

REPLACEMENT LEARNING: TRAINING NEURAL NETWORKS WITH FEWER PARAMETERS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional End-to-End deep learning models typically enhance feature representation capabilities by increasing network depth and complexity. While such an approach improves performance, it inevitably leads to issues such as parameter redundancy and inefficient resource utilization, which become increasingly pronounced as the network deepens. Existing methods have attempted to alleviate these problems by skipping or removing redundant layers. However, they often rely on complex manual designs, which may result in performance degradation, increased computational costs, and reduced memory efficiency. To address these challenges, we propose a novel training paradigm termed Replacement Learning. This method selectively removes certain layers from the network and substitutes them with additional computing layers in an efficient and automated manner, thereby compensating for the potential performance loss caused by layer removal. Specifically, a computing layer is inserted between the neighboring layers of the removed layer, and it utilizes parameters from the adjacent layers to construct a transformed parameter representation through a simple and efficient learnable block. This transformed representation is then used to perform additional computation on the output of the preceding layer, yielding the final output passed to the subsequent layer. Furthermore, to accommodate architectural variations such as feature map sizes and channel dimensions in different network types, we design a tailored, lightweight learnable block accordingly. Replacement Learning leverages the contextual flow of information between adjacent layers to eliminate unnecessary computation, significantly reducing computational complexity, saving GPU memory usage, and accelerating training. More importantly, it achieves a balanced integration of historical context and newly introduced features, thereby enhancing the overall model performance. We validate the effectiveness of Replacement Learning on five benchmarks—CIFAR-10, STL-10, SVHN, ImageNet, and COCO—across classification and detection tasks using both CNNs and ViTs architectures. Results demonstrate that our method not only significantly reduces the number of network parameters, shortens training time, and lowers memory consumption, but also surpasses traditional End-to-End trained models in performance.

1 INTRODUCTION

Updating learnable parameters is fundamental for training deep learning models Yang et al. (2019). The most common method, global backpropagation Mostafa et al. (2018), is widely applied in fields like computer vision Yoo (2015); Voulovodimos et al. (2018), natural language processing Goldberg (2016; 2017), and speech processing Ahmad et al. (2004); Chauvin & Rumelhart (2013). However, increasing model capabilities inevitably raise network depth and complexity, sharply escalating the computational and parameter demands of global backpropagation Nawi et al. (2008), which challenges GPU processing power and memory capacity Bragagnolo et al. (2022). Moreover, high similarity in learning patterns between neighbouring layers Kleinman et al. (2021) causes parameter redundancy and inefficient resource usage. With large models becoming prevalent, developing effective training methods to reduce computation time and save GPU memory while preserving performance is urgently needed.

To tackle the challenges of traditional backpropagation (BP) Mostafa et al. (2018), researchers have explored alternatives such as feedback alignment Lillicrap et al. (2014); Nøkland (2016), forward

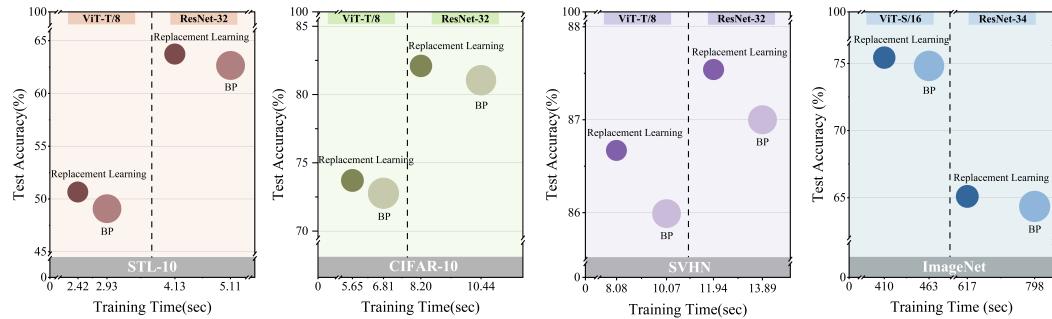


Figure 1: Comparison between different backbones with Replacement Learning and End-to-End training regarding GPU memory and Test accuracy. The diameter of the symbol is obtained based on GPU Memory at the same scale.

gradient learning Dellaferreira & Kreiman (2022); Ren et al. (2022), and local learning Su et al. (2024a;b). These methods aim to update network weights without fully relying on BP Rumelhart et al. (1985), thereby reducing training costs. However, they each have limitations. Feedback alignment struggles with training effectiveness due to inaccurate gradient estimation. Forward gradient learning requires extra forward passes, increasing computational overhead. Local learning divides the network into independently trained modules, but this often leads to suboptimal local performance and longer training times. Recent work on Vision Transformers (ViTs) Dosovitskiy et al. (2021) revealed strong inter-layer correlations from self-attention, leading to the skip attention Venkataraman et al. (2023) approach to reduce complexity by reusing attention computations. However, this method requires manually designed auxiliary modules, making it complex and hard to generalize. Additionally, it risks error propagation, negatively impacting model performance. As a result, alternatives to backpropagation Rumelhart et al. (1985) and skip attention Venkataraman et al. (2023) still face challenges in balancing training efficiency and computational cost while maintaining performance.

In this paper, we propose a novel method: Replacement Learning, which aims to significantly reduce the computational overhead and resource consumption of deep neural networks while maintaining—or even improving—model performance. The core idea of Replacement Learning is to selectively remove specific layers of the network and replace them with a lightweight computing layer that features a simple structure and minimal parameter count. Specifically, the computing layer synthesizes new computational parameters by integrating information from the parameters of the layers immediately preceding and succeeding the removed layer. This integration is accomplished through a specially designed, lightweight, learnable block. The fused parameters are then used to reprocess the output of the preceding layer, which is subsequently fed into the succeeding layer. This mechanism effectively compensates for the potential feature loss resulting from layer removal. The design notably enhances the network’s capacity to capture local features in shallow layers and global representations in deeper layers, thereby promoting a more effective integration of low-level and high-level features. Moreover, we introduce an optimized interval strategy to regulate the frequency at which layers are removed and optimized, striking a desirable balance between computational efficiency and model performance. By leveraging two specially designed learnable blocks within the computing layer, Replacement Learning achieves efficient fusion of adjacent layer information and dynamically balances the retention of historical context with the incorporation of new feature representations, thereby further boosting overall performance. We comprehensively evaluate the effectiveness of Replacement Learning on five widely used benchmark datasets—CIFAR-10 Krizhevsky et al. (2009), STL-10 Coates et al. (2011), SVHN Netzer et al. (2011), ImageNet Deng et al. (2009), and COCO Lin et al. (2015)—across image classification and object detection tasks, employing both CNNs and ViTs Dosovitskiy et al. (2021) architectures. Experimental results demonstrate that, compared with traditional End-to-End training methods Rumelhart et al. (1985), Replacement Learning not only significantly reduces the number of trainable parameters, training time, and GPU memory usage, but also achieves superior performance in terms of model accuracy.

We summarize our contributions as follows:

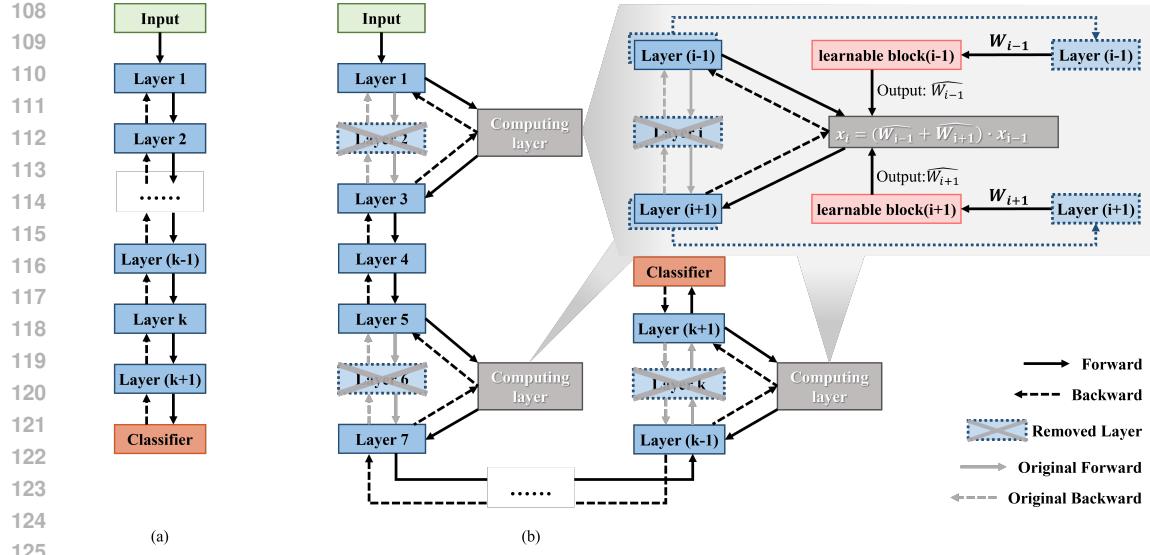


Figure 2: Comparison of (a) End-to-End training and (b) our proposed Replacement Learning.

- We propose a novel and general training method, Replacement Learning, which achieves performance comparable to or even surpassing that of traditional End-to-End training methods Rumelhart et al. (1985), while significantly reducing the number of parameters, training time, and GPU memory consumption.
- Replacement Learning is architecture and task-agnostic, exhibiting strong generalizability. It can be flexibly applied to models of varying depths and across different domains.
- We conduct extensive experiments on several widely-used image classification and object detection benchmarks, including CIFAR-10 Krizhevsky et al. (2009), STL-10 Coates et al. (2011), SVHN Netzer et al. (2011), ImageNet Deng et al. (2009), and COCO Lin et al. (2015). Results demonstrate that Replacement Learning consistently outperforms traditional End-to-End training methods in both computational efficiency and model performance.

2 METHOD

We present **Replacement Learning (RepL)**, which replaces every k -th block in a deep model with a lightweight learnable block that synthesizes an operator from the two neighbors' parameters and applies it in place of the removed block. This section specifies the exact implementation we use in our experiments for CNNs and ViTs: shapes, synthesis, forward computation, backward propagation.

2.1 PREPARATIONS

Let the network have depth n and input \mathbf{x} ; after operation j the activation is \mathbf{h}_j ($\mathbf{h}_0 = \mathbf{x}$). The standard forward is

$$\mathbf{h}_j = f_j(\mathbf{h}_{j-1}; \mathbf{W}_j), \quad j = 1, \dots, n, \quad (1)$$

where f_j is a convolutional or transformer block with learnable weights \mathbf{W}_j . We replace every k -th site (except the last if n is a multiple of k):

$$\mathcal{F} = \{i \mid i \bmod k = 0, i < n\}. \quad (2)$$

For $i \in \mathcal{F}$, f_i is not executed. Instead we run a learnable block that synthesizes an operator from \mathbf{W}_{i-1} and \mathbf{W}_{i+1} and applies it to \mathbf{h}_{i-1} , with normalization and nonlinearity preserved to match the baseline.

