
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REPLACEMENT LEARNING: TRAINING NEURAL NET-
WORKS WITH FEWER PARAMETERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional End-to-End deep learning models typically enhance feature represen-
tation capabilities by increasing network depth and complexity. While such an
approach improves performance, it inevitably leads to issues such as parameter
redundancy and inefficient resource utilization, which become increasingly pro-
nounced as the network deepens. Existing methods have attempted to alleviate these
problems by skipping or removing redundant layers. However, they often rely on
complex manual designs, which may result in performance degradation, increased
computational costs, and reduced memory efficiency. To address these challenges,
we propose a novel training paradigm termed Replacement Learning. This method
selectively removes certain layers from the network and substitutes them with
additional computing layers in an efficient and automated manner, thereby com-
pensating for the potential performance loss caused by layer removal. Specifically,
a computing layer is inserted between the neighboring layers of the removed layer,
and it utilizes parameters from the adjacent layers to construct a transformed param-
eter representation through a simple and efficient learnable block. This transformed
representation is then used to perform additional computation on the output of
the preceding layer, yielding the final output passed to the subsequent layer. Fur-
thermore, to accommodate architectural variations such as feature map sizes and
channel dimensions in different network types, we design a tailored, lightweight
learnable block accordingly. Replacement Learning leverages the contextual flow
of information between adjacent layers to eliminate unnecessary computation,
significantly reducing computational complexity, saving GPU memory usage, and
accelerating training. More importantly, it achieves a balanced integration of
historical context and newly introduced features, thereby enhancing the overall
model performance. We validate the effectiveness of Replacement Learning on
five benchmarks—CIFAR-10, STL-10, SVHN, ImageNet, and COCO—across
classification and detection tasks using both CNNs and ViTs architectures. Results
demonstrate that our method not only significantly reduces the number of network
parameters, shortens training time, and lowers memory consumption, but also
surpasses traditional End-to-End trained models in performance.

1 INTRODUCTION

Updating learnable parameters is fundamental for training deep learning models Yang et al. (2019).
The most common method, global backpropagation Mostafa et al. (2018), is widely applied in fields
like computer vision Yoo (2015); Voulodimos et al. (2018), natural language processing Goldberg
(2016; 2017), and speech processing Ahmad et al. (2004); Chauvin & Rumelhart (2013). However,
increasing model capabilities inevitably raise network depth and complexity, sharply escalating
the computational and parameter demands of global backpropagation Nawi et al. (2008), which
challenges GPU processing power and memory capacity Bragagnolo et al. (2022). Moreover, high
similarity in learning patterns between neighbouring layers Kleinman et al. (2021) causes parameter
redundancy and inefficient resource usage. With large models becoming prevalent, developing
effective training methods to reduce computation time and save GPU memory while preserving
performance is urgently needed.

To tackle the challenges of traditional backpropagation (BP) Mostafa et al. (2018), researchers have
explored alternatives such as feedback alignment Lillicrap et al. (2014); Nøkland (2016), forward

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison between different backbones with Replacement Learning and End-to-End
training regarding GPU memory and Test accuracy. The diameter of the symbol is obtained based on
GPU Memory at the same scale.

gradient learning Dellaferrera & Kreiman (2022); Ren et al. (2022), and local learning Su et al.
(2024a;b). These methods aim to update network weights without fully relying on BP Rumelhart et al.
(1985), thereby reducing training costs. However, they each have limitations. Feedback alignment
struggles with training effectiveness due to inaccurate gradient estimation. Forward gradient learning
requires extra forward passes, increasing computational overhead. Local learning divides the network
into independently trained modules, but this often leads to suboptimal local performance and longer
training times. Recent work on Vision Transformers (ViTs) Dosovitskiy et al. (2021) revealed strong
inter-layer correlations from self-attention, leading to the skip attention Venkataramanan et al. (2023)
approach to reduce complexity by reusing attention computations. However, this method requires
manually designed auxiliary modules, making it complex and hard to generalize. Additionally,
it risks error propagation, negatively impacting model performance. As a result, alternatives to
backpropagation Rumelhart et al. (1985) and skip attention Venkataramanan et al. (2023) still face
challenges in balancing training efficiency and computational cost while maintaining performance.

In this paper, we propose a novel method: Replacement Learning, which aims to significantly reduce
the computational overhead and resource consumption of deep neural networks while maintaining—or
even improving—model performance. The core idea of Replacement Learning is to selectively remove
specific layers of the network and replace them with a lightweight computing layer that features a
simple structure and minimal parameter count. Specifically, the computing layer synthesizes new
computational parameters by integrating information from the parameters of the layers immediately
preceding and succeeding the removed layer. This integration is accomplished through a specially
designed, lightweight, learnable block. The fused parameters are then used to reprocess the output of
the preceding layer, which is subsequently fed into the succeeding layer. This mechanism effectively
compensates for the potential feature loss resulting from layer removal. The design notably enhances
the network’s capacity to capture local features in shallow layers and global representations in deeper
layers, thereby promoting a more effective integration of low-level and high-level features. Moreover,
we introduce an optimized interval strategy to regulate the frequency at which layers are removed and
optimized, striking a desirable balance between computational efficiency and model performance. By
leveraging two specially designed learnable blocks within the computing layer, Replacement Learning
achieves efficient fusion of adjacent layer information and dynamically balances the retention of
historical context with the incorporation of new feature representations, thereby further boosting
overall performance. We comprehensively evaluate the effectiveness of Replacement Learning on five
widely used benchmark datasets-CIFAR-10 Krizhevsky et al. (2009), STL-10 Coates et al. (2011),
SVHN Netzer et al. (2011), ImageNet Deng et al. (2009), and COCO Lin et al. (2015)—across image
classification and object detection tasks, employing both CNNs and ViTs Dosovitskiy et al. (2021)
architectures. Experimental results demonstrate that, compared with traditional End-to-End training
methods Rumelhart et al. (1985), Replacement Learning not only significantly reduces the number of
trainable parameters, training time, and GPU memory usage, but also achieves superior performance
in terms of model accuracy.

We summarize our contributions as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Comparison of (a) End-to-End training and (b) our proposed Replacement Learning.

• We propose a novel and general training method, Replacement Learning, which achieves
performance comparable to or even surpassing that of traditional End-to-End training
methods Rumelhart et al. (1985), while significantly reducing the number of parameters,
training time, and GPU memory consumption.

• Replacement Learning is architecture and task-agnostic, exhibiting strong generalizability.
It can be flexibly applied to models of varying depths and across different domains.

• We conduct extensive experiments on several widely-used image classification and object
detection benchmarks, including CIFAR-10 Krizhevsky et al. (2009), STL-10 Coates et al.
(2011), SVHN Netzer et al. (2011), ImageNet Deng et al. (2009), and COCO Lin et al.
(2015). Results demonstrate that Replacement Learning consistently outperforms traditional
End-to-End training methods in both computational efficiency and model performance.

2 METHOD

We present Replacement Learning (RepL), which replaces every k-th block in a deep model with
a lightweight learnable block that synthesizes an operator from the two neighbors’ parameters and
applies it in place of the removed block. This section specifies the exact implementation we use in
our experiments for CNNs and ViTs: shapes, synthesis, forward computation, backward propagation.

2.1 PREPARATIONS

Let the network have depth n and input x; after operation j the activation is hj (h0 = x). The
standard forward is

hj = fj
(
hj−1; Wj

)
, j = 1, . . . , n, (1)

where fj is a convolutional or transformer block with learnable weights Wj . We replace every k-th
site (except the last if n is a multiple of k):

F =
{
i
∣∣ i mod k = 0, i < n

}
. (2)

For i ∈ F , fi is not executed. Instead we run a learnable block that synthesizes an operator from
Wi−1 and Wi+1 and applies it to hi−1, with normalization and nonlinearity preserved to match the
baseline.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 CNN LEARNABLE BLOCK

Shapes. At a replaced site i ∈ F , the incoming feature is hi−1 ∈ RC in
i−1×H×W . The neighbor

kernels (same k×k and stride in our settings) are

Wi−1 ∈ RCout
i−1×C in

i−1×k×k, Wi+1 ∈ RCout
i+1×C in

i+1×k×k, (3)

and the next site expects C in
i+1 input channels.

Synthesis via channel-mode learnable blocks. We introduce two tiny learnable blocks acting on
kernel channel modes:

Ti−1 : RCout
i−1×C in

i−1×k×k → RC in
i+1×C in

i−1×1×1, (4)

Ti+1 : RCout
i+1×C in

i+1×k×k → RC in
i+1×C in

i+1×1×1. (5)

Implementation: grouped 1×1 channel mixers (depth-wise 1×1), i.e., per-output-channel affine maps
on the kernel tensor; parameter counts are only Cout

i−1 and Cout
i+1, respectively.

