45G 41.42s

A.5.4 FINE-TUNING ON VITSs

To verify the effectiveness of RepL in the finetuning setting, we conduct experiments on CIFAR-10,
SVHN, and STL-10 using pretrained weights obtained from ImageNet-1K. The experimental settings
were: batch size = 512, learning rate = 2e-4, optimizer = AdamW, and epochs = 100. The results are
summarized in Table[T2]

Table 12: Finetune results on ViT-S/16.

Datasets Model Method Acc@1l GPU Memory (GB) Time (per epoch)

. E2E 95.66 2556 3245
CIFAR-10  VIT-5/16 pypyeeyy 95.89 20,14 2518
. E2E 96.92 2556 43.44
SVHN VITS/16 pen 96.97 20.14 3801
. E2E 94.88 2556 591
STL-10 VITS6  pear 95.11 20.14 4.66

A.5.5 FINE-TUNING FOR DOWNSTREAM TASKS

We fine-tuned the pre-trained model (ImageNet-1k |Deng et al.| (2009), trained with RepL) on the
CityScapes dataset using the SGD optimizer with a batch size of 16, a learning rate of 0.1, a crop size
of 768, and trained for 30k iterations (about 164 epochs) on a single GPU. The experimental results
are shown in the following table[T3]

When fine-tuning for downstream tasks, RepL. does not compromise transfer learning performance.
First, its computational layers preserve the core feature patterns acquired by the model through param-
eter fusion of adjacent layers, rather than randomly pruning information. Second, parameter reduction
mitigates overfitting risks during fine-tuning, particularly evident in low-data scenarios. Finally,

15



Under review as a conference paper at ICLR 2026

learnable blocks dynamically adjust the weight contributions between preceding and succeeding
layers during fine-tuning, enhancing task-specific feature representation.

Table 13: Performance comparison on CityScapes using different backbones.

Backbone Method A?Zﬁizlcly Ai\gl(;?:cy Mean ToU GPU((I\}/II;HOW (per (;rpi(l:;fl, sec)
DecplabVI-RS0  popl g5 sl 7381 2028 o
DepLabVIPS RS0 poyt 9591 @1 7525 ne) X
DecpLabVIRIOL poy 9354 71 453 2390 6
DecpLabVIPsRIOL ol 9559 w40 7631 2692 %

A.5.6 EXTRA ABLATION STUDY ON VIT

In our ViT experiments, RepL employs two learnable parameters, « and /3, to fuse the parameters from
the preceding and succeeding layers, respectively. To validate that using two learnable parameters
is indeed more effective than a single one, we conducted an ablation study. As shown in Table. [T4]
introducing both « and 3 does not incur any additional GPU memory consumption or training time.
Moreover, this configuration consistently achieves noticeably better performance compared to using
a single learnable parameter.

Table 14: Ablation on number of parameters in RepL. We use ViT-T/8 on CIFAR-10 dataset.

Method Accuracy GPU Memory Training Time
RepL(2 parameter) 73.71 £ 1.08 2.08G 5.65s
RepL(1 parameter) 73.09 £ 0.85 2.08G 5.65s

A.6 PARAMETER ANALYSIS

We quantify how many learnable weights are discarded by Replacement Learning and how many new

ones are introduced. Let a network contain n layers, indexed from 1 to n. Denote by P; := ||W;]|o
the number of parameters of the i-th layer and let PE?F := """ | P, be the parameter count of

ordinary end-to-end training.

Replacement Learning with removal interval k. A fraction v := |F|/n = [%|/n ~ { of the

layers are removed. The retained parameters are therefore (1 — ) PEE.

CNN:s. For every removed layer i € F two depth-wise 1x1 convolutions are inserted, contributing

CM 4+ CYY, weights. (13)
—~—~—
$i—1 it1

Upper bound. Because CfY'; < max; C9", the total number of new weights satisfies

PN < 29n m?xc;“‘ = 22 Chyax. (14)

Since a normal & x k convolution carries C$"tC"k? parameters, one obtains the global bound

For CNNs P; = C$™'C"k?; for ViTs it is the sum of the projection matrices of the i-th transformer block.
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P™ < (1= 7) PEE+ % O < (1= §) BEE + O(nCin). (1)

ViTs. Each removed transformer block contributes exactly two learnable parameters, hence

Pl =2yn=2 P3P =(1-~)PEE 4 20, (16)

Tightness. If all P; are identical (P; = P) one has PE2E = nP and PN = (1 — 4)nP + Py, 50
the relative reduction is bounded by

Pot 1 1 .
e =1-2+0(=)  (CNN&ViT), (17)

tot
Thus, Replacement Learning discards at least 1/k of the original parameters and its overhead decays
as n grows.

