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Bridging Fairness and Uncertainty: Theoretical Insights and
Practical Strategies for Equalized Coverage in GNNs

Anonymous Author(s)
∗

Abstract
Graph Neural Networks (GNNs) have become indispensable tools

in many domains, such as social network analysis, financial fraud

detection, and drug discovery. Prior research primarily concen-

trated on improving prediction accuracy while overlooking how

reliable the model predictions are. Conformal prediction on graphs

emerges as a promising solution, offering statistically sound un-

certainty estimates with a pre-defined coverage level. Despite the

promising progress, existing works only focus on achieving model

coverage guarantees without considering fairness in the coverage

within different demographic groups. To bridge the gap between

conformal prediction and fair coverage across different groups,

we pose the fundamental question: Can fair GNNs enable the un-
certainty estimates to be fairly applied across demographic groups?
To answer this question, we provide a comprehensive analysis of

the uncertainty estimation in fair GNNs employing various strate-

gies. We prove theoretically that fair GNNs can enforce consistent

uncertainty bounds across different demographic groups, thereby

minimizing bias in uncertainty estimates. Furthermore, we con-

duct extensive experiments on five commonly used datasets across

seven state-of-the-art fair GNN models to validate our theoreti-

cal findings. Additionally, based on the theoretical and empirical

insights, we identify and analyze the key strategies from various

fair GNN models that contribute to ensuring equalized uncertainty

estimates. Our work estimates a solid foundation for future ex-

ploration of the practical implications and potential adjustments

needed to enhance fairness in GNN applications across various

domains. For reproducibility, we publish our data and code at https:

//anonymous.4open.science/r/EqualizedCoverage_CP-9CF8.
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Figure 1: Comparison of three distributions, areas colored
with green denote all samples, blue represents samples from
the sensitive group, while red indicates the non-sensitive
group.We observe that conformal prediction with the thresh-
old to achieve the desired 90%marginal coverage would cause
coverage higher than 90% for the non-sensitive group and
lower than 90% for the sensitive group.

1 Introduction
Graph Neural Networks (GNNs) have gained significant importance

in recent years and have been extensively used in various domains,

such as social network analysis [23], financial fraud detection [5],

and drug discovery [24]. As GNNs are increasingly deployed in

high-stakes real-world applications, understanding the uncertainty

in the predictions made by GNNs becomes vital for enhancing the

reliability of GNNs in critical situations [39, 44]. Among several

uncertainty quantification techniques on graphs, conformal predic-

tion [4, 10, 36], especially the widely used split conform prediction,

emerges as a promising approach due to its efficiency and posthoc

nature. It is an easy-to-implement but statistically reliable method

to offer uncertainty estimates for any model. Specifically, it aims

to construct a confidence interval or prediction set to cover the

ground truth with a probability no smaller than a user-specified

coverage level, thereby offering critical insights into the reliability

of model predictions.

Despite the success of conformal prediction across various do-

mains, most existing work [9, 18, 43] on conformal prediction for

graph data primarily focuses on achieving marginal coverage guar-

antees (i.e., overall coverage for the entire population), neglecting

the fact that the coverage could vary across different demographic

groups of population defined by a sensitive attribute such as race or

gender. Consequently, it may achieve the desired overall coverage

by a high coverage above the desired coverage for one demographic

group and a low coverage below the desired coverage for another

1
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demographic group, failing to achieve equalized coverage condi-

tioned on the demographic group. Consider a job recommendation

system for software engineering positions, where there is a natural

imbalance between male and female candidates. Let’s say our pre-

diction set claims to be valid with a 5% mis-coverage rate overall.

However, upon closer examination, we find that it makes errors

with 0% probability for male candidates and 10% probability for

female candidates. In this scenario, neither group would be satisfied

with the claimed 5% mis-coverage level. This raises a fundamental

question: How can we enable the uncertainty estimates to
be fairly applied across demographic groups? How can we
achieve equalized coverage? Figure 1 shows the distribution of

the conformity score (the non-agreement between the model predic-

tion and ground truth) of GCN on the CiteSeer [32] dataset. In this

figure, the thresholds of conformity scores to achieve 90% coverage

for each distribution are different between the sensitive group (red

dashed line) and non-sensitive group (blue dashed line), and the

threshold of conformity score to achieve 90% marginal coverage for

the entire population (green dashed line) lies in between. Conse-

quently, our empirical finding highlights that conformal prediction

with the threshold to achieve the desired 90% marginal coverage

would cause coverage higher than 90% for the non-sensitive group

and lower than 90% for the sensitive group. Thus, it is crucial to

investigate how to achieve equalized coverage across different de-

mographic groups.

Achieving equalized coverage in graph learning requires us to

re-think where the bias comes from. Existing efforts in fair graph

learning mainly study the origin of bias from three aspects [8]:

graph structure, input features, and the mechanism of GNN. First,

inherent structural biases in graphs (e.g., homophily) [11, 12] make

nodes tend to form connections with other similar nodes. For exam-

ple, a social network may have fewer connections between people

from different race groups, leading to biased uncertainty estimates

about interactions between people from different race groups. Sec-

ond, the input features of a GNN model can be biased and un-

fair [12, 41], reflecting and perpetuating existing bias. For instance,

in a job recommendation system, historical data might show a dis-

proportionate number of men in leadership positions, leading to

biased feature representations that favor male candidates for execu-

tive roles. Lastly, the information aggregation mechanism in GNNs,

which combines information from connected nodes, could also am-

plify bias during the message-passing process, thereby affecting

the model fairness [25]. For instance, in a loan approval system

modeled as a graph where nodes represent applicants and edges

represent similar financial backgrounds, if historically disadvan-

taged groups are underrepresented or clustered together, the GNN’s

aggregation process might reinforce existing biases [19]. This could

lead to unfair loan approvals, as the model may struggle to accu-

rately assess creditworthiness for underrepresented groups due to

limited diverse information propagation. Inspired by prior works

trying to achieve equalized predictive performance (e.g., statistical

parity [11], equal opportunity [17]), we ask: how can we integrate

fairness considerations into the conformal prediction framework

for graph data to achieve equalized coverage?

To answer this question, we establish a theoretical connection

between equalized coverage and fair GNNs. The key insight is that

the coverage discrepancy across different demographic groups is

primarily characterized by a user-specified coverage lower bound

1 − 𝛼 and a group conditional coverage upper bound. The crucial

factor influencing this group’s conditional coverage upper bound

is the probability of a sample being assigned to a particular group.

Consequently, to achieve equalized coverage, it’s essential to
ensure that the estimated probability of a sample being as-
signed to each group is equal, which aligns with the objective
of fair GNNs. We provide theoretical proof that fair GNNs are ca-

pable of improving equalized coverage across demographic groups.

To validate these theoretical findings, we conduct comprehensive

experiments on five real-world datasets, evaluating multiple fair

GNN models to explore their fairness-aware performance. Further-

more, drawing from both theoretical and empirical insights, we

identify and analyze the key strategies employed by various fair

GNN models that contribute to achieving equalized coverage.

Our main contributions are summarized as follows:

• Problem. We are the first to formulate the problem of

equalized coverage in group fair GNNs.

• Theoretical Insights.We introduce a theoretical frame-

work for conditional coverage on graphs, offering a mathe-

matical foundation to quantify and understand the coverage

guarantees for each demographic group. Our theoretical re-

sults show that fair GNNs are helpful in achieving equalized

coverage.