We fuse the aligned kernels into a valid 1×1 operator:

Ŵi = Ti−1(Wi−1) + Ti+1(Wi+1) ∈ RC in
i+1×C in

i−1×1×1. (6)

Forward. The learnable block applies the synthesized operator and then matches the baseline
nonlinearity/topology (BN + ReLU in our CNNs):

x̂i = Ŵi ∗ hi−1, hi = ϕ
(
BN(x̂i)

)
. (7)

Note: Eq. equation 6 is the linear part; the block mapping itself is nonlinear due to BN and ReLU.

Backward. Let the error arriving at x̂i be δi and Gi := δi h
⊤
i−1 (channel-wise outer product). Then

the learnable blocks receive gradients

∂L
∂ϕi−1

= ⟨Gi,Wi−1⟩channel,
∂L
∂ϕi+1

= ⟨Gi,Wi+1⟩channel, (8)

and the neighbor kernels get ϕ⊙Gi in addition to their own.

2.3 VIT LEARNABLE BLOCK

Which weights are used. All transformer submodule linears act in Rd×d. From the previous
block, we collapse attention linears (Q/K/V and Wo) into Ai−1 ∈Rd×d and the MLP linears into
Mi−1∈Rd×d; similarly obtain Ai+1,Mi+1 from the next block.1

Synthesis via learnable blocks implemented as parameters. For ViTs, the learnable block is
implemented as a pair of learnable parameters per fused operator:

Âi = αiAi−1 + βiAi+1, M̂i = αiMi−1 + βiMi+1, (9)

with αi, βi ∈ R trained jointly with the model.

Forward. We apply two d×d linear transforms with LN + GELU and residual kept (as in our code
and experiments):

Hi = LN
(
GELU

(
M̂i Hi−1

)
+ Âi Hi−1

)
+Hi−1. (10)

Backward. Let Gi := δi H
⊤
i−1 at the two linear sites. Then

∂L
∂αi

= ⟨Gi, Ai−1⟩+ ⟨Gi,Mi−1⟩,
∂L
∂βi

= ⟨Gi, Ai+1⟩+ ⟨Gi,Mi+1⟩, (11)

and neighbor weights receive αiGi and βiGi contributions.
1Residual connections and LayerNorm remain outside and are kept.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.4 GLOBAL FORWARD WITH LEARNABLE BLOCKS

The network with RepL executes

hj =


fj
(
hj−1; Wj

)
, j /∈ F ,

ϕ
(
BN(Ŵj(hj−1))

)
, j ∈ F (CNN),

LN
(
GELU

(
M̂jhj−1

)
+ Âjhj−1

)
+ hj−1, j ∈ F (ViT).

(12)

with Ŵj from Eq. equation 6 and (Âj , M̂j) from Eq. equation 9.

2.5 OPERATOR LEDGER

CNNs.

• Removed: two k×k convs at depth i and their intermediate BN activations.
• Added: two channel-mode 1×1 learnable blocks in weight space that synthesize Ŵi, and one

BN+ReLU site to match topology.
• Run-time effect: conv MACs at site i change from two k×k to two 1×1 applications; saved

activations at this depth decrease accordingly.

ViTs.

• Removed: attention path (Q/K/V projections, Wo) and MLP (d→4d→d).
• Added: two d×d linears built by a learnable block (parameters αi, βi), with LN + GELU and

residual kept.
• Run-time effect: arithmetic and saved activations at site i drop to those of two d×d linear sites.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We conduct classification and detection experiments using different architectures on five benchmark
datasets: CIFAR-10 Krizhevsky et al. (2009), STL-10 Coates et al. (2011), SVHN Netzer et al. (2011),
ImageNet Deng et al. (2009), and COCO Lin et al. (2015).

During the experiment, we do not utilize pre-trained models. Instead, we train from scratch. We set
k = 4 as the interval for the removed layer. All layers compute the loss using gradient descent and
update the parameters via backpropagation Rumelhart et al. (1985).

3.2 COMPARISON WITH THE E2E RESULTS

3.2.1 RESULTS ON CIFAR-10, SVHN, AND STL-10

We evaluate our method on CIFAR-10 Krizhevsky et al. (2009), SVHN Netzer et al. (2011), and
STL-10 Coates et al. (2011), with results in Table 1. Replacement Learning (RepL) consistently
outperforms End-to-End training Rumelhart et al. (1985) across all architectures: On CIFAR-10
Krizhevsky et al. (2009), ResNet-32/110 He et al. (2016) test accuracy rises from 93.17 to 93.43
and 93.49 to 94.01, while ViT-Tiny/8 Dosovitskiy et al. (2021) gains 0.94; on SVHN Netzer et al.
(2011), accuracy increases by 0.13 at least across networks; on STL-10 Coates et al. (2011), gains
range from 0.52 to 1.58, with consistent significant improvements across datasets. Table 1 also
shows RL’s advantages on CIFAR-10 Krizhevsky et al. (2009): ResNet-32/110 He et al. (2016) and
ViT-Tiny/8 Dosovitskiy et al. (2021) reduce GPU memory by 0.69/1.69/0.73 GB, and training time
per epoch by 21.5%, 20.1%, 17.0% respectively. Similar trends hold for SVHN Netzer et al. (2011)
and STL-10 Coates et al. (2011), where RL cuts memory and training time while maintaining or
improving performance.

Furthermore, when compared to Skip-Attention Venkataramanan et al. (2023) on ViTs Dosovitskiy
et al. (2021), our method outperforms both in terms of performance and resource efficiency, making
it a more favorable choice for maintaining accuracy while reducing computational cost.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance of different backbones on various datasets. RepL represents Replacement
Learning. Training time is the average result of each epoch.

Dataset Backbone Method Test Accuracy (%) GPU Memory (GB) Training Time (sec)

CIFAR-10

ResNet-32 E2E 93.17±0.14 3.38 10.44
RepL 93.43±0.19 (↑0.26) 2.69 (↓20.4%) 8.20 (↓21.5%)

ResNet-110 E2E 93.49±0.29 9.31 26.19
RepL 94.01±0.17 (↑0.52) 7.62 (↓18.2%) 20.93 (↓20.1%)

ViT-Tiny/8
E2E 72.77±1.31 2.81 6.81

Skip-Attention 72.60±3.57(↓0.17) 2.12(↓24.6%) 6.23(↓8.5%)
RepL 73.71±1.08 (↑0.94) 2.08 (↓26.0%) 5.65 (↓17.0%)

SVHN

ResNet-32 E2E 96.83±0.15 3.38 13.89
RepL 96.97±0.12 (↑0.14) 2.69 (↓20.4%) 11.94 (↓14.0%)

ResNet-110 E2E 96.93±0.24 9.31 37.38
RepL 97.06±0.27 (↑0.13) 7.62 (↓18.2%) 30.08 (↓19.5%)

ViT-Tiny/8
E2E 85.99±0.71 2.81 10.07

Skip-Attention 86.22±1.51(↑0.23) 2.12(↓24.6%) 9.18(↓8.8%)
RepL 86.67±1.18 (↑0.68) 2.08 (↓26.0%) 8.08 (↓19.8%)

STL-10

ResNet-32 E2E 79.81±0.51 3.38 5.11
RepL 80.33±0.42 (↑0.52) 2.69 (↓20.4%) 4.13 (↓19.2%)

ResNet-110 E2E 79.78±0.30 9.31 6.86
RepL 80.45±0.51 (↑0.67) 7.62 (↓18.2%) 5.23 (↓23.8%)

ViT-Tiny/8
E2E 49.08±3.39 2.81 2.93

Skip-Attention 50.42±3.18(↑1.34) 2.12(↓24.6%) 2.68(↓8.5%)
RepL 50.66±3.18 (↑1.58) 2.08 (↓26.0%) 2.41 (↓17.8%)

Table 2: Results on the ImageNet validation set. RepL stands for Replacement Learning. Training
time is the average result of each epoch.