A.7 COMPLEXITY ANALYSIS

We analyse the change in floating-point operations (FLOPs) and activation memory during one
training iteration.

A.7.1 FLOPs

CNN: . A standard kx k convolution with stride 1 on a feature map of size H x W costs
Fconv =92 Cin Coul k2 HW. (18)

At a replaced site, the learnable blocks 7;_1, 7§+1 act in weight space and introduce no per-pixel cost.

At run time we apply a single 1x 1 convolution TW; € RC# 1 X Citax1x1,

Frgr = 208, Gy HW. (19)
Since k > 1 and typically CI; =~ Ct, |

CNN in_ in
et O3, Gy 1

T 12" 20
Fow  CRCOR2 = }2 (20)

Replacing a fraction v~ % of blocks yields the network-level bound
RS < (1-0) FE® + o FEF = (1- 4+ ) P e

ViTs. Let a standard transformer block cost Fsa FLOPs (self-attention + MLP). At a replaced site,
the learnable block is implemented by two scalars («;, 3;) and executes only two dxd linear maps
on all T tokens:

oy = 2-(2d°T) = 4d°T, (22)
thus
4d*T
FaP < (1) RS + 7 =~ Fi® < (1-}) R, (23)
SA

because Fsa > 4d?T in practice.

A.7.2 ACTIVATION/ MEMORY FOOTPRINT

During training, removing a convolutional or transformer block also removes its checkpointed input
activation for backprop. Let A; be the size (bytes) of the input activation to block i. The E2E peak

is M;ﬁaﬁ = max; _,; A;. RepL discards every k-th block from the executed path; the learnable

blocks act in weight space and add no extra feature maps. Hence
MRl < (1 . 7) M O( ) - (LN/BN stats), (24)
—_———

negligible
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which is consistent with the empirical 15% —26% GPU-memory reduction.

Discussion. Eq. (I5)—(23) show that, for both CNNs and ViTs, Replacement Learning enjoys linear
savings in parameters, FLOPs and peak memory with respect to the removal rate % while introducing
only O(%) extra learnable parameters or depth-wise kernels. These tight bounds theoretically explain
the consistent empirical gains observed across all datasets and model families.

A.8 ERROR BOUND & CONVERGENCE ANALYSIS

Additional notation. Let F(x;6) = f,o0--- o fi(x) be the baseline network and F/(x; 0, 1) its
Replacement Learning variant, where 1 collects all learnable—block parameters. Denote the loss by

L(-,y): R* =R, and write £(8) := By, L(F(x;6),y) and £(0,¢) := E () L(F (x;6,),y).
A.8.1 APPROXIMATION BIAS OF A COMPUTING LAYER

Definition 1 (Local operator deviation). Let g;(-) be the (linear part of the) original block-i map
before its normalization/nonlinearity, and g;(-) be the corresponding map produced by the learnable

block (i.e., g;(h) = Wih for CNNs and g;(h) = Eih + ]\/Iih for ViTs). Define the operator-norm

deviation 16.(h) )|
gi(h) — g;(h
€ = sup ————————, Emax = Maxe;. (25)
h#0 [h] Y ier

This avoids shape-mismatch issues and subsumes the CNN alignment maps 7;+; implicitly through
Gi-

Lemma 1 (Layer-wise output deviation). If each block (including its normalization/nonlinearity) is
L-Lipschitz, then for any input X,

|Fx:0,4) = FO)| < L7 e max i . (26)

Proof. Insert g; = g; + (g; — g;) into the forward recursion at replaced sites and propagate Lipschitz
bounds.

A.8.2 GRADIENT BIAS AND STABLE TRAINING
Lemma 2 (Gradient deviation). Let every composite function up to layer j be L-smoot Then
[V6l(0,4) — Vol(0)|| < L Hinax Emax- 27

Proof. Using Lemma and L-smoothness of the composite loss, | VL(F) — VL(F)|| < L|F - F||.
Take expectation over the data.

A.8.3 CONVERGENCE UNDER SGD AND ADAM

Setup. Let F'(x;60) = fyo--- o fi(x) be the baseline network and F (x;0,) the variant trained
with learnable blocks, where 1) collects all learnable-block parameters. Given a sample (x,y) and a
loss L(-,y), define the population objectives

6(9) = IE(x,y) [‘C<F(X7 9)3 Z/)] s 6(07 ¢) = IE(x,y) [[,(F(X, 07 ¢)7 y)] .
Assumptions. We make the following standard conditions used in nonconvex analyses:

(Al) Each f; is L-smooth and G-Lipschitz; L(-, y) is L-smooth.

(A2) Mini-batch gradients are unbiased with variance o2: E[g;] = VZ(Gt,wt) and E|lg: —
V(0;,41)||2 < % for batch size B.

3¢ is L-smooth if |Vg(a) — Vg(b)|| < L|la — b||.
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(A3) (Bounded synthesis bias) For every removed index ¢ € F, the learnable-block synthesis
error on weights is bounded in Frobenius norm by ¢; equivalently, the induced gradient bias

satisfies HV@Z(Q, ) — Vgl(8)| < ce for some constant ¢ depending on (L, G) (Lemma .
Lemma 3 (Gradient bias induced by learnable blocks). Assume the forward discrepancy introduced

at removed sites is bounded as ||13(x, 0,9) — F(x;0)|| < Hmaxe for all (x,y), where Hpax
upper-bounds the relevant activations. If L(-,y) is L-smooth, then

| Val(8,4) — Vol(8)|| < L Huaxe.

Proof. By L-smoothness of L(-,y)
take expectation and use the assumed forward bound.

(F)—VL(F)|| < L|F — F| pointwise;

Theorem 2 (SGD convergence with learnable blocks). Under (Al)—(A3), run SGD on (0, ) with
step sizes ny = % for T steps. Let £* := infy £(0) and denote the constant B := L Hy,ax from

Lemma [31 Then

2l — 0*)  nLo?
E 0 2 . 2

bias from learnable blocks
standard nonconvex SGD\Ghadimi & Lan|(2013)

Sketch. Follow the descent-lemma proof for nonconvex SGD |Ghadimi & Lan|(2013)) but write the
update in terms of the perturbed gradient V¢ = V{ + b, where ||b|| < e by Lemma The cross
term contributes an additive constant O(f¢) that telescopes to 23¢ in the averaged bound, yielding
equation 28]

Corollary 1 (Adam/AdamW). If Adam is used with AMSGrad-style conditions ensuring convergence
in the nonconvex setting (e.g., \Reddi et al.|(2018))), or AdamW with standard assumptions Tran-Dinh
et al.|(2021), then the iterates satisfy

min B[ VA0, w0l = OT) + 0fe),
i.e., the usual T~ % decay up to an additive term that is linear in the bounded synthesis bias €.

Remarks. (i) When the learnable blocks synthesize weights with vanishing error (¢ — 0), the
bounds reduce to the classical rates. (ii) For fixed replacement interval k and stable training, € is a
small constant determined by how well neighbor-conditioned synthesis approximates the removed
operator; the asymptotic T~ % behavior is therefore preserved while enjoying lower per-epoch cost.
(iii) The bounds are agnostic to the CNN/ViT instantiation; only the magnitude of € changes with the
specific synthesis rule (Sec. 2.3).

A.9 MULTI-REPLACEMENT ERROR PROPAGATION

Let F C {1,...,n} be the set of replaced indices and assume each full block (including normalization
and nonlinearity) is L-Lipschitz. For i € F let ¢; be the local operator deviation defined in
Eq. equation 25| Denote by r := |F|and £ := L 3" &;, emax = max;er ;.

Proposition 3 (Accumulated output deviation). For any input X,
L7 epax max;er ||hi—1||, (worst-case bound)

|F(x;0,¢) — F(x;:0)|| < {1-17 ,
T ¢ max|hiaf,  fL<I.

Proof. Insert g; = g; + (g; — g;) at each ¢ € F and propagate perturbations. For L < 1 the series of
perturbations forms a geometric sum.

Implication. When blocks are non-expansive (L < 1), e.g., with post-normalization, the accumu-
lated discrepancy grows at most linearly with r and is further damped if L < 1. This complements
Lemma [T|by accounting for multiple replacements.
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A.10 RECOVERABILITY AND EXPRESSIVITY OF THE COMPUTING LAYER

We formalize when the learnable block can exactly reproduce the removed operator (¢; = 0), and
what subspace of operators it can represent.

CNN case. Let the linear part of the removed site be a map g;(h) = W;h (after any fixed alignment

used by the baseline). The learnable block synthesizes Wl = Tic1(W;i—1) + Tiz1(Wiy1), where
Ti+1 act on the channel modes of their kernel tensors. Define the synthesis span

S; = {7;_1(U)+7;+1(V) U el;_q, VeL[iH},

where U;+, denote the admissible weight tensors with the same shape as W, .

Lemma 4 (Exact recoverability in CNNs). If W, € S, then there exist learnable-block parameters
such that W; = W, and thus ; = 0.