• Extensive Empirical Studies.We conduct extensive ex-

periments on five datasets with ten GNNs (three without

fairness consideration and seven with fairness considera-

tion). We first examine the challenges of achieving equal-

ized uncertainty estimates in GNN models and explore

strategies to ensure the uncertainty estimates are consistent

and reliable across different demographic groups. Moreover,

we conducted a case study to verify the correctness of our

theoretical bound on group conditional coverage across a

wide range of user-specified coverage.

The rest of this paper is organized as follows. We provide the prelim-

inaries in Section 2, followed by the theoretical insights in Section

3. Section 4 discusses the experimental setup and results, followed

by a literature review in Section 5. Finally, we conclude the paper

in Section 6.

2 Preliminaries
In this section, we introduce preliminaries on Graph Neural Net-

works (GNNs), conformal prediction, and group fairness, followed

by defining the problem of equalized coverage on graphs.

Notation Convention. We use upper case calligraphic font

letters to denote sets (e.g., G), bold upper case letters to denote

matrices (e.g., A), bold lower case letters to denote vectors (e.g., m),

and regular lower case letters to denote scalars (e.g., 𝛼). For matrix

indexing, the 𝑖-th row of a matrix is denoted as its corresponding

upper case letter with subscript 𝑖 (e.g., the 𝑖-th row of matrix X is

𝑋𝑖 ), and superscript
𝑇
represents matrix transpose.

Graph Neural Networks (GNNs). GNNs are designed to ef-

ficiently represent graph data by capturing both the structure of

the graph and the features of each node. Given an undirected at-

tributed graph G = (V, E), where V = {𝑣1, · · · , 𝑣𝑁 } is the set of
nodes and E is the set of edges. The adjacency matrix is denoted by

2
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A ∈ R𝑁×𝑁
, and the node attribute matrix is X = [𝑋1, · · · , 𝑋𝑁 ]𝑇 ,

where𝑋𝑖 = 𝑋𝑣𝑖 . Here 𝑁 = |V| denotes the number of nodes. GNNs

iteratively update node embeddings by aggregating information

from their neighbors. At each layer 𝑙 , the embedding of node 𝑣𝑖 , de-

noted as h(𝑙 )𝑣𝑖 , is updated by using its previous embedding h(𝑙−1)𝑣𝑖 and

the aggregated information from its neighboring nodesN(𝑣𝑖 ). The
process is formalized as: h(𝑙 )𝑣𝑖 = UPD(h(𝑙−1)𝑣𝑖 ,AGG({h(𝑙−1)𝑣𝑗 : 𝑣 𝑗 ∈
N (𝑣𝑖 )})), where AGG(·) is an aggregation function that combines

the embeddings of neighboring nodes, and UPD(·) is an update

function that produces the new embedding for node 𝑣𝑖 .

Conformal Prediction. Unlike traditional machine learning

models that produce a single prediction, conformal prediction pro-

vides valid prediction sets for new samples, accompanied by a

guaranteed confidence level. This method is distribution-free and

only relies on exchangeability, meaning that it only requires the

assumption that the joint distribution remains unchanged when the

order of the data set is altered [4, 6]. In this work, we primarily focus

on split conformal prediction, which is the most widely-used ver-

sion of conformal prediction, and is computationally efficient [3, 4].

It divides the training data into two sets: the training set Dtrain,

and the calibration set D
calib

= {(𝑋1, 𝑌1), · · · , (𝑋𝑛, 𝑌𝑛)}. A pre-

diction model
ˆ𝑓 (i.e., GNNs) is trained on the training set Dtrain.

Then, given a predefined coverage rate (1 − 𝛼) ∈ [0, 1], it pro-
ceeds the following three steps: (1) Conformity score function. The

conformity score quantifies the degree of "conformity" of a node

with respect to the training data and the overall graph structure.

In conformal predictions, we aim to transform a model’s heuris-

tic notion of uncertainty into a rigorous one, and the first step is

to choose a conformity score function 𝑆 (𝑋,𝑌 ) ∈ R that reflects

the non-agreement between the prediction of model
ˆ𝑓 on 𝑋 and

𝑌 . (2) Quantile computation. Compute the ⌈ (𝑛+1) (1−𝛼 )𝑛 ⌉ empirical

quantile of the comformity scores {𝑆 (𝑋𝑖 , 𝑌𝑖 )}𝑛𝑖=1 on the calibra-

tion set D
calib

(denoted as 𝑆∗), where ⌈·⌉ is the ceiling function

(𝑆∗ is essentially 1 − 𝛼 quantile, but with a small correction). (3)

Prediction sets construction. Finally, use the empirical quantile to

form the prediction sets for new samples. Specifically, for a test

sample, the prediction sets can be formed by the quantile 𝑆∗ as:

C(𝑋test) = {𝑦 : 𝑆 (𝑋test, 𝑦) ≤ 𝑆∗}. If (𝑋𝑖 , 𝑌𝑖 )𝑛𝑖=1 and (𝑋test, 𝑌test)
are exchangeable, then C(𝑋test) contains the ground truth label

with predefined coverage rate: P(𝑌test ∈ C(𝑋test)) ≥ 1 − 𝛼 . Specifi-

cally, Adaptive Prediction Set (APS) [2] is a widely used conformity

score in the task of classification [31] and is utilized in this pa-

per. Its conformity score function computes the cumulative sum

of ordered class probabilities (from the most to the least probable

class) to the true class. Formally, for a test sample (𝑋test, 𝑌test), let
ˆ𝑓𝑗 (𝑋test) denotes the predicted probability that𝑌test belongs to class
𝑗 , where 𝑗 = 1, · · · , |Y|, and 𝜋 be a permutation of the classes so

that
ˆ𝑓𝜋 (1) (𝑋test) ≥ ˆ𝑓𝜋 (2) (𝑋test) ≥ · · · ≥ ˆ𝑓𝜋 ( |Y | ) (𝑋test). The con-

formity score is defined as the cumulative probability up to the

𝑘-th most probable class: 𝑆 (𝑋test, 𝑘) =
∑𝑘

𝑗=1
ˆ𝑓𝜋 ( 𝑗 ) (𝑋test), Then, the

prediction set is constructed as𝐶 (𝑋test) = {𝜋 (1), · · · , 𝜋 ( ˆ𝑘)}, where
ˆ𝑘 is the smallest integer satisfying:

∑ ˆ𝑘
𝑗=1

ˆ𝑓𝜋 ( 𝑗 ) (𝑋test) ≥ 𝑆∗.

Group Fairness. Group fairness is a fundamental principle in

machine learning that aims to ensure predictive models make unbi-

ased decisions across different demographic groups while maintain-

ing model utility. These groups are defined by protected or sensitive

features, such as race, gender, or features that users are usually

unwilling to share. The population can be divided into different

demographic subgroups based on these features, referred to as sensi-

tive subgroups. Group fairness is then defined upon these sensitive

subgroups, generally requiring that the algorithm should not yield

discriminatory predictions or decisions against individuals from

any specific sensitive subgroup. Mathematically, let𝐴 be a sensitive

attribute with groups 𝐺1,𝐺2, · · · ,𝐺𝑘 , and 𝑌 be the predicted out-

come. One common formulation of group fairness is demographic

parity, which requires 𝑃 (𝑌 = 1|𝐴 ∈ 𝐺1) = 𝑃 (𝑌 = 1|𝐴 ∈ 𝐺2)
for any two groups 𝐺1 and 𝐺2. This constraint ensures that the

probability of a positive prediction (𝑌 = 1) is equal across groups.