162 2.2 CNN LEARNABLE BLOCK
163164 **Shapes.** At a replaced site $i \in \mathcal{F}$, the incoming feature is $\mathbf{h}_{i-1} \in \mathbb{R}^{C_{i-1}^{\text{in}} \times H \times W}$. The neighbor
165 kernels (same $k \times k$ and stride in our settings) are

166
$$W_{i-1} \in \mathbb{R}^{C_{i-1}^{\text{out}} \times C_{i-1}^{\text{in}} \times k \times k}, \quad W_{i+1} \in \mathbb{R}^{C_{i+1}^{\text{out}} \times C_{i+1}^{\text{in}} \times k \times k}, \quad (3)$$

167

168 and the next site expects C_{i+1}^{in} input channels.
169170 **Synthesis via channel-mode learnable blocks.** We introduce two tiny **learnable blocks** acting on
171 kernel channel modes:

172
$$\mathcal{T}_{i-1} : \mathbb{R}^{C_{i-1}^{\text{out}} \times C_{i-1}^{\text{in}} \times k \times k} \rightarrow \mathbb{R}^{C_{i+1}^{\text{in}} \times C_{i-1}^{\text{in}} \times 1 \times 1}, \quad (4)$$

173

174
$$\mathcal{T}_{i+1} : \mathbb{R}^{C_{i+1}^{\text{out}} \times C_{i+1}^{\text{in}} \times k \times k} \rightarrow \mathbb{R}^{C_{i+1}^{\text{in}} \times C_{i+1}^{\text{in}} \times 1 \times 1}. \quad (5)$$

175 Implementation: grouped 1×1 channel mixers (depth-wise 1×1), i.e., per-output-channel affine maps
176 on the kernel tensor; parameter counts are only C_{i-1}^{out} and C_{i+1}^{out} , respectively.
177178 We fuse the aligned kernels into a valid 1×1 operator:
179

180
$$\widehat{W}_i = \mathcal{T}_{i-1}(W_{i-1}) + \mathcal{T}_{i+1}(W_{i+1}) \in \mathbb{R}^{C_{i+1}^{\text{in}} \times C_{i-1}^{\text{in}} \times 1 \times 1}. \quad (6)$$

181 **Forward.** The learnable block applies the synthesized operator and then matches the baseline
182 nonlinearity/topology (BN + ReLU in our CNNs):
183

184
$$\hat{\mathbf{x}}_i = \widehat{W}_i * \mathbf{h}_{i-1}, \quad \mathbf{h}_i = \phi(\text{BN}(\hat{\mathbf{x}}_i)). \quad (7)$$

185 Note: Eq. equation 6 is the linear part; the block mapping itself is nonlinear due to BN and ReLU.
186187 **Backward.** Let the error arriving at $\hat{\mathbf{x}}_i$ be δ_i and $G_i := \delta_i \mathbf{h}_{i-1}^\top$ (channel-wise outer product). Then
188 the learnable blocks receive gradients
189

190
$$\frac{\partial \mathcal{L}}{\partial \phi_{i-1}} = \langle G_i, W_{i-1} \rangle_{\text{channel}}, \quad \frac{\partial \mathcal{L}}{\partial \phi_{i+1}} = \langle G_i, W_{i+1} \rangle_{\text{channel}}, \quad (8)$$

191

192 and the neighbor kernels get $\phi \odot G_i$ in addition to their own.
193194 2.3 ViT LEARNABLE BLOCK
195196 **Which weights are used.** All transformer submodule linears act in $\mathbb{R}^{d \times d}$. From the previous
197 block, we collapse attention linears (Q/K/V and W_o) into $A_{i-1} \in \mathbb{R}^{d \times d}$ and the MLP linears into
198 $M_{i-1} \in \mathbb{R}^{d \times d}$; similarly obtain A_{i+1}, M_{i+1} from the next block.¹199 **Synthesis via learnable blocks implemented as parameters.** For ViTs, the learnable block is
200 implemented as a pair of learnable parameters per fused operator:
201

202
$$\widehat{A}_i = \alpha_i A_{i-1} + \beta_i A_{i+1}, \quad \widehat{M}_i = \alpha_i M_{i-1} + \beta_i M_{i+1}, \quad (9)$$

203 with $\alpha_i, \beta_i \in \mathbb{R}$ trained jointly with the model.
204205 **Forward.** We apply two $d \times d$ linear transforms with LN + GELU and residual kept (as in our code
206 and experiments):
207

208
$$\mathbf{H}_i = \text{LN}(\text{GELU}(\widehat{M}_i \mathbf{H}_{i-1}) + \widehat{A}_i \mathbf{H}_{i-1}) + \mathbf{H}_{i-1}. \quad (10)$$

209

210 **Backward.** Let $G_i := \delta_i \mathbf{H}_{i-1}^\top$ at the two linear sites. Then
211

212
$$\frac{\partial \mathcal{L}}{\partial \alpha_i} = \langle G_i, A_{i-1} \rangle + \langle G_i, M_{i-1} \rangle, \quad \frac{\partial \mathcal{L}}{\partial \beta_i} = \langle G_i, A_{i+1} \rangle + \langle G_i, M_{i+1} \rangle, \quad (11)$$

213

214 and neighbor weights receive $\alpha_i G_i$ and $\beta_i G_i$ contributions.
215¹Residual connections and LayerNorm remain outside and are kept.

216 2.4 GLOBAL FORWARD WITH LEARNABLE BLOCKS
217218 The network with RepL executes
219

220
$$\mathbf{h}_j = \begin{cases} f_j(\mathbf{h}_{j-1}; \mathbf{W}_j), & j \notin \mathcal{F}, \\ \phi(\text{BN}(\widehat{W}_j(\mathbf{h}_{j-1}))), & j \in \mathcal{F} (\text{CNN}), \\ \text{LN}\left(\text{GELU}(\widehat{M}_j \mathbf{h}_{j-1}) + \widehat{A}_j \mathbf{h}_{j-1}\right) + \mathbf{h}_{j-1}, & j \in \mathcal{F} (\text{ViT}). \end{cases} \quad (12)$$

221
222
223

224 with \widehat{W}_j from Eq. equation 6 and $(\widehat{A}_j, \widehat{M}_j)$ from Eq. equation 9.
225226 2.5 OPERATOR LEDGER
227228 CNNs.
229230 • **Removed:** two $k \times k$ convs at depth i and their intermediate BN activations.
231 • **Added:** two channel-mode 1×1 *learnable blocks* in weight space that synthesize \widehat{W}_i , and one
232 BN+ReLU site to match topology.
233 • **Run-time effect:** conv MACs at site i change from two $k \times k$ to two 1×1 applications; saved
234 activations at this depth decrease accordingly.235 ViTs.
236237 • **Removed:** attention path (Q/K/V projections, W_o) and MLP ($d \rightarrow 4d \rightarrow d$).
238 • **Added:** two $d \times d$ linears built by a learnable block (parameters α_i, β_i), with LN + GELU and
239 residual kept.
240 • **Run-time effect:** arithmetic and saved activations at site i drop to those of two $d \times d$ linear sites.241 3 EXPERIMENTS
242243 3.1 EXPERIMENTAL SETUP
244245 We conduct classification and detection experiments using different architectures on five benchmark
246 datasets: CIFAR-10 Krizhevsky et al. (2009), STL-10 Coates et al. (2011), SVHN Netzer et al. (2011),
247 ImageNet Deng et al. (2009), and COCO Lin et al. (2015).248 During the experiment, we do not utilize pre-trained models. Instead, we train from scratch. We set
249 $k = 4$ as the interval for the removed layer. All layers compute the loss using gradient descent and
250 update the parameters via backpropagation Rumelhart et al. (1985).
251252 3.2 COMPARISON WITH THE E2E RESULTS
253254 3.2.1 RESULTS ON CIFAR-10, SVHN, AND STL-10
255256 We evaluate our method on CIFAR-10 Krizhevsky et al. (2009), SVHN Netzer et al. (2011), and
257 STL-10 Coates et al. (2011), with results in Table 1. Replacement Learning (RepL) consistently
258 outperforms End-to-End training Rumelhart et al. (1985) across all architectures: On CIFAR-10
259 Krizhevsky et al. (2009), ResNet-32/110 He et al. (2016) test accuracy rises from 93.17 to 93.43
260 and 93.49 to 94.01, while ViT-Tiny/8 Dosovitskiy et al. (2021) gains 0.94; on SVHN Netzer et al.
261 (2011), accuracy increases by 0.13 at least across networks; on STL-10 Coates et al. (2011), gains
262 range from 0.52 to 1.58, with consistent significant improvements across datasets. Table 1 also
263 shows RL’s advantages on CIFAR-10 Krizhevsky et al. (2009): ResNet-32/110 He et al. (2016) and
264 ViT-Tiny/8 Dosovitskiy et al. (2021) reduce GPU memory by 0.69/1.69/0.73 GB, and training time
265 per epoch by 21.5%, 20.1%, 17.0% respectively. Similar trends hold for SVHN Netzer et al. (2011)
266 and STL-10 Coates et al. (2011), where RL cuts memory and training time while maintaining or
267 improving performance.268 Furthermore, when compared to Skip-Attention Venkataramanan et al. (2023) on ViTs Dosovitskiy
269 et al. (2021), our method outperforms both in terms of performance and resource efficiency, making
it a more favorable choice for maintaining accuracy while reducing computational cost.

270 Table 1: Performance of different backbones on various datasets. RepL represents Replacement
 271 Learning. Training time is the average result of each epoch.

273	Dataset	Backbone	Method	Test Accuracy (%)	GPU Memory (GB)	Training Time (sec)
274	CIFAR-10	ResNet-32	E2E	93.17 \pm 0.14	3.38	10.44
275			RepL	93.43 \pm 0.19 (\uparrow 0.26)	2.69 (\downarrow 20.4%)	8.20 (\downarrow 21.5%)
276		ResNet-110	E2E	93.49 \pm 0.29	9.31	26.19
277			RepL	94.01 \pm 0.17 (\uparrow 0.52)	7.62 (\downarrow 18.2%)	20.93 (\downarrow 20.1%)
278		ViT-Tiny/8	E2E	72.77 \pm 1.31	2.81	6.81
279			Skip-Attention	72.60 \pm 3.57 (\downarrow 0.17)	2.12 (\downarrow 24.6%)	6.23 (\downarrow 8.5%)
280			RepL	73.71 \pm 1.08 (\uparrow 0.94)	2.08 (\downarrow 26.0%)	5.65 (\downarrow 17.0%)
281	SVHN	ResNet-32	E2E	96.83 \pm 0.15	3.38	13.89
282			RepL	96.97 \pm 0.12 (\uparrow 0.14)	2.69 (\downarrow 20.4%)	11.94 (\downarrow 14.0%)
283		ResNet-110	E2E	96.93 \pm 0.24	9.31	37.38
284			RepL	97.06 \pm 0.27 (\uparrow 0.13)	7.62 (\downarrow 18.2%)	30.08 (\downarrow 19.5%)
285		ViT-Tiny/8	E2E	85.99 \pm 0.71	2.81	10.07
286			Skip-Attention	86.22 \pm 1.51 (\uparrow 0.23)	2.12 (\downarrow 24.6%)	9.18 (\downarrow 8.8%)
287			RepL	86.67 \pm 1.18 (\uparrow 0.68)	2.08 (\downarrow 26.0%)	8.08 (\downarrow 19.8%)
288	STL-10	ResNet-32	E2E	79.81 \pm 0.51	3.38	5.11
289			RepL	80.33 \pm 0.42 (\uparrow 0.52)	2.69 (\downarrow 20.4%)	4.13 (\downarrow 19.2%)
290		ResNet-110	E2E	79.78 \pm 0.30	9.31	6.86
291			RepL	80.45 \pm 0.51 (\uparrow 0.67)	7.62 (\downarrow 18.2%)	5.23 (\downarrow 23.8%)
292		ViT-Tiny/8	E2E	49.08 \pm 3.39	2.81	2.93
293			Skip-Attention	50.42 \pm 3.18 (\uparrow 1.34)	2.12 (\downarrow 24.6%)	2.68 (\downarrow 8.5%)
294			RepL	50.66 \pm 3.18 (\uparrow 1.58)	2.08 (\downarrow 26.0%)	2.41 (\downarrow 17.8%)

293 Table 2: Results on the ImageNet validation set. RepL stands for Replacement Learning. Training
 294 time is the average result of each epoch.

296	Backbone	Method	Top-1 Accuracy (%)	Top-5 Accuracy (%)	GPU Memory (GB)	Training Time (sec)
297	ImageNet	ResNet-34	E2E	74.82 \pm 1.43	91.04 \pm 1.33	9.21
298			RepL	75.44 \pm 1.27 (\uparrow 0.62)	91.47 \pm 2.01 (\uparrow 0.43)	8.06 (\downarrow 12.5%)
299		ResNet-101	E2E	77.55 \pm 1.22	93.80 \pm 1.78	20.95
300			RepL	78.13 \pm 1.65 (\uparrow 0.58)	94.02 \pm 1.34 (\uparrow 0.22)	18.05 (\downarrow 13.8%)
301		ResNet-152	E2E	78.16 \pm 1.56	94.03 \pm 1.25	27.58
302			RepL	78.31 \pm 1.46 (\uparrow 0.15)	94.14 \pm 1.14 (\uparrow 0.11)	24.19 (\downarrow 12.3%)
303		ViT-T/16	E2E	60.23 \pm 1.52	82.38 \pm 1.32	12.17
304			Skip-Attn	60.51 \pm 1.20 (\uparrow 0.28)	82.72 \pm 1.09 (\uparrow 0.34)	11.52 (\downarrow 5.3%)
305			RepL	60.93 \pm 1.19 (\uparrow 0.70)	82.88 \pm 1.07 (\uparrow 0.50)	9.59 (\downarrow 21.2%)
306		ViT-S/16	E2E	64.35 \pm 1.83	84.64 \pm 1.22	21.05
307			Skip-Attn	61.65 \pm 1.25 (\downarrow 2.70)	82.70 \pm 1.16 (\downarrow 1.94)	20.67 (\downarrow 1.8%)
308			RepL	65.09 \pm 1.41 (\uparrow 0.74)	85.42 \pm 1.73 (\uparrow 0.78)	16.22 (\downarrow 22.9%)
309	ViT-B/16	E2E	E2E	59.46 \pm 1.72	80.35 \pm 1.12	41.97
310			Skip-Attn	58.94 \pm 1.25 (\downarrow 0.52)	79.70 \pm 0.94 (\downarrow 0.65)	38.49 (\downarrow 8.3%)
311		RepL	60.18 \pm 1.27 (\uparrow 0.72)	81.97 \pm 1.15 (\uparrow 1.62)	29.94 (\downarrow 28.7%)	1924.35 (\downarrow 25.1%)

3.2.2 RESULTS ON IMAGENET

313 We validate RepL’s effectiveness on ImageNet Deng et al. (2009) with ResNet-34/101/152 He et al.
 314 (2016) and ViT-Tiny/16, ViT-Small/16, and ViT-Base/16 Dosovitskiy et al. (2021), and the results are
 315 shown in Table 2. For ResNet-34 He et al. (2016), Top-1 Accuracy rises from 74.82 to 75.44 and
 316 Top-5 from 91.04 to 91.47; the other five architectures also gain accuracy: Top-1 increases by 0.58,
 317 0.15, 0.70, 0.74, 0.72 respectively, and Top-5 by 0.22, 0.11, 0.50, 0.78, 1.62 respectively.

318 Beyond accuracy, RepL reduces GPU memory usage and shortens per-epoch training time by 10%
 319 –25% across all models, highlighting its effectiveness on large-scale ImageNet Deng et al. (2009)
 320 even for deeper networks. Similarly, experiments on ViTs Dosovitskiy et al. (2021) with large
 321 datasets confirm our method outperforms the existing Skip-Attention Venkataraman et al. (2023)
 322 mechanism.

324 3.3 ABLATION STUDY
325326 3.3.1 PERFORMANCE ANALYSIS OF COMPUTING LAYER USAGE
327

328 To demonstrate the necessity of removing certain layers and the role of the computing layer as a
329 replacement, we conduct comparative experiments on the CIFAR-10 Krizhevsky et al. (2009) using
330 ViT-Tiny/8 Dosovitskiy et al. (2021) and ResNet-110 He et al. (2016). The performance of the
331 traditional E2E training Rumelhart et al. (1985), a network with one-quarter of its layers removed
332 according to the design with $k = 4$, and the network with the insertion of computing layers was
333 evaluated and compared.

334 As shown in Table 3 and Table 4, after removing 25% of the layers, there is a significant reduction
335 in GPU memory usage, and the training time is also considerably shortened. This demonstrates the
336 positive impact of layer removal in terms of resource savings and efficiency enhancement. However,
337 this comes at the cost of a decrease in accuracy. To address this limitation, we designed the insertion
338 of computing layers in Replacement Learning to replace the removed layers. The results clearly
339 indicate that our design is effective, as it not only saves GPU memory and reduces training time but
340 also improves accuracy.

341 Table 3: Performance comparison on CIFAR-10.
342

343 Backbone	344 Method	345 Test Accuracy (%)	346 GPU Memory (GB)	347 Training Time (sec)
348 ResNet-110	E2E	83.21±1.29	9.31	26.19
	- 25% layers	82.02±2.01	7.07	19.54
	+ computing layers	83.95±1.17	7.62	20.93
349 ViT-Tiny/8	E2E	72.77±1.31	2.81	6.81
	- 25% layers	71.13±1.24	2.04	5.44
	+ computing layers	73.71±1.08	2.08	5.65

351 Table 4: Performance comparison on ImageNet.
352

353 Backbone	354 Method	355 Top-1 Accuracy (%)	356 Top-5 Accuracy (%)	357 GPU Memory (GB)	358 Training Time (sec)
359 ResNet-34	E2E	74.82±1.43	91.04±1.33	9.21	463.23
	- 25% layers	72.99±1.82	90.12±1.31	7.75	392.21
	+ computing layers	75.44±1.27	91.47±2.01	8.06	410.53
360 ViT-Tiny/16	E2E	60.23±1.52	82.38±1.32	12.17	357.66
	- 25% layers	58.22±0.91	81.51±1.22	9.49	287.55
	+ computing layers	60.93±1.19	82.88±1.07	9.59	290.15

361 3.3.2 ANALYSIS OF INTERVAL SETTING FOR REMOVED LAYERS
362

363 In the experiments, we set $k = 4$ as the interval for the removed layers. To test the impact of different
364 values of k on our proposed Replacement Learning, we conduct multiple comparative experiments
365 on the CIFAR-10 Krizhevsky et al. (2009) dataset using ViT-Tiny/8 Dosovitskiy et al. (2021) and
366 ResNet-110 He et al. (2016).

367 As observed in Table 5, when $k = 2$, a larger number of layers are removed, resulting in greater GPU
368 memory savings and a significant reduction in training time. However, this also leads to a reduction
369 in the amount of learned information, which negatively impacts accuracy. When $k = 6$, although
370 the network performs well in terms of performance, it falls short in resource savings. Through
371 comparison, we find that $k = 4$ strikes the best balance between accuracy and resource efficiency.

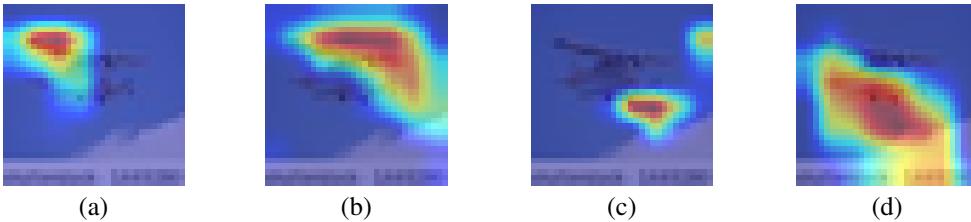
372 3.3.3 COMPARISON OF FEATURES IN DIFFERENT METHODS
373

374 To showcase the advanced capabilities of Replacement Learning, we conduct feature map analyses
375 on CIFAR-10 Krizhevsky et al. (2009) with ResNet-32 He et al. (2016). The resulting figures can be
376 found in Figure 3.

378
379
380 Table 5: Performance comparison on CIFAR-10 with different k setting.
381
382
383
384
385
386

Backbone	k value setting	Test Accuracy (%)	GPU Memory (GB)	Training Time (sec)
ResNet-110	$k=2$	81.58 ± 1.89	6.25	18.05
	$k=4$	83.95 ± 1.17	7.62	20.93
	$k=6$	84.08 ± 1.04	8.63	23.94
ViT-Tiny/8	$k=2$	71.48 ± 2.39	1.70	5.19
	$k=4$	73.71 ± 1.08	2.08	5.65
	$k=6$	73.94 ± 1.17	2.39	6.39

388 Upon analyzing them, we can observe that (a) and (c), which use End-to-End training, are concentrated
389 in specific regions, indicating the presence of significant information within those areas. Conversely,
390 after using Replacement Learning, (b) and (d) capture more comprehensive global features, including
391 localized edge features. It follows that our method can compensate for the shortcomings of other
392 methods.



401
402 Figure 3: Visualization of feature maps. (a) Feature map of ResNet-32 with End-to-End training.
403 (b) Feature map of ResNet-32 with Replacement Learning. (c) Feature map of ViT-Tiny/8 with
404 End-to-End training. (d) Feature map of ViT-Tiny/8 with Replacement Learning.

405 406 3.3.4 COMPARISON OF USING DIFFERENT PARTS OF PARAMETERS

408 To further validate the importance of leveraging the parameters from preceding and succeeding layers,
409 we conducted an ablation study. Following the main experimental setup, we used ViT-T/8 as the
410 backbone on the CIFAR-10 dataset. Specifically, we compared the results under four configurations:
411 (i) using both attention parameters (including the qkv and W_o layers) and MLP parameters, (ii)
412 using only attention parameters, (iii) using only MLP parameters, and (iv) not using any parameters
413 from adjacent layers. The results in Table 6 indicate that incorporating more parameters consistently
414 leads to better performance. Moreover, attention parameters contribute more significantly than MLP
415 parameters, while excluding all parameters causes a substantial performance drop.

416
417 Table 6: Ablation of Parameters in Computing Layers.

Method	Accuracy	GPU Memory	Training Time
RepL	73.71 ± 1.08	2.08G	5.65s
RepL (only Attention weights)	72.39 ± 0.97	2.05G	5.59s
RepL (only MLP weights)	72.14 ± 1.34	2.07G	5.53s
RepL (no weights)	69.30 ± 2.11	2.02G	5.20s

423 424 3.3.5 COMPARISON OF USING DIFFERENT LAYERS

426 To validate our design, we conduct experiments with ResNet-110 He et al. (2016) and ViT-Tiny/8
427 Dosovitskiy et al. (2021) as the backbones, using End-to-End training Rumelhart et al. (1985) as the
428 baseline, and comparing three methods for the computing layers: outputs from the preceding layer,
429 outputs from the succeeding layer, and outputs from both the preceding and succeeding layers.

430 As shown in Table 7, when using only the outputs from either the previous or the subsequent layer,
431 there is a noticeable decline in accuracy. In contrast, utilizing both the preceding and succeeding

432 layers simultaneously enhances the model’s performance, surpassing that of traditional End-to-End
 433 training Rumelhart et al. (1985). This demonstrates the importance of balancing historical and
 434 new information in the design of Replacement Learning, which has a positive impact on model
 435 performance.

437 Table 7: Performance comparison on CIFAR-10 using different layers.
 438

439 ResNet-110			440 ViT-Tiny/8		
441 Preceding Layer	Succeeding Layer	442 Test Accuracy (%)	441 Preceding Layer	Succeeding Layer	442 Test Accuracy (%)
✗	✗	83.21±1.29	✗	✗	72.77±1.31
✗	✓	82.14±2.38	✗	✓	72.18±1.93
✓	✗	79.56±3.31	✓	✗	69.37±4.85
✓	✓	83.95±1.17	✓	✓	73.71±1.08

445
 446
 447 3.4 DETECTION EXPERIMENTS AND ANALYSIS
 448

449 To evaluate the performance of Replacement Learning on other tasks, we conduct experiments on
 450 the COCO dataset Lin et al. (2015) using RetinaNet-R50 and RetinaNet-R101 Lin et al. (2018) as
 451 backbones. In these experiments, we utilize 4 Nvidia A100 GPUs, with a batch size of 8, a learning
 452 rate of 4e-5, and the Adam optimizer. The training is carried out for a total of 100 epochs. Detailed
 453 results can be found in Table 8.

454 Table 8: Performance comparison on COCO using different backbones. * means the addition of
 455 Replacement Learning.
 456

457 Backbone	mAP	AP@50	AP@75	GPU Memory (GB)	Training Time (sec)
459 RetinaNet-R50	30.42	51.72	30.80	6.85	3859.11
460 RetinaNet-R50*	30.64(↑0.22)	52.44(↑0.72)	31.15(↑0.35)	5.82(↓15.04%)	3245.23(↓15.91%)
461 RetinaNet-R101	32.36	54.21	32.91	8.19	5548.09
462 RetinaNet-R101*	32.76(↑0.40)	54.80(↑0.59)	32.98(↑0.07)	6.65(↓18.80%)	4671.33(↓15.80%)

463
 464 The table illustrates that the Replacement Learning model demonstrates significant performance
 465 improvements across various depth detection models, while concurrently reducing both GPU memory
 466 usage and training time. These results underscore the effectiveness and efficiency of the proposed
 467 method, confirming its versatility in addressing a broad spectrum of deep learning tasks with diverse
 468 requirements.

470 4 CONCLUSION
 471

472 This paper introduces a novel learning approach called Replacement Learning, designed to address
 473 the challenge of maintaining model performance while reducing computational overhead and resource
 474 consumption. Replacement Learning effectively reduces the parameter count by removing specific
 475 layers and replacing them with computing layers. These computing layers integrate the outputs of
 476 the preceding and subsequent layers, enhancing the integration of low-level and high-level features,
 477 thereby improving the overall performance of the model. We apply Replacement Learning to various
 478 model architectures with different depths and evaluate their performance on five widely used datasets
 479 in classification and object detection tasks. The results demonstrate that the proposed Replacement
 480 Learning not only reduces training time and GPU usage but also consistently outperforms end-to-end
 481 training in terms of overall performance.

482 **Limitations and future work:** While Replacement Learning reduces parameter computation, saves
 483 memory, and shortens training time, all while outperforming End-to-End training, it has only been
 484 tested on image-based tasks. It has yet to be applied to larger models in natural language processing
 485 or multimodal settings. Future work will explore the impact of Replacement Learning on these tasks
 to provide a more comprehensive evaluation of its effectiveness.

486 REFERENCES
487

488 Abdul Manan Ahmad, Saliza Ismail, and DF Samoan. Recurrent neural network with backpropagation
489 through time for speech recognition. In *IEEE International Symposium on Communications and*
490 *Information Technology, 2004. ISCIT 2004.*, volume 1, pp. 98–102. IEEE, 2004.

491 Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? *Advances*
492 *in Neural Information Processing Systems*, 32, 2019.

493 Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lilli-
494 crap. Assessing the scalability of biologically-motivated deep learning algorithms and architectures.
495 *Advances in neural information processing systems*, 31, 2018.

496 Lokesh Borawar and Ravinder Kaur. Resnet: Solving vanishing gradient in deep networks. In
497 *Proceedings of International Conference on Recent Trends in Computing: ICRTC 2022*, pp.
498 235–247. Springer, 2023.

499 Andrea Bragagnolo, Enzo Tartaglione, and Marco Grangetto. To update or not to update? neurons at
500 equilibrium in deep models. *Advances in neural information processing systems*, 35:22149–22160,
501 2022.

502 Yves Chauvin and David E Rumelhart. *Backpropagation: theory, architectures, and applications*.
503 Psychology press, 2013.

504 Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
505 memory cost. *arXiv preprint arXiv:1604.06174*, 2016.

506 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
507 feature learning. In *Proceedings of the fourteenth international conference on artificial intelligence*
508 and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

509 Giorgia Dellaferreira and Gabriel Kreiman. Error-driven input modulation: Solving the credit
510 assignment problem without a backward pass. In *International Conference on Machine Learning*,
511 pp. 4937–4955. PMLR, 2022.

512 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
513 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
514 pp. 248–255. Ieee, 2009.

515 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
516 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, and Sylvain Gelly. An image
517 is worth 16x16 words: Transformers for image recognition at scale. In *International Conference*
518 *on Learning Representations*, 2021.

519 Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
520 stochastic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013. doi: 10.1137/
521 130920084. URL <https://doi.org/10.1137/130920084>.

522 Yoav Goldberg. A primer on neural network models for natural language processing. *Journal of*
523 *Artificial Intelligence Research*, 57:345–420, 2016.

524 Yoav Goldberg. *Neural network methods in natural language processing*. Morgan & Claypool
525 Publishers, 2017.

526 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
527 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
528 pp. 770–778, 2016.

529 Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
530 stochastic depth. In *European conference on computer vision*, pp. 646–661. Springer, 2016.

531 Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
532 Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
533 *International conference on machine learning*, pp. 1627–1635. PMLR, 2017.

540 Michael Kleinman, Alessandro Achille, Stefano Soatto, and Jonathan C Kao. Redundant information
 541 neural estimation. *Entropy*, 23(7):922, 2021.

542

543 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

544 Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
 545 In *Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
 546 PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I* 15, pp. 498–515. Springer,
 547 2015.

548 Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feedback
 549 weights support learning in deep neural networks. *arXiv preprint arXiv:1411.0247*, 2014.

550

551 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 552 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
 553 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

554 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
 555 detection, 2018. URL <https://arxiv.org/abs/1708.02002>.

556

557 Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep supervised learning using local
 558 errors. *Frontiers in neuroscience*, 12:608, 2018.

559

560 Nazri Mohd Nawi, Rajesh S Ransing, and Meghana R Ransing. A new method to improve the gradient
 561 based search direction to enhance the computational efficiency of back propagation based neural
 562 network algorithms. In *2008 Second Asia International Conference on Modelling & Simulation
 (AMS)*, pp. 546–552. IEEE, 2008.

563

564 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
 565 digits in natural images with unsupervised feature learning. 2011.

566

567 Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. *Advances in
 568 neural information processing systems*, 29, 2016.

569

570 George Philipp, Dawn Song, and Jaime G Carbonell. Gradients explode-deep networks are shallow-
 571 resnet explained. 2018.

572

573 Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
 574 *Proceedings of the 6th International Conference on Learning Representations (ICLR)*, 2018. URL
 575 <https://openreview.net/forum?id=ryQu7f-RZ>.

576

577 Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
 578 local losses. *arXiv preprint arXiv:2210.03310*, 2022.

579

580 David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal representations
 581 by error propagation, 1985.

582

583 Junhao Su, Changpeng Cai, Feiyu Zhu, Chenghao He, Xiaojie Xu, Dongzhi Guan, and Chenyang
 584 Si. Momentum auxiliary network for supervised local learning. *arXiv preprint arXiv:2407.05623*,
 585 2024a.

586

587 Junhao Su, Chenghao He, Feiyu Zhu, Xiaojie Xu, Dongzhi Guan, and Chenyang Si. Hpff: Hierar-
 588 chical locally supervised learning with patch feature fusion. *arXiv preprint arXiv:2407.05638*,
 589 2024b.

590

591 Quoc Tran-Dinh, Benjamin Wild, Stephen Richardson, and Dmitriy Drusvyatskiy. Convergence of
 592 Adam and AdamW optimizers. *arXiv preprint arXiv:2102.11090*, 2021. URL <https://arxiv.org/abs/2102.11090>.

593

594 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine
 595 learning research*, 9(11), 2008.

596

597 Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano, Fatih Porikli, and Amirhossein Habib-
 598 ian. Skip-attention: Improving vision transformers by paying less attention. *arXiv preprint
 599 arXiv:2301.02240*, 2023.

594 Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis.
595 Deep learning for computer vision: A brief review. *Computational intelligence and neuroscience*,
596 2018(1):7068349, 2018.

597

598 Y Yang, Z Ye, Y Su, Q Zhao, X Li, and D Ouyang. Deep learning for. *Acta Pharmaceutica Sinica B*,
599 9(1):177–185, 2019.

600

601 Hyeon-Joong Yoo. Deep convolution neural networks in computer vision: a review. *IEIE Transactions
602 on Smart Processing and Computing*, 4(1):35–43, 2015.

603

604 Huishuai Zhang, Da Yu, Mingyang Yi, Wei Chen, and Tie-yan Liu. Stability and convergence theory
for learning resnet: A full characterization. 2019.

605

606 Yuming Zhang, Shouxin Zhang, Peizhe Wang, Feiyu Zhu, Dongzhi Guan, Jiabin Liu, and Changpeng
607 Cai. Mlaan: Scaling supervised local learning with multilaminar leap augmented auxiliary network.
608 *arXiv preprint arXiv:2406.16633*, 2024.

609

610 Feiyu Zhu, Yuming Zhang, Changpeng Cai, Guinan Guo, Jiao Li, Xiuyuan Guo, Quanwei Zhang,
611 Peizhe Wang, Chenghao He, and Junhao Su. Gican: Global-local collaborative auxiliary network
for local learning. *arXiv preprint arXiv:2406.00446*, 2024.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX**
649650 **A.1 USE OF LLMs**
651652 In the appendix’s theoretical analysis section, to verify the mathematical soundness and symbolic
653 accuracy of a few selected formulas.
654655 **A.2 RELATED WORK**
656657 **Alternatives to backpropagation.** To address the limitations of backpropagation, such as high
658 computational cost, various alternative methods have been proposed, including target propagation
659 Lee et al. (2015); Bartunov et al. (2018), feedback alignment Lillicrap et al. (2014); Nøkland (2016),
660 and decoupled neural interfaces (DNI) Jaderberg et al. (2017). These approaches bypass traditional
661 global backpropagation by directly propagating errors to individual layers, reducing memory usage
662 and enhancing efficiency. Forward gradient learning Dellaferreira & Kreiman (2022); Ren et al.
663 (2022) offers a new paradigm for training deep networks more effectively. Local learning Zhang
664 et al. (2024); Zhu et al. (2024) segments the network into smaller, independently trained modules,
665 optimizing local objectives to lower computational demands while preserving some global features
666 Su et al. (2024a;b). However, excessive segmentation can lead to coordination issues, harming overall
667 performance, especially on complex datasets like ImageNet.
668669 **Utilizing surrounding layers.** Leveraging the high similarity in learning conditions of surrounding
670 layers, researchers have solved many problems in deep learning. Some studies have applied Residual
671 Networks (ResNets) He et al. (2016), by adding a shortcut connection to the activation function of
672 the next layer, this identity mapping enables ResNet to address the issues of degradation Philipp et al.
673 (2018); Borawar & Kaur (2023), enhancing both the convergence speed and accuracy of the network
674 Zhang et al. (2019); Allen-Zhu & Li (2019). Additionally, some researchers have proposed skipping
675 attention, reusing the self-attention calculations from one layer in the approximations for attention in
676 subsequent layers, achieving higher throughput Venkataramanan et al. (2023). However, due to the
677 repeated use of prior layers, this method carries the risk of error propagation and could potentially
678 cause losses during the learning process, impacting the model’s generalization ability.
679680 **A.3 EXPERIMENTAL SETUP DETAILS**
681682 We conducted experiments on small-scale datasets (CIFAR-10 Krizhevsky et al. (2009), SVHN Netzer
683 et al. (2011), and STL-10 Coates et al. (2011)) using ViT-Tiny/8 Dosovitskiy et al. (2021), ResNet-32,
684 and ResNet-110 He et al. (2016), with training performed on a single Nvidia A100 GPU. For the ViT
685 models, we used a batch size of 512, the AdamW optimizer, and set the learning rate to 1e-3, training
686 for 250 epochs. For the ResNet models, the batch size was set to 1024, using the SGD optimizer with
687 a learning rate of 0.8, trained for 250 epochs. We follow these augmentation strategies: CIFAR-10:
688 4-pixel reflection padding followed by random cropping back to 32×32, and horizontal flipping with
689 a probability of 0.5; SVHN: random cropping to 32×32 (with 2-pixel padding), without horizontal
690 flipping; STL-10: random cropping to 96×96 (with 4-pixel padding) and horizontal flipping with a
691 probability of 0.5. On the ImageNet dataset Deng et al. (2009), we conducted experiments using 4
692 Nvidia A100 GPUs for ViT-Tiny/16 and ViT-Small/16 Dosovitskiy et al. (2021), with a batch size
693 of 1024, the AdamW optimizer, and a learning rate of 7.5e-4. For the ResNet models (ResNet-34,
694 ResNet-101, and ResNet-152 He et al. (2016)), we used a batch size of 512, the SGD optimizer, and
695 set the learning rate to 0.2, training for 90 epochs. For training samples, we use a 224 × 224 random
696 crop with random horizontal flips, while for test samples, we apply a 224 × 224 resize followed by a
697 central crop.
698699 **A.4 COMPARISON OF THE DISTRIBUTION OF CLASSIFIED DATA POINTS**
700701 To compare E2E Training Rumelhart et al. (1985) and Replacement Learning in feature learning, we
702 perform t-SNE visualization Van der Maaten & Hinton (2008) on ResNet-110 He et al. (2016) using
703 the SVHN dataset Netzer et al. (2011), as shown in Figure 4. In the t-SNE plot for End-to-End training
704 (a), significant overlap between target and non-target classes indicates poor class discrimination. In
705 contrast, the Replacement Learning visualization (b) shows more compact and distinct target class
706 clusters, with clearer boundaries between target and non-target classes, reducing inter-class confusion.
707

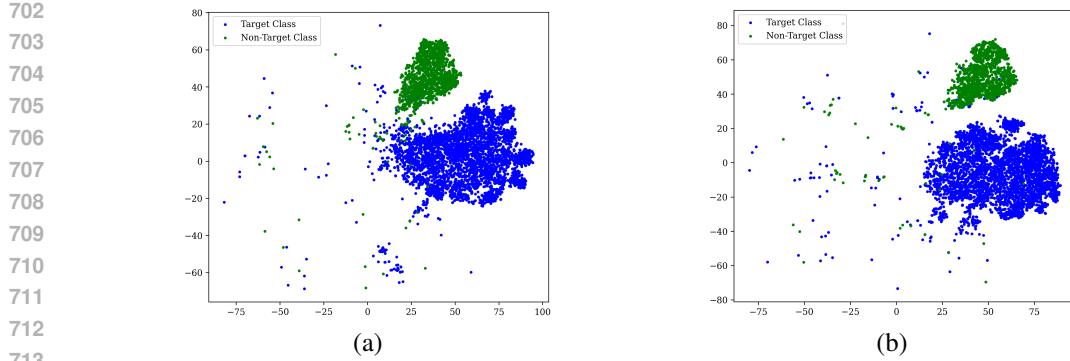


Figure 4: T-SNE visualization. (a) is t-SNE of E2E training, (b) is t-SNE of Replacement Learning.

These results demonstrate the superior classification performance of Replacement Learning over End-to-End training Rumelhart et al. (1985).

A.5 SUPPLEMENTARY EXPERIMENTS

A.5.1 COMPARATIVE EXPERIMENTS WITH RELATED METHODS

To verify the generality of our approach, we compared it against Stochastic Depth Huang et al. (2016) and Checkpointing Chen et al. (2016), and further combined our method with these two techniques. The experimental results are illustrated in the following Table. 9.

Table 9: Comparative Experiments with Stochastic Depth and Checkpointing, the results in the table are based on a single run.

Dataset	Backbone	Method	Acc@1	GPU (GB)	Time (s/epoch)
CIFAR-10	ResNet-32	E2E	93.25	3.38	5.24
		RepL	93.29	2.69	4.37
		Stochastic Depth	93.04	3.31	5.05
		RepL+Stochastic Depth	93.17	2.67	4.18
		Checkpointing	93.13	1.77	8.74
		RepL+Checkpointing	93.24	1.64	7.22
ImageNet	ResNet-101	E2E	78.19	20.95	720
		RepL	78.43	18.01	616
		Stochastic Depth	77.63	19.39	652
		RepL+Stochastic Depth	78.11	17.12	551
		Checkpointing	78.25	14.47	1012
		RepL+Checkpointing	78.29	12.93	819

A.5.2 EXPERIMENTS ON THE NLP TASK

We conduct the experiments on the NLP model, and the experimental configuration and results are shown in the table 10 below. The tokenization method adopts basic English tokenization. In the process of building the vocabulary, only words with an occurrence frequency of no less than 2 are retained. Meanwhile, the `<eos>` token is appended at the end of each sentence. For sequence segmentation, the backpropagation through time with a length of 128 is used. The experiment was trained for 20 epochs, and the significant variance was obtained through 5 experiments (different seeds).

756 Table 10: Performance on WikiText-2 using Transformer-LM-12L-512d-8H-2048ff.
757

758 Dataset	759 Model	760 Method	761 Test PPL (↓)	762 GPU Memory (GB)	763 Time (per epoch, sec)
764 WikiText-2	765 -LM-12L-512d-8H-2048ff	766 Transformer	767 E2E	768 195.42±1.84	769 10.92
770 Configuration					
		771 Hardware: Single A100	772 Grad_clip: 1.0		
		773 Batch size: 64	774 Weight decay: 0.01		
		775 Optimizer: AdamW	776 fp: 16		
		777 Learning rate: 3e-4			

767
768 **A.5.3 INFERENCE ON IMAGENET**
769770 We have conducted experiments on inference throughput, and the results are presented in the Table.
771 11. We used a single GPU, and the batch size is 128.
772773 Table 11: Results on the GPU Memory Usage and Time during inference on ResNet-101 and
774 ViT-S/16.
775

776 Dataset	777 Backbone	778 Method	779 GPU Memory	780 Time
781 ImageNet	782 ResNet-101	783 E2E	784 3.97G	785 39.12s
		786 RepL	787 3.65G	788 36.26s
	789 ViT-S/16	790 E2E	791 2.69G	792 48.29s
		793 RepL	794 2.45G	795 41.42s

782
783 **A.5.4 FINE-TUNING ON ViTs**
784785 To verify the effectiveness of RepL in the finetuning setting, we conduct experiments on CIFAR-10,
786 SVHN, and STL-10 using pretrained weights obtained from ImageNet-1K. The experimental settings
787 were: batch size = 512, learning rate = 2e-4, optimizer = AdamW, and epochs = 100. The results are
788 summarized in Table 12.
789790 Table 12: Finetune results on ViT-S/16.
791

792 Datasets	793 Model	794 Method	795 Acc@1	796 GPU Memory (GB)	797 Time (per epoch)
798 CIFAR-10	799 ViT-S/16	800 E2E	801 95.66	802 25.56	803 32.45
		804 RepL	805 95.89	806 20.14	807 25.18
808 SVHN	809 ViT-S/16	810 E2E	811 96.92	812 25.56	813 48.44
		814 RepL	815 96.97	816 20.14	817 38.01
818 STL-10	819 ViT-S/16	820 E2E	821 94.88	822 25.56	823 5.91
		824 RepL	825 95.11	826 20.14	827 4.66

800
801 **A.5.5 FINE-TUNING FOR DOWNSTREAM TASKS**
802803 We fine-tuned the pre-trained model (ImageNet-1k Deng et al. (2009), trained with RepL) on the
804 CityScapes dataset using the SGD optimizer with a batch size of 16, a learning rate of 0.1, a crop size
805 of 768, and trained for 30k iterations (about 164 epochs) on a single GPU. The experimental results
806 are shown in the following table 13.
807808 When fine-tuning for downstream tasks, RepL does not compromise transfer learning performance.
809 First, its computational layers preserve the core feature patterns acquired by the model through parameter
810 fusion of adjacent layers, rather than randomly pruning information. Second, parameter reduction
811 mitigates overfitting risks during fine-tuning, particularly evident in low-data scenarios. Finally,
812

learnable blocks dynamically adjust the weight contributions between preceding and succeeding layers during fine-tuning, enhancing task-specific feature representation.

Table 13: Performance comparison on CityScapes using different backbones.

Backbone	Method	Overall Accuracy	Mean Accuracy	Mean IoU	GPU Memory (GB)	Time (per epoch, sec)
DeepLabV3-R50	E2E	95.27	80.83	73.34	23.90	80
	RepL	95.32	81.14	73.81	20.28	68
DeepLabV3Plus-R50	E2E	95.66	81.89	74.61	26.81	82
	RepL	95.71	82.21	75.25	22.67	69
DeepLabV3-R101	E2E	95.51	82.31	74.41	30.91	95
	RepL	95.54	82.71	74.55	25.90	82
DeepLabV3Plus-R101	E2E	95.84	83.24	75.53	34.42	101
	RepL	95.89	84.02	76.31	28.92	86

A.5.6 EXTRA ABLATION STUDY ON ViT

In our ViT experiments, RepL employs two learnable parameters, α and β , to fuse the parameters from the preceding and succeeding layers, respectively. To validate that using two learnable parameters is indeed more effective than a single one, we conducted an ablation study. As shown in Table. 14, introducing both α and β does not incur any additional GPU memory consumption or training time. Moreover, this configuration consistently achieves noticeably better performance compared to using a single learnable parameter.

Table 14: Ablation on number of parameters in RepL. We use ViT-T/8 on CIFAR-10 dataset.

Method	Accuracy	GPU Memory	Training Time
RepL(2 parameter)	73.71 ± 1.08	2.08G	5.65s
RepL(1 parameter)	73.09 ± 0.85	2.08G	5.65s

A.6 PARAMETER ANALYSIS

We quantify how many learnable weights are discarded by Replacement Learning and how many new ones are introduced. Let a network contain n layers, indexed from 1 to n . Denote by $P_i := \|W_i\|_0$ the number of parameters of the i -th layer,² and let $P_{\text{tot}}^{\text{E2E}} := \sum_{i=1}^n P_i$ be the parameter count of ordinary end-to-end training.

Replacement Learning with removal interval k . A fraction $\gamma := |\mathcal{F}|/n = \lfloor \frac{n}{k} \rfloor/n \approx \frac{1}{k}$ of the layers are removed. The *retained* parameters are therefore $(1 - \gamma) P_{\text{tot}}^{\text{E2E}}$.

CNNs. For every removed layer $i \in \mathcal{F}$ two depth-wise 1×1 convolutions are inserted, contributing

$$\underbrace{C_{i-1}^{\text{out}}}_{\phi_{i-1}} + \underbrace{C_{i+1}^{\text{out}}}_{\phi_{i+1}} \text{ weights.} \quad (13)$$

Upper bound. Because $C_{i \pm 1}^{\text{out}} \leq \max_j C_j^{\text{out}}$, the total number of *new* weights satisfies

$$P_{\text{add}}^{\text{CNN}} \leq 2\gamma n \max_j C_j^{\text{out}} = \frac{2n}{k} C_{\max}. \quad (14)$$

Since a normal $k \times k$ convolution carries $C_i^{\text{out}} C_i^{\text{in}} k^2$ parameters, one obtains the *global* bound

²For CNNs $P_i = C_i^{\text{out}} C_i^{\text{in}} k^2$; for ViTs it is the sum of the projection matrices of the i -th transformer block.

864
865 $P_{\text{tot}}^{\text{RepL}} \leq (1 - \gamma) P_{\text{tot}}^{\text{E2E}} + \frac{2n}{k} C_{\text{max}} < \left(1 - \frac{1}{k}\right) P_{\text{tot}}^{\text{E2E}} + \mathcal{O}(nC_{\text{max}}).$ (15)
866

867 **ViTs.** Each removed transformer block contributes exactly two learnable parameters, hence
868

869 $P_{\text{add}}^{\text{ViT}} = 2\gamma n = \frac{2n}{k}, \quad P_{\text{tot}}^{\text{RepL}} = (1 - \gamma) P_{\text{tot}}^{\text{E2E}} + \frac{2n}{k}.$ (16)
870

871 **Tightness.** If all P_i are identical ($P_i \equiv \bar{P}$) one has $P_{\text{tot}}^{\text{E2E}} = n\bar{P}$ and $P_{\text{tot}}^{\text{RepL}} = (1 - \gamma)n\bar{P} + P_{\text{add}}$, so
872 the relative reduction is bounded by
873

874 $\frac{P_{\text{tot}}^{\text{RepL}}}{P_{\text{tot}}^{\text{E2E}}} = 1 - \frac{1}{k} + \mathcal{O}\left(\frac{1}{n}\right) \quad (\text{CNN \& ViT}).$ (17)
875

876 Thus, Replacement Learning discards *at least* $1/k$ of the original parameters and its overhead decays
877 as n grows.
878

880 A.7 COMPLEXITY ANALYSIS

882 We analyse the change in *floating-point operations* (FLOPs) and *activation memory* during one
883 training iteration.

885 A.7.1 FLOPS

886 **CNNs.** A standard $k \times k$ convolution with stride 1 on a feature map of size $H \times W$ costs

888 $F_{\text{conv}} = 2C^{\text{in}} C^{\text{out}} k^2 HW.$ (18)

889 At a replaced site, the learnable blocks $\mathcal{T}_{i-1}, \mathcal{T}_{i+1}$ act in *weight space* and introduce no per-pixel cost.
890 At run time we apply a single 1×1 convolution $\widehat{W}_i \in \mathbb{R}^{C_{i+1}^{\text{in}} \times C_{i-1}^{\text{in}} \times 1 \times 1}$:

892 $F_{\text{RepL}}^{\text{CNN}} = 2C_{i-1}^{\text{in}} C_{i+1}^{\text{in}} HW.$ (19)

893 Since $k > 1$ and typically $C_{i \pm 1}^{\text{in}} \approx C_{i \pm 1}^{\text{out}}$,

895 $\frac{F_{\text{RepL}}^{\text{CNN}}}{F_{\text{conv}}} = \frac{C_{i-1}^{\text{in}} C_{i+1}^{\text{in}}}{C_i^{\text{in}} C_i^{\text{out}} k^2} \leq \frac{1}{k^2}.$ (20)

896 Replacing a fraction $\gamma \approx \frac{1}{k}$ of blocks yields the network-level bound

897 $F_{\text{tot}}^{\text{RepL}} \leq (1 - \gamma) F_{\text{tot}}^{\text{E2E}} + \gamma \frac{1}{k^2} F_{\text{tot}}^{\text{E2E}} = \left(1 - \frac{1}{k} + \frac{1}{k^3}\right) F_{\text{tot}}^{\text{E2E}}.$ (21)

901 **ViTs.** Let a standard transformer block cost F_{SA} FLOPs (self-attention + MLP). At a replaced site,
902 the learnable block is implemented by two scalars (α_i, β_i) and executes only two $d \times d$ linear maps
903 on all T tokens:

904 $F_{\text{RepL}}^{\text{ViT}} = 2 \cdot (2d^2T) = 4d^2T,$ (22)

905 thus

906 $F_{\text{tot}}^{\text{RepL}} \leq (1 - \gamma) F_{\text{tot}}^{\text{E2E}} + \gamma \cdot \frac{4d^2T}{F_{\text{SA}}} F_{\text{tot}}^{\text{E2E}} < \left(1 - \frac{1}{k}\right) F_{\text{tot}}^{\text{E2E}},$ (23)

907 because $F_{\text{SA}} \gg 4d^2T$ in practice.

910 A.7.2 ACTIVATION / MEMORY FOOTPRINT

912 During training, removing a convolutional or transformer block also removes its checkpointed *input*
913 activation for backprop. Let A_i be the size (bytes) of the input activation to block i . The E2E peak
914 is $M_{\text{peak}}^{\text{E2E}} = \max_i \sum_{j \leq i} A_j$. RepL discards every k -th block from the executed path; the learnable
915 blocks act in weight space and add no extra feature maps. Hence

916 $M_{\text{peak}}^{\text{RepL}} \leq \left(1 - \frac{1}{k}\right) M_{\text{peak}}^{\text{E2E}} + \mathcal{O}\left(\frac{n}{k}\right) \cdot \underbrace{(\text{LN/BN stats})}_{\text{negligible}}$ (24)
917

918 which is consistent with the empirical 15%–26% GPU-memory reduction.
 919

920 **Discussion.** Eq. (15)–(23) show that, for both CNNs and ViTs, Replacement Learning enjoys *linear*
 921 savings in parameters, FLOPs and peak memory with respect to the removal rate $\frac{1}{k}$, while introducing
 922 only $\mathcal{O}(\frac{n}{k})$ extra learnable parameters or depth-wise kernels. These tight bounds theoretically explain
 923 the consistent empirical gains observed across all datasets and model families.

924 **A.8 ERROR BOUND & CONVERGENCE ANALYSIS**
 925

926 **Additional notation.** Let $F(\mathbf{x}; \theta) = f_n \circ \dots \circ f_1(\mathbf{x})$ be the *baseline* network and $\widehat{F}(\mathbf{x}; \theta, \psi)$ its
 927 *Replacement Learning* variant, where ψ collects all learnable-block parameters. Denote the loss by
 928 $\mathcal{L}(\cdot, y) : \mathbb{R}^{d_0} \rightarrow \mathbb{R}$, and write $\ell(\theta) := \mathbb{E}_{(\mathbf{x}, y)} \mathcal{L}(F(\mathbf{x}; \theta), y)$ and $\widehat{\ell}(\theta, \psi) := \mathbb{E}_{(\mathbf{x}, y)} \mathcal{L}(\widehat{F}(\mathbf{x}; \theta, \psi), y)$.
 929

930 **A.8.1 APPROXIMATION BIAS OF A COMPUTING LAYER**
 931

932 **Definition 1** (Local operator deviation). Let $g_i(\cdot)$ be the (linear part of the) original block- i map
 933 before its normalization/nonlinearity, and $\widehat{g}_i(\cdot)$ be the corresponding map produced by the learnable
 934 block (i.e., $\widehat{g}_i(\mathbf{h}) = \widehat{W}_i \mathbf{h}$ for CNNs and $\widehat{g}_i(\mathbf{h}) = \widehat{A}_i \mathbf{h} + \widehat{M}_i \mathbf{h}$ for ViTs). Define the operator-norm
 935 deviation

$$\varepsilon_i := \sup_{\mathbf{h} \neq 0} \frac{\|\widehat{g}_i(\mathbf{h}) - g_i(\mathbf{h})\|}{\|\mathbf{h}\|}, \quad \varepsilon_{\max} = \max_{i \in \mathcal{F}} \varepsilon_i. \quad (25)$$

936 This avoids shape-mismatch issues and subsumes the CNN alignment maps $\mathcal{T}_{i \pm 1}$ implicitly through
 937 \widehat{g}_i .
 938

939 **Lemma 1** (Layer-wise output deviation). *If each block (including its normalization/nonlinearity) is*
 940 *L -Lipschitz, then for any input \mathbf{x} ,*

$$\|\widehat{F}(\mathbf{x}; \theta, \psi) - F(\mathbf{x}; \theta)\| \leq L^{|\mathcal{F}|} \varepsilon_{\max} \max_{i \in \mathcal{F}} \|\mathbf{h}_{i-1}\|. \quad (26)$$

941 *Proof.* Insert $\widehat{g}_i = g_i + (\widehat{g}_i - g_i)$ into the forward recursion at replaced sites and propagate Lipschitz
 942 bounds.
 943

944 **A.8.2 GRADIENT BIAS AND STABLE TRAINING**
 945

946 **Lemma 2** (Gradient deviation). *Let every composite function up to layer j be L -smooth³. Then*

$$\|\nabla_{\theta} \widehat{\ell}(\theta, \psi) - \nabla_{\theta} \ell(\theta)\| \leq L H_{\max} \varepsilon_{\max}. \quad (27)$$

947 *Proof.* Using Lemma 1 and L -smoothness of the composite loss, $\|\nabla \mathcal{L}(\widehat{F}) - \nabla \mathcal{L}(F)\| \leq L \|\widehat{F} - F\|$.
 948 Take expectation over the data.
 949

950 **A.8.3 CONVERGENCE UNDER SGD AND ADAM**
 951

952 **Setup.** Let $F(\mathbf{x}; \theta) = f_n \circ \dots \circ f_1(\mathbf{x})$ be the baseline network and $\widehat{F}(\mathbf{x}; \theta, \psi)$ the variant trained
 953 with learnable blocks, where ψ collects all learnable-block parameters. Given a sample (\mathbf{x}, y) and a
 954 loss $\mathcal{L}(\cdot, y)$, define the population objectives

$$\ell(\theta) := \mathbb{E}_{(\mathbf{x}, y)} [\mathcal{L}(F(\mathbf{x}; \theta), y)], \quad \widehat{\ell}(\theta, \psi) := \mathbb{E}_{(\mathbf{x}, y)} [\mathcal{L}(\widehat{F}(\mathbf{x}; \theta, \psi), y)].$$

955 **Assumptions.** We make the following standard conditions used in nonconvex analyses:
 956

- 957 (A1) Each f_j is L -smooth and G -Lipschitz; $\mathcal{L}(\cdot, y)$ is L -smooth.
 958
- 959 (A2) Mini-batch gradients are unbiased with variance σ^2 : $\mathbb{E}[g_t] = \nabla \widehat{\ell}(\theta_t, \psi_t)$ and $\mathbb{E}\|g_t -$
 960 $\nabla \widehat{\ell}(\theta_t, \psi_t)\|^2 \leq \frac{\sigma^2}{B}$ for batch size B .
 961

962 ³ g is L -smooth if $\|\nabla g(a) - \nabla g(b)\| \leq L\|a - b\|$.
 963

972 (A3) (Bounded synthesis bias) For every removed index $i \in \mathcal{F}$, the learnable-block synthesis
 973 error on weights is bounded in Frobenius norm by ε ; equivalently, the *induced* gradient bias
 974 satisfies $\|\nabla_{\theta} \hat{\ell}(\theta, \psi) - \nabla_{\theta} \ell(\theta)\| \leq c \varepsilon$ for some constant c depending on (L, G) (Lemma 3).
 975

976 **Lemma 3** (Gradient bias induced by learnable blocks). *Assume the forward discrepancy introduced
 977 at removed sites is bounded as $\|\hat{F}(\mathbf{x}; \theta, \psi) - F(\mathbf{x}; \theta)\| \leq H_{\max} \varepsilon$ for all (\mathbf{x}, y) , where H_{\max}
 978 upper-bounds the relevant activations. If $\mathcal{L}(\cdot, y)$ is L -smooth, then*

$$\|\nabla_{\theta} \hat{\ell}(\theta, \psi) - \nabla_{\theta} \ell(\theta)\| \leq L H_{\max} \varepsilon.$$

981 *Proof.* By L -smoothness of $\mathcal{L}(\cdot, y)$ and the chain rule, $\|\nabla \mathcal{L}(\hat{F}) - \nabla \mathcal{L}(F)\| \leq L \|\hat{F} - F\|$ pointwise;
 982 take expectation and use the assumed forward bound.
 983

984 **Theorem 2** (SGD convergence with learnable blocks). *Under (A1)–(A3), run SGD on (θ, ψ) with
 985 step sizes $\eta_t = \frac{\eta}{\sqrt{t}}$ for T steps. Let $\ell^* := \inf_{\theta} \ell(\theta)$ and denote the constant $\beta := L H_{\max}$ from
 986 Lemma 3. Then*

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\nabla \hat{\ell}(\theta_t, \psi_t)\|^2] \leq \underbrace{\frac{2(\ell_0 - \ell^*)}{\eta \sqrt{TB}} + \frac{\eta L \sigma^2}{B}}_{\text{standard nonconvex SGD Ghadimi \& Lan (2013)}} + \underbrace{2\beta\varepsilon}_{\text{bias from learnable blocks}}. \quad (28)$$

991 *Sketch.* Follow the descent-lemma proof for nonconvex SGD Ghadimi & Lan (2013) but write the
 992 update in terms of the *perturbed* gradient $\nabla \hat{\ell} = \nabla \ell + b$, where $\|b\| \leq \beta \varepsilon$ by Lemma 3. The cross
 993 term contributes an additive constant $\mathcal{O}(\beta \varepsilon)$ that telescopes to $2\beta \varepsilon$ in the averaged bound, yielding
 994 equation 28.

995 **Corollary 1** (Adam/AdamW). *If Adam is used with AMSGrad-style conditions ensuring convergence
 996 in the nonconvex setting (e.g., Reddi et al. (2018)), or AdamW with standard assumptions Tran-Dinh
 997 et al. (2021), then the iterates satisfy*

$$\min_{1 \leq t \leq T} \mathbb{E}[\|\nabla \hat{\ell}(\theta_t, \psi_t)\|^2] = \tilde{\mathcal{O}}(T^{-\frac{1}{2}}) + \mathcal{O}(\varepsilon),$$

998 i.e., the usual $T^{-\frac{1}{2}}$ decay up to an additive term that is linear in the bounded synthesis bias ε .
 999

1000 **Remarks.** (i) When the learnable blocks synthesize weights with vanishing error ($\varepsilon \rightarrow 0$), the
 1001 bounds reduce to the classical rates. (ii) For fixed replacement interval k and stable training, ε is a
 1002 small constant determined by how well neighbor-conditioned synthesis approximates the removed
 1003 operator; the asymptotic $T^{-\frac{1}{2}}$ behavior is therefore preserved while enjoying lower per-epoch cost.
 1004 (iii) The bounds are agnostic to the CNN/ViT instantiation; only the magnitude of ε changes with the
 1005 specific synthesis rule (Sec. 2.2–2.3).
 1006

1007 A.9 MULTI-REPLACEMENT ERROR PROPAGATION

1012 Let $\mathcal{F} \subset \{1, \dots, n\}$ be the set of replaced indices and assume each full block (including normalization
 1013 and nonlinearity) is L -Lipschitz. For $i \in \mathcal{F}$ let ε_i be the local operator deviation defined in
 1014 Eq. equation 25. Denote by $r := |\mathcal{F}|$ and $\bar{\varepsilon} := \frac{1}{r} \sum_{i \in \mathcal{F}} \varepsilon_i$, $\varepsilon_{\max} := \max_{i \in \mathcal{F}} \varepsilon_i$.

1015 **Proposition 3** (Accumulated output deviation). *For any input \mathbf{x} ,*

$$\|\hat{F}(\mathbf{x}; \theta, \psi) - F(\mathbf{x}; \theta)\| \leq \begin{cases} L^r \varepsilon_{\max} \max_{i \in \mathcal{F}} \|\mathbf{h}_{i-1}\|, & (\text{worst-case bound}) \\ \frac{1 - L^r}{1 - L} \bar{\varepsilon} \max_{i \in \mathcal{F}} \|\mathbf{h}_{i-1}\|, & \text{if } L < 1. \end{cases}$$

1021 *Proof.* Insert $\hat{g}_i = g_i + (\hat{g}_i - g_i)$ at each $i \in \mathcal{F}$ and propagate perturbations. For $L < 1$ the series of
 1022 perturbations forms a geometric sum.
 1023

1024 **Implication.** When blocks are *non-expansive* ($L \leq 1$), e.g., with post-normalization, the accumu-
 1025 lated discrepancy grows at most linearly with r and is further damped if $L < 1$. This complements
 Lemma 1 by accounting for multiple replacements.

1026
1027

A.10 RECOVERABILITY AND EXPRESSIVITY OF THE COMPUTING LAYER

1028
1029
1030

We formalize when the learnable block can *exactly* reproduce the removed operator ($\varepsilon_i = 0$), and what subspace of operators it can represent.

CNN case. Let the linear part of the removed site be a map $g_i(\mathbf{h}) = W_i \mathbf{h}$ (after any fixed alignment used by the baseline). The learnable block synthesizes $\widehat{W}_i = \mathcal{T}_{i-1}(W_{i-1}) + \mathcal{T}_{i+1}(W_{i+1})$, where $\mathcal{T}_{i\pm 1}$ act on the channel modes of their kernel tensors. Define the *synthesis span*

1034
1035
1036

$$\mathcal{S}_i := \left\{ \mathcal{T}_{i-1}(U) + \mathcal{T}_{i+1}(V) : U \in \mathcal{U}_{i-1}, V \in \mathcal{U}_{i+1} \right\},$$

1037
1038
1039
1040

where $\mathcal{U}_{i\pm 1}$ denote the admissible weight tensors with the same shape as $W_{i\pm 1}$.

Lemma 4 (Exact recoverability in CNNs). *If $W_i \in \mathcal{S}_i$, then there exist learnable-block parameters such that $\widehat{W}_i = W_i$ and thus $\varepsilon_i = 0$.*

1041
1042
1043

Proof. By definition of \mathcal{S}_i there exist U^*, V^* with $W_i = \mathcal{T}_{i-1}(U^*) + \mathcal{T}_{i+1}(V^*)$; setting the learnable-block weights to realize (U^*, V^*) gives the claim.

1044
1045
1046
1047
1048

Rank and span. Write the 1×1 equivalent of the synthesized operator as a matrix $\widehat{W}_i \in \mathbb{R}^{C_{i+1}^{\text{in}} \times C_{i-1}^{\text{in}}}$. Then $\text{rank}(\widehat{W}_i) \leq \text{rank}(\mathcal{T}_{i-1}(W_{i-1})) + \text{rank}(\mathcal{T}_{i+1}(W_{i+1}))$. In typical same-width stages, both terms are full row/column rank, so \widehat{W}_i can achieve full rank and does not bottleneck the channel dimension.

1049
1050

ViT case. In ViT instantiation, the replacement operator is explicitly constrained to a 2D neighbor span: $A_i^{\text{RepL}} = \alpha_i A_{i-1} + \beta_i A_{i+1}$, $M_i^{\text{RepL}} = \alpha_i M_{i-1} + \beta_i M_{i+1}$, where $A_{i-1}, A_{i+1} \in \mathbb{R}^{d \times d}$ (resp. M_{i-1}, M_{i+1}) are the attention (resp. MLP) operators of the neighboring blocks, and α_i, β_i are learned scalars. Thus, by construction, each replaced block is synthesized inside the span of its two neighbors; RepL never introduces an arbitrary new block.

1056
1057
1058

To quantitatively assess how well the original block is captured by this 2D span, we conducted a feature-space span diagnostic on the same ViT-tiny / CIFAR-10 setting used in our main experiments:

1059
1060

Backbone architecture: A 12-block ViT-tiny with patch size 8×8 , embedding dimension 192, and 3 heads (the same configuration as in our CIFAR-10 experiments).

1061
1062

Training setup: We trained a standard backbone ViT (“bp”) with direct backpropagation on CIFAR-10 using the script described in the paper.

1063
1064
1065
1066

Where we probe: We focus on the block indices that RepL would remove under the same periodic schedule used in the method (remove every 4th block, excluding the last one). In a 12-block ViT-tiny, this yields removed indices $i = 2, 6, 10(0 - \text{based})$.

1067
1068
1069
1070
1071
1072

Diagnostic metric: Let $h_k(x)$ denote the hidden representation after block k for an input x . For each removed index i , we seek the best approximation $h_i(x) \approx \tilde{\alpha}_i h_{i-1}(x) + \tilde{\beta}_i h_{i+1}(x)$, by solving a least-squares problem over CIFAR-10 samples. From this we compute: the relative reconstruction error $r_i = \frac{\|h_i(x) - \Pi_{\text{span}(h_{i-1}(x), h_{i+1}(x))}(h_i(x))\|_2}{\|h_i(x)\|_2}$ aggregated over the dataset. The principal angle (in the 1D case) between $h_i(x)$ and its best neighbor-span reconstruction.

1073
1074

We use CIFAR-10 test images, with the same normalization as training, and run the diagnostic on 20 batches (batch size 512). The results for the two removed blocks are:

1075
1076
1077
1078
1079

index $i = 2$:

relative feature-space reconstruction error $r_2 = \mathbf{0.1796}$;

principal angle = 7.63° ;

fitted coefficients $(\tilde{\alpha}_2, \tilde{\beta}_2) \approx (0.4811, 0.5230)$.

1080 **index $i = 6$:**
 1081 relative feature-space reconstruction error $r_6 = \mathbf{0.1501}$;
 1082 principal angle = **5.22°**;
 1083 fitted coefficients $(\tilde{\alpha}_6, \tilde{\beta}_6) \approx (0.4711, 0.5325)$.
 1084
 1085 **index $i = 10$:**
 1086 relative feature-space reconstruction error $r_6 = \mathbf{0.1379}$;
 1087 principal angle = **4.62°**;
 1088 fitted coefficients $(\tilde{\alpha}_{10}, \tilde{\beta}_{10}) \approx (0.4547, 0.5493)$.

1092 These results show that, measured in terms of their action on real data (hidden representations),
 1093 the blocks targeted by RepL are well captured by the 2D span of their neighbors: both the relative
 1094 reconstruction error and the principal angle are small, and the fitted coefficients are close to a
 1095 symmetric combination of the two neighbors. This empirically supports our modeling choice that a
 1096 lightweight operator constrained to $\text{span}(A_{i-1}, A_{i+1})$ and $\text{span}(M_{i-1}, M_{i+1})$ is sufficient to replace
 1097 the original block in ViT backbones.

1098 **Lemma 5** (Exact recoverability in ViTs). *If the linear parts of the removed block satisfy $A_i \in$
 1099 $\text{span}\{A_{i-1}, A_{i+1}\}$ and $M_i \in \text{span}\{M_{i-1}, M_{i+1}\}$, then there exist (α_i, β_i) such that $\widehat{A}_i = A_i$ and
 1100 $\widehat{M}_i = M_i$, so $\varepsilon_i = 0$.*

1101 These statements clarify that ε_i measures the distance of the removed operator to the neighbor-
 1102 conditioned synthesis span; when that distance is small (as empirically observed), the induced bias in
 1103 Sec. A.8 remains negligible.

1105 A.11 A SIMPLE COMPUTE ACCURACY TRADE-OFF FOR CHOOSING k

1107 Let $C_{\text{epoch}}(k)$ denote the per-epoch training cost (FLOPs or wall time) under interval k , and let
 1108 $\Delta_{\text{acc}}(k)$ denote the excess risk (or a proxy) induced by replacement. From Sec. A.7 we have the
 1109 approximation $C_{\text{epoch}}(k) \approx (1 - \frac{1}{k})C_0$ for a baseline cost C_0 . From Sec. A.8, the gradient-norm
 1110 bound adds an $\mathcal{O}(\varepsilon(k))$ bias term. For small replacement rates we model $\varepsilon(k) \approx \frac{c}{k}$ with problem-
 1111 dependent $c > 0$.

1112 Consider minimizing a weighted objective

$$1114 \quad J(k) = \lambda C_{\text{epoch}}(k) + \Delta_{\text{acc}}(k), \quad \Delta_{\text{acc}}(k) \approx \kappa \varepsilon(k) = \frac{\kappa c}{k},$$

1116 where $\lambda, \kappa > 0$ encode the user’s compute/accuracy preference. Using $C_{\text{epoch}}(k) \approx (1 - \frac{1}{k})C_0$ gives

$$1118 \quad J(k) \approx \lambda C_0 \left(1 - \frac{1}{k}\right) + \frac{\kappa c}{k} = \lambda C_0 + \frac{\kappa c - \lambda C_0}{k}.$$

1120 The surrogate suggests a *threshold* behavior: when $\kappa c < \lambda C_0$, larger k (more aggressive replacement)
 1121 is favored; otherwise, a smaller k is preferred. In practice, κc can be estimated on a held-out split by
 1122 measuring the validation loss gap as a function of k for a few short runs, after which k is chosen to
 1123 meet a compute budget while keeping the additional bias under the tolerance implied by Corollary 1.

1125 A.12 BIAS IN PRACTICE: EMPIRICAL ε VIA FORWARD AND GRADIENT DEVIATIONS

1128 Our analysis in Section 4 assumes that $\|\nabla_{\theta} \ell_b - \nabla_{\theta} \ell\| \leq L \cdot H_{\text{max}} \cdot \varepsilon$, where ℓ_b is the loss under RepL,
 1129 ℓ is the loss under the base network, H_{max} captures the number of replacements, and ε summarizes
 1130 the local approximation error. We now provide a concrete measurement of this bias on the same
 1131 ViT-tiny / CIFAR-10 setting.

1133 **RepL model:** We use the trained RepL ViT-tiny checkpoint on CIFAR-10 corresponding to the
 1134 “replace” setting in our main experiments:

1134 depth 12, embedding dimension 192, 3 heads, patch size 8×8 ;
 1135
 1136 periodic removal with interval 4, excluding the last block. Under this schedule, there are three
 1137 replacement sites at depth indices 2, 6 and 10 (0-based).

1138 **Training setup (summary).** The RepL ViT-tiny is trained using the same pipeline as the baseline
 1139 ViT:

1140 optimizer: AdamW with weight decay 0.05;
 1141
 1142 initial learning rate: 1×10^{-3} (cosine decay with 5-epoch linear warmup);
 1143 batch size: 512;
 1144
 1145 epochs: 250;

1146 data augmentations identical to the baseline ViT.

1147 **Experimental protocol.** In our implementation, each replacement site is realized by a lightweight
 1148 computing layer that adds a synthesized residual update (constructed from neighboring blocks) to
 1149 the hidden representation. For the bias diagnostic, we exploit the fact that the contribution of each
 1150 computing layer can be scaled continuously; in particular, we can:

1151 set the scale to 0 to effectively disable the replacement contribution at that site (only the skip
 1152 path remains);
 1153
 1154 set the scale to 1 to fully enable the replacement contribution at that site.

1155 Using this mechanism, we define:

1156 F : the baseline network, obtained by disabling the replacement contribution at all computing
 1157 layers (scales set to 0). This corresponds to using only the kept backbone blocks with their trained
 1158 weights.

1159 $F_b^{(r)}$: the same network where the first r replacement sites (in depth order) are enabled (scale =
 1160 1), and the remaining ones are kept disabled (scale = 0), with $r \in \{0, 1, 2, 3\}$. All parameters of the
 1161 backbone are shared between F and $F_b^{(r)}$.

1162 For each r , we measure two quantities:

1163 **Forward deviation on logits:** $d_{\text{fwd}}(r) = \mathbb{E}_x [\|F_b^{(r)}(x) - F(x)\|_2]$, where the norm is taken over
 1164 the class logits for each sample.

1165 **Gradient deviation on shared parameters:** $d_{\text{grad}}(r) = \|\nabla_{\theta} \ell_b^{(r)} - \nabla_{\theta} \ell\|_2$, where ℓ and $\ell_b^{(r)}$ are the
 1166 cross-entropy losses of F and $F_b^{(r)}$, and θ includes all shared parameters (we explicitly exclude the
 1167 parameters of the computing layers when forming the gradient vector). We also report the normalized
 1168 ratio $\rho(r) = \frac{d_{\text{grad}}(r)}{\|\nabla_{\theta} \ell\|_2}$.

1169 In practice, we estimate these quantities on CIFAR-10 test batches with:

1170 20 batches (batch size 256) to estimate $d_{\text{fwd}}(r)$;
 1171
 1172 10 batches (batch size 256) to estimate $d_{\text{grad}}(r)$ and $\rho(r)$.

1173 **Results.** The measured deviations are: We observe that:

active replacements r	$d_{\text{fwd}}(r)$ (mean logit ℓ_2)	$d_{\text{grad}}(r)$	$\rho(r) = \frac{d_{\text{grad}}(r)}{\ \nabla_{\theta} \ell\ _2}$
0	0.000000	0.000000	0.0000
1	1.056977	1.467278	0.1431
2	1.093139	1.498927	0.1491
3	1.141932	1.545640	0.1597

1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306

1188 2. When we enable a single replacement site ($r = 1$), the normalized gradient bias is $\rho(1) \approx$
 1189 0.143 , i.e., the difference between $\nabla_{\theta}\ell_b^{(1)}$ and $\nabla_{\theta}\ell$ is about 14% of the baseline gradient
 1190 norm. This indicates a modest and controlled bias in the shared-parameter gradients.
 1191

1192 3. When we enable two or three replacement sites ($r = 2, 3$), both the forward and gradient
 1193 deviations increase slowly and smoothly: - $\rho(2) \approx 0.149$, - $\rho(3) \approx 0.160$. The growth
 1194 from $r = 1$ to $r = 3$ is mild and close to linear in r , consistent with our non-expansive
 1195 composition analysis involving H_{\max} .

1196 Overall, these diagnostics show that the empirical bias ε entering $\|\nabla_{\theta}\ell_b - \nabla_{\theta}\ell\| \leq L \cdot H_{\max} \cdot \varepsilon$
 1197 is small (with $\rho(r) < 0.16$ even when all replacement sites are enabled) and grows slowly as more
 1198 blocks are replaced. This provides direct empirical support that RepL introduces a controlled and
 1199 modest bias in both forward predictions and shared-parameter gradients in the regimes considered in
 1200 our experiments.

1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241