Proof. By definition of S; there exist U*, V* with W; = T;_1(U*)+ T;11(V™*); setting the learnable-
block weights to realize (U*, V*) gives the claim.

Rank and span. Write the 1x1 equivalent of the synthesized operator as a matrix /I/IZ €
RE* 1 X1 Then rank(W;) < rank (7;—1(Wi_1)) + rank(7;11(Wit1)). In typical same-width

stages, both terms are full row/column rank, so WW; can achieve full rank and does not bottleneck the
channel dimension.

ViT case. In ViT instantiation, the replacement operator is explicitly constrained to a 2D neigh-
bor span: A?'OPL = ;A1 + /jiAi+1, ]\/[L-RCPL = o;M;_1 + ﬁi]\/[i+1, where A’L'flvAH»l €
R4 (vesp.M;_1, M; 1) are the attention (resp. MLP) operators of the neighboring blocks, and
«;, B; are learned scalars. Thus, by construction, each replaced block is synthesized inside the span
of its two neighbors; RepL never introduces an arbitrary new block.

To quantitatively assess how well the original block is captured by this 2D span, we conducted a
feature-space span diagnostic on the same ViT-tiny / CIFAR-10 setting used in our main experiments:

Backbone architecture: A 12-block ViT-tiny with patch size 8 x 8, embedding dimension 192,
and 3 heads (the same configuration as in our CIFAR-10 experiments).

Training setup: We trained a standard backbone ViT (“bp”) with direct backpropagation on
CIFAR-10 using the script described in the paper.

Where we probe: We focus on the block indices that RepL. would remove under the same
periodic schedule used in the method (remove every 4th block, excluding the last one). In a 12-block
ViT-tiny, this yields removed indices i = 2,6, 10(0 — based).

Diagnostic metric: Let () denote the hidden representation after block % for an input . For
each removed index i, we seek the best approximation h;(z) ~ &;h;—1(x) + Sihit1(x), by solving
a least-squares problem over CIFAR-10 samples. From this we compute: the relative reconstruction
B () Ty 9.4 (o) (11 (@)

Thi (@)1,
the 1D case) between h;(x) and its best neighbor-span reconstruction.

error r; =

2 aggregated over the dataset. The principal angle (in

We use CIFAR-10 test images, with the same normalization as training, and run the diagnostic on 20
batches (batch size 512). The results for the two removed blocks are:

index : = 2:
relative feature-space reconstruction error o = 0.1796;
principal angle = 7.63°;
fitted coefficients (A, B2) ~ (0.4811,0.5230).
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index i = 6:
relative feature-space reconstruction error g = 0.1501;
principal angle = 5.22°;
fitted coefficients (dg, Gg) ~ (0.4711,0.5325).

index i =10:
relative feature-space reconstruction error g = 0.1379;
principal angle = 4.62°;
fitted coefficients(i10, B10) =~ (0.4547,0.5493).

These results show that, measured in terms of their action on real data (hidden representations),
the blocks targeted by RepL are well captured by the 2D span of their neighbors: both the relative
reconstruction error and the principal angle are small, and the fitted coefficients are close to a
symmetric combination of the two neighbors. This empirically supports our modeling choice that a
lightweight operator constrained to span(A4;_1, A;11) and span(M;_1, M, 1)is sufficient to replace
the original block in ViT backbones.

Lemma 5 (Exact recoverability in ViTs). If the linear parts of the removed block satisfy A; €
span{A;_1, A;+1} and M; € span{M;_1, M; 1}, then there exist («;, B;) such that A; = A; and
Mi = Mi: So g; = 0.

These statements clarify that ¢; measures the distance of the removed operator to the neighbor-
conditioned synthesis span; when that distance is small (as empirically observed), the induced bias in
Sec.[A-8]remains negligible.

A.11 A SIMPLE COMPUTE ACCURACY TRADE-OFF FOR CHOOSING k

Let Copocn (k) denote the per-epoch training cost (FLOPs or wall time) under interval k, and let
A,cc(k) denote the excess risk (or a proxy) induced by replacement. From Sec. we have the
approximation Cepocn (k) = (1 — 1)Cy for a baseline cost Cy. From Sec. the gradient-norm
bound adds an O(e(k)) bias term. For small replacement rates we model (k) ~ ¢ with problem-
dependent ¢ > 0.

Consider minimizing a weighted objective

J(k) = ACepoen(k) + Aacc(k), Aaec(k) = ke(k) =

)

ke
k
where A, k > 0 encode the user’s compute/accuracy preference. Using Cepocn (k) ~ (1 — %)Co gives

1 KeC ke — ACy
J(k) = ACo(1- 1) + 55 = acy + B0
(k) 0 A + A 0o + A
The surrogate suggests a threshold behavior: when xc < ACj, larger k (more aggressive replacement)
is favored; otherwise, a smaller k is preferred. In practice, xc can be estimated on a held-out split by
measuring the validation loss gap as a function of k for a few short runs, after which & is chosen to
meet a compute budget while keeping the additional bias under the tolerance implied by Corollary [T}

A.12 BIAS IN PRACTICE: EMPIRICAL € VIA FORWARD AND GRADIENT DEVIATIONS

Our analysis in Section 4 assumes that HV()E;, — V(;EH < L- Hypax - €, where ¢4 is the loss under RepL,
¢ is the loss under the base network, H . captures the number of replacements, and £ summarizes
the local approximation error. We now provide a concrete measurement of this bias on the same
ViT-tiny / CIFAR-10 setting.

RepL model: We use the trained RepL. ViT-tiny checkpoint on CIFAR-10 corresponding to the
“replace” setting in our main experiments:

21



Under review as a conference paper at ICLR 2026

depth 12, embedding dimension 192, 3 heads, patch size 8 x §;

periodic removal with interval 4, excluding the last block. Under this schedule, there are three
replacement sites at depth indices 2, 6 an -based).
pl i depth indices 2, 6 and 10 (0-based)

Training setup (summary). The RepL ViT-tiny is trained using the same pipeline as the baseline
ViT:

optimizer: AdamW with weight decay 0.05;

initial learning rate: 1 x 10~ (cosine decay with 5-epoch linear warmup);

batch size: 512;

epochs: 250;
data augmentations identical to the baseline ViT.

Experimental protocol. In our implementation, each replacement site is realized by a lightweight
computing layer that adds a synthesized residual update (constructed from neighboring blocks) to
the hidden representation. For the bias diagnostic, we exploit the fact that the contribution of each
computing layer can be scaled continuously; in particular, we can:

set the scale to O to effectively disable the replacement contribution at that site (only the skip
path remains);

set the scale to 1 to fully enable the replacement contribution at that site.
Using this mechanism, we define:

F: the baseline network, obtained by disabling the replacement contribution at all computing
layers (scales set to 0). This corresponds to using only the kept backbone blocks with their trained
weights.

Fb(r): the same network where the first r replacement sites (in depth order) are enabled (scale =

1), and the remaining ones are kept disabled (scale = 0), with r € {0, 1,2, 3}. All parameters of the

backbone are shared between I’ and Fh(r).

For each r, we measure two quantities:

Forward deviation on logits: dgq(r) = E, [||Fb(r)(a:) — F(z)||2], where the norm is taken over
the class logits for each sample.

Gradient deviation on shared parameters: dg,.q(r) = || Vgél(f) — V6|, where £ and Ey) are the
cross-entropy losses of F' and Fb(T), and 6 includes all shared parameters (we explicitly exclude the
parameters of the computing layers when forming the gradient vector). We also report the normalized

. P d T A (T')
ratio p(r) = HgVedEHa )

In practice, we estimate these quantities on CIFAR-10 test batches with:
20 batches (batch size 256) to estimate dgyq(7);
10 batches (batch size 256) to estimate dgyaq () and p(7).

Results. The measured deviations are: We observe that:

active replacements r  d_fwd(r) (mean logit £5)  dgraa(r) p(r) = Cll‘%";de(‘g
0 0.000000 0.000000 0.0000
1 1.056977 1.467278 0.1431
2 1.093139 1.498927 0.1491
3 1.141932 1.545640 0.1597

1. Atr =0, we haver(O) = F by construction, so both forward and gradient deviations are
exactly zero.
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2. When we enable a single replacement site (r = 1), the normalized gradient bias is p(1) ~

0.143, i.e., the difference between Vgél()l) and Vy/ is about 14% of the baseline gradient
norm. This indicates a modest and controlled bias in the shared-parameter gradients.

3. When we enable two or three replacement sites (r = 2, 3), both the forward and gradient
deviations increase slowly and smoothly: - p(2) ~ 0.149, - p(3) ~ 0.160. The growth
from r = 1 to r = 3 is mild and close to linear in r, consistent with our non-expansive
composition analysis involving Hax.

Overall, these diagnostics show that the empirical bias ¢ entering HVgEb — Vol H < L-Hypax-€
is small (with p(r) < 0.16 even when all replacement sites are enabled) and grows slowly as more
blocks are replaced. This provides direct empirical support that RepL introduces a controlled and
modest bias in both forward predictions and shared-parameter gradients in the regimes considered in
our experiments.
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