In the context of conformal prediction, satisfying group fairness

implies that for any attribute ∀𝑎 ∈ 𝐴, P(𝑌 ∈ C) ≥ 1 − 𝛼 for any

user-specified 𝛼 ∈ [0, 1], where C is the prediction set given by 𝑋

and 𝐴. This formulation extends the concept of group fairness to

uncertainty quantification, ensuring that the coverage probability

of the prediction set is consistent across all sensitive subgroups.

Estimating uncertainty accurately is essential for enhancing

the reliability and trustworthiness of decision-making processes.

While recent studies have increasingly concentrated on refining

uncertainty estimates, the question of their fairness remains largely

neglected. Although some research has touched on fairness, there

has been minimal effort to synthesize these concepts comprehen-

sively. Therefore, our research aims to investigate the integration of

group fairness models within the framework of conformal predic-

tion, addressing this critical gap in the literature. Here, we introduce

the formal problem definition of equalized coverage in group fair

GNNs as follows:

Problem 1. Equalized Coverage in Group Fair GNNs
Input: (i) An undirected attributed graph G = (V, E) with the
adjacency matrix A, the node attribute matrix X, and the label Y, (ii)
an L-layer GNNs model ˆ𝑓 , (iii) a sensitive attribute 𝑎.
Output: Equalized coverage for all demographic groups of nodes
defined by the sensitive attribute 𝑎.

3 Fair GNNs Encourage Equalized Coverage
In this section, we introduce the theoretical analysis for fair GNNs

in the context of conformal prediction. First, we explore the em-

ployment of conformal prediction to graph data, focusing on the

exchangeability of nodes in graphs when sensitive attributes are

considered. Then we introduce Lemma 2, which offers conditional

coverage guarantees for conformal prediction. Finally, we derive the

group conditional coverage for each group and demonstrate that

fair GNNs can reduce discrepancies of conditional coverage among

diverse demographic groups, thus achieving equalized coverage.

Assumption 1. For any permutation 𝜋𝑎 of the calibration and
test sets Dcalib ∪ Dtest conditioned on the sensitive attribute 𝐴 =

𝑎, the conformity score 𝑆 of the node 𝑣 𝑗 ∈ Dcalib ∪ Dtest remains
unchanged. Mathematically,

𝑆 (𝑋 𝑗 , 𝐴 𝑗 , 𝑌𝑗 ) = 𝑆 (𝑋𝜋𝑎 (𝑣𝑗 ) , 𝐴𝜋𝑎 (𝑣𝑗 ) , 𝑌𝜋𝑎 (𝑣𝑗 ) )
3
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where node 𝑣 𝑗 ∈ (V, E), 𝜋𝑎 (𝑣 𝑗 ) ∈ (V𝜋𝑎 , E𝜋𝑎 ), and (V, E) and
(V𝜋𝑎 , E𝜋𝑎 ) denote the same graph with nodes reordered according to
the permutation 𝜋𝑎 , and node 𝑣 𝑗 and 𝜋𝑎 (𝑣 𝑗 ) denote the same node
reordered to the permutation 𝜋𝑎 too. This permutation is applied to
the nodes in the calibration and test sets Dcalib ∪ Dtest based on the
sensitive attribute 𝐴 = 𝑎.

Assumption 1 introduces a crucial requirement for training

Graph Neural Networks (GNNs): conditional permutation invari-

ance. This assumption ensures that the conformity score is fair and

consistent regardless of the ordering of data within each sensitive

subgroup. Essentially, any permutation regarding sensitive sub-

groups of calibration and test sets doesn’t impact the conformity

scores for any node in the graph. GNN models typically satisfy this

Assumption 1 inherently, as they focus exclusively on the graph’s

structure and node attributes, disregarding the order of nodes. This

is due to the fundamental operation of GNNs, which involves it-

eratively aggregating information from neighboring nodes and

updating node representations, without any dependence on the

sequential order of nodes within the graph.

Given Assumption 1, we can derive the coverage bound as pre-

sented in the following lemma. Variations of Lemma 2 for conformal

prediction have been extensively discussed in prior literature, high-

lighting its significance in the field. [22, 30, 37].

Lemma 2. Suppose the random variables 𝑍1, · · · , 𝑍𝑛+1 are ex-
changeable on the sensitive attribute 𝐴𝑛+1 = 𝑎, and𝑄1−𝛼 denotes the
(1 − 𝛼) (1 + 1/𝑛)-th empirical quantile of {𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑛}. For any
𝛼 ∈ (0, 1),

P{𝑍𝑛+1 ≤ 𝑄1−𝛼 |𝐴𝑛+1 = 𝑎} ≥ 1 − 𝛼.

Moreover, if the random variables 𝑍1, · · · , 𝑍𝑛+1 are almost surely
distinct, then it holds that

P{𝑍𝑛+1 ≤ 𝑄1−𝛼 |𝐴𝑛+1 = 𝑎} ≤ 1 − 𝛼 + 1

𝑛 + 1

.

where each 𝑍𝑖 = (𝑋𝑖 , 𝐴𝑖 , 𝑌𝑖 ) is a random variable.

Proof sketch. Full proof of Lemma 2 are in Appendix A. For

the random variables 𝑍1, · · · , 𝑍𝑛, (𝑋𝑛+1, 𝐴𝑛+1, 𝑌𝑛+1), we rank 𝑆𝑛+1
among the remaining conformity score 𝑆1, · · · , 𝑆𝑛 ,

𝜋 (𝑌𝑛+1) =
1

𝑛 + 1

𝑛+1∑︁
𝑖=1

1{𝑆𝑖 ≤ 𝑆𝑛+1} =
1

𝑛 + 1

+ 1

𝑛 + 1

𝑛∑︁
𝑖=1

1{𝑆𝑖 ≤ 𝑆𝑛+1}

By exchangeability of the data points, when evaluated at 𝑍𝑛+1, we
see that the constructed statistic 𝜋 (𝑌𝑛+1) is uniformly distributed

over the set { 1

𝑛+1 ,
2

𝑛+1 , · · · , 1}, which implies that:

P ((𝑛 + 1)𝜋 (𝑌𝑛+1) ≤ ⌈(1 − 𝛼) (𝑛 + 1)⌉) ≥ 1 − 𝛼,

and if the conformity score is almost surely distinct (a weak as-

sumption used to avoid ties when ranking), then

P ((𝑛 + 1)𝜋 (𝑌𝑛+1) ≤ ⌈(1 − 𝛼) (𝑛 + 1)⌉) ≤ 1 − 𝛼 + 1

𝑛 + 1

,

By setting 𝑄1−𝛼 = (1 − 𝛼) (1 + 1

𝑛 ){𝑍𝑖 , 1 ≤ 𝑖 ≤ 𝑛}, P{𝑍𝑛+1 ≤
𝑄1−𝛼 |𝐴𝑛+1 = 𝑎} ≥ 1 − 𝛼, and P{𝑍𝑛+1 ≤ 𝑄1−𝛼 |𝐴𝑛+1 = 𝑎} ≤
1−𝛼 + 1

𝑛+1 when {𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑛+1} are almost surely distinct. □

The first part of Lemma 2 is a variation of the standard property

of all conformal prediction methods, which guarantees the con-

ditional coverage of the prediction sets. For the second part, the

surely distinct assumption is quite a weak assumption and is used

to avoid ties during the ranking of conformal scores. By employ-

ing a random tie-breaking rule, this assumption could be avoided

entirely. While Lemma 2 provides the key property of conditional

coverage, we further introduce the group conditional coverage for

any data distribution in Theorem 3. Group conditional coverage

is a more granular measure that quantifies the coverage rate for

each individual group, ensuring that the prediction sets maintain

the desired coverage level within each group.

