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ABSTRACT

We present a general framework for evaluating image counterfactuals. The power
and flexibility of deep generative models make them valuable tools for learning
mechanisms in structural causal models. However, their flexibility makes counter-
factual identifiability impossible in the general case. Motivated by these issues, we
revisit Pearl’s axiomatic definition of counterfactuals to determine the necessary
constraints of any counterfactual inference model: composition, reversibility, and
effectiveness. We frame counterfactuals as functions of an input variable, its par-
ents, and counterfactual parents and use the axiomatic constraints to restrict the set
of functions that could represent the counterfactual, thus deriving distance metrics
between the approximate and ideal functions. We demonstrate how these metrics
can be used to compare and choose between different approximate counterfactual
inference models and to provide insight into a model’s shortcomings and trade-offs.

1 INTRODUCTION

Faithfully answering counterfactual queries is a key challenge in representation learning and a
cornerstone for aligning machine intelligence and human reasoning. While significant advances have
been made in causal representation learning, enabling approximate counterfactual inference, there is
surprisingly little methodology available to assess, measure, and quantify the quality of these models.

The structural causal model (SCM) is a mathematical tool that describes causal systems. It offers a
convenient computational framework for operationalising causal and counterfactual inference (Pearl,
2009). An SCM is a set of functional assignments (called mechanisms) that represent the relationship
between a variable, its direct causes (called parents) and all other unaccounted sources of variation
(called exogenous noise). In SCMs, we assume that the mechanisms are algorithmically independent
of each other. Further, in Markovian SCMs, which we can represent by DAGs, we assume that the
exogenous noise variables are statistically independent of each other (Peters et al., 2017). From here
on out, by SCM, we mean Markovian SCM. When the functional form of a mechanism is unknown,
learning it from data is a prerequisite for answering counterfactual queries (Bareinboim et al., 2022).

In the context of high-dimensional observations, such as images, the power and flexibility of deep
generative models make them indispensable tools for learning the mechanisms of an SCM. However,
these same benefits make model identifiability impossible in the general case (Locatello et al., 2020a;
Khemakhem et al., 2020), which can cause entanglement of causal effects (Pawlowski, 2021) and
lead to poor approximations of the causal quantities of interest. Regardless, even if the model
or counterfactual query is unidentifiable, we can still measure the quality of the counterfactual
approximation (Pearl, 2010). However, evaluating image-counterfactual models is challenging
without access to observed counterfactuals, which is unrealistic in most real-world scenarios.

In this paper, we focus on what constraints a counterfactual inference model must satisfy and how we
can use them to measure model’s soundness without having access to observed counterfactuals or
the SCM that generated the data. We begin by framing mechanisms as functional assignments that
directly translate an observation into a counterfactual, given its parents and counterfactual parents.
Next, we use Galles & Pearl (1998)’s axiomatic definition of counterfactual to restrict the space of
possible functions that can represent a mechanism. From these constraints, we derive a set of metrics
which we can use to measure the soundness of any arbitrary black-box counterfactual inference engine.
Lastly, we show how simulated interventions can mitigate estimation issues due to confounding.
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2 RELATED WORK

Representation learning aims to capture semantically meaningful disentangled factors of variation in
the data. Arguably, these representations can provide interpretability, reduced sample complexity,
and improved generalisation (Bengio et al., 2013). From a causal perspective, these factors should
represent the parents of a variable in the SCM (Schölkopf et al., 2021). Although there has been
extensive research into unsupervised disentanglement (Higgins et al., 2017; Burgess et al., 2018; Kim
& Mnih, 2018; Chen et al., 2018; Kumar et al., 2018; Peebles et al., 2020), recent results Locatello et al.
(2020a) reaffirm the impossibility of this task since the true causal generative model is not identifiable
by observing a variable in isolation (Peters et al., 2017). In contrast, supervised disentanglement,
where we observe the variable’s parents, and weakly supervised disentanglement, where we observe
“real” counterfactuals, can lead to causally identifiable generative models (Locatello et al., 2020a).

The integration of causal considerations has led to the emerging field of causal representation learning
(Schölkopf et al., 2021). In the supervised setting, extensive research has been conducted in adapting
deep models for individualised treatment effect estimation (Louizos et al., 2017; Yoon et al., 2018; Shi
et al., 2019; Madras et al., 2019; Jesson et al., 2020; Yang et al., 2021). Notably, Louizos et al. (2017)
use deep latent variable models to estimate individualised and population-level treatment effects.
Yang et al. (2021) use deep latent variable models for learning to transform independent exogenous
factors into endogenous causes that correspond to causally related concepts in the data. In the
weakly-supervised setting, recent work has focused on using observations of “real”-counterfactuals
instead of a variable’s parents to obtain disentangled representations (Hosoya, 2019; Bouchacourt
et al., 2018; Shu et al., 2020; Locatello et al., 2020b). Besserve et al. (2020; 2021) show how relaxing
identifiability constraints can lead to some degree of identifiability in unsupervised settings.

In the context of image counterfactuals, Pawlowski et al. (2020) demonstrate how to jointly model all
the functional assignments in an SCM using deep generative models. Despite presenting a general
theory for any generative model, the authors implement only VAEs (Kingma & Welling, 2014;
Rezende et al., 2014) and normalising flows (Papamakarios et al., 2021), which Dash et al. (2022)
complement by using GANs (Goodfellow et al., 2014). Sanchez & Tsaftaris (2022) use diffusion
models for the counterfactual estimation. Van Looveren & Klaise (2021) use class prototypes for
finding interpretable counterfactual explanations. Sauer & Geiger (2021) use a deep network to
disentangle object shape, object texture and background in natural images. Parascandolo et al. (2018)
retrieve a set of independent mechanisms from a set of transformed data points in an unsupervised
manner using multiple competing models. Additionally, many image-to-image translation models
can be considered informal counterfactual inference engines (Isola et al., 2017; Zhu et al., 2017; Liu
et al., 2017; Choi et al., 2018; Hoffman et al., 2018; Li et al., 2021).

The flexibility of deep models makes them susceptible to learning shortcuts (Geirhos et al., 2020).
Consequently, when the data is biased, the effects of the parents can become entangled (Pawlowski,
2021; Rissanen & Marttinen, 2021). These issues create identifiability problems even when accounting
for causality in representation learning. Simulating interventions through data augmentation or
resampling can be used to debias the data (Ilse et al., 2021; Kügelgen et al., 2021; An et al., 2021). In
a closely related field, research has focused on learning from biased data (Nam et al., 2020) or how to
become invariant to a protected/spurious attribute (Kim et al., 2019). Janzing & Schölkopf (2010)
show how an algorithmic perspective allows causal inference with only one observation.

3 METHODS

Generating counterfactuals is commonly performed in multiple steps. First, we abduct the exogenous
noise from the observation and its parents. Second, we act on some parents. Finally, we use a
generative model to map the exogenous noise and the counterfactual parents back to the observation
space. For deep models, true abduction is impossible in the general case, and identifiability issues are
ubiquitous (Peters et al., 2017; Locatello et al., 2020a; Khemakhem et al., 2020). There can exist
multiple models capable of generating the data, and the true causal model cannot be identified from
data alone. We argue that viewing counterfactual inference engines as black-boxes, where we focus
on what properties the model’s output must obey rather than the model’s theoretical shortcomings,
leads us to a set of actionable and principled model constraints. While a full causal model of the data
generation process is necessary to create new samples from a joint distribution, in many applications,
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we are only interested in generating counterfactuals for real observations. In this case, we can directly
model the mapping between observation and counterfactual. We call this mapping a counterfactual
function in which we consider the abduction to be an implicit process rather than an explicit step in
the counterfactual inference.

3.1 COUNTERFACTUAL FUNCTIONS

Let x be a random variable (i.e., the observation) with parents pa, x∗ a counterfactual of x with
parents pa∗, and ϵ the exogenous noise variable pertaining to x. The functional assignment for x is
given by x := g(ϵ,pa), and for its counterfactual by x∗ := g(ϵ,pa∗). Conceptually, counterfactual
reasoning is a three-step process: 1) Abduction: infer the exogenous noise from the observation
and its parents; 2) Action: intervene on the targeted parents; 3) Prediction: propagate the effect of
the intervention through the modified model to generate the counterfactual (Pearl, 2009). However,
when the values for all the counterfactual parents are known, abduction, action and prediction do not
need to be performed sequentially but can be formulated as a single functional assignment taking as
arguments the observation, the parents and the counterfactual parents, as formalised in the following.

The abduction process involves inverting the mechanism with respect to the exogenous noise
ϵ := g−1(x,pa). In general, the mechanism is not invertible since there might be several possi-
ble counterfactuals corresponding to the same observation. In other words, the inverse mapping is not
deterministic since an observation induces a distribution over the exogenous noise, which induces a
distribution over possible counterfactuals: ϵ ∼ P (ϵ|x,pa) =⇒ x∗ ∼ P (x∗ |x,pa). Equivalently,
we can formulate abduction as a deterministic functional assignment ϵ := abduct(x,pa) where
the abduction function is drawn from a distribution over functions abduct ∼ P (abduct). We can
rewrite the functional assignment for the counterfactual as x∗ := g(abduct(x,pa),pa∗) and obtain
an equivalent expression by introducing a new function with the same arguments x∗ := f(x,pa,pa∗),
where f ∼ P (f). We call these functions counterfactual functions and denote the abduction as implicit
since a value for the exogenous noise ϵ is never explicitly produced. Notice how abduct and f do not
depend on the data due to the independence of cause and mechanism (Peters et al., 2017, Sec. 2.1).

3.1.1 FUNCTION PROPERTIES FROM AXIOMATIC DEFINITION OF COUNTERFACTUALS

To determine the properties of such functions, we review Pearl’s axiomatic definition of counter-
factuals (Pearl, 2009, Sec. 7.3.1). The soundness theorem states that the properties of composition,
effectiveness and reversibility hold true in all causal models (Galles & Pearl, 1998). The complete-
ness theorem states that these properties are complete (Halpern, 1998). Together these theorems
state that composition, effectiveness and reversibility are the necessary and sufficient properties of
counterfactuals in any causal model. We aim to construct a functional system that obeys these axioms.

Effectiveness: Intervening on a variable to have a specific value will cause the variable to take on
that value. Thus, suppose Pa(·) is an oracle function that returns the parents of a variable, then we
have the following equality: Pa(f(x,pa,pa∗)) = pa∗.

Composition: Intervening on a variable to have the value it would otherwise have without the
intervention will not affect other variables in the system. This implies the existence of a null
transformation f(x,pa,pa) = x since if pa∗ = pa, then x is not affected.

Reversibility: Reversibility prevents the existence of multiple solutions due to feedback loops. In
recursive systems such as DAGs, it follows trivially from composition. However, in the general
case, these properties are independent. If setting a variable A to a value a results in a value b for a
variable B, and setting B to a value b results in a value a for A, then A and B will take the values a
and b. If a mechanism is invertible, taking a twin network conception of the SCM (see Pearl, 2009,
Sec. 7.1.4) and replacing the previous variables with the observation x and its counterfactual x∗, it
follows that if x∗ := f(x,pa,pa∗), then x = f(x∗,pa∗,pa). In other words, the mapping between
the observation and the counterfactual is deterministic for invertible mechanisms. Otherwise, there
would be a feedback loop. See Appendix A for proof.

3.1.2 PARTIAL COUNTERFACTUAL FUNCTIONS

We can also consider partial counterfactual functions, which model the effect of a single parent on the
observation independently of all other causes. These partial interventions allow us to decompose an
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intervention into steps whereby a single parent is changed while holding the remaining parents fixed.
Each step acts on all parents, but only one parent changes value at a time: x∗ = fk(x, pak,pa

∗
k), where

pa∗ = paK\k ∪ {pa∗k}. Notice that this is still an intervention on all parents, in contrast with atomic
interventions where only one variable is intervened upon and all others updated according to the SCM.
These partial functions can be obtained by taking a full counterfactual function and fixing all parents
to their initial values except one: fk(x, pak,pa

∗
k) = f

(
x,paK\k ∪ {pak},paK\k ∪ {pa∗k}

)
, or they

can directly implicitly infer the values of the fixed parents, as shown in Appendix C. In Appendix C.1,
we show that a full intervention can be decomposed into a sequence of partial interventions and that
the partial functions must obey the commutative property.

3.2 MEASURING SOUNDNESS OF COUNTERFACTUALS

We now distinguish between the ideal counterfactual function f(·) and its approximation f̂(·). We
consider a scenario where we want to evaluate how good our estimate of a counterfactual function
is from observational data alone, without access to observed counterfactuals. Using the axiomatic
properties described in Section 3.1.1, we can derive a set of soundness metrics that compare the
approximate and ideal models.

Composition: Since the ideal model cannot change an observation under the null transformation, we
can measure how much the approximate model deviates from the ideal by calculating the distance
between the original observation and the mth time null-transformed observation. The repeated
application of the function will highlight what types of corruptions the approximate model produces
on the observation. Given a distance metric dX(·, ·), such as the l1 distance, an observation x with
parents pa and a functional power m, we can measure composition as:

composition(m)(x,pa) := dX

(
x, f̂(m)(x,pa,pa)

)
. (1)

See Appendix B for a discussion on desirable metric properties.

Reversibility: When a mechanism is invertible, the ideal model must be cycle-consistent. Thus we
can measure reversibility by calculating the distance between the original observation and the mth
time cycled-back transformed observation. Setting p̂(x,pa,pa∗) := f̂

(
f̂(x,pa,pa∗),pa∗,pa

)
.

Given a distance metric dX(·, ·), an observation x with parents pa and a functional power m, we can
measure reversibility as:

reversibility(m)(x,pa,pa∗) := dX

(
x, p̂(m)(x,pa,pa∗)

)
. (2)

Note that in most real-world scenarios, the inherent uncertainty regarding exogenous factors makes it
hard to determine whether the true mechanism is invertible.

Effectiveness: Unlike composition and reversibility, which we can measure independently of the
data distribution, effectiveness is difficult to measure objectively without relying on data-driven
methods or strong domain knowledge. We propose measuring effectiveness individually for each
parent by creating a pseudo-oracle function P̂ak(·), which returns the value of the parent pak given
the observation. These functions can be human-made programs or machine learning models learnt
from data via classification/regression. The inevitable limitation of the data-driven approach is the
approximation error. Moreover, we must be especially cautious in the presence of confounded parents
to ensure that the pseudo-oracles do not exploit shortcuts and correctly retrieve the desired parent.
To independently measure how well the effect of each parent is modelled, we measure effectiveness
after applying partial counterfactual functions (see Section 3.1.2). Using an appropriate distance
metric dk(·, ·), such as accuracy for discrete variables or l1 distance for continuous ones, we measure
effectiveness for each parent as:

effectivenessk(x,pa,pa
∗) = dk

(
P̂ak

(
f̂k(x, pak,pa

∗
k)
)
,pa∗k

)
. (3)

3.3 SIMULATED INTERVENTIONS

When learning deep models from biased data, we must be careful not to allow the model to learn
shortcuts which do not reflect the true causal relationships in the data. While some generative models
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have inductive priors that make them more robust to confounding (Higgins et al., 2017; Li et al.,
2021), discriminative models are quite brittle (Geirhos et al., 2020). The causal approach to address
confounding is to break the offending causal links in the SCM via an intervention, removing the
possibility of learning shortcuts by de-biasing the data.

Consider the joint distribution of the data P (x,paK\k,pak) = P (x |pak,paK\k)P (pak,paK\k),
where K is the set of all parents of x. If we perform a soft intervention (see Peters et al., 2017, Sec. 3.2)
where we set pak and paK\k to their respective marginal distributions, we obtain an interventional
distribution where pak and paK\k are independent. The joint distribution now factorises as:

P do(pak∼P (pak);paK\k∼P(paK\k))(x,paK\k,pak) = P (x |paK\k,pak)P (pak)P (paK\k) (4)
In the absence of interventional data, we use simulated interventions by resampling the data – note
that this is only possible when the observed joint distribution has full support over the product of
marginals. We sample pak and paK\k according to their respective marginal distributions and then
randomly sample an observation conditioned on the sampled parent values. To make all parents
independent of each other, following the same logic, we can sample each parent independently
according to its marginal distribution.

3.4 DEEP GENERATIVE MODELS AS APPROXIMATE COUNTERFACTUAL FUNCTIONS

In this section, we discuss two generative models commonly used as approximate counterfactual
inference engines.

Conditional VAE: The evidence lower bound for a classic conditional VAE (Kingma & Welling,
2014; Higgins et al., 2017) with a β penalty is given by:

ELBOβ(θ, ω) = Eqθ(z|x,pa)[log pω(x |z,pa)]− β DKL[qθ(z |x,pa)∥ p(z)], (5)

where qθ(z |x,pa) is a normal distribution parameterised by a neural network encoder with pa-
rameters θ, pω(x |z,pa) is a set of pixel-wise independent Bernoulli or Normal distributions pa-
rameterised by a neural network decoder with parameters ω, and p(z) is an isotropic normal prior
distribution. The model is trained by maximising the ELBO with respect to parameters of the
neural networks using the re-parametrisation trick to sample from the approximate latent posterior:
z = µθ(x,pa) + σθ(x,pa)⊙ ϵz where ϵz ∼ N (0, I). The construction of the conditional VAE
naturally leads to a composition constraint via the likelihood term. Even though the model can ignore
the conditioning, using a bottleneck or a β penalty pushes the model towards using the conditioning,
thus enforcing effectiveness, making the conditional VAE a natural choice for a counterfactual model.

We can produce counterfactuals by encoding an observation and its parents, sampling the latent
posterior, and then decoding it along with the counterfactual parents: x∗ ∼ pω(x |z,pa∗), where
z ∼ qθ(z |x,pa). Rewriting the previous expression as: x∗ := f̂θ,ω(x,pa,pa

∗) where f̂ ∼ P (̂f), we
see the parallels to the formulation in Section 3.1. Even though it is possible to generate new samples
from the model by sampling z, the VAE is not a full causal generative model. The latent variable z is
not the same as the exogenous noise of the SCM ϵ. There are no guarantees that z ⊥⊥ pa|x or that
the exogenous noise would be normally distributed. Furthermore, there are no guarantees that the
forward model (decoder) can disentangle the effects of each parent on the observation.

Conditional GAN with a composition constraint: Given a joint distribution x,pa ∼ P (x,pa)
and the marginal distribution of each parent pak ∼ P (pak), if we independently sample each parent
according to its marginal and perform an intervention, we obtain an interventional distribution
x,pa ∼ P do(x,pa), where the parents are independent of each other pa ∼

∏
k P (pak). We can

obtain this distribution via a simulated intervention or by applying a counterfactual function to
samples of a source distribution P src(x,pa), which can be the joint or the interventional distribution
itself. Since these distributions must be equal, we can use GANs to minimise statistical divergence
between the two (Goodfellow et al., 2014; Nowozin et al., 2016):

F (θ, ω) = E
x,pa∼Pdo(x,pa)

[
log

(
Dω(x,pa)

)]
− E

x,pa∼P src(x,pa)
pa∗k∼P (pak)

[
log

(
1−Dω

(
f̂θ(x,pa,pa

∗),pa
))]

,

(6)
where the conditional generator f̂θ(x,pa,pa∗) is a neural network parameterised by θ which ap-
proximates the counterfactual function, Dω is the critic function parameterised by parameters ω, and
F (θ, ω) is minimised with respect to θ and maximised with respect to ω.
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Unlike VAEs, GANs have no inherent mechanism to enforce composition; thus, we introduce a
composition constraint which encourages the null transformed observation to be close to the original
observation. Given distance metric d(·, ·) such as the l2 distance, we can write the following
regulariser, which we add to the GAN objective:

Rcomposition(θ) = E
x,pa∼P src(x,pa)

d
(
x, f̂θ(x,pa,pa)

)
. (7)

Similarly, for invertible mechanisms, we can add a reversibility constraint. However, early exper-
iments proved it redundant while adding computational cost. The proposed GAN model has no
distribution over functions, which is equivalent to assuming that the exogenous noise posterior
P (ϵ|x,pa) is delta distributed. Although this is a strong assumption, assuming a normal posterior as
is done in the VAE is also restrictive. Both are unlikely to be a good approximation of the true noise
distribution in most real-world scenarios.

4 EXPERIMENTS AND RESULTS

We now demonstrate the utility of our evaluation framework by applying it to three datasets. For
demonstration purposes, we assume invertible mechanisms so we can use the reversibility metric.

4.1 COLOUR MNIST

To illustrate the effect confounding has on counterfactual approximation, we construct a simple
experiment using the MNIST dataset (LeCun et al., 1998) where we introduce a new parent: the
digit’s hue. We colour each image by triplicating the grey-scale channel, setting the saturation to 1
and setting the hue to a value between 0 and 1. The hue value is given by one of three possible SCMs:

• Unconfounded: where we draw the hue from a uniform distribution independently of the
digit: hue ∼ Uniform(0, 1);

• Confounded without full support: where the hue depends on the digit but the joint
distribution does not have full support: hue ∼ N (digit/10 + 0.05, σ), where σ = 0.05;

• Confounded with full support: like the previous scenario except we include a percentage
of outliers where the hue is drawn independently of the digit in order to ensure the distri-
bution has full support: b ∼ Bernoulli(p) and hue ∼ N (digit/10 + 0.05, σ) if b = 0 else
hue ∼ Uniform(0, 1), where σ = 0.05 and p = 0.01.

Figure 4 shows the joint distribution of digit and hue for the three SCMs, and Figure 5 shows samples
from the confounded and unconfounded joint distributions.

We compare the counterfactual soundness of the following models: a VAE with Bernoulli log-
likelihood and β = {1, 2}, a VAE with Normal log-likelihood with a fixed variance of 0.1 and β = 5,
and a conditional GAN with a composition constraint. Model and training details can be found in
Appendix D.2. To obtain lower bounds for the soundness metrics, we include two models that, by
design, cannot perform abduction: the identity function and a VAE without the encoder at inference
time (Bernoulli VAE, β = 1). For the confounded scenarios, we perform a simulated intervention
to break the causal link between digit and hue. Since the hue is a continuous variable, to simulate
the intervention, we calculate the histogram of its marginal distribution (5 bins) and resample it as if
it were a discrete variable. We train the models on data generated from the three SCMs but always
test on the unconfounded test set, which mimics a scenario where the correlations in the training
data are spurious and ensures the results of the tests are not biased. Note that if the test set is biased,
we can obtain biased estimates for the soundness metrics; this setting falls out of the scope of this
study. We use accuracy for the digit and the absolute error for the hue. To measure composition and
reversibility, we use the l1 distance. Table 1 shows the results for all models and scenarios. For the
VAEs, we sample a unique function for each observation but keep it fixed for repeated interventions.

Comparing with poor counterfactuals. We can see that the identity function achieves perfect
composition and reversibility but, as expected, fails at effectiveness. In contrast, the VAE without
encoder performs well in terms of effectiveness but fails at composition and reversibility. Inter-
estingly, the same VAE with the encoder achieves a composition after ten null interventions of
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Table 1: Soundness metrics on colour MNIST over 5 random seeds. We measure composition after
the null intervention and reversibility after one intervention cycle. We measure effectiveness using
digit accuracy and hue absolute error in percentage points since hue ∈ [0, 1]. * GAN always requires
simulated intervention for target distribution and thus cannot be trained w/o full support.

dataset
inter-
ven-
tion

model
null-intervention digit intervention hue intervention

composition effectiveness reversibility effectiveness reversibility
l
(1)
1 ↓ accdigit(%) ↑ aehue(%) ↓ l

(1)
1 ↓ accdigit(%) ↑ aehue(%) ↓ l

(1)
1 ↓

un-
con-
found-
ed

- Identity 0.00 10.50 1.38 0.00 99.18 32.98 0.00
- VAE w/o encoder 19.04 (0.09) 97.08 (0.25) 1.32 (0.05) 19.04 (0.09) 97.24 (0.26) 1.32 (0.06) 19.04 (0.09)
- Bernoulli VAE β=1 5.98 (0.06) 98.68 (0.13) 1.29 (0.04) 7.67 (0.06) 99.45 (0.09) 1.26 (0.05) 7.24 (0.05)
- Bernoulli VAE β=2 6.86 (0.07) 99.52 (0.07) 1.33 (0.15) 9.10 (0.12) 99.60 (0.04) 1.32 (0.15) 8.62 (0.11)
- Normal VAE β=5 6.26 (0.29) 97.24 (0.26) 1.52 (0.28) 8.07 (0.26) 99.38 (0.06) 1.47 (0.27) 7.51 (0.32)
- GAN 4.92 (0.05) 94.28 (1.01) 1.60 (0.22) 9.22 (0.27) 98.98 (0.05) 1.55 (0.23) 5.60 (0.03)

con-
found-
ed
w/o
full
support

no
Bernoulli VAE β=1 9.20 (1.31) 97.12 (1.05) 10.74 (4.77) 11.42 (1.49) 98.89 (0.16) 11.60 (6.14) 11.11 (1.61)
Bernoulli VAE β=2 10.84 (0.45) 98.94 (0.17) 10.36 (1.39) 12.82 (0.45) 99.17 (0.05) 10.07 (1.39) 12.52 (0.41)
Normal VAE β=5 11.21 (0.63) 94.74 (0.51) 14.17 (2.63) 13.32 (0.62) 98.81 (0.22) 14.27 (3.03) 12.69 (0.59)

yes
Bernoulli VAE β=1 8.63 (0.50) 96.94 (0.26) 6.38 (1.58) 11.10 (0.75) 98.88 (0.25) 7.02 (1.96) 10.79 (0.75)
Bernoulli VAE β=2 9.85 (0.33) 95.76 (1.63) 6.44 (1.24) 12.10 (0.39) 95.77 (1.56) 6.44 (1.37) 11.86 (0.29)
Normal VAE β=5 9.32 (1.41) 95.35 (0.71) 7.54 (1.99) 11.29 (1.39) 98.79 (0.28) 7.30 (2.03) 10.85 (1.36)

con-
found-
ed
w/
full
support

no
Bernoulli VAE β=1 6.68 (0.27) 96.62 (2.09) 8.52 (6.93) 8.89 (0.70) 99.20 (0.10) 12.15 (11.69) 8.45 (0.69)
Bernoulli VAE β=2 7.56 (0.10) 99.36 (0.16) 2.70 (0.12) 9.67 (0.06) 99.47 (0.06) 2.54 (0.12) 9.32 (0.09)
Normal VAE β=5 6.72 (0.30) 95.53 (0.28) 3.88 (1.12) 9.06 (0.68) 99.07 (0.04) 3.59 (1.20) 8.45 (0.67)

yes* GAN 6.05 (0.06) 95.17 (0.55) 1.95 (0.07) 11.18 (0.10) 99.18 (0.10) 1.73 (0.11) 7.79 (0.10)

yes

Bernoulli VAE β=1 6.67 (0.10) 99.07 (0.15) 2.31 (0.24) 8.42 (0.16) 99.37 (0.13) 3.08 (1.08) 8.40 (0.48)
Bernoulli VAE β=2 7.84 (0.09) 99.63 (0.03) 2.16 (0.06) 9.63 (0.08) 99.61 (0.06) 2.01 (0.10) 9.34 (0.09)
Normal VAE β=5 6.51 (0.29) 97.75 (0.18) 3.05 (0.44) 8.35 (0.29) 99.31 (0.07) 2.73 (0.47) 7.83 (0.31)
GAN 5.25 (0.06) 96.27 (0.26) 1.84 (0.11) 10.75 (0.34) 99.01 (0.06) 1.77 (0.14) 6.20 (0.04)

l
(10)
1 = 17.36 (0.62), close to the value without the encoder l(10)1 = 19.04 (0.09), indicating that the

VAE progressively loses the identity of the image and converges to a random sample (Figure 1a).

Comparing models and scenarios. For each scenario, we can see how the proposed metrics
allow us to compare models independently of the model class and directly compare the quality of
counterfactual approximations. For the confounded scenario without full support, we see a significant
drop in performance which we cannot recover even when using a simulated intervention since the lack
of support prevents us from sampling points from some areas of the joint distribution. Nevertheless,
when the confounded distribution has full support, we can recover the performance using a simulated
intervention or selecting an appropriate β penalty for the VAE. In addition to the numerical results,
it is also helpful to visualise the results of the tests. To highlight the impact of confounding, in
Figure 1, we show the soundness tests for a disentangled model (Normal VAE on the confounded
scenario w/ full support and a simulated intervention) and an entangled model (Normal VAE on the
confounded scenario w/o full support and no simulated intervention). We can see that the entangled
model cannot preserve the image’s identity, quickly changing its colour and distorting its shape
(Figure 1d). In contrast, the disentangled model is far more capable of preserving the image’s identity
even if the shape gets distorted over repeated applications (Figure 1a). Regarding effectiveness,
we can see that the entangled model consistently fails to change the digit without changing its hue
(Figure 1e). Conversely, the disentangled model can change the digit independently of the hue, and
its counterfactuals seem to preserve properties such as slant and thickness. Finally, regarding hue
reversibility, we can see that only the disentangled model is able to correctly cycle back and forth
between hue values even if there is some shape distortion (Figures 1f and 1c).

Measuring effectiveness using pseudo-oracles trained on biased data. In the previous experiment,
we used pseudo-oracles trained on unconfounded data to compare models. However, in real-world
scenarios where we do not control the data-generation process, we have to use pseudo-oracles trained
on the available data. If we use pseudo-oracles trained on biased data, we can get biased estimates for
effectiveness. We can use simulated interventions when training the oracles to address this problem.
When training the pseudo-oracles on the confounded scenario w/ full support, we obtain a digit
accuracy of 90.67% and hue absolute error of 6.34% – down from 99.18% and 1.38% respectively,
for the oracles trained on unconfounded data. However, using a simulated intervention, we obtained
96.70% and 4.11% for the digit accuracy and hue absolute error, respectively. Regardless, we show
in Tables 2, 3 that the relative performance ranking of the models is only slightly affected by the
decrease in oracle quality due to confounding. Additionally, we show in Table 4 that the ranking
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(a) Composition. (b) Digit effectiveness. (c) Hue reversibility.

(d) Composition. (e) Digit effectiveness. (f) Hue reversibility.

Figure 1: Soundness tests on colour MNIST for a disentangled model (a, b, c) and a entangled model
(d, e, f). Composition (a, d): one sample per row, the first column is the input, each column after
is the result of applying the null intervention to the previous column. Digit effectiveness (b, e):
three sub-panels with one sample per row, the first column is the input, the second column is the
result of the null intervention, the last column is the result of a partial intervention on the digit. Hue
reversibility (c, f); one sample per row, the first column is the input, the second column is the result
of a partial intervention on the hue, the third column is the result of applying the partial intervention
that cycles back to the original hue. The remaining columns repeat the cycle.

is also robust to using linear models (logistic/linear regression) as pseudo-oracles, giving us some
margin for error when measuring the relative effectiveness.

4.2 3D SHAPES

Next, we test our evaluation framework on the 3D shapes dataset (Burgess & Kim, 2018), which
comprises procedurally generated images from 6 independent parents: floor colour, wall colour,
object colour, scale, shape and orientation. Each possible combination of attributes results in an image
creating a dataset of 480000 images. We keep 10% of images as a test set and train on the remaining
90%. We treat all variables as discrete since even the continuous ones, such as colour, only take a
set of discrete values. We compare the counterfactual properties of a Bernoulli VAE (β = 1) with a
constrained GAN. Model and training details are available in Appendix E.1. Figures 2 (a-d) and 2
show the composition/effectiveness plots for both models. The models can successfully change all
parents without perturbing the remainder (Table 5). However, we can see that the GAN introduces
a slight distortion in the image, which the VAE does not. In fact, the VAE achieves a composition
score of l(1)1 = 1.62± (0.07) and l

(10)
1 = 1.62(0.07) while the GAN has a score of l(1)1 = 5.11(0.14)

and l
(10)
1 = 5.16(0.15). The lack of exogenous factors explains the consistency in the composition

scores after repeated null interventions. Abduction is trivial since there is nothing to abduct. Thus,
the model can ignore the observation and rely solely on the parents to generate the counterfactual.
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(a) Object hue (VAE). (b) Object hue (GAN). (c) Object shape (VAE). (d) Object shape (GAN).

(e) Smiling (all latents) (f) Smiling (8 latents) (g) Eyeglasses (all latents) (h) Eyeglasses (8 latents)

Figure 2: Effectiveness/Composition on 3D shapes (a-d) and CelebA-HQ (e-h). Each sub-figure
has one sample per row: the first column is the input, the second column is the result of the null
intervention, and the last column is the result of a partial intervention on a specific parent.

4.3 CELEBA-HQ

Lastly, we demonstrate our evaluation framework on a natural image dataset which requires more
complex generative models. We used the CelebA-HQ dataset (Karras et al., 2018) with a 64x64
resolution and the binary parent attributes ‘smiling’ and ‘eyeglasses’. For the model, we opted to
extend the VDVAE (Child, 2021) to a conditional model to enable counterfactuals (see Appendix F).
Since the latent code is hierarchical, the abduction process can be decomposed into abducting subsets
of latent variables at different resolutions. This added complexity enables higher fidelity images but
makes abduction harder in practice. When producing counterfactuals, abducting all latent variables
can result in the model ignoring the counterfactual parent conditioning. Conversely, abducting only
a subset trends the model towards obeying the conditioning at the cost of faithfulness to the input
observation. In other words, there is a trade-off between effectiveness and composition/reversibility.
Figures 2e and 2g show ‘smiling’ and ‘eyeglasses’ counterfactuals for a model with 42 latent variables
when abducting all variables. Figures 2f and 2h show the same counterfactuals when abducting only
a subset of 8 variables. We can see that, under full abduction, it is harder for the counterfactuals
to obey the conditioning, but they are more faithful to the input (e.g. higher ‘smiling’ composition
l
(1)
1 = 3.657± 0.0006 but lower effectiveness F1-score = 0.848± 0.0006. In contrast, when using

partial abduction, we obtain higher effectiveness F1-score = 0.933 ± 0.002 at the cost of much
lower composition l

(1)
1 = 20.890± 0.018. Table 6 and Figure 7 show the evolution of effectiveness,

composition, and reversibility with the number of fixed posterior latent variables.

5 DISCUSSION

We have presented a theoretically grounded framework for evaluating approximate counterfactual
inference models without observed counterfactuals or knowledge of the underlying SCM. While
guarantees of truly identifiable models using deep learning are not possible in the general case, we
show that we can measure the soundness of such models by observing which constraints they should
obey in the ideal case. Further, we show the impact of confounding on training and evaluation
of deep counterfactual inference models and how its effect can be mitigated by using simulated
interventions. We hope the ideas presented here can help inform the development and evaluation of
future approximate counterfactual inference models that use deep models as their base.
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ETHICS STATEMENT

The ability to generate plausible image counterfactuals can have both productive and nefarious
applications. On the positive side, counterfactual explanations have the potential to improve the inter-
pretability of deep learning models and help bridge the gap between human and machine intelligence.
Counterfactual queries may help to identify disparities in model performance, and counterfactual data
augmentation can mitigate dataset bias against underrepresented groups in downstream tasks such
as classification. With that said, if incorrectly used, counterfactual image models may also further
exacerbate such biases. Moreover, visually plausible artificially generated counterfactual images
could be misused by ill-intended parties to deceive, mislead or spread misinformation. We argue
that the opportunities and risks of counterfactual image generation must be carefully considered
throughout development and a comprehensive evaluation framework is integral to this process.
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A REVERSIBILITY PROOF

Lemma A.1. Let x = g(ϵ,pa) be a mechanism where x is the observation with parents pa and
exogenous noise variable ϵ. Further, let x∗ be a counterfactual of x with parents pa∗. If the
mechanism is invertible, then the exogenous noise is deterministically given by: ϵ = g−1(x,pa)
or ϵ = g−1(x∗,pa∗). Under these conditions, in the counterfactual function form we have that if
x∗ := f(x,pa,pa∗), then x = f(x∗,pa∗,pa).

Proof.
x∗ = g(ϵ,pa∗)

= g
(
g−1(x,pa),pa∗

)
= f(x,pa,pa∗)

(8)

And:
x = g(ϵ,pa)

= g
(
g−1(x∗,pa∗),pa

)
= f(x,pa∗,pa)

(9)

B DISTANCE METRICS

Given two points a ∈ RN and b ∈ RN and a distance dX(·, ·) : (RN ,RN ) → R+, for the distance
to be considered a metric, it must obey the following properties (see Phillips, 2021, Sec. 6.1):

• Non-negativity: dX(a, b) ≥ 0;

• Identity: dX(a, b) = 0 if a = b;

• Symmetry: dX(a, b) = dX(b, a);

• Triangular inequality: dX(a, b) ≤ dX(a, c) + dX(c, b).

In this paper, we opted to use the l1 distance, which is a metric, because we can directly interpret
its value as the average pixel intensity by which two images differ. While there is an argument
to be made for the use of perceptual distances for images, they are not metrics and have the same
data-driven weaknesses, which pose a problem for our pseudo-oracles. As a result, we opted for a
data-independent distance/metric.

C PARTIAL COUNTERFACTUAL FUNCTIONS

pa

x

ϵ

x∗

pa∗

(a)

pak paK\k

ζk

ϵ

x x∗

pa∗k

(b)

pak paK\k

ζk

ϵ

x x∗

pa∗k

(c)

Figure 3: Process of making one parent independent of the rest using a simulated intervention. (a)
Starting SCM; (b) SCM after separating the target parent from the rest; (c) SCM after the intervention.

Figure 3a shows a causal graph for a single mechanism, where there can exist unknown arbitrary causal
links between the variable’s parents. Suppose we take the endogenous causes of x and convert all but
one into exogenous causes resulting in the causal graph in Figure 3b. The bidirectional arrow between
the endogenous parent pak and the now exogenous parents paK\k denotes the unknown causal
relationships between them. This manipulation results in a “partial” mechanism x∗ := gk(ζk,pak)
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where only one parent is endogenous and thus susceptible to action. The remaining parents and
the previous exogenous noise are grouped into a new noise variable ζk := g−1

k (x, pak). However,
due to the dependence between the target parent pak and the unobserved exogenous parents paK\k,
abducting ζk is impossible. The path between ζk and pak breaks the assumption of independent
exogenous noise variables, making it impossible to separate the effects of endogenous and exogenous
causes. The mechanism induced by ζk now depends on the cause pak since ζk ⊥̸⊥ pak, violating the
principle of independent causal mechanisms.

To preserve the principle of independent causal mechanisms, we must first make pak independent of
the remaining parents paK\k. Since the causal direction between pak and paK\k is unknown, we
intervene on both these variables, thus guaranteeing their link is severed. The modified SCM is shown
in Figure 3c, where abduction is now possible since the mechanism no longer depends on the cause.
Because there are no backdoor paths between pak and ζk, using do-calculus (Pearl, 2009), we have
that P (ζk |x, do(pak)) = P (ζk |x,pak). Since x∗ depends on x via ζk the distribution over potential
counterfactuals P (x∗ |x,pak) remains unchanged after the intervention. After the intervention, we
can learn the partial counterfactual function without confounding being an issue. The partial function
changes one parent while holding the remainder fixed since these are now part of the exogenous
noise.

C.1 PARTIAL COUNTERFACTUAL FUNCTION DECOMPOSITION

Using the process described in Section 3.1, we can write a partial counterfactual function as: x∗ :=
fk(x, pak,pa

∗
k) where fk ∼ P (fk). Since the output of fk(·) is counterfactual of x, all the properties

from Section 3.1.1 still apply. Repeating the process for each parent results in a set of independent
partial functions allowing us to write the full counterfactual function as a composition of multiple
independent partial functions:

x∗ :=
[
fK( · ,paK ,pa∗K) ◦ . . . ◦ f2( · ,pa2,pa∗2) ◦ f1( · ,pa1,pa∗1)

]
(x) (10)

By construction, each partial function models the effect of a single parent on the observation
independently of other parents. As a result, the decomposition in equation 10 must be commutative.
Lemma C.1. Let x = g(ϵ,pa1,pa2) be the generative model for an observation x with parents
pa1 and pa2 and exogenous noise variable ϵ. Further, let f1(x, pa1,pa

∗
1) and f2(x, pa2,pa

∗
2) be two

partial functions operating on pa1 and pa2 respectively. Then, the composition of f1(·) and f2(·) is
commutative:

f1(f2(x, pa2,pa
∗
2),pa1,pa

∗
1) = f2(f1(x,pa1,pa

∗
1),pa2,pa

∗
2) (11)

Proof. Since any counterfactual of x can be generated by the generative model g(·), we have:

f1(x,pa1,pa
∗
1) = g(ϵ,pa∗1,pa2)

f2(x, pa2,pa
∗
2) = g(ϵ,pa1,pa

∗
2)

(12)

Substituting on the left-hand side of equation 11:

f1(f2(x, pa2,pa
∗
2),pa1,pa

∗
1) = f1(g(ϵ, pa1,pa

∗
2),pa1,pa

∗
1)

= g(ϵ,pa∗1,pa
∗
2)

(13)

And on the right-hand side:

f2(f1(x, pa1,pa
∗
1),pa2,pa

∗
2) = f2(g(ϵ, pa

∗
1,pa2),pa2,pa

∗
2)

= g(ϵ,pa∗1,pa
∗
2)

(14)
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D COLOUR MNIST

D.1 DATASET DETAILS

(a) Unconfounded joint distribution. (b) Confounded joint distribution
without full support.

(c) Confounded joint distribution
with full support.

Figure 4: Colour MNIST joint distribution of digit and hue for different SCMs.

(a) Samples from the unconfounded joint distribution. (b) Samples from the confounded joint distribution.

Figure 5: Colour MNIST samples.

D.2 EXPERIMENT DETAILS

We describe the architectures of the different components of the model using pseudo-code snippets.
These snippets are close to the JAX framework but should enable reproducing the same architectures
in all popular deep learning frameworks.

D.2.1 PSEUDO-ORACLES.

Architecture. The architecture of the pseudo-oracles is:

pseudo_oracle = serial(
Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
LeakyRelu,
Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
LeakyRelu,
Flatten,
Dense(out_dim=128),
LeakyRelu,
Dense(out_dim=num_classes if classification else 1)

)
y_hat = pseudo_oracle(image)

Training details. We trained the pseudo-oracles for 2000 steps with a batch size of 1024 using the
AdamW (Loshchilov & Hutter, 2019) optimiser with a learning rate of 0.0005, β1 = 0.9, β2 = 0.999
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and weight_decay = 0.0001. For data augmentation we used random translations where the amount
of horizontal and vertical translation is sampled uniformly from 0 to 10% of the width/height of the
image.