Backbone Method Top-1
Accuracy (%)

Top-5
Accuracy (%)

GPU Memory
(GB)

Training Time
(sec)

ResNet-34 E2E 74.82±1.43 91.04±1.33 9.21 463.23
RepL 75.44±1.27 (↑0.62) 91.47±2.01 (↑0.43) 8.06 (↓12.5%) 410.53 (↓11.4%)

ResNet-101 E2E 77.55±1.22 93.80±1.78 20.95 720.11
RepL 78.13±1.65 (↑0.58) 94.02±1.34 (↑0.22) 18.05 (↓13.8%) 616.23 (↓14.4%)

ResNet-152 E2E 78.16±1.56 94.03±1.25 27.58 738.74
RepL 78.31±1.46 (↑0.15) 94.14±1.14 (↑0.11) 24.19 (↓12.3%) 633.89 (↓14.2%)

ViT-T/16
E2E 60.23±1.52 82.38±1.32 12.17 357.66

Skip-Attn 60.51±1.20(↑0.28) 82.72±1.09(↑0.34) 11.52 (↓5.3%) 381.44 (↑6.7%)
RepL 60.93±1.19 (↑0.70) 82.88±1.07 (↑0.50) 9.59 (↓21.2%) 290.15 (↓18.9%)

ViT-S/16
E2E 64.35±1.83 84.64±1.22 21.05 798.61

Skip-Attn 61.65±1.25(↓2.70) 82.70±1.16(↓1.94) 20.67 (↓1.8%) 755.14 (↓5.4%)
RepL 65.09±1.41 (↑0.74) 85.42±1.73 (↑0.78) 16.22 (↓22.9%) 617.10 (↓22.7%)

ViT-B/16
E2E 59.46±1.72 80.35±1.12 41.97 2566.70

Skip-Attn 58.94±1.25(↓0.52) 79.70±0.94(↓0.65) 38.49 (↓8.3%) 2393.81 (↓6.7%)
RepL 60.18±1.27 (↑0.72) 81.97±1.15 (↑1.62) 29.94 (↓28.7%) 1924.35 (↓25.1%)

3.2.2 RESULTS ON IMAGENET

We validate RepL’s effectiveness on ImageNet Deng et al. (2009) with ResNet-34/101/152 He et al.
(2016) and ViT-Tiny/16, ViT-Small/16, and ViT-Base/16 Dosovitskiy et al. (2021), and the results are
shown in Table 2. For ResNet-34 He et al. (2016), Top-1 Accuracy rises from 74.82 to 75.44 and
Top-5 from 91.04 to 91.47; the other five architectures also gain accuracy: Top-1 increases by 0.58,
0.15, 0.70, 0.74, 0.72 respectively, and Top-5 by 0.22, 0.11, 0.50, 0.78, 1.62 respectively.

Beyond accuracy, RepL reduces GPU memory usage and shortens per-epoch training time by 10%-
25% across all models, highlighting its effectiveness on large-scale ImageNet Deng et al. (2009)
even for deeper networks. Similarly, experiments on ViTs Dosovitskiy et al. (2021) with large
datasets confirm our method outperforms the existing Skip-Attention Venkataramanan et al. (2023)
mechanism.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3 ABLATION STUDY

3.3.1 PERFORMANCE ANALYSIS OF COMPUTING LAYER USAGE

To demonstrate the necessity of removing certain layers and the role of the computing layer as a
replacement, we conduct comparative experiments on the CIFAR-10 Krizhevsky et al. (2009) using
ViT-Tiny/8 Dosovitskiy et al. (2021) and ResNet-110 He et al. (2016). The performance of the
traditional E2E training Rumelhart et al. (1985), a network with one-quarter of its layers removed
according to the design with k = 4, and the network with the insertion of computing layers was
evaluated and compared.

As shown in Table 3 and Table 4, after removing 25% of the layers, there is a significant reduction
in GPU memory usage, and the training time is also considerably shortened. This demonstrates the
positive impact of layer removal in terms of resource savings and efficiency enhancement. However,
this comes at the cost of a decrease in accuracy. To address this limitation, we designed the insertion
of computing layers in Replacement Learning to replace the removed layers. The results clearly
indicate that our design is effective, as it not only saves GPU memory and reduces training time but
also improves accuracy.

Table 3: Performance comparison on CIFAR-10.

Backbone Method Test Accuracy
(%)

GPU Memory
(GB)

Training Time
(sec)

E2E 83.21±1.29 9.31 26.19
- 25% layers 82.02±2.01 7.07 19.54ResNet-110 + computing layers 83.95±1.17 7.62 20.93

E2E 72.77±1.31 2.81 6.81
- 25% layers 71.13±1.24 2.04 5.44ViT-Tiny/8 + computing layers 73.71±1.08 2.08 5.65

Table 4: Performance comparison on ImageNet.

Backbone Method Top-1 Accuracy
(%)

Top-5 Accuracy
(%)

GPU Memory
(GB)

Training Time
(sec)

E2E 74.82±1.43 91.04±1.33 9.21 463.23
- 25% layers 72.99±1.82 90.12±1.31 7.75 392.21ResNet-34 + computing layers 75.44±1.27 91.47±2.01 8.06 410.53

E2E 60.23±1.52 82.38±1.32 12.17 357.66
- 25% layers 58.22±0.91 81.51±1.22 9.49 287.55ViT-Tiny/16 + computing layers 60.93±1.19 82.88±1.07 9.59 290.15

3.3.2 ANALYSIS OF INTERVAL SETTING FOR REMOVED LAYERS

In the experiments, we set k = 4 as the interval for the removed layers. To test the impact of different
values of k on our proposed Replacement Learning, we conduct multiple comparative experiments
on the CIFAR-10 Krizhevsky et al. (2009) dataset using ViT-Tiny/8 Dosovitskiy et al. (2021) and
ResNet-110 He et al. (2016).

As observed in Table 5, when k = 2, a larger number of layers are removed, resulting in greater GPU
memory savings and a significant reduction in training time. However, this also leads to a reduction
in the amount of learned information, which negatively impacts accuracy. When k = 6, although
the network performs well in terms of performance, it falls short in resource savings. Through
comparison, we find that k = 4 strikes the best balance between accuracy and resource efficiency.

3.3.3 COMPARISON OF FEATURES IN DIFFERENT METHODS

To showcase the advanced capabilities of Replacement Learning, we conduct feature map analyses
on CIFAR-10 Krizhevsky et al. (2009) with ResNet-32 He et al. (2016). The resulting figures can be
found in Figure 3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison on CIFAR-10 with different k setting.

Backbone k
value setting Test Accuracy (%) GPU Memory (GB) Training Time (sec)

k=2 81.58±1.89 6.25 18.05
k=4 83.95±1.17 7.62 20.93ResNet-110 k=6 84.08±1.04 8.63 23.94
k=2 71.48±2.39 1.70 5.19
k=4 73.71±1.08 2.08 5.65ViT-Tiny/8 k=6 73.94±1.17 2.39 6.39

Upon analyzing them, we can observe that (a) and (c), which use End-to-End training, are concentrated
in specific regions, indicating the presence of significant information within those areas. Conversely,
after using Replacement Learning, (b) and (d) capture more comprehensive global features, including
localized edge features. It follows that our method can compensate for the shortcomings of other
methods.

(a) (b) (c) (d)

Figure 3: Visualization of feature maps. (a) Feature map of ResNet-32 with End-to-End training.
(b) Feature map of ResNet-32 with Replacement Learning. (c) Feature map of ViT-Tiny/8 with
End-to-End training. (d) Feature map of ViT-Tiny/8 with Replacement Learning.

3.3.4 COMPARISON OF USING DIFFERENT PARTS OF PARAMETERS

To further validate the importance of leveraging the parameters from preceding and succeeding layers,
we conducted an ablation study. Following the main experimental setup, we used ViT-T/8 as the
backbone on the CIFAR-10 dataset. Specifically, we compared the results under four configurations:
(i) using both attention parameters (including the qkv and Wo layers) and MLP parameters, (ii)
using only attention parameters, (iii) using only MLP parameters, and (iv) not using any parameters
from adjacent layers. The results in Table 6 indicate that incorporating more parameters consistently
leads to better performance. Moreover, attention parameters contribute more significantly than MLP
parameters, while excluding all parameters causes a substantial performance drop.

Table 6: Ablation of Parameters in Computing Layers.

Method Accuracy GPU Memory Training Time
RepL 73.71±1.08 2.08G 5.65s
RepL (only Attention weights) 72.39±0.97 2.05G 5.59s
RepL (only MLP weights) 72.14±1.34 2.07G 5.53s
RepL (no weights) 69.30±2.11 2.02G 5.20s

3.3.5 COMPARISON OF USING DIFFERENT LAYERS

To validate our design, we conduct experiments with ResNet-110 He et al. (2016) and ViT-Tiny/8
Dosovitskiy et al. (2021) as the backbones, using End-to-End training Rumelhart et al. (1985) as the
baseline, and comparing three methods for the computing layers: outputs from the preceding layer,
outputs from the succeeding layer, and outputs from both the preceding and succeeding layers.

As shown in Table 7, when using only the outputs from either the previous or the subsequent layer,
there is a noticeable decline in accuracy. In contrast, utilizing both the preceding and succeeding

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

layers simultaneously enhances the model’s performance, surpassing that of traditional End-to-End
training Rumelhart et al. (1985). This demonstrates the importance of balancing historical and
new information in the design of Replacement Learning, which has a positive impact on model
performance.

Table 7: Performance comparison on CIFAR-10 using different layers.

ResNet-110 ViT-Tiny/8
Preceding

Layer
Succeeding

Layer Test Accuracy (%) Preceding
Layer

Succeeding
Layer Test Accuracy (%)

✗ ✗ 83.21±1.29 ✗ ✗ 72.77±1.31
✗ ✓ 82.14±2.38 ✗ ✓ 72.18±1.93
✓ ✗ 79.56±3.31 ✓ ✗ 69.37±4.85
✓ ✓ 83.95±1.17 ✓ ✓ 73.71±1.08

3.4 DETECTION EXPERIMENTS AND ANALYSIS

To evaluate the performance of Replacement Learning on other tasks, we conduct experiments on
the COCO dataset Lin et al. (2015) using RetinaNet-R50 and RetinaNet-R101 Lin et al. (2018) as
backbones. In these experiments, we utilize 4 Nvidia A100 GPUs, with a batch size of 8, a learning
rate of 4e-5, and the Adam optimizer. The training is carried out for a total of 100 epochs. Detailed
results can be found in Table 8.

Table 8: Performance comparison on COCO using different backbones. * means the addition of
Replacement Learning.

Backbone mAP AP@50 AP@75 GPU Memory
(GB)

Training Time
(sec)

RetinaNet-R50 30.42 51.72 30.80 6.85 3859.11
RetinaNet-R50* 30.64(↑0.22) 52.44(↑0.72) 31.15(↑0.35) 5.82(↓15.04%) 3245.23(↓15.91%)
RetinaNet-R101 32.36 54.21 32.91 8.19 5548.09

RetinaNet-R101* 32.76(↑0.40) 54.80(↑0.59) 32.98(↑0.07) 6.65(↓18.80%) 4671.33(↓15.80%)

The table illustrates that the Replacement Learning model demonstrates significant performance
improvements across various depth detection models, while concurrently reducing both GPU memory
usage and training time. These results underscore the effectiveness and efficiency of the proposed
method, confirming its versatility in addressing a broad spectrum of deep learning tasks with diverse
requirements.

4 CONCLUSION

This paper introduces a novel learning approach called Replacement Learning, designed to address
the challenge of maintaining model performance while reducing computational overhead and resource
consumption. Replacement Learning effectively reduces the parameter count by removing specific
layers and replacing them with computing layers. These computing layers integrate the outputs of
the preceding and subsequent layers, enhancing the integration of low-level and high-level features,
thereby improving the overall performance of the model. We apply Replacement Learning to various
model architectures with different depths and evaluate their performance on five widely used datasets
in classification and object detection tasks. The results demonstrate that the proposed Replacement
Learning not only reduces training time and GPU usage but also consistently outperforms end-to-end
training in terms of overall performance.

Limitations and future work: While Replacement Learning reduces parameter computation, saves
memory, and shortens training time, all while outperforming End-to-End training, it has only been
tested on image-based tasks. It has yet to be applied to larger models in natural language processing
or multimodal settings. Future work will explore the impact of Replacement Learning on these tasks
to provide a more comprehensive evaluation of its effectiveness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abdul Manan Ahmad, Saliza Ismail, and DF Samaon. Recurrent neural network with backpropagation
through time for speech recognition. In IEEE International Symposium on Communications and
Information Technology, 2004. ISCIT 2004., volume 1, pp. 98–102. IEEE, 2004.

Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? Advances
in Neural Information Processing Systems, 32, 2019.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lilli-
crap. Assessing the scalability of biologically-motivated deep learning algorithms and architectures.
Advances in neural information processing systems, 31, 2018.

Lokesh Borawar and Ravinder Kaur. Resnet: Solving vanishing gradient in deep networks. In
Proceedings of International Conference on Recent Trends in Computing: ICRTC 2022, pp.
235–247. Springer, 2023.

Andrea Bragagnolo, Enzo Tartaglione, and Marco Grangetto. To update or not to update? neurons at
equilibrium in deep models. Advances in neural information processing systems, 35:22149–22160,
2022.

Yves Chauvin and David E Rumelhart. Backpropagation: theory, architectures, and applications.
Psychology press, 2013.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit
assignment problem without a backward pass. In International Conference on Machine Learning,
pp. 4937–4955. PMLR, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, and Sylvain Gelly. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. doi: 10.1137/
130920084. URL https://doi.org/10.1137/130920084.

Yoav Goldberg. A primer on neural network models for natural language processing. Journal of
Artificial Intelligence Research, 57:345–420, 2016.

Yoav Goldberg. Neural network methods in natural language processing. Morgan & Claypool
Publishers, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
International conference on machine learning, pp. 1627–1635. PMLR, 2017.

10

https://doi.org/10.1137/130920084

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Kleinman, Alessandro Achille, Stefano Soatto, and Jonathan C Kao. Redundant information
neural estimation. Entropy, 23(7):922, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pp. 498–515. Springer,
2015.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feedback
weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247, 2014.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection, 2018. URL https://arxiv.org/abs/1708.02002.

Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep supervised learning using local
errors. Frontiers in neuroscience, 12:608, 2018.

Nazri Mohd Nawi, Rajesh S Ransing, and Meghana R Ransing. A new method to improve the gradient
based search direction to enhance the computational efficiency of back propagation based neural
network algorithms. In 2008 Second Asia International Conference on Modelling & Simulation
(AMS), pp. 546–552. IEEE, 2008.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

George Philipp, Dawn Song, and Jaime G Carbonell. Gradients explode-deep networks are shallow-
resnet explained. 2018.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
Proceedings of the 6th International Conference on Learning Representations (ICLR), 2018. URL
https://openreview.net/forum?id=ryQu7f-RZ.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. arXiv preprint arXiv:2210.03310, 2022.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal representations
by error propagation, 1985.

Junhao Su, Changpeng Cai, Feiyu Zhu, Chenghao He, Xiaojie Xu, Dongzhi Guan, and Chenyang
Si. Momentum auxiliary network for supervised local learning. arXiv preprint arXiv:2407.05623,
2024a.

Junhao Su, Chenghao He, Feiyu Zhu, Xiaojie Xu, Dongzhi Guan, and Chenyang Si. Hpff: Hierar-
chical locally supervised learning with patch feature fusion. arXiv preprint arXiv:2407.05638,
2024b.

Quoc Tran-Dinh, Benjamin Wild, Stephen Richardson, and Dmitriy Drusvyatskiy. Convergence of
Adam and AdamW optimizers. arXiv preprint arXiv:2102.11090, 2021. URL https://arxiv.
org/abs/2102.11090.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano, Fatih Porikli, and Amirhossein Habib-
ian. Skip-attention: Improving vision transformers by paying less attention. arXiv preprint
arXiv:2301.02240, 2023.

11

https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1708.02002
https://openreview.net/forum?id=ryQu7f-RZ
https://arxiv.org/abs/2102.11090
https://arxiv.org/abs/2102.11090

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis.
Deep learning for computer vision: A brief review. Computational intelligence and neuroscience,
2018(1):7068349, 2018.

Y Yang, Z Ye, Y Su, Q Zhao, X Li, and D Ouyang. Deep learning for. Acta Pharmaceutica Sinica B,
9(1):177–185, 2019.

Hyeon-Joong Yoo. Deep convolution neural networks in computer vision: a review. IEIE Transactions
on Smart Processing and Computing, 4(1):35–43, 2015.

Huishuai Zhang, Da Yu, Mingyang Yi, Wei Chen, and Tie-yan Liu. Stability and convergence theory
for learning resnet: A full characterization. 2019.

Yuming Zhang, Shouxin Zhang, Peizhe Wang, Feiyu Zhu, Dongzhi Guan, Jiabin Liu, and Changpeng
Cai. Mlaan: Scaling supervised local learning with multilaminar leap augmented auxiliary network.
arXiv preprint arXiv:2406.16633, 2024.

Feiyu Zhu, Yuming Zhang, Changpeng Cai, Guinan Guo, Jiao Li, Xiuyuan Guo, Quanwei Zhang,
Peizhe Wang, Chenghao He, and Junhao Su. Glcan: Global-local collaborative auxiliary network
for local learning. arXiv preprint arXiv:2406.00446, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLMS

In the appendix’s theoretical analysis section, to verify the mathematical soundness and symbolic
accuracy of a few selected formulas.

A.2 RELATED WORK

Alternatives to backpropagation. To address the limitations of backpropagation, such as high
computational cost, various alternative methods have been proposed, including target propagation
Lee et al. (2015); Bartunov et al. (2018), feedback alignment Lillicrap et al. (2014); Nøkland (2016),
and decoupled neural interfaces (DNI) Jaderberg et al. (2017). These approaches bypass traditional
global backpropagation by directly propagating errors to individual layers, reducing memory usage
and enhancing efficiency. Forward gradient learning Dellaferrera & Kreiman (2022); Ren et al.
(2022) offers a new paradigm for training deep networks more effectively. Local learning Zhang
et al. (2024); Zhu et al. (2024) segments the network into smaller, independently trained modules,
optimizing local objectives to lower computational demands while preserving some global features
Su et al. (2024a;b). However, excessive segmentation can lead to coordination issues, harming overall
performance, especially on complex datasets like ImageNet.

Utilizing surrounding layers. Leveraging the high similarity in learning conditions of surrounding
layers, researchers have solved many problems in deep learning. Some studies have applied Residual
Networks (ResNets) He et al. (2016), by adding a shortcut connection to the activation function of
the next layer, this identity mapping enables ResNet to address the issues of degradation Philipp et al.
(2018); Borawar & Kaur (2023), enhancing both the convergence speed and accuracy of the network
Zhang et al. (2019); Allen-Zhu & Li (2019). Additionally, some researchers have proposed skipping
attention, reusing the self-attention calculations from one layer in the approximations for attention in
subsequent layers, achieving higher throughput Venkataramanan et al. (2023). However, due to the
repeated use of prior layers, this method carries the risk of error propagation and could potentially
cause losses during the learning process, impacting the model’s generalization ability.

A.3 EXPERIMENTAL SETUP DETAILS

We conducted experiments on small-scale datasets (CIFAR-10 Krizhevsky et al. (2009), SVHN Netzer
et al. (2011), and STL-10 Coates et al. (2011)) using ViT-Tiny/8 Dosovitskiy et al. (2021), ResNet-32,
and ResNet-110 He et al. (2016), with training performed on a single Nvidia A100 GPU. For the ViT
models, we used a batch size of 512, the AdamW optimizer, and set the learning rate to 1e-3, training
for 250 epochs. For the ResNet models, the batch size was set to 1024, using the SGD optimizer with
a learning rate of 0.8, trained for 250 epochs. We follow these augmentation strategies: CIFAR-10:
4-pixel reflection padding followed by random cropping back to 32×32, and horizontal flipping with
a probability of 0.5; SVHN: random cropping to 32×32 (with 2-pixel padding), without horizontal
flipping; STL-10: random cropping to 96×96 (with 4-pixel padding) and horizontal flipping with a
probability of 0.5. On the ImageNet dataset Deng et al. (2009), we conducted experiments using 4
Nvidia A100 GPUs for ViT-Tiny/16 and ViT-Small/16 Dosovitskiy et al. (2021), with a batch size
of 1024, the AdamW optimizer, and a learning rate of 7.5e-4. For the ResNet models (ResNet-34,
ResNet-101, and ResNet-152 He et al. (2016)), we used a batch size of 512, the SGD optimizer, and
set the learning rate to 0.2, training for 90 epochs. For training samples, we use a 224 × 224 random
crop with random horizontal flips, while for test samples, we apply a 224 × 224 resize followed by a
central crop.

A.4 COMPARISON OF THE DISTRIBUTION OF CLASSIFIED DATA POINTS

To compare E2E Training Rumelhart et al. (1985) and Replacement Learning in feature learning, we
perform t-SNE visualization Van der Maaten & Hinton (2008) on ResNet-110 He et al. (2016) using
the SVHN dataset Netzer et al. (2011), as shown in Figure 4. In the t-SNE plot for End-to-End training
(a), significant overlap between target and non-target classes indicates poor class discrimination. In
contrast, the Replacement Learning visualization (b) shows more compact and distinct target class
clusters, with clearer boundaries between target and non-target classes, reducing inter-class confusion.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 4: T-SNE visualization. (a) is t-SNE of E2E training, (b) is t-SNE of Replacement Learning.

These results demonstrate the superior classification performance of Replacement Learning over
End-to-End training Rumelhart et al. (1985).

A.5 SUPPLEMENTARY EXPERIMENTS

A.5.1 COMPARATIVE EXPERIMENTS WITH RELATED METHODS

To verify the generality of our approach, we compared it against Stochastic Depth Huang et al. (2016)
and Checkpointing Chen et al. (2016), and further combined our method with these two techniques.
The experimental results are illustrated in the following Table. 9.

Table 9: Comparative Experiments with Stochastic Depth and Checkpointing, the results in the table
are based on a single run.

Dataset Backbone Method Acc@1 GPU (GB) Time (s/epoch)

CIFAR-10 ResNet-32

E2E 93.25 3.38 5.24
RepL 93.29 2.69 4.37
Stochastic Depth 93.04 3.31 5.05
RepL+Stochastic Depth 93.17 2.67 4.18
Checkpointing 93.13 1.77 8.74
RepL+Checkpointing 93.24 1.64 7.22

ImageNet ResNet-101

E2E 78.19 20.95 720
RepL 78.43 18.01 616
Stochastic Depth 77.63 19.39 652
RepL+Stochastic Depth 78.11 17.12 551
Checkpointing 78.25 14.47 1012
RepL+Checkpointing 78.29 12.93 819

A.5.2 EXPERIMENTS ON THE NLP TASK

We conduct the experiments on the NLP model, and the experimental configuration and results
are shown in the table 10 below. The tokenization method adopts basic English tokenization. In
the process of building the vocabulary, only words with an occurrence frequency of no less than 2
are retained. Meanwhile, the <eos> token is appended at the end of each sentence. For sequence
segmentation, the backpropagation through time with a length of 128 is used. The experiment was
trained for 20 epochs, and the significant variance was obtained through 5 experiments (different
seeds).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 10: Performance on WikiText-2 using Transformer-LM-12L-512d-8H-2048ff.

Dataset Model Method Test PPL (↓) GPU Memory
(GB)

Time
(per epoch, sec)

E2E 195.42±1.84 10.92 20.8WikiText-2 Transformer
-LM-12L-512d-8H-2048ff RepL 193.31±3.39 9.61 17.7

Hardware: Single A100 Grad clip: 1.0
Batch size: 64 Weight decay: 0.01
Optimizer: AdamW fp: 16Configuration

Learning rate: 3e-4

A.5.3 INFERENCE ON IMAGENET

We have conducted experiments on inference throughput, and the results are presented in the Table.
11. We used a single GPU, and the batch size is 128.

Table 11: Results on the GPU Memory Usage and Time during inference on ResNet-101 and
ViT-S/16.

Dataset Backbone Method GPU Memory Time

ImageNet
ResNet-101 E2E 3.97G 39.12s

RepL 3.65G 36.26s

ViT-S/16 E2E 2.69G 48.29s
RepL 2.45G 41.42s

A.5.4 FINE-TUNING ON VITS

To verify the effectiveness of RepL in the finetuning setting, we conduct experiments on CIFAR-10,
SVHN, and STL-10 using pretrained weights obtained from ImageNet-1K. The experimental settings
were: batch size = 512, learning rate = 2e-4, optimizer = AdamW, and epochs = 100. The results are
summarized in Table 12.

Table 12: Finetune results on ViT-S/16.

Datasets Model Method Acc@1 GPU Memory (GB) Time (per epoch)

CIFAR-10 ViT-S/16 E2E 95.66 25.56 32.45
RepL 95.89 20.14 25.18

SVHN ViT-S/16 E2E 96.92 25.56 48.44
RepL 96.97 20.14 38.01

STL-10 ViT-S/16 E2E 94.88 25.56 5.91
RepL 95.11 20.14 4.66

A.5.5 FINE-TUNING FOR DOWNSTREAM TASKS

We fine-tuned the pre-trained model (ImageNet-1k Deng et al. (2009), trained with RepL) on the
CityScapes dataset using the SGD optimizer with a batch size of 16, a learning rate of 0.1, a crop size
of 768, and trained for 30k iterations (about 164 epochs) on a single GPU. The experimental results
are shown in the following table 13.

When fine-tuning for downstream tasks, RepL does not compromise transfer learning performance.
First, its computational layers preserve the core feature patterns acquired by the model through param-
eter fusion of adjacent layers, rather than randomly pruning information. Second, parameter reduction
mitigates overfitting risks during fine-tuning, particularly evident in low-data scenarios. Finally,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

learnable blocks dynamically adjust the weight contributions between preceding and succeeding
layers during fine-tuning, enhancing task-specific feature representation.

Table 13: Performance comparison on CityScapes using different backbones.

Backbone Method Overall
Accuracy

Mean
Accuracy Mean IoU GPU Memory

(GB)
Time

(per epoch, sec)
E2E 95.27 80.83 73.34 23.90 80DeepLabV3-R50 RepL 95.32 81.14 73.81 20.28 68

E2E 95.66 81.89 74.61 26.81 82DeepLabV3Plus-R50 RepL 95.71 82.21 75.25 22.67 69

E2E 95.51 82.31 74.41 30.91 95DeepLabV3-R101 RepL 95.54 82.71 74.55 25.90 82

E2E 95.84 83.24 75.53 34.42 101DeepLabV3Plus-R101 RepL 95.89 84.02 76.31 28.92 86

A.5.6 EXTRA ABLATION STUDY ON VIT

In our ViT experiments, RepL employs two learnable parameters, α and β, to fuse the parameters from
the preceding and succeeding layers, respectively. To validate that using two learnable parameters
is indeed more effective than a single one, we conducted an ablation study. As shown in Table. 14,
introducing both α and β does not incur any additional GPU memory consumption or training time.
Moreover, this configuration consistently achieves noticeably better performance compared to using
a single learnable parameter.

Table 14: Ablation on number of parameters in RepL. We use ViT-T/8 on CIFAR-10 dataset.

Method Accuracy GPU Memory Training Time
RepL(2 parameter) 73.71± 1.08 2.08G 5.65s
RepL(1 parameter) 73.09± 0.85 2.08G 5.65s

A.6 PARAMETER ANALYSIS

We quantify how many learnable weights are discarded by Replacement Learning and how many new
ones are introduced. Let a network contain n layers, indexed from 1 to n. Denote by Pi := ∥Wi∥0
the number of parameters of the i-th layer,2 and let P E2E

tot :=
∑n

i=1 Pi be the parameter count of
ordinary end-to-end training.

Replacement Learning with removal interval k. A fraction γ := |F|/n =
⌊
n
k

⌋
/n ≈ 1

k of the
layers are removed. The retained parameters are therefore (1− γ)P E2E

tot .

CNNs. For every removed layer i∈F two depth-wise 1×1 convolutions are inserted, contributing

Cout
i−1︸ ︷︷ ︸

ϕi−1

+Cout
i+1︸︷︷︸

ϕi+1

weights. (13)

Upper bound. Because Cout
i±1 ≤ maxj C

out
j , the total number of new weights satisfies

PCNN
add ≤ 2 γn max

j
Cout

j = 2n
k Cmax. (14)

Since a normal k×k convolution carries Cout
i C in

i k
2 parameters, one obtains the global bound

2For CNNs Pi = Cout
i C in

i k
2; for ViTs it is the sum of the projection matrices of the i-th transformer block.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

PRepL
tot ≤ (1− γ)P E2E

tot + 2n
k Cmax <

(
1− 1

k

)
P E2E

tot +O
(
nCmax

)
. (15)

ViTs. Each removed transformer block contributes exactly two learnable parameters, hence

PViT
add = 2 γn = 2n

k , PRepL
tot = (1− γ)P E2E

tot + 2n
k . (16)

Tightness. If all Pi are identical (Pi ≡ P̄) one has P E2E
tot = nP̄ and PRepL

tot = (1− γ)nP̄ + Padd, so
the relative reduction is bounded by

PRepL
tot

P E2E
tot

= 1− 1

k
+O

(1

n

)
(CNN & ViT). (17)

Thus, Replacement Learning discards at least 1/k of the original parameters and its overhead decays
as n grows.

A.7 COMPLEXITY ANALYSIS

We analyse the change in floating-point operations (FLOPs) and activation memory during one
training iteration.

A.7.1 FLOPS

CNNs. A standard k×k convolution with stride 1 on a feature map of size H ×W costs

Fconv = 2C in Cout k2HW. (18)

At a replaced site, the learnable blocks Ti−1, Ti+1 act in weight space and introduce no per-pixel cost.
At run time we apply a single 1×1 convolution Ŵi∈RC in

i+1×C in
i−1×1×1:

FCNN
RepL = 2C in

i−1 C
in
i+1HW. (19)

Since k > 1 and typically C in
i±1≈Cout

i±1,

FCNN
RepL

Fconv
=

C in
i−1 C

in
i+1

C in
i C

out
i k2

≤ 1

k2
. (20)

Replacing a fraction γ≈ 1
k of blocks yields the network-level bound

FRepL
tot ≤

(
1− γ

)
F E2E

tot + γ 1
k2 F

E2E
tot =

(
1− 1

k + 1
k3

)
F E2E

tot . (21)

ViTs. Let a standard transformer block cost FSA FLOPs (self-attention + MLP). At a replaced site,
the learnable block is implemented by two scalars (αi, βi) and executes only two d×d linear maps
on all T tokens:

FViT
RepL = 2 · (2d2T) = 4d2T, (22)

thus

FRepL
tot ≤

(
1− γ

)
F E2E

tot + γ · 4d
2T

FSA
F E2E

tot <
(
1− 1

k

)
F E2E

tot , (23)

because FSA≫4d2T in practice.

A.7.2 ACTIVATION / MEMORY FOOTPRINT

During training, removing a convolutional or transformer block also removes its checkpointed input
activation for backprop. Let Ai be the size (bytes) of the input activation to block i. The E2E peak
is ME2E

peak = maxi
∑

j≤iAj . RepL discards every k-th block from the executed path; the learnable
blocks act in weight space and add no extra feature maps. Hence

MRepL
peak ≤

(
1− 1

k

)
ME2E

peak + O
(

n
k

)
· (LN/BN stats)︸ ︷︷ ︸

negligible

, (24)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

which is consistent with the empirical 15%−26% GPU-memory reduction.

Discussion. Eq. (15)–(23) show that, for both CNNs and ViTs, Replacement Learning enjoys linear
savings in parameters, FLOPs and peak memory with respect to the removal rate 1

k , while introducing
only O(nk) extra learnable parameters or depth-wise kernels. These tight bounds theoretically explain
the consistent empirical gains observed across all datasets and model families.

A.8 ERROR BOUND & CONVERGENCE ANALYSIS

Additional notation. Let F (x; θ) = fn◦ · · · ◦ f1(x) be the baseline network and F̂ (x; θ, ψ) its
Replacement Learning variant, where ψ collects all learnable–block parameters. Denote the loss by
L(·, y) : Rdo→R, and write ℓ(θ) := E(x,y) L

(
F (x; θ), y

)
and ℓ̂(θ, ψ) := E(x,y) L

(
F̂ (x; θ, ψ), y

)
.

A.8.1 APPROXIMATION BIAS OF A COMPUTING LAYER

Definition 1 (Local operator deviation). Let gi(·) be the (linear part of the) original block-i map
before its normalization/nonlinearity, and ĝi(·) be the corresponding map produced by the learnable
block (i.e., ĝi(h) = Ŵih for CNNs and ĝi(h) = Âih+ M̂ih for ViTs). Define the operator-norm
deviation

εi := sup
h̸=0

∥ĝi(h)− gi(h)∥
∥h∥

, εmax = max
i∈F

εi. (25)

This avoids shape-mismatch issues and subsumes the CNN alignment maps Ti±1 implicitly through
ĝi.

Lemma 1 (Layer-wise output deviation). If each block (including its normalization/nonlinearity) is
L-Lipschitz, then for any input x,∥∥F̂ (x; θ, ψ)− F (x; θ)

∥∥ ≤ L|F| εmax max
i∈F

∥hi−1∥. (26)

Proof. Insert ĝi = gi + (ĝi − gi) into the forward recursion at replaced sites and propagate Lipschitz
bounds.

A.8.2 GRADIENT BIAS AND STABLE TRAINING

Lemma 2 (Gradient deviation). Let every composite function up to layer j be L-smooth3. Then∥∥∇θ ℓ̂(θ, ψ) − ∇θℓ(θ)
∥∥ ≤ L Hmax εmax. (27)

Proof. Using Lemma 1 and L-smoothness of the composite loss, ∥∇L(F̂)−∇L(F)∥ ≤ L∥F̂ −F∥.
Take expectation over the data.

A.8.3 CONVERGENCE UNDER SGD AND ADAM

Setup. Let F (x; θ) = fn◦ · · · ◦ f1(x) be the baseline network and F̂ (x; θ, ψ) the variant trained
with learnable blocks, where ψ collects all learnable–block parameters. Given a sample (x, y) and a
loss L(·, y), define the population objectives

ℓ(θ) := E(x,y)

[
L
(
F (x; θ), y

)]
, ℓ̂(θ, ψ) := E(x,y)

[
L
(
F̂ (x; θ, ψ), y

)]
.

Assumptions. We make the following standard conditions used in nonconvex analyses:

(A1) Each fj is L-smooth and G-Lipschitz; L(·, y) is L-smooth.

(A2) Mini-batch gradients are unbiased with variance σ2: E[gt] = ∇ℓ̂(θt, ψt) and E∥gt −
∇ℓ̂(θt, ψt)∥2 ≤ σ2

B for batch size B.

3g is L-smooth if ∥∇g(a)−∇g(b)∥ ≤ L∥a− b∥.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(A3) (Bounded synthesis bias) For every removed index i ∈ F , the learnable-block synthesis
error on weights is bounded in Frobenius norm by ε; equivalently, the induced gradient bias
satisfies

∥∥∇θ ℓ̂(θ, ψ)−∇θℓ(θ)
∥∥ ≤ c ε for some constant c depending on (L,G) (Lemma 3).

Lemma 3 (Gradient bias induced by learnable blocks). Assume the forward discrepancy introduced
at removed sites is bounded as ∥F̂ (x; θ, ψ) − F (x; θ)∥ ≤ Hmax ε for all (x, y), where Hmax

upper-bounds the relevant activations. If L(·, y) is L-smooth, then∥∥∇θ ℓ̂(θ, ψ)−∇θℓ(θ)
∥∥ ≤ LHmax ε.

Proof. By L-smoothness of L(·, y) and the chain rule,
∥∥∇L(F̂)−∇L(F)

∥∥ ≤ L∥F̂ −F∥ pointwise;
take expectation and use the assumed forward bound.

Theorem 2 (SGD convergence with learnable blocks). Under (A1)–(A3), run SGD on (θ, ψ) with
step sizes ηt = η√

t
for T steps. Let ℓ⋆ := infθ ℓ(θ) and denote the constant β := LHmax from

Lemma 3. Then

1

T

T∑
t=1

E
[
∥∇ℓ̂(θt, ψt)∥2

]
≤ 2(ℓ0 − ℓ⋆)

η
√
TB

+
ηLσ2

B︸ ︷︷ ︸
standard nonconvex SGD Ghadimi & Lan (2013)

+ 2β ε︸︷︷︸
bias from learnable blocks

. (28)

Sketch. Follow the descent-lemma proof for nonconvex SGD Ghadimi & Lan (2013) but write the
update in terms of the perturbed gradient ∇ℓ̂ = ∇ℓ+ b, where ∥b∥ ≤ β ε by Lemma 3. The cross
term contributes an additive constant O(βε) that telescopes to 2βε in the averaged bound, yielding
equation 28.

Corollary 1 (Adam/AdamW). If Adam is used with AMSGrad-style conditions ensuring convergence
in the nonconvex setting (e.g., Reddi et al. (2018)), or AdamW with standard assumptions Tran-Dinh
et al. (2021), then the iterates satisfy

min
1≤t≤T

E
[
∥∇ℓ̂(θt, ψt)∥2

]
= Õ

(
T− 1

2

)
+ O(ε),

i.e., the usual T− 1
2 decay up to an additive term that is linear in the bounded synthesis bias ε.

Remarks. (i) When the learnable blocks synthesize weights with vanishing error (ε→ 0), the
bounds reduce to the classical rates. (ii) For fixed replacement interval k and stable training, ε is a
small constant determined by how well neighbor-conditioned synthesis approximates the removed
operator; the asymptotic T− 1

2 behavior is therefore preserved while enjoying lower per-epoch cost.
(iii) The bounds are agnostic to the CNN/ViT instantiation; only the magnitude of ε changes with the
specific synthesis rule (Sec. 2.2-2.3).

A.9 MULTI-REPLACEMENT ERROR PROPAGATION

Let F ⊂ {1, . . . , n} be the set of replaced indices and assume each full block (including normalization
and nonlinearity) is L-Lipschitz. For i ∈ F let εi be the local operator deviation defined in
Eq. equation 25. Denote by r := |F| and ε̄ := 1

r

∑
i∈F εi, εmax := maxi∈F εi.

Proposition 3 (Accumulated output deviation). For any input x,

∥∥F̂ (x; θ, ψ)− F (x; θ)
∥∥ ≤

L
r εmax maxi∈F ∥hi−1∥, (worst-case bound)

1− Lr

1− L
ε̄ max

i∈F
∥hi−1∥, if L < 1.

Proof. Insert ĝi = gi + (ĝi − gi) at each i ∈ F and propagate perturbations. For L < 1 the series of
perturbations forms a geometric sum.

Implication. When blocks are non-expansive (L ≤ 1), e.g., with post-normalization, the accumu-
lated discrepancy grows at most linearly with r and is further damped if L < 1. This complements
Lemma 1 by accounting for multiple replacements.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.10 RECOVERABILITY AND EXPRESSIVITY OF THE COMPUTING LAYER

We formalize when the learnable block can exactly reproduce the removed operator (εi = 0), and
what subspace of operators it can represent.

CNN case. Let the linear part of the removed site be a map gi(h) =Wih (after any fixed alignment
used by the baseline). The learnable block synthesizes Ŵi = Ti−1(Wi−1) + Ti+1(Wi+1), where
Ti±1 act on the channel modes of their kernel tensors. Define the synthesis span

Si :=
{
Ti−1(U) + Ti+1(V) : U ∈ Ui−1, V ∈ Ui+1

}
,

where Ui±1 denote the admissible weight tensors with the same shape as Wi±1.

Lemma 4 (Exact recoverability in CNNs). If Wi ∈ Si, then there exist learnable-block parameters
such that Ŵi =Wi and thus εi = 0.

Proof. By definition of Si there exist U⋆, V ⋆ withWi = Ti−1(U
⋆)+Ti+1(V

⋆); setting the learnable-
block weights to realize (U⋆, V ⋆) gives the claim.

Rank and span. Write the 1×1 equivalent of the synthesized operator as a matrix Ŵi ∈
RC in

i+1×C in
i−1 . Then rank(Ŵi) ≤ rank

(
Ti−1(Wi−1)

)
+ rank

(
Ti+1(Wi+1)

)
. In typical same-width

stages, both terms are full row/column rank, so Ŵi can achieve full rank and does not bottleneck the
channel dimension.

ViT case. In ViT instantiation, the replacement operator is explicitly constrained to a 2D neigh-
bor span: ARepL

i = αiAi−1 + βiAi+1, MRepL
i = αiMi−1 + βiMi+1, where Ai−1, Ai+1 ∈

Rd×d (resp .Mi−1,Mi+1) are the attention (resp. MLP) operators of the neighboring blocks, and
αi, βi are learned scalars. Thus, by construction, each replaced block is synthesized inside the span
of its two neighbors; RepL never introduces an arbitrary new block.

To quantitatively assess how well the original block is captured by this 2D span, we conducted a
feature-space span diagnostic on the same ViT-tiny / CIFAR-10 setting used in our main experiments:

Backbone architecture: A 12-block ViT-tiny with patch size 8× 8, embedding dimension 192,
and 3 heads (the same configuration as in our CIFAR-10 experiments).

Training setup: We trained a standard backbone ViT (“bp”) with direct backpropagation on
CIFAR-10 using the script described in the paper.

Where we probe: We focus on the block indices that RepL would remove under the same
periodic schedule used in the method (remove every 4th block, excluding the last one). In a 12-block
ViT-tiny, this yields removed indices i = 2, 6, 10(0− based).

Diagnostic metric: Let hk(x) denote the hidden representation after block k for an input x. For
each removed index i, we seek the best approximation hi(x) ≈ α̃ihi−1(x) + β̃ihi+1(x), by solving
a least-squares problem over CIFAR-10 samples. From this we compute: the relative reconstruction

error ri =

∥∥∥hi(x)−Πspan(hi−1(x),hi+1(x))(h1(x))
∥∥∥
2

∥hi(x)∥2
aggregated over the dataset. The principal angle (in

the 1D case) between hi(x) and its best neighbor-span reconstruction.

We use CIFAR-10 test images, with the same normalization as training, and run the diagnostic on 20
batches (batch size 512). The results for the two removed blocks are:

index i = 2:

relative feature-space reconstruction error r2 = 0.1796;

principal angle = 7.63◦;

fitted coefficients (α̃2, β̃2) ≈ (0.4811, 0.5230).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

index i = 6:

relative feature-space reconstruction error r6 = 0.1501;

principal angle = 5.22◦;

fitted coefficients (α̃6, β̃6) ≈ (0.4711, 0.5325).

index i = 10:

relative feature-space reconstruction error r6 = 0.1379;

principal angle = 4.62◦;

fitted coefficients(α̃10, β̃10) ≈ (0.4547, 0.5493).

These results show that, measured in terms of their action on real data (hidden representations),
the blocks targeted by RepL are well captured by the 2D span of their neighbors: both the relative
reconstruction error and the principal angle are small, and the fitted coefficients are close to a
symmetric combination of the two neighbors. This empirically supports our modeling choice that a
lightweight operator constrained to span(Ai−1, Ai+1) and span(Mi−1,Mi+1)is sufficient to replace
the original block in ViT backbones.

Lemma 5 (Exact recoverability in ViTs). If the linear parts of the removed block satisfy Ai ∈
span{Ai−1, Ai+1} and Mi ∈ span{Mi−1,Mi+1}, then there exist (αi, βi) such that Âi = Ai and
M̂i =Mi, so εi = 0.

These statements clarify that εi measures the distance of the removed operator to the neighbor-
conditioned synthesis span; when that distance is small (as empirically observed), the induced bias in
Sec. A.8 remains negligible.

A.11 A SIMPLE COMPUTE ACCURACY TRADE-OFF FOR CHOOSING k

Let Cepoch(k) denote the per-epoch training cost (FLOPs or wall time) under interval k, and let
∆acc(k) denote the excess risk (or a proxy) induced by replacement. From Sec. A.7 we have the
approximation Cepoch(k) ≈

(
1− 1

k

)
C0 for a baseline cost C0. From Sec. A.8, the gradient-norm

bound adds an O(ε(k)) bias term. For small replacement rates we model ε(k) ≈ c
k with problem-

dependent c > 0.

Consider minimizing a weighted objective

J(k) = λCepoch(k) + ∆acc(k), ∆acc(k) ≈ κ ε(k) =
κc

k
,

where λ, κ > 0 encode the user’s compute/accuracy preference. Using Cepoch(k) ≈ (1− 1
k)C0 gives

J(k) ≈ λC0

(
1− 1

k

)
+
κc

k
= λC0 +

κc− λC0

k
.

The surrogate suggests a threshold behavior: when κc < λC0, larger k (more aggressive replacement)
is favored; otherwise, a smaller k is preferred. In practice, κc can be estimated on a held-out split by
measuring the validation loss gap as a function of k for a few short runs, after which k is chosen to
meet a compute budget while keeping the additional bias under the tolerance implied by Corollary 1.

A.12 BIAS IN PRACTICE: EMPIRICAL ε VIA FORWARD AND GRADIENT DEVIATIONS

Our analysis in Section 4 assumes that
∥∥∇θℓb−∇θℓ

∥∥ ≤ L ·Hmax ·ε, where ℓb is the loss under RepL,
ℓ is the loss under the base network, Hmax captures the number of replacements, and ε summarizes
the local approximation error. We now provide a concrete measurement of this bias on the same
ViT-tiny / CIFAR-10 setting.

RepL model: We use the trained RepL ViT-tiny checkpoint on CIFAR-10 corresponding to the
“replace” setting in our main experiments:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

depth 12, embedding dimension 192, 3 heads, patch size 8× 8;

periodic removal with interval 4, excluding the last block. Under this schedule, there are three
replacement sites at depth indices 2, 6 and 10 (0-based).

Training setup (summary). The RepL ViT-tiny is trained using the same pipeline as the baseline
ViT:

optimizer: AdamW with weight decay 0.05;

initial learning rate: 1× 10−3 (cosine decay with 5-epoch linear warmup);

batch size: 512;

epochs: 250;

data augmentations identical to the baseline ViT.

Experimental protocol. In our implementation, each replacement site is realized by a lightweight
computing layer that adds a synthesized residual update (constructed from neighboring blocks) to
the hidden representation. For the bias diagnostic, we exploit the fact that the contribution of each
computing layer can be scaled continuously; in particular, we can:

set the scale to 0 to effectively disable the replacement contribution at that site (only the skip
path remains);

set the scale to 1 to fully enable the replacement contribution at that site.

Using this mechanism, we define:

F : the baseline network, obtained by disabling the replacement contribution at all computing
layers (scales set to 0). This corresponds to using only the kept backbone blocks with their trained
weights.

F
(r)
b : the same network where the first r replacement sites (in depth order) are enabled (scale =

1), and the remaining ones are kept disabled (scale = 0), with r ∈ {0, 1, 2, 3}. All parameters of the
backbone are shared between F and F (r)

b .

For each r, we measure two quantities:

Forward deviation on logits: dfwd(r) = Ex

[
∥F (r)

b (x) − F (x)∥2
]
, where the norm is taken over

the class logits for each sample.

Gradient deviation on shared parameters: dgrad(r) =
∥∥∇θℓ

(r)
b −∇θℓ

∥∥
2
, where ℓ and ℓ(r)b are the

cross-entropy losses of F and F (r)
b , and θ includes all shared parameters (we explicitly exclude the

parameters of the computing layers when forming the gradient vector). We also report the normalized
ratio ρ(r) = dgrad(r)

∥∇θℓ∥2
.

In practice, we estimate these quantities on CIFAR-10 test batches with:

20 batches (batch size 256) to estimate dfwd(r);

10 batches (batch size 256) to estimate dgrad(r) and ρ(r).

Results. The measured deviations are: We observe that:

active replacements r d fwd(r) (mean logit ℓ2) dgrad(r) ρ(r) =
dgrad(r)
∥∇θℓ∥2

0 0.000000 0.000000 0.0000
1 1.056977 1.467278 0.1431
2 1.093139 1.498927 0.1491
3 1.141932 1.545640 0.1597

1. At r = 0, we haveF (0)
b = F by construction, so both forward and gradient deviations are

exactly zero.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2. When we enable a single replacement site (r = 1), the normalized gradient bias is ρ(1) ≈
0.143, i.e., the difference between ∇θℓ

(1)
b and ∇θℓ is about 14% of the baseline gradient

norm. This indicates a modest and controlled bias in the shared-parameter gradients.
3. When we enable two or three replacement sites (r = 2, 3), both the forward and gradient

deviations increase slowly and smoothly: - ρ(2) ≈ 0.149, - ρ(3) ≈ 0.160. The growth
from r = 1 to r = 3 is mild and close to linear in r, consistent with our non-expansive
composition analysis involving Hmax.

Overall, these diagnostics show that the empirical bias ε entering
∥∥∇θℓb − ∇θℓ

∥∥ ≤ L ·Hmax · ε
is small (with ρ(r) < 0.16 even when all replacement sites are enabled) and grows slowly as more
blocks are replaced. This provides direct empirical support that RepL introduces a controlled and
modest bias in both forward predictions and shared-parameter gradients in the regimes considered in
our experiments.

23

	Introduction
	Method
	Preparations
	CNN learnable block
	ViT learnable block
	Global forward with learnable blocks
	Operator ledger

	Experiments
	Experimental setup
	Comparison with the E2E results
	Results on CIFAR-10, SVHN, and STL-10
	Results on ImageNet

	Ablation study
	Performance analysis of computing layer usage
	Analysis of interval setting for removed layers
	Comparison of features in different methods
	Comparison of using different parts of parameters
	Comparison of using different layers

	Detection experiments and analysis

	Conclusion
	Appendix
	Use of LLMs
	Related work
	Experimental setup details
	Comparison of the distribution of classified data points
	Supplementary experiments
	Comparative Experiments with Related Methods
	Experiments on the NLP task
	Inference on ImageNet
	Fine-tuning on ViTs
	Fine-tuning for downstream tasks
	Extra Ablation study on ViT

	Parameter Analysis
	Complexity Analysis
	FLOPs
	Activation/Memory Footprint

	Error Bound & Convergence Analysis
	Approximation bias of a computing layer
	Gradient bias and stable training
	Convergence under SGD and Adam

	Multi-Replacement Error Propagation
	Recoverability and Expressivity of the Computing Layer
	A Simple Compute Accuracy Trade-off for Choosing k
	Bias in practice: empirical via forward and gradient deviations