Theorem 3. If (𝑋𝑖 , 𝐴𝑖 , 𝑌𝑖 ) : 1 ≤ 𝑖 ≤ 𝑛 + 1 are exchangeable,
then the prediction set 𝐶 (𝑋𝑛+1, 𝐴𝑛+1) = {𝑦 : 𝑆 (𝑋𝑛+1, 𝐴𝑛+1, 𝑦) ≤ 𝑆∗},
where 𝑆∗ is the (1−𝛼) (1+1/𝑛)-th empirical quantile of the conformity
score evaluated on the calibration set, obeys

1 − 𝛼 ≤ P{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1) |𝐴𝑛+1 = 𝑎}

≤ 1 − 𝛼 + 𝑑

(𝑛 + 1)P(𝐴𝑛+1 = 𝑎) ,

where 𝑑 represents the number of distinct groups based on different
values of attribute 𝐴. e.g., the group number (or order) of 𝑎 ∈ [1, 𝑑].

Proof sketch. Let W = {Φ(.)𝑇 𝛽 : 𝛽 ∈ R𝑑 } represents the

class of linear functions over the basis Φ : X → R𝑑 (the reweight-

ing functions), and let 𝑔 denotes quantile estimates. Then, for any

non-negative𝑤 ∈ W satisfiesE𝑃 [𝑤 (𝑋,𝐴)] > 0, then prediction set

𝐶 (𝑋𝑛+1, 𝐴𝑛+1)will fulfill the condition P𝑤 (𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1)) ≥
1 − 𝛼 . Additionally, if (𝑋1, 𝐴1, 𝑌1), · · · , (𝑋𝑛+1, 𝐴𝑛+1, 𝑌𝑛+1) are ex-

changeable, and 𝑆 | (𝑋,𝐴) is surely distinct. In that case, we can

further assert that for all𝑤 ∈ W, we additionally have the upper

bound that (full proof of Theorem 3 are in Appendix A):

E[𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (1{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1)} − (1 − 𝛼))]

≤ 𝑑

𝑛 + 1

E
[

max

1≤𝑖≤𝑛+1
|𝑤 (𝑋𝑖 , 𝐴𝑖 ) |

]
IfW = {∑𝐺∈G 𝛽𝐺1{𝑋 ∈ 𝐺} : 𝛽𝐺 ∈ R}, then

P{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1) |𝐴𝑛+1 = 𝑎} ≤ 1 − 𝛼 + 𝑑

(𝑛 + 1)P(𝑋𝑛+1 ∈ 𝐺)

≤ 1 − 𝛼 + 𝑑

(𝑛 + 1)P(𝐴𝑛+1 = 𝑎)
□

According to Theorem 3, we observe that the upper bound of

coverage for different groups varies. The crucial factor influencing

this variation is the probability of a sample being assigned to a

particular group, specifically, P(𝐴𝑛+1 = 𝑎). To achieve equalized

conditional coverage across groups, it is necessary to ensure that the

estimated probability of a sample being assigned to each group is

equal. Interestingly, fair group graph neural network (GNN) models

inherently aim to eliminate disparities (or discriminations) between

groups to ensure group equity. Thus, in this work, we investigate

the interplay between group fairness and conformal prediction,

exploring how enforcing group fairness in GNNs can potentially

contribute to achieving equalized conditional coverage guarantees

across groups in the conformal prediction framework.

4
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4 Experiments
In this section, we conduct experiments to evaluate our model using

5 datasets with 7 popular fair GNN models and 3 traditional GNN

models in terms of uncertainty estimates (coverage and efficiency).

We focus on answering the following two questions: Q1. Does the
state-of-the-art fair GNNs encourage equalized coverage in the task

of node classification? And, which designs of fair GNNs are most

effective? Q2. Does the theoretical bound on group conditional

coverage presented in Theorem 3 confirm the empirical results

observed in practice?

4.1 Experimental Settings
Datasets.We conduct experiments on five real-world datasets, in-

cluding Cora [32], CiteSeer [32], PubMed [32], DBLP [13], Coauthor-

Physics [33], and Coauthor-CS [33]. The detailed data statistics are

provided in Table 1.

Table 1: Statistics of real-world graph benchmarks. The num-
ber (n) next to the sensitive attribute label indicates how
many values the sensitive attribute may take on.

Types Datasets # Nodes # Edges # Features Sensitive # Label

Citation

Cora 2,708 10,556 1,433 Topic (2) 7

CiteSeer 3,327 9,104 3,703 Topic (2) 6

PubMed 19,717 88,648 500 Topic (2) 3

Coauthor

CS 18,333 163,788 6,805 Topic (2) 15

Physics 34,493 495,924 8,415 Topic (2) 5

Group Fairness GNNs.We compare classical GNNs with pop-

ular group fairness GNNs. Among the classical models, GCN [21]

employs a spectral-based approach to aggregate and update node

features through graph neighborhoods. GraphSAGE [16] introduces

an inductive framework that learns aggregation functions to gen-

erate node embeddings for unseen data. And GAT [34] utilizes

attention mechanisms to assign different importance to neighbor-

ing nodes during feature aggregation. In the realm of fair GNNs,

we examine several approaches: Fairwalk [28] is a modified ran-

dom walk method that aims to generate fair node embeddings

by adjusting transition probabilities based on sensitive attributes.

CrossWalk [20] enhances graph embeddings by encouraging con-

nections between nodes from different demographic groups during

the random walk. GEAR [27] learns fair graph embeddings by opti-

mizing a fairness-aware objective function alongside the traditional

embedding loss. UGE [40] mitigates bias by reweighting edge sam-

pling probabilities based on node degrees and sensitive attributes.

NIFTY [1] improves fairness in graph neural networks by introduc-

ing a fairness-aware loss term during training. FairVGNN [41] in-

corporates fairness constraints into the learning process to generate

fair node representations. And BeMap [25] adjusts the aggregation

process to reduce unfairness in node representations. These meth-

ods each tackle fairness in graph learning from different angles,

aiming to address biases in various aspects, from graph structural

bias elimination (e.g., Fairwalk, CrossWalk), input feature correc-

tion (e.g., NIFTY, FairVGNN), to modifying the mechanism of GNNs

(e.g., BeMap), we aim to explore their strengths and weaknesses in

different settings.

Parameter Settings. Unless stated otherwise, we follow the

default hyperparameter settings in the released code of the corre-

sponding publications. This ensures that our experiments remain

consistent and comparable. However, the parameters of some meth-

ods are optimized for the task of binary classification, which may

lead to less consistent performance when deployed in different

scenarios.

Evaluation Metrics.We consider the task of node classification.

The goal is to ensure valid coverage while minimizing the ineffi-

ciency as much as possible, Furthermore, to promote group fairness,

we also aim to reduce disparities in coverage and inefficiency be-

tween different demographic groups. We evaluate performance

using four key metrics: coverage, inefficiency, coverage difference,

and inefficiency difference. Specifically, the coverage is defined as

the proportion of instances for which the true label is included in

the prediction set, given by Coverage := 1

𝑛

∑𝑛
𝑖=1 1(𝑌𝑖 ∈ 𝐶 (𝑋𝑖 , 𝐴𝑖 )).

Inefficiency refers to the average size of the prediction set: Ineff :=
1

𝑛

∑𝑛
𝑖=1 |𝐶 (𝑋𝑖 , 𝐴𝑖 ) |. The coverage difference measures the dispar-

ity between groups, defined as ΔCoverage := |Coverage(𝑎 = 1) −
Coverage(𝑎 = 0) |, while the inefficiency difference quantifies the

disparity in prediction set size between groups, defined as ΔIneff :=

|Ineff(𝑎 = 1) − Ineff(𝑎 = 0) |. It is worth noting that inefficiency is

as critical as coverage—if inefficiency is disregarded, methods could

achieve 100% coverage by including all candidate labels, which

would result in maximum inefficiency. Thus, balancing both met-

rics is crucial for achieving meaningful and fair predictions.

ImplementationDetails.We implement traditional GNNswith

PyG. All the datasets we used can be found in PyG. For those

datasets that do not provide splits, we split them follow a standard

evaluation procedure, where we randomly split dataset into 20%,

10%, and 70% for model training, validation, and calibration and

testing.We use the same splits for all the models for fair comparison.

The experiments are performed on a machine with Nvidia GPU

A100 (80G), the Python version is 3.9.19, the Pytorch version is

1.12.0, the CUDA version is 12.4, and the PyG version is 2.1.0. We

publish our data and code for reproducibility.
1

4.2 (Q1) Quantitative Evaluation on Fair GNNs
In this subsection, we conduct a quantitative analysis of the results

of various methods. The main results on the utility (coverage and

inefficiency) and fairness (ΔCoverage and ΔInefficiency) are pre-

sented in Table 2. We can notice that: (1). For classical GNN models,

Graphsage demonstrates superior performance in terms of fairness

compared to its counterparts on large-scale datasets. However, it

falls short in utility performance, characterized by significant ineffi-

ciencies. Similar trends are observed in fair GNNmodels like NIFTY

and FairVGNN, which pay more attention to fairness. (2). FairWalk,

CrossWalk, and UGE primarily focus on reducing the structural

bias. Both FairWalk and CrossWalk are based on the Node2Vec

model and enhance it by introducing constraints to the random

walk process, which helps generate less biased predictions. UGE

goes a step further by not only addressing structural bias but also

incorporating a regularization technique to minimize discrepan-

cies in predictions with and without the sensitive attribute. These

approaches have demonstrated more consistent performance in

1
https://anonymous.4open.science/r/EqualizedCoverage_CP-9CF8
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Table 2: Results of conformal prediction with GNNs models. The result takes the average and standard deviation across 5 GNN
runs with the pre-defined coverage (e.g., 1 − 𝛼=90%).

Dataset Method Coverage (%) Inefficiency ↓ Group Coverage(%)
ΔCoverage(%) ↓ ΔInefficiency ↓

Coverage

(Sens.)

Coverage

(Non-sens.)

Cora

GCN 91.12 ± 1.87 3.59 ± 0.35 96.00 ± 1.89 90.57 ± 2.06 5.43 ± 2.08 0.45 ± 0.07

GraphSage 90.84 ± 1.45 4.68 ± 0.39 94.32 ± 3.78 90.46 ± 1.34 3.86 ± 3.88 0.14 ± 0.10

GAT 89.98 ± 1.05 3.34 ± 0.57 93.26 ± 2.73 89.61 ± 0.89 3.65 ± 2.92 0.38 ± 0.13

FairWalk 90.38 ± 1.80 4.08 ± 0.79 91.65 ± 6.39 90.24 ± 1.96 1.41 ± 3.13 0.15 ± 0.11

CrossWalk 90.55 ± 1.64 3.89 ± 0.45 92.37 ± 3.95 90.35 ± 2.02 2.02 ± 3.23 0.12 ± 0.10

UGE 89.77 ± 0.21 3.92 ± 0.11 90.88 ± 1.40 89.64 ± 0.07 1.29 ± 1.20 0.14 ± 0.12

GEAR 90.19 ± 1.05 3.45 ± 0.19 89.89 ± 2.74 90.22 ± 0.87 0.33 ± 1.28 0.14 ± 0.02

NIFTY 89.98 ± 0.01 5.22 ± 0.59 87.82 ± 1.65 90.24 ± 0.01 2.42 ± 1.97 0.03 ± 0.03

FairVGNN 89.66 ± 0.11 4.85 ± 1.02 87.97 ± 0.38 89.85 ± 0.13 1.88 ± 2.91 0.05 ± 0.04

BeMap 91.60 ± 0.67 4.15 ± 0.01 94.12 ± 2.45 91.33 ± 0.42 2.79 ± 2.00 0.34 ± 0.08

CiteSeer

GCN 90.84 ± 1.22 2.86 ± 0.11 87.32 ± 1.61 91.16 ± 1.35 3.84 ± 2.48 0.29 ± 0.11

GraphSage 93.01 ± 6.62 4.60 ± 1.23 96.43 ± 3.57 92.69 ± 6.90 3.74 ± 3.33 0.10 ± 0.08

GAT 91.81 ± 2.42 2.76 ± 0.39 90.54 ± 2.32 91.93 ± 2.53 1.39 ± 2.10 0.21 ± 0.13

FairWalk 93.23 ± 5.71 5.13 ± 0.65 93.93 ± 6.42 93.17 ± 0.16 0.76 ± 3.14 0.07 ± 0.08

CrossWalk 90.51 ± 1.95 4.67 ± 0.27 89.11 ± 4.63 90.64 ± 2.15 1.53 ± 4.17 0.07 ± 0.07

UGE 90.88 ± 0.08 4.39 ± 0.14 91.61 ± 0.41 90.81 ± 0.99 0.79 ± 3.82 0.09 ± 0.08

GEAR 88.24 ± 0.35 4.03 ± 0.40 87.20 ± 2.08 88.33 ± 0.58 1.13 ± 0.72 0.02 ± 0.02

NIFTY 88.03 ± 1.12 4.89 ± 0.33 86.86 ± 5.61 88.13 ± 0.70 1.27 ± 3.78 0.04 ± 0.10

FairVGNN 89.01 ± 0.68 4.11 ± 0.55 88.84 ± 3.13 89.03 ± 0.62 0.19 ± 1.21 0.06 ± 0.08

BeMap 90.33 ± 1.63 3.15 ± 0.28 91.43 ± 2.14 90.24 ± 1.58 1.19 ± 0.57 0.19 ± 0.07

PubMed

GCN 88.48 ± 0.38 1.55 ± 0.04 91.31 ± 0.53 88.22 ± 0.37 3.09 ± 0.45 0.21 ± 0.03

GraphSage 91.33 ± 8.45 1.95 ± 0.97 91.93 ± 7.79 91.28 ± 8.51 0.65 ± 0.76 0.08 ± 0.07

GAT 93.34 ± 0.55 1.48 ± 0.04 94.47 ± 0.45 93.23 ± 0.59 1.24 ± 0.14 0.24 ± 0.03

FairWalk 88.07 ± 0.58 1.77 ± 0.02 85.58 ± 2.09 88.30 ± 0.47 2.71 ± 1.64 0.05 ± 0.02

CrossWalk 87.61 ± 1.19 1.75 ± 0.04 84.87 ± 1.01 87.87 ± 1.24 3.00 ± 0.74 0.05 ± 0.01

UGE 90.62 ± 0.13 1.93 ± 0.05 88.01 ± 1.02 90.87 ± 0.23 2.86 ± 1.16 0.06 ± 0.04

GEAR 89.41 ± 0.87 1.42 ± 0.05 91.93 ± 1.25 89.02 ± 0.83 2.91 ± 0.42 0.19 ± 0.07

NIFTY 99.65 ± 0.15 2.98 ± 0.01 99.41 ± 0.32 99.67 ± 0.13 0.26 ± 0.30 0.01 ± 0.01

FairVGNN 90.18 ± 0.60 1.80 ± 0.18 88.61 ± 0.06 90.33 ± 0.59 1.72 ± 1.67 0.19 ± 0.04

BeMap 89.44 ± 1.31 1.71 ± 0.05 91.05 ± 0.42 89.29 ± 1.39 1.77 ± 0.97 0.11 ± 0.07

Physics

GCN 89.68 ± 0.05 3.02 ± 0.15 73.79 ± 3.38 91.13 ± 0.74 17.33 ± 3.83 0.84 ± 0.10

GraphSage 99.96 ± 0.01 4.91 ± 0.01 99.96 ± 0.01 99.96 ± 0.01 0.01 ± 0.01 0.04 ± 0.01

GAT 89.73 ± 0.78 2.06 ± 0.18 90.12 ± 7.81 89.70 ± 1.21 0.42 ± 0.66 0.67 ± 0.28

FairWalk 90.20 ± 0.26 2.92 ± 0.05 77.89 ± 0.17 91.32 ± 0.15 13.43 ± 1.96 0.72 ± 0.07

CrossWalk 89.75 ± 0.47 2.84 ± 0.04 75.52 ± 0.18 91.05 ± 0.36 15.53 ± 1.53 0.69 ± 0.06

UGE 89.44 ± 0.01 1.75 ± 0.02 80.38 ± 0.01 90.28 ± 0.01 9.89 ± 0.01 0.51 ± 0.01

GEAR 90.86 ± 0.32 2.23 ± 0.02 85.38 ± 1.76 91.36 ± 0.19 5.98 ± 1.57 0.79 ± 0.02

NIFTY 90.31 ± 1.40 3.64 ± 0.62 98.75 ± 0.35 89.54 ± 1.50 9.21 ± 1.15 0.04 ± 0.06

FairVGNN 93.32 ± 0.05 4.29 ± 0.62 99.01 ± 0.94 92.80 ± 5.55 6.21 ± 4.61 0.07 ± 0.19

BeMap 89.67 ± 0.25 2.71 ± 0.14 83.37 ± 5.11 90.24 ± 0.74 6.87 ± 5.86 0.30 ± 0.32

CS

GCN 90.10 ± 0.93 7.99 ± 0.23 93.36 ± 0.36 89.76 ± 1.01 3.59 ± 0.89 0.67 ± 0.43

GraphSage 99.97 ± 0.01 14.66 ± 0.04 99.90 ± 0.01 99.97 ± 0.01 0.07 ± 0.01 0.12 ± 0.07

GAT 89.61 ± 0.01 6.47 ± 0.02 98.55 ± 0.04 88.76 ± 0.05 9.79 ± 0.40 1.65 ± 0.77

FairWalk 91.52 ± 0.76 7.08 ± 0.32 91.13 ± 1.37 91.55 ± 0.69 0.42 ± 0.56 0.55 ± 0.21

CrossWalk 90.66 ± 1.01 7.50 ± 0.39 89.23 ± 1.80 91.04 ± 1.04 1.81 ± 0.98 0.49 ± 0.08

UGE 91.70 ± 0.88 4.07 ± 0.28 94.41 ± 0.29 91.44 ± 0.94 2.97 ± 0.65 0.52 ± 0.06

GEAR 89.14 ± 0.40 6.30 ± 0.26 91.71 ± 0.87 88.90 ± 0.35 2.81 ± 0.58 0.13 ± 0.06

NIFTY 89.00 ± 0.76 9.48 ± 2.13 91.98 ± 1.66 88.71 ± 0.67 3.27 ± 1.95 0.18 ± 0.14

FairVGNN 89.01 ± 0.65 10.54 ± 1.30 93.92 ± 2.22 88.53 ± 0.53 5.39 ± 2.23 0.46 ± 0.14

BeMap 90.37 ± 0.58 5.37 ± 0.10 92.47 ± 0.30 90.17 ± 0.95 2.30 ± 0.42 0.56 ± 0.12

terms of ΔCoverage and ΔIneff across various datasets, indicating

superior effectiveness in comprehensive evaluations. (3). GEAR,

NIFTY, and FairVGNN all interact with input features to promote

fairness. NIFTY focuses on maximizing the similarities between
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Figure 2: Qualitative evaluation on group-conditional cover-
age bound w.r.t. 1- 𝛼 .

outputs from the original graph and the augmented graph, which

involves minor random perturbations to node attributes and/or

edges and modifications of the sensitive attribute while also intro-

ducing layerwise weight normalization to enhance message passing.

GEAR aims to minimize the discrepancy between predictions from

the original graph and counterfactual data augmentation, which

alters sensitive attributes of nodes and their neighbors. FairVGNN

constructs a fair view of features by automatically identifying and

masking sensitive-correlated features and adjusting the encoder’s

weight to avoid using such sensitive-related features. However,

while these methods prioritize fairness, they often fall short of gen-

erating efficient predictions, particularly in large-scale datasets. (4)

BeMap investigates the problem of bias amplification in message

passing and leverages a balance-aware sampling strategy to balance

the number of the 1-hop neighbors of each node among different

demographic groups. While it may not consistently deliver top per-

formance in all settings, its performance remains stable and reliable.

Finally, these findings highlight the need to prioritize addressing

structural bias in the process of reducing bias in conformal predic-

tions. Attention should then shift to examining the mechanisms of

message passing and the corresponding input features.

4.3 (Q2) Qualitative Evaluation on
Group-conditional Coverage Bound

We also conduct a qualitative analysis of the results. Specifically,

we first plot the coverage of some representative methods to em-

pirically prove the validity of Theorem 3. Then we explore the

differences in conformity scores across different methods to gain

deep insights into their performance. Figure 2 presents a series of

plots on the dataset of Cora, each showing how coverage changes

with the change of alpha value for a particular method within

each group. Each method is shown in the same color, and differ-

ent shapes are used to show groups within those methods. This

figure helps to identify trends and variations in coverage as the

alpha value is adjusted across different methods and groups. The

solid line illustrates the lower bound, while the dashed line repre-

sents the upper bound. We can notice that these lines are within

the lower bound and upper bound, which further verifies Theo-

rem 3. Additionally, it is worth noting that while the theoretical

guarantee of coverage holds, the size of the calibration set can

100 500 1000
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Figure 3: Boxplot of the marginal coverage w.r.t. the size of
calibration set.

lead to variations in observed coverage. Vladimir Vovk [35] first

introduces that the distribution of coverage follows a Beta distribu-

tion: P{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1) |{(𝑋𝑖 , 𝑌𝑖 )}𝑛𝑖=1} ∼ Beta(𝑛 + 1 − 𝑙, 𝑙), where
𝑙 = ⌊(𝑛+1)𝛼⌋. Although the bound may fluctuate slightly, if the size

of the calibration set 𝑛 (e.g., 1000) is carefully chosen, the coverage

will concentrate sufficiently tightly around 1−𝛼 . This phenomenon

can be observed in Figure 3. We also observe that the sensitivity to

calibration set size varies among methods: some exhibit significant

coverage fluctuations when the calibration set deviates from its

optimal size (e.g., NFITY, FairVGNN, etc.), while others demonstrate

smoother performance with smoother coverage across different

calibration set sizes (e.g., CrossWalk, UGE).

We also plot the distribution of conformity scores for different

groups in Figure 4, green represents all samples, red denotes the

samples from the sensitive group, and blue indicates the samples

from the non-sensitive group. A vertical dashed line is utilized to

denote the 90% quantile of each group’s distribution with the corre-

sponding color. Due to space limits, we choose some representative

methods presented in this figure. We observe that: (1) The 90%

quantile difference among different groups using fairness methods

is minor when compared to GCN. This indicates that these methods

exhibit smaller differences in coverage and inefficiency relative to

GCN, suggesting a more consistent performance across the groups.

(2) However, different fair GNN methods perform differently in the

distribution of conformity scores, and we can notice that the differ-

ences in group distribution between CrossWalk, GEAR, and BeMap

are smaller than those between NIFTY and FairVGNN, which can

partly explain why they have better performance. (3) The shape of

distribution also matters. When the distribution is more skewed and

closer to the right side, the inefficiency of this method is lower (e.g.,

CrossWalk, BeMap), and when this distribution is more uniform,

or smoother, its inefficiency is higher (e.g., NIFTY, FairVGNN).

5 Related Work
Fairness in Graph Learning. As GNNs have become increasingly

important in recent years and have been successfully used in many

areas, the fairness issues in GNNs have been actively studied. Bose

and Hamilton [7] proposed an adversarial approach to learn fair

graph embeddings by adding an adversary network to the embed-

ding to remove sensitive attribute information. Building upon the
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Figure 4: Distribution of conformity scores.

Node2Vec [15] model, FairWalk [28] and CrossWalk [20] intro-

duce constraints into the random walk process, enhancing fairness

in representation learning. UGE [40] extends this pursuit by not

only addressing structural biases but also integrating regularization

techniques to minimize prediction disparities concerning sensitive

attributes. In terms of counterfactual fairness, NIFTY [1] focuses

on maximizing similarities between outputs from original and aug-

mented graphs through minor perturbations in node attributes

and/or edges. Similarly, GEAR [27] aims to minimize prediction

discrepancies between original and counterfactual data-augmented

graphs by altering sensitive attributes of nodes and their neigh-

bors. Moreover, BeMap [25] explores bias amplification in message

passing, employing a balance-aware sampling approach to ensure

equitable representation of 1-hop neighbors across demographic

groups.

Conformal prediction. Conditional coverage using conformal

prediction has primarily been investigated in the context of i.i.d.

(independent and identically distributed) data. Gibbs et al. [14]

studied the problem of constructing distribution-free prediction

sets with finite-sample conditional guarantees. Romano et al. [29]

introduced a method to construct unbiased prediction intervals

for regression tasks, while Wang et al. [38] further refined this ap-

proach to guarantee equal coverage rates across groups with finer

granularity. Despite these advancements, the application of confor-

mal prediction to graph-structured data remains largely unexplored.

Wijegunawardana et al. [42] first apply conformal prediction on

graphs. Zargarbashi et al. [43] study the exchangeability under

the transductive setting and propose a diffusion-based method for

improving efficiency. Lunde et al. [26] studies exchangeability in

network regression for non-conformity scores based on various

network structures. Huang et al. [18] first study the transductive

setting where certain exchangeability property holds and propose

a regularizer to reduce the inefficiency. However, little attention

has been paid to achieving equalized coverage within different de-

mographic groups on graphs. Our work aims to bridge this gap

by extending conformal prediction techniques to graph-structured

data while focusing on fairness considerations across diverse de-

mographic groups.

6 Conclusion
In this paper, we introduce the concept of equalized coverage in fair

GNNs through a novel theoretical framework for conditional cover-

age. This framework provides a mathematical foundation for quan-

tifying coverage guarantees across different groups, paving the way

for equitable conformal prediction methods in fair GNNs. We ex-

plore the application of conformal prediction to graph data, focusing

on node exchangeability with respect to sensitive attributes, and de-

rive a theoretical bound showing how fair GNNs can reduce discrep-

ancies in conditional coverage, thereby promoting equalized cov-

erage across diverse groups. Our contributions include a rigorous

theoretical analysis bridging the gap between fair GNNs and equal-

ized coverage and comprehensive empirical studies validating the

theoretical bound by evaluating the uncertainty estimates of seven

fair GNN models and three traditional GNN models. Additionally,

we identify strategies that promote equalized coverage, offering in-

sights for future research and practical applications. By addressing

the critical issue of fairness in GNNs and conformal prediction, our

work promotes trustworthiness in machine learning applications

across domains and lays a solid foundation for further exploration

of fairness in GNNs. For reproducibility, the data and code are avail-

able at https://anonymous.4open.science/r/EqualizedCoverage_CP-

9CF8.
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A Proofs of theoretical results
Proof of Lemma 2. For the random variables 𝑍1, · · · , 𝑍𝑛,

(𝑋𝑛+1, 𝐴𝑛+1, 𝑌𝑛+1), we rank 𝑆𝑛+1 (simplified version of

𝑆 (𝑋𝑛+1, 𝐴𝑛+1, 𝑌𝑛+1)) among the remaining conformity score

𝑆1, · · · , 𝑆𝑛 , computing

𝜋 (𝑌𝑛+1) =
1

𝑛 + 1

𝑛+1∑︁
𝑖=1

1{𝑆𝑖 ≤ 𝑆𝑛+1} =
1

𝑛 + 1

+ 1

𝑛 + 1

𝑛∑︁
𝑖=1

1{𝑆𝑖 ≤ 𝑆𝑛+1}

By exchangeability of the data points, when evaluated at 𝑍𝑛+1, the
rank of 𝑌𝑛+1 is uniformly distributed over the values 𝑌1, · · · , 𝑌𝑛+1,
which means that:

P (𝑌𝑛+1 among the ⌈(1 − 𝛼) (𝑛 + 1)⌉ smallest of 𝑌1, · · · , 𝑌𝑛+1)
≥ 1 − 𝛼

which equivalent to that the constructed statistic 𝜋 (𝑌𝑛+1) is uni-
formly distributed over the set { 1

𝑛+1 ,
2

𝑛+1 , · · · , 1}, and:
P ((𝑛 + 1)𝜋 (𝑌𝑛+1) ≤ ⌈(1 − 𝛼) (𝑛 + 1)⌉) ≥ 1 − 𝛼,

and if the conformity score is almost surely distinct (a weak

assumption used to avoid ties when ranking), then

P ((𝑛 + 1)𝜋 (𝑌𝑛+1) ≤ ⌈(1 − 𝛼) (𝑛 + 1)⌉) ≤ 1 − 𝛼 + 1

𝑛 + 1

,

Considering that 𝑌𝑛+1 can never be strictly larger than itself,

P (𝑌𝑛+1 is among the ⌈(1 − 𝛼) (𝑛 + 1)⌉ smallest of 𝑌1, · · · , 𝑌𝑛+1)
≥ 1 − 𝛼,

is equivalent to:

P (𝑌𝑛+1 is among the ⌈(1 − 𝛼) (𝑛 + 1)⌉ smallest of 𝑌1, · · · , 𝑌𝑛)
≥ 1 − 𝛼,

Thus, the above equation can be transformed to,

P (𝑛 · 𝜋 (𝑌𝑛+1) ≤ ⌈(1 − 𝛼) (𝑛 + 1)⌉) ≤ 1 − 𝛼 + 1

𝑛 + 1

,

By setting 𝑄1−𝛼 = (1 − 𝛼) (1 + 1

𝑛 ){𝑍𝑖 , 1 ≤ 𝑖 ≤ 𝑛},
P{𝑍𝑛+1 ≤ 𝑄1−𝛼 |𝐴𝑛+1 = 𝑎} ≥ 1 − 𝛼,

and

P{𝑍𝑛+1 ≤ 𝑄1−𝛼 |𝐴𝑛+1 = 𝑎} ≤ 1 − 𝛼 + 1

𝑛 + 1

when {𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑛 + 1} are almost surely distinct. □

Proof of Theorem 3. Let W = {Φ(.)𝑇 𝛽 : 𝛽 ∈ R𝑑 } repre-

sents the class of linear functions over the basis Φ : X → R𝑑

(the reweighting functions), and let 𝑔 denotes quantile estimates.

Then, for any non-negative𝑤 ∈ W sttisfies E𝑃 [𝑤 (𝑋,𝐴)] > 0, then

prediction set 𝐶 (𝑋𝑛+1, 𝐴𝑛+1) will fulfill the condition P𝑤 (𝑌𝑛+1 ∈
𝐶 (𝑋𝑛+1, 𝐴𝑛+1)) ≥ 1 − 𝛼 . Additionally, if (𝑋1, 𝐴1, 𝑌1), · · · ,
(𝑋𝑛+1, 𝐴𝑛+1, 𝑌𝑛+1) are exchangeable, and 𝑆 | (𝑋,𝐴) is surely distinct,
we can further assert that for all𝑤 ∈ W, we additionally have the

upper bound that E[𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (1{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1)} −

(1 − 𝛼))] ≤ 𝑑
𝑛+1E

[
max

1≤𝑖≤𝑛+1
|𝑤 (𝑋𝑖 , 𝐴𝑖 ) |

]
.

E [𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (1{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1)} − (1 − 𝛼))]
=E [𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (𝛼 − 1{𝑌𝑛+1 ∉ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1)})]
=E

[
𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (𝛼 − 1{𝑆𝑛+1 > 𝑔𝑆𝑛+1 (𝑋𝑛+1, 𝐴𝑛+1)})

]

Additionally, given that 𝑔𝑆𝑛+1 is symmetrically fitted and therefore

invariant to permutations of the input data, it follows that the set

{𝑋𝑖 , 𝐴𝑖 , 𝑔𝑆𝑛+1 (𝑋𝑖 , 𝐴𝑖 ), 𝑆𝑖 } is exchangeable. Consequently, it follows
that:

E
[
𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (𝛼 − 1{𝑆𝑛+1 > 𝑔𝑆𝑛+1 (𝑋𝑛+1, 𝐴𝑛+1)})

]
=E

[
1

𝑛 + 1

𝑛+1∑︁
𝑖=1

𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (𝛼 − 1{𝑆𝑖 > 𝑔𝑆𝑛+1 (𝑋𝑖 , 𝐴𝑖 )})
]

≤E
[

1

𝑛 + 1

𝑛+1∑︁
𝑖=1

(
𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (𝛼 − 𝑠∗𝑖 )1{𝑆𝑖 = 𝑔𝑆𝑛+1 (𝑋𝑖 , 𝐴𝑖 )}

) ]
Finally, given that 𝛼 − 𝑠∗

𝑖
∈ [0, 1], we can establish a bound for the

expectation as follows:

E[𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (1{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1)} − (1 − 𝛼))]

≤E
[

1

𝑛 + 1

𝑛+1∑︁
𝑖=1

(
𝑤 (𝑋𝑛+1, 𝐴𝑛+1)1{𝑆𝑖 = 𝑔𝑆𝑛+1 (𝑋𝑖 , 𝐴𝑖 )}

) ]
Furthermore, considering that 𝑔𝑆𝑛+1 (𝑋𝑖 , 𝐴𝑖 ) is defined as

Φ(𝑋𝑖 , 𝐴𝑖 )𝑇 ˆ𝛽 , where ˆ𝛽 ∈ R𝑑 , we could deduce that:

P

(
1

𝑛 + 1

𝑛+1∑︁
𝑖=1

(
1{𝑆𝑖 = 𝑔𝑆𝑛+1 (𝑋𝑖 , 𝐴𝑖 )} > 𝑑 | (𝑋1𝐴1), · · · , (𝑋𝑛+1, 𝐴𝑛+1)

))
=P (∃1 ≤ 𝑗1 < · · · < 𝑗𝑑+1 ≤ 𝑛 + 1)

such that ∀𝑖, 𝑆 𝑗𝑖 = 𝑔𝑆𝑛+1 (𝑋 𝑗𝑖 , 𝐴 𝑗𝑖 ) | (𝑋𝑘 , 𝐴𝑘 )𝑛+1𝑘=1
)

≤ ∑
𝑗1<· · ·< 𝑗𝑑+1 P

(
∃𝛽 ∈ R𝑑

)
such that ∀𝑖, 𝑆 𝑗𝑖 = Φ(𝑋 𝑗𝑖 , 𝐴 𝑗𝑖 )𝑇 𝛽 | (𝑋𝑘 , 𝐴𝑘 )𝑛+1𝑘=1

≤
∑︁

𝑗1<· · ·< 𝑗𝑑+1

P
(
(𝑆 𝑗1 , · · · , 𝑆 𝑗𝑑+1 ) ∈ RowSpace( [Φ(·)]) | (𝑋𝑘 , 𝐴𝑘 )𝑛+1𝑘=1

)
where RowSpace( [Φ(·)]) is the abbreviation of

RowSpace( [Φ(𝑋 𝑗𝑖 , 𝐴 𝑗𝑖 ), · · · ,Φ(𝑋 𝑗𝑑+1 , 𝐴 𝑗𝑑+1 )]𝑇 ) is a 𝑑-dimensional

subspace of R𝑑+1.
Considering that (𝑆 𝑗1 , · · · , 𝑆 𝑗𝑑+1 ) | ((𝑋𝑘 , 𝐴𝑘 )𝑛+1𝑘=1

) are independent
and surely distinct, so,

P
(

1

𝑛+1
∑𝑛+1
𝑖=1

(
1{𝑆𝑖 = 𝑔𝑆𝑛+1 (𝑋𝑖 , 𝐴𝑖 )} > 𝑑 | (𝑋1, 𝐴1) · · · , (𝑋𝑛+1, 𝐴𝑛+1)

) )
= 0

Then, we could conclude that with probability 1,

1

𝑛 + 1

𝑛+1∑︁
𝑖=1

(
1{𝑆𝑖 = 𝑔𝑆𝑛+1 (𝑋𝑖 , 𝐴𝑖 )}

)
≤ 𝑑

𝑛 + 1

.

Then,

E[𝑤 (𝑋𝑛+1, 𝐴𝑛+1) (1{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1)} − (1 − 𝛼))]

≤ 𝑑

𝑛 + 1

E
[

max

1≤𝑖≤𝑛+1
|𝑤 (𝑋𝑖 , 𝐴𝑖 ) |

]
IfW = {∑𝐺∈G 𝛽𝐺1{𝑋 ∈ 𝐺} : 𝛽𝐺 ∈ R}, then

P{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1, 𝐴𝑛+1) |𝐴𝑛+1 = 𝑎}

≤1 − 𝛼 + 𝑑

(𝑛 + 1)P(𝑋𝑛+1 ∈ 𝐺)

≤1 − 𝛼 + 𝑑

(𝑛 + 1)P(𝐴𝑛+1 = 𝑎)
□
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