D.2.2 VAE

The following image encoder and decoder are used in both the GAN and VAE:

Generic image encoder and decoder.

image_encoder = serial(
Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
LeakyRelu,
Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
LeakyRelu,
Flatten,
Dense(out_dim=128),
LeakyRelu)

)

image_decoder = serial(
Dense(7 * 7 * 64),
LeakyRelu,
Reshape((-1, 7, 7, 64)),
Resize((-1, 14, 14, 64), method='linear'),
Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
LeakyRelu,
Resize((-1, 28, 28, 64), method='linear'),
Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
LeakyRelu,
Conv(out_chan=3, filter_shape=(3, 3), strides=(1, 1), padding='SAME'))

Architecture. The VAE architecture is as follows:

#encoder
encoded_image = image_encoder(image)
tmp = Dense(out_dim=128)(concat(encoded_image, parents))
mu = Dense(out_dim=16)(tmp)
sigma = softplus(Dense(out_dim=16)(tmp))
#decoder
z = sample_from_standard_normal(mu, sigma)
counterfactual = image_decoder(concat(z, counterfactual_parents))

Training details. We trained the VAE for 20000 steps with a batch size of 512 using the AdamW
(Loshchilov & Hutter, 2019) optimiser with a learning rate of 0.001, β1 = 0.9, β2 = 0.999 and
weight_decay = 0.0001. The data-augmentation is the same as in Section D.2.1.

D.2.3 GAN

Architecture. The architecture of the GAN generator and discriminator are as follows:

#generator
gan_decoder = serial(

Dense(out_dim=128),
LeakyRelu,
image_decoder,
Tanh

)
encoded_image = image_encoder(image)
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tmp = concat(encoded_image, parents, counterfactual_parents)
counterfactual = gan_decoder(tmp)

# critic
critic = serial(

Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2), padding='SAME'),
LeakyRelu,
Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2), padding='SAME'),
LeakyRelu,
Flatten,
Dense(out_dim=128),
LeakyRelu,
Dense(out_dim=128),
LeakyRelu
Dense(1)

)
)
critic_input = concat(image, broadcast_to_shape(parents, image.shape))
logits = critic(critic_input)

Training details. We trained the GAN for 20000 steps with a batch size of 512 using the AdamW
(Loshchilov & Hutter, 2019) optimiser with a learning rate of 0.0001, β1 = 0, β2 = 0.9 and
weight_decay = 0.0001. The learning rate is multiplied by 0.5 at 12000 steps and again multiplied
by 0.2 at 16000 steps. The data-augmentation is the same as in Section D.2.1.

D.3 EXTRA RESULTS

Table 2: Effectiveness results on colour MNIST when using pseudo oracles trained from biased
data without using a simulated intervention. We measure effectiveness using digit accuracy and hue
absolute error in percentage points since hue ∈ [0, 1]. The average model ranking change compared
to Table 1 (oracles trained from unbiased data) was 0.8(3) for the dataset without full support and
0.75 for the dataset with full support.

dataset
inter-
ven-
tion

model
digit intervention hue intervention avg.

rank
original
rank

abs.
diff.effectiveness effectiveness

accdigit(%) ↑ aehue(%) ↓ accdigit(%) ↑ aehue(%) ↓
con-
found-
ed
w/o
full
support

no
Bernoulli VAE β=1 53.77 (9.88) 11.43 (4.56) 53.68 (6.08) 11.80 (5.85) 3.5 3.5 0
Bernoulli VAE β=2 48.34 (2.27) 10.42 (1.64) 49.32 (2.01) 10.15 (1.62) 4 2.5 1.5
Normal VAE β=5 57.65 (8.41) 13.92 (3.38) 60.69 (6.96) 13.63 (3.51) 3.5 5.5 2

yes
Bernoulli VAE β=1 49.83 (2.52) 9.15 (0.87) 50.92 (2.07) 9.51 (1.35) 3 2.25 0.75
Bernoulli VAE β=2 46.48 (1.22) 8.51 (0.87) 47.30 (1.34) 8.53 (0.87) 3.5 3.25 0.25
Normal VAE β=5 43.86 (1.28) 8.28 (1.38) 47.19 (1.10) 7.97 (1.34) 3.5 4 0.5

con-
found-
ed
w/
full
support

no
Bernoulli VAE β=1 87.71 (0.92) 10.90 (6.53) 90.15 (0.48) 14.02 (10.59) 7 6.5 0.5
Bernoulli VAE β=2 90.05 (0.44) 5.94 (0.20) 90.64 (0.52) 5.92 (0.23) 5.25 3.25 2
Normal VAE β=5 82.98 (0.91) 6.19 (0.73) 89.23 (0.19) 5.77 (0.65) 6.5 7 0.5

yes* GAN 87.03 (0.62) 4.71 (0.16) 92.51 (0.36) 5.28 (0.34) 3 4.25 1.25

yes

Bernoulli VAE β=1 92.07 (0.25) 5.64 (0.19) 92.19 (0.35) 6.15 (0.59) 3.75 4 0.25
Bernoulli VAE β=2 93.98 (0.26) 5.72 (0.25) 93.76 (0.15) 5.82 (0.23) 2.5 2 0.5
Normal VAE β=5 88.68 (0.33) 5.92 (0.46) 91.85 (0.12) 5.87 (0.47) 4.5 4.75 0.25
GAN 87.40 (0.14) 4.78 (0.18) 90.90 (0.21) 4.90 (0.16) 3.5 4.25 0.75
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Table 3: Effectiveness results on colour MNIST when using pseudo oracles trained from biased data
using a simulated intervention. We measure effectiveness using digit accuracy and hue absolute error
in percentage points since hue ∈ [0, 1]. The average model ranking change compared to Table 1
(oracles trained from unbiased data) was 0.8(3) for the dataset without full support and 0.625 for the
dataset with full support.

dataset
inter-
ven-
tion

model
digit intervention hue intervention avg.

rank
original
rank

abs.
diff.effectiveness effectiveness

accdigit(%) ↑ aehue(%) ↓ accdigit(%) ↑ aehue(%) ↓
con-
found-
ed
w/o
full
support

no
Bernoulli VAE β=1 57.09 (10.01) 11.17 (4.88) 57.14 (6.63) 11.42 (6.06) 3.5 3.5 0
Bernoulli VAE β=2 53.43 (2.44) 10.08 (1.57) 54.03 (2.57) 9.73 (1.55) 4 2.5 1.5
Normal VAE β=5 62.93 (8.26) 13.81 (3.27) 67.23 (7.21) 13.55 (3.38) 3.5 5.5 2

yes
Bernoulli VAE β=1 53.72 (2.61) 8.57 (1.00) 55.36 (2.37) 8.88 (1.45) 3 2.25 0.75
Bernoulli VAE β=2 50.96 (0.76) 7.93 (0.96) 51.79 (0.72) 7.89 (0.90) 3.5 3.25 0.25
Normal VAE β=5 47.89 (1.75) 7.83 (1.58) 51.23 (2.01) 7.42 (1.59) 3.5 4 0.5

con-
found-
ed
w/
full
support

no
Bernoulli VAE β=1 93.25 (1.48) 8.93 (7.08) 96.57 (0.42) 12.36 (11.61) 7.5 6.5 1
Bernoulli VAE β=2 96.90 (0.40) 3.17 (0.11) 96.94 (0.20) 2.98 (0.14) 4.25 3.25 1
Normal VAE β=5 90.37 (0.45) 4.16 (1.07) 95.92 (0.25) 3.85 (1.11) 7.5 7 0.5

yes* GAN 93.30 (0.69) 2.36 (0.19) 97.47 (0.23) 2.52 (0.09) 3.25 4.25 1

yes

Bernoulli VAE β=1 97.36 (0.18) 2.80 (0.14) 97.70 (0.25) 3.67 (0.83) 3.5 4 0.5
Bernoulli VAE β=2 98.74 (0.11) 2.68 (0.17) 98.84 (0.16) 2.61 (0.16) 2 2 0
Normal VAE β=5 94.68 (0.39) 3.26 (0.24) 97.50 (0.21) 3.20 (0.25) 4.5 4.75 0.25
GAN 93.90 (0.18) 2.38 (0.16) 96.58 (0.15) 2.44 (0.17) 3.5 4.25 0.75

Table 4: Effectiveness on colour MNIST when using linear/logistic regression as pseudo oracles
trained from unbiased data. We measure effectiveness using digit accuracy and hue absolute error
in percentage points since hue ∈ [0, 1]. The average model ranking change compared to Table 1
(oracles trained from unbiased data) was 0.91(6) for the dataset without full support and 0.6875 for
the dataset with full support.

dataset
inter-
ven-
tion

model
digit intervention hue intervention avg.

rank
original
rank

abs.
diff.effectiveness effectiveness

accdigit(%) ↑ aehue(%) ↓ accdigit(%) ↑ aehue(%) ↓
con-
found-
ed
w/o
full
support

no
Bernoulli VAE β=1 80.83 (1.91) 17.77 (4.12) 81.79 (1.42) 17.28 (4.14) 4.75 3.5 1.25
Bernoulli VAE β=2 86.18 (0.63) 16.17 (1.32) 86.03 (0.52) 15.91 (1.27) 2.5 2.5 0
Normal VAE β=5 78.67 (4.32) 18.97 (1.56) 82.43 (3.80) 18.37 (1.22) 5.25 5.5 0.25

yes
Bernoulli VAE β=1 82.23 (0.81) 15.22 (0.63) 82.31 (1.01) 14.24 (0.74) 2.75 2.25 0.5
Bernoulli VAE β=2 80.52 (2.11) 15.93 (1.34) 79.37 (2.49) 15.74 (1.41) 4.25 3.25 1
Normal VAE β=5 82.50 (1.61) 14.17 (1.01) 85.20 (1.13) 13.82 (1.08) 1.5 4 2.5

con-
found-
ed
w/
full
support

no
Bernoulli VAE β=1 82.26 (2.97) 18.05 (4.15) 84.23 (1.16) 18.73 (5.29) 7.25 6.5 0.75
Bernoulli VAE β=2 87.55 (0.47) 14.75 (0.19) 87.00 (0.28) 14.80 (0.20) 3.5 3.25 0.25
Normal VAE β=5 81.78 (0.93) 15.14 (0.39) 84.90 (0.59) 14.36 (0.44) 5.25 7 1.75

yes* GAN 80.01 (1.28) 14.71 (0.08) 87.09 (0.84) 14.87 (0.17) 5 4.25 0.75

yes

Bernoulli VAE β=1 87.17 (0.64) 14.88 (0.11) 86.09 (1.73) 14.37 (0.64) 3.75 4 0.25
Bernoulli VAE β=2 89.87 (0.51) 14.70 (0.20) 89.32 (0.34) 14.56 (0.16) 1.5 2 0.5
Normal VAE β=5 85.43 (0.59) 15.00 (0.17) 87.23 (0.53) 14.84 (0.25) 4.5 4.75 0.25
GAN 80.39 (0.56) 14.77 (0.15) 85.51 (0.51) 14.65 (0.12) 5.25 4.25 1
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E 3D SHAPES

E.1 EXPERIMENT DETAILS

For the 3D Shapes dataset we used the same architectures and training regimes as in Section D.2
except we did not use data-augmentation and modified the image encoder and decoder as follows:

image_encoder = serial(
Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
LeakyRelu,
Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
LeakyRelu,
Conv(out_chan=64, filter_shape=(4, 4), strides=(2, 2)),
LeakyRelu,
Flatten,
Dense(out_dim=128),
LeakyRelu)

)

image_decoder = serial(
Dense(8 * 8 * 64),
LeakyRelu,
Reshape((-1, 8, 8, 64)),
Resize((-1, 16, 16, 64), method='linear'),
Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
LeakyRelu,
Resize((-1, 32, 32, 64), method='linear'),
Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
LeakyRelu,
Resize((-1, 64, 64, 64), method='linear'),
Conv(out_chan=64, filter_shape=(4, 4), strides=(1, 1), padding='SAME'),
LeakyRelu,
Conv(out_chan=3, filter_shape=(3, 3), strides=(1, 1), padding='SAME'))

E.2 EXTRA RESULTS

Table 5: Results of quality tests on 3D shapes: we measure composition after the null intervention
and reversibility after one intervention cycle. Effectiveness is measured using accuracy.

intervention model effectiveness (%) reversibility
accfloorhue accobjecthue accobjectorientation accobjectscale accobjectshape accwallhue l

(1)
1 l

(10)
1

floor hue VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)
GAN 100.00 100.00 99.90 (0.16) 99.37 (0.13) 99.30 (0.16) 100.00 5.23 (0.15) 5.25 (0.15)

object hue VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)
GAN 100.00 99.99 (0.01) 99.91 (0.15) 99.29 (0.16) 99.16 (0.25) 100.00 5.33 (0.16) 5.35 (0.16)

object
orientation

VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)
GAN 100.00 100.00 99.88 (0.16) 99.07 (0.15) 99.00 (0.22) 100.00 5.32 (0.14) 5.35 (0.14)

object
scale

VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)
GAN 100.00 100.00 99.91 (0.15) 98.83 (0.27) 99.19 (0.27) 100.00 5.30 (0.15) 5.31 (0.15)

object
shape

VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)
GAN 100.00 100.00 99.92 (0.12) 98.76 (0.27) 99.10 (0.16) 100.00 5.37 (0.15) 5.39 (0.15)

wall hue VAE 100.00 100.00 100.00 100.00 100.00 100.00 1.62 (0.07) 1.62 (0.07)
GAN 100.00 100.00 99.86 (0.20) 99.30 (0.19) 99.32 (0.19) 100.00 5.27 (0.16) 5.29 (0.16)
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(a) Floor hue (VAE). (b) Floor hue (GAN). (c) Wall hue (VAE). (d) Wall hue (GAN).

(e) Orientation (VAE). (f) Orientation (GAN). (g) Object scale (VAE). (h) Object scale (GAN).

Figure 6: Effectiveness/Composition on 3D shapes. Each sub-figure has one sample per row: the first
column is the input, the second column is the result of the null intervention, and the last column is
the result of a partial intervention on a specific parent.
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F CELEBA-HQ

F.1 DATASET DETAILS

For our CelebA-HQ (Karras et al., 2018) experiments, we randomly split the 30,000 examples into
70% for training, 15% for validation and 15% for testing. We selected the ‘smiling’ and ‘eyeglasses’
binary parent attributes for conditioning our generative model. After careful consideration, we opted
for these attributes for three main reasons: (i) they are gender neutral which mitigates bias and
allows us to use the entire dataset rather than a smaller subset; (ii) they are more objective than
other attributes like ‘attractive’ and ‘young’; (iii) we can train reasonably accurate pseudo-oracles for
our counterfactual evaluation on these attributes, which is not the case for some others due to label
noise/ambiguity and significant class imbalance.

F.2 EXPERIMENT DETAILS

F.2.1 GENERATIVE MODEL

Architecture. For the experiments on the CelebA-HQ dataset, we follow the general very deep
VAE (VDVAE) setup proposed by (Child, 2021), and introduce some modifications to accommodate
both parent conditioning and our compute constraints. The architecture is based on the ResNet VAE
proposed by (Kingma et al., 2016) but is much deeper and uses bottleneck residual blocks. The
VDVAE has several stochastic layers of latent variables which are conditionally dependent upon
each other, and are organised into L groups z = {z0, z1, . . . , zL}. These latents are typically output
as feature maps of varying resolutions, whereby z0 consists of fewer latents at low resolution up
to many latents zL at high resolution. The conditioning structure is organised following the ladder
structure proposed by (Sønderby et al., 2016), where both the prior pθ(z) and approximate posterior
qϕ(z|x) generate latent latent variables in the same top-down order. As in previous work, the prior
and posterior are diagonal Gaussian distributions and the model is trained end-to-end by optimizing
the usual variational bound on the log-likelihood (ELBO) (Kingma & Welling, 2013; Maaløe et al.,
2019). We found that a naive application of a VDVAE to produce high resolution counterfactuals
leads to ignored counterfactual parent conditioning. Although the setup we describe next worked
well enough in our experiments, understanding and overcoming this issue in the general case likely
warrants further investigation.

For our experiments, we used a VDVAE with stochastic latent variables spanning 6 resolution scales
up to the 64 × 64 input resolution: {12, 42, 82, 162, 322, 642}, where each latent variable has 16
channels. We used the following number of residual blocks per resolution scale: {4, 4, 8, 12, 12, 4},
resulting in a total of 42 stochastic latent variable layers and 19M trainable parameters. Additionally,
we modified the original architecture from a fixed channel width (e.g. 384) across all resolutions to
the following custom channel widths per resolution: {32, 64, 128, 256, 512, 1024}. We found that
reducing the number of channels at higher resolutions and increasing them for lower resolutions
performed well enough in our experiments, whilst reducing both memory and runtime requirements
significantly.

Conditional VDVAE. For our counterfactual generation purposes, we augmented the original prior
and posterior top-down conditioning structure to include x’s parents pa as follows:

pθ(z|pa) = pθ(z0)

L∏
i=1

pθ(zi |zi−1,pa), qϕ(z|x,pa) = qϕ(z0 |x)
L∏

i=1

qϕ(zi |zi−1,x,pa). (15)

We call this the Conditional VDVAE. In practical terms, we simply expand and concatenate the
parent conditioning attributes to the latent variables at each stochastic layer, then merge them into the
downstream via a 1×1 convolution. Although there are many other conditioning structures one could
consider, this one proved good enough for our experiments. In order to produce counterfactuals, we
perform abduction by passing images and their parent attributes through the encoder and retrieving the
posterior latent variables at each stochastic layer. We then fix these latents and propagate them through
the decoder along with the counterfactual parent conditioning. We also found it beneficial to replace
the original diagonal discretized logistic mixture likelihood (Salimans et al., 2017) used in VDVAEs
with a diagonal discretized Gaussian likelihood (Ho et al., 2020), as it produced visually sharper
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counterfactuals in our experiments. Importantly, our model was trained with a β penalty (Higgins
et al., 2017) of 5 which discouraged it from focusing mostly on maximising the likelihood term in the
ELBO and ignoring counterfactual conditioning at inference time. We found that this introduces a
trade-off between reconstruction quality and obeying counterfactual conditioning.

Training Details. We trained our VDVAE for 1.7M steps with a batch size of 32 using the AdamW
(Loshchilov & Hutter, 2019) optimiser with an initial learning rate of 1e-3, β1 = 0.9, β2 = 0.9 and a
weight decay of 0.01. The learning rate was linearly warmed-up from 0 to 1e-3 over the first 100
steps then reduced to 1.5e-4 at 175K steps and again to 1.5e-5 at 900K steps. We set gradient clipping
to 220 and gradient L2 norm skipping threshold to 380, and observed no significant instabilities
during training. The final artefact is an exponential moving average of the model parameters with a
rate of 0.999 which we use at inference time. For data-augmentation, since the initial dataset was
128×128 resolution, during training we applied random cropping to 120×120 and resized to 64×64
before applying random horizontal flipping with probability 0.5 and finally scaling pixel intensities
to [−1, 1]. At test time we simply resize to 64× 64.

F.2.2 PSEUDO-ORACLES

Architecture. In order to evaluate the effectiveness of our CelebA-HQ counterfactuals, we trained
the following simple classifier for each of the ‘smiling’ and ‘eyeglasses’ binary attributes:

class ConvNet(nn.Module):
def __init__(self):

super().__init__()
self.cnn = nn.Sequential(

nn.Conv2d(3, 16, 3, 1, 1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(16, 32, 3, 2, 1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32, 32, 3, 1, 1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32, 64, 3, 2, 1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 128, 3, 2, 1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.AdaptiveAvgPool2d(1),

)
self.fc = nn.Sequential(

nn.Linear(128, 128),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.Linear(128, 1)

)

def forward(self, x):
return self.fc(self.cnn(x).squeeze())

Training Details. Our attribute classifiers were trained for 300 epochs with a batch size of 32 using
the AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate of 1e-3, β1 = 0.9,
β2 = 0.999 and weight decay of 0.01. The learning rate followed a plateau schedule on the validation
set F1-score, where it was halved after 50 epochs of no improvement. The final artefact is an

24



Published as a conference paper at ICLR 2023

exponential moving average of the model parameters with a rate of 0.99 which we use at inference
time. To find the best binary classification threshold between 0 and 1, we evaluated the validation set
at threshold intervals of 0.001 and took the best performing threshold in terms of F1-score. We ran
training from 3 random seeds and the final test set F1-score for the ‘smiling’ attribute is 0.9342±
0.0018, and for the ‘eyeglasses’ attribute it is 0.9758± 0.0037. For data augmentation, we followed
the VDVAE setup but also included the torchvision.transforms.AutoAugment() augmentation
module from PyTorch (Paszke et al., 2019) during training to strengthen regularisation. Since the
CelebA-HQ binary attributes can be highly imbalanced, we also used a weighted random data sampler
(with replacement) during training, which ensures minibatches have balanced representation of each
class at each step.

F.3 EXTRA RESULTS
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(d) Composition & Reversibility (‘eyeglasses’).

Figure 7: Measuring CelebA-HQ test set effectiveness, composition and reversibility as a function of
the number of latent variables abducted. Notice how counterfactual effectiveness drops rapidly as
more (posterior) latent variables are abducted, unlike the null intervention and reverse cycle case.
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Figure 8: Measuring CelebA-HQ test set effectiveness, composition and reversibility as a function
of the temperature used when sampling from the prior. In this example, the first 8 (posterior) latent
variables were abducted and the remaining 34 were randomly sampled from the prior. Notice how
low prior temperatures affect the effectiveness of cycled back images the most (Figure (a)).

Table 6: Soundness metrics on the CelebA-HQ test set over 3 random seeds, with different subsets of
abducted latent variables from our conditional VDVAE model. Composition is measured via the null
intervention and reversibility after one intervention cycle. Effectiveness of test set counterfactuals is
measured using F1-score given by our ‘smiling’/‘eyeglasses’ attribute classifiers.

smiling intervention eyeglasses intervention

latents composition reversibility effectiveness composition reversibility effectiveness
abducted l

(1)
1 ↓ l

(1)
1 ↓ F1-score ↑ l

(1)
1 ↓ l

(1)
1 ↓ F1-score ↑

1 60.100 (0.127) 59.521 (0.164) 0.984 (0.0005) 60.273 (0.144) 59.263 (0.013) 0.979 (0.002)
2 55.521 (0.068) 54.360 (0.092) 0.982 (0.0008) 55.443 (0.036) 54.314 (0.055) 0.982 (0.005)
4 29.489 (0.018) 30.705 (0.030) 0.957 (0.001) 29.491 (0.048) 30.758 (0.025) 0.976 (0.005)
8 20.890 (0.018) 22.604 (0.025) 0.933 (0.002) 20.896 (0.011) 22.526 (0.005) 0.932 (0.006)
16 15.997 (0.003) 18.269 (0.021) 0.921 (0.003) 16.312 (0.009) 18.323 (0.009) 0.932 (0.019)
24 6.606 (0.001) 9.880 (0.017) 0.886 (0.006) 8.092 (0.002) 9.290 (0.006) 0.872 (0.003)
32 4.160 (0.002) 6.189 (0.015) 0.858 (0.001) 4.451 (0.0006) 5.606 (0.010) 0.865 (0.023)
42 (all) 3.657 (0.0006) 5.701 (0.017) 0.848 (0.0006) 3.656 (0.001) 4.808 (0.004) 0.854 (0.006)
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Table 7: Ablation of β penalty training on composition, reversibility and effectiveness. Soundness
metrics were calculated on the CelebA-HQ test set using the ‘smiling’ attribute, over 3 random seeds.
We used our conditional VDVAE with a diagonal discretized logistic mixture likelihood. Notice
how no penalty (β=1) yields the best likelihood, composition and reversibility at the cost of low
effectiveness (i.e. ignored counterfactual conditioning under full abduction).

β latents NLL composition reversibility effectiveness
penalty abducted bits per dim ↓ l

(1)
1 ↓ l

(1)
1 ↓ F1-score ↑

1 42 ≤ 2.874 1.794 (0.0002) 2.482 (0.002) 0.536 (0.014)
3 42 ≤ 3.556 4.335 (0.001) 5.333 (0.002) 0.720 (0.002)
5 42 ≤ 3.931 6.362 (0.002) 7.775 (0.013) 0.877 (0.002)
7 42 ≤ 4.189 10.020 (0.008) 8.040 (0.0006) 0.910 (0.003)

10 42 ≤ 4.446 12.209 (0.003) 10.050 (0.002) 0.952 (0.001)
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Figure 9: CelebA-HQ test set counterfactuals of ‘eyeglasses’ (Top) and ‘smiling’ (Bottom) attributes.
‘Null Intervention’ refers to standard reconstruction using observed parents and ‘Cycled Back’ refers
to performing abduction on an observation’s counterfactual and re-conditioning back on the observed
parents. The x-axis shows the predicted label by the respective attribute classifier for each image.
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Figure 10: Traversing counterfactual latent space under different interventions and prior temperatures
t ∈ {1e−5, 0.1, 0.3, 0.5, 0.7, 0.9}. We are visualising CelebA-HQ test set ‘smiling’ and ’eyeglasses’
counterfactual combinations under partial abduction of the first 8 latent variables of our conditional
VDVAE, where the remaining latents are sampled from the prior at different t’s per row.
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Figure 11: Visualising the evolution of ‘smiling’ CelebA-HQ counterfactuals from full abduction (42
latents) to partial abduction (32-1 latents) and finally random samples (0 latents fixed).
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Figure 12: Visualising the evolution of ‘eyeglasses’ CelebA-HQ counterfactuals from full abduction
(42 latents) to partial abduction (32-1 latents) and finally random samples (0 latents fixed).
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Figure 13: Visualising CelebA-HQ test set ‘smiling’ reversibility. First column from the left contains
the observations, the second column contains ‘smiling’ counterfactuals under full abduction (42
latents), and the third column contains the first cycled back reversal. The process is repeated for the
remaining columns, showing progressive degradation away from the original observation.
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