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ABSTRACT

The black-box nature of machine learning (ML) models, particularly neural net-
works, poses a significant challenge to their broader application in engineering, es-
pecially in high-risk areas where decision-making transparency and interpretabil-
ity are crucial. Understanding the generalizability of ML models remains a key
topic in artificial intelligence (AI), yet a unified understanding of this issue has
not been established. This study introduces the concept of compromise in com-
petition (CIC) from mesoscience to elucidate ML model generalizability. In this
work, a scale decomposition method is proposed from the perspective of training
samples, and the CIC between memorizing and forgetting, refined as dominant
mechanisms, is studied. Empirical studies on computer vision (CV) and natural
language processing (NLP) datasets demonstrate that the CIC between memo-
rizing and forgetting affects model generalizability significantly. Moreover, tech-
niques like dropout and L2 regularization, traditionally used to combat overfitting,
can be reinterpreted through the CIC between memorizing and forgetting. Collec-
tively, this work proposes a new perspective to explain the generalizability of ML
models, in order to provide inherent support for further applications of ML models
in the field of engineering.

1 INTRODUCTION

ML models, particularly neural networks, have been widely implemented across various engineering
fields, such as plasticity prediction Mozaffar et al. (2019), material discovery Hatakeyama-Sato et al.
(2020), and fault diagnosis Qin & Zhao (2022), demonstrating robust generalizability. Nonetheless,
these models are often criticized for their black-box nature, meaning their prediction processes lack
transparency Hassija et al. (2024). In engineering domains where safety and prediction reliability
are paramount, such as medicine Shehab et al. (2022), chemical engineering Wen et al. (2024),
and autonomous driving Bachute & Subhedar (2021), the interpretability of models is critically
important Zhu et al. (2022).

The interplay between model generalizability and interpretability has become a critical area of re-
search in AI applications. In biomedical research and healthcare, particularly in cancer research,
ML presents numerous opportunities, including cancer detection, diagnosis, subtype classification,
treatment optimization, and the identification of novel therapeutic targets in drug discovery Ele-
mento et al. (2021). While ML models can enhance the accuracy of cancer diagnoses, improve
patient prognoses, and reduce medical costs, the challenge of explainable AI persists Elemento et al.
(2021). Limited interpretability may lead to a lack of trust in these technologies among healthcare
professionals Alshuhri et al. (2023).

Over the years, researchers have sought to identify key factors influencing model generalizability.
The “bias-variance trade-off” Geman et al. (1992), historically viewed as a foundational principle
for understanding generalizability Neal et al. (2018); Yang et al. (2020), suggests that test loss can
be decomposed into bias and variance. However, bias and variance are merely outcomes on test
datasets, not the underlying causes of generalizability. The “model complexity-data complexity”
paradigm posits that optimal generalization is achieved when model complexity aligns with data
complexity Myung (2000). Numerous studies have investigated how this relationship affects gen-
eralizability Hastie et al. (2022); Mei & Montanari (2022); Schaeffer et al. (2023), yet no unified
quantitative standards for model complexity Hu et al. (2021) and data complexity Ho & Basu (2002);

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Li et al. (2018a); Branchaud-Charron et al. (2019) have been established. A major challenge in uni-
fying explanations for generalizability is the complexity of ML models and their training datasets.
For instance, GPT-4, with 1.8 trillion parameters Raiaan et al. (2024), requires vast training data
for robust generalization, making it difficult to describe the training process with precise mathemat-
ical or physical formulas. Thus, there is an urgent need for innovative approaches to enhance the
interpretability of model prediction processes.

Recently, mesoscience (Ge et al. (2007); Li et al. (2018b)), which argues that the system complexity
stems from the CIC between the two (or more) coexisting dominant mechanisms, has been proposed
to cope with multilevel complexities. Instead of relying on traditional mathematical and physical
formulas, mesoscience analyzes the CIC to realize the connections between system behaviors and
underlying mechanisms. This approach involves performing scale decomposition, refining domi-
nant mechanisms, and analyzing their CIC. Taking two dominant mechanisms in a system as an
example, with the increasing dominance of mechanism B over mechanism A, three regimes can
appear in turn: mechanism A dominates, mechanism A-mechanism B compromise, and mechanism
B dominates, corresponding to different system behaviors, respectively Huang et al. (2018). The
principle of mesoscience has been applied in multiple complex systems successfully, e.g., chemical
engineering Li et al. (2016), life sciences Qian & Beltran (2022), geology Tordesillas et al. (2021).
Guo et al. (2019) proposed a research paradigm of AI, which introduces the analytical principles of
mesoscience into the design of deep learning models. This paradigm has led to the development of
mesoscience-guided deep learning (MGDL), which has demonstrated remarkable improvements in
terms of convergence stability and predictive accuracy Guo et al. (2024). Therefore, the application
of mesoscience principles offers a promising methodological approach to explore the generalizabil-
ity of ML models.

2 METHODOLOGY

This work employs the principles of mesoscience to elucidate the generalizability of neural net-
works, given their extensive applications. The research framework is depicted in Figure 1.

Figure 1: The research framework consists of four parts: performing scale decomposition; refining
the dominant mechanisms; analyzing the CIC between them; explaining model generalizability us-
ing CIC.

For the study of complex systems, it is crucial to consider their multi-scale characteristics, partic-
ularly the quantification of meso-scale structures. A comprehensive understanding and control of
system dynamics necessitate appropriate scale decomposition Ren et al. (2001), making it the initial
step in mesoscience research Li & Huang (2014). This method should identify the characteristic
scale that reflects the observed structure, based on the multi-scale properties of complex systems.
For instance, in classical two-phase flow research, the element-scale, meso-scale, and system-scale
correspond to the particle, cluster, and overall two-phase flow system, respectively, indicating that
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characteristic scales must have clear physical meanings Li & Kwauk (2003). Additionally, meso-
science research depends on refining dominant mechanisms. Complex systems may encompass
multiple dominant mechanisms. Li & Huang (2014) proposed that it is important to group all dom-
inant mechanisms into two integrated ones, each driving the system in opposing directions. While
these mechanisms differ across systems, they adhere to the same principle of CIC. Notably, the CIC
between dominant mechanisms varies across different scales Li & Huang (2014) and should be clar-
ified. This study seeks to use CIC to uniformly explain changes in model generalizability induced
by model complexity and the number of training epochs, both common factors influencing general-
izability. Furthermore, the analysis of why various regularization methods mitigate overfitting will
demonstrate CIC’s effectiveness in explaining model generalizability.

2.1 EXPERIMENT SETUP

This work follows the well-established experiment setups of previous studies (Nakkiran et al. (2021);
Han et al. (2020)).

• Fully connected neural network (FCNN): This architecture implementation is adopted
from Nakkiran et al. (2021). with model complexity adjusted by modifying the width of
the initial hidden layer (w) within the range [1, 10].

• Four-layer convolutional neural network (Four-layer CNN): This architecture imple-
mentation is adopted from Han et al. (2020). The models are formed by two convolutional
layers and two fully connected layers. For all convolutional layers, the kernel size = 3,
stride = 1, and padding = 0.

• Five-layer convolutional neural network (Five-layer CNN): This architecture imple-
mentation is adopted from Nakkiran et al. (2021). The models are formed by 4 convo-
lutional stages of controlled base width [w, 2w, 4w, 8w], for w in the range of [1, 10] and
one fully connected layer.

• Text convolutional neural network (TextCNN): This architecture implementation is
adopted from Han et al. (2020). The embedding dimension is 300, and the width of the
convolutional layer (w) is 5.

In subsequent specific experiments, FCNNs and Four-layer CNNs are used to train MNIST LeCun
et al. (1998), Five-layer CNNs are used to train CIFAR-10 Krizhevsky et al. (2009), and TextCNNs
are used to train TREC Li & Roth (2002).

2.2 SCALE DECOMPOSITION

This study introduces a scale decomposition method for complex systems, comprising neural net-
works and training datasets. The individual training sample, which contains the necessary features
for model training, is defined as the element-scale, while the entire dataset represents the system-
scale. During training, the model updates its parameters in discrete batches, as illustrated in Figure 2,
highlighting the significant impact of batch size and sample composition on model generalizability.
Figure 2(a) demonstrates the trade-off between increased batch size and decreased model generaliz-
ability. This finding, derived from training a Five-layer CNN (w = 3) on the CIFAR-10 dataset with
label noise (p = 0.2), is further supported by previous work Hoffer et al. (2017), which explored the
effect of batch size on model generalizability more detailedly. Additionally, this study varies the
composition of samples by adjusting random seeds, as shown in Figure 2(b), where such changes
significantly affect generalizability. The batch’s crucial role in training dynamics and generalization
qualifies it as the meso-scale. As a case study, Figure 3 illustrates the scale decomposition of neural
network-CIFAR-10 dataset system.

2.3 DOMINANT MECHANISMS

This study systematically examines various potential mechanisms, such as bias and variance, the
number of parameters and the number of training samples, the number of clean data and the number
of noisy data, etc. Ultimately, memorizing and forgetting are refined as the dominant mechanisms.
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Figure 2: Training batch affects model generalizability: (a) Increasing batch size leads to a rise in
test loss, suggesting reduced generalizability; (b) Variations in random seed, affecting sample com-
position in batches, are shown to affect the generalizability of ML models with constant architecture
but varying network width (w).

Figure 3: Taking the CIFAR-10 dataset as an example, scale decomposition is performed from the
perspective of training samples. The individual training sample is the element-scale, the training
batch is the meso-scale, and the entire CIFAR-10 training dataset is the system-scale.
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Artificial neural networks (ANNs) discern features and formulate decisions through hierarchical ab-
straction, mimicking the integrative process of neuronal activity in the brain Uyanik et al. (2022).
Neuroscience has long inspired advancements in AI, including CNNs LeCun et al. (1989) and rein-
forcement learning (RL) Mnih et al. (2015), as noted by Zador et al. (2023). Cognitive neuroscience
reveals that humans continuously gather external data through sensory inputs, accumulating vast
information. Like ML models, the brain processes information and makes decisions while facing
risks of underfitting and overfitting. Since the brain constructs experiences and anticipates future
scenarios through memorizing of learned data, insufficient memorizing may lead to underfitting.
Conversely, excessive memorizing of details can result in overfitting, where reliance on past expe-
riences hinders adaptation to new environments. Overfitting in the brain is linked to disorders such
as post-traumatic stress disorder, depression, schizophrenia, and obsessive-compulsive disorder Sha
et al. (2024). Gravitz (2019) demonstrates that forgetting, as an adaptive learning form, aids humans
in adapting their experiences, thus preventing experiential overfitting. The importance of memoriz-
ing and forgetting extends beyond neuroscience, garnering interest from scholars in education, ecol-
ogy, and linguistics Sha et al. (2024). Similar to the human brain, ML models undergo processes
of memorizing and forgetting during training, significantly impacting their generalizability. For
instance, scaling laws suggest that larger model sizes enhance memorization capabilities, thereby
improving generalizability Kaplan et al. (2020). However, not all memorizing positively contributes
to model generalizability. For example, excessive memorizing in large language models (LLMs)
can lead to hallucinations Huang et al. (2023), undermining content reliability. Traditionally, forget-
ting is viewed as detrimental to model performance McCloskey & Cohen (1989), but recent insights
from neuroscience suggest that beneficial forgetting is an adaptive function that enhances model
generalizability Peng et al. (2021). Therefore, this study refines memorizing and forgetting as the
dominant mechanisms, given their crucial role in influencing model generalizability.

Over time, researchers have adapted various definitions tailored to specific problems Carlini et al.
(2023); Pondenkandath et al. (2018); Stern & Weinshall (2023). This study builds upon and extends
the definitions proposed by Toneva et al. (2018): during training, if a model fails to accurately pre-
dict a training sample at time t, but succeeds at the subsequent time step t + 1, it indicates that the
model has memorized the sample. Conversely, if the model accurately predicts a training sample at
time t but fails at t+1, it indicates that the model has forgotten the sample. Training samples can be
categorized into three distinct sets: S1, which includes samples that are neither memorized nor for-
gotten; S2, which includes samples that are only memorized and remain unforgettable subsequently
(the unforgettable examples, as defined by Toneva et al. (2018)); S3, which includes samples that
are both memorized and forgotten at least once. These sets are mutually exclusive, and their union
constitutes the entire training dataset S.

A list synchronized with the training epochs tracks the model’s predictions for individual samples
throughout training, where zeros denote inaccurate predictions and ones indicate accurate predic-
tions, as illustrated in Figure 4. Training samples in S1 are not the focus of this study, as they are
neither memorized nor forgotten by the model. According to Toneva et al. (2018), samples in S2

carry limited information and thus have a negligible effect on model generalizability. Experiments
on datasets without label noise, such as MNIST and CIFAR-10, confirm that removing S2 does not
significantly impact model generalizability. In contrast, training samples in S3 have a substantial
effect on model generalizability Toneva et al. (2018).

Consequently, this study focuses on the memorizing and forgetting of training samples in S3 by
neural networks. To quantify the model’s overall memorizing and forgetting of these samples, the
degree of memorizing (M) and the degree of forgetting (F) are introduced. Specifically, M denotes
the fraction of samples in S3 that have been memorized by the end of training, while F denotes the
fraction of those that have been forgotten in S3.

M =
Nacc=1

Nacc=1 +Nacc=0
(1)

F =
Nacc=0

Nacc=1 +Nacc=0
(2)

where Nacc=1 denotes the number of training samples in S3 predicted accurately by the end of
training. Nacc=0 denotes the number of training samples in S3 cannot predicted accurately by the
end of training.
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Figure 4: The model’s memorizing and forgetting of samples in S1, S2, S3 during training. S1

includes the samples that are neither memorized nor forgotten; S2 includes the samples that are only
memorized and remain unforgettable; S3 includes the samples that are both memorized and forgotten
at least once, where zeros denote inaccurate predictions and ones indicate accurate predictions.

2.4 THE CIC BETWEEN MEMORIZING AND FORGETTING ON DIFFERENT SCALES

The CIC between dominant mechanisms exhibits variations on different scales Li & Huang (2014),
and thus should be clarified. The analysis process, exemplified by training a Five-layer CNN (w = 3)
on the CIFAR-10 dataset with label noise (p = 0.2), is as follows: when memorizing is dominant, M
tends towards its maximum, whereas when forgetting is dominant, F tends towards its maximum.
Figure 5 illustrates that on the element-scale (points A and B), the extremum tendencies of M
and F can be realized only instantaneously and alternatively. Spatially, at a specific moment, such
as the completion of the 106th epoch, the model’s forgetting of point A is dominant, indicating
the extremum tendency of F is realized, while the model’s memorizing of point B is dominant,
indicating the extremum tendency of M is realized. Evidently, stability conditions do not exist on
the element-scale. In the meso-scale region M (batch index = 1), the extremum tendencies of M and
F still cannot be realized simultaneously. However, in this region, a spatio-temporal compromise
occurs between these dominant mechanisms. Over time, M

F gradually converges to a constant C1,
with fluctuations of a certain amplitude due to the competition between memorizing and forgetting.
This analysis suggests the CIC between memorizing and forgetting on the meso-scale. In the system-
scale region G, the CIC is even more pronounced, with M

F converging to another constant C2 over
time and the fluctuations diminishing.

3 THE CIC BETWEEN MEMORIZING AND FORGETTING EXPLAINS MODEL
GENERALIZABILITY

3.1 CHANGES IN MODEL COMPLEXITY

In the context of training FCNNs (for w in the range of [1, 10]) on the MNIST dataset with label
noise (p = 0.4), Figure 6(a) illustrates that training loss decreases with model complexity, while the
test loss decreases initially and increases subsequently, indicative of overfitting at excessive model
complexity. Figure 6(b) indicates the dynamics between M and F in the neural network-training
dataset system. When the model complexity is too low (w = 1), forgetting is dominant relative to
memorizing absolutely. The fact that the model’s capacity for memorizing sufficient training data is
limited, and the data memorized are prone to being quickly forgotten results in poor performance on
both training and test datasets, leading to underfitting. The dominance of memorizing over forgetting
continuously increases with the model complexity, and the system transitions from being forgetting-
dominated to being memorizing-dominated. When w = 3, M

F = 1.08, the model exhibits the best
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Figure 5: The CIC between memorizing and forgetting on different scales (batch index = 1). On
the element scale, there is no stability conditions, while on the meso-scale and system-scale, there
is CIC between memorizing and forgetting. The black line represents the change in M (element-
scale) or M

F (meso-scale and system-scale) with the number of training epochs, and the purple line
represents the trend line (This analytical approach is inspired by Li et al. (2004)).

generalizability on the test dataset. On one hand, the model is capable of memorizing sufficient
and accurate information. On the other hand, although the model may memorize some details (such
as label noise), it forgets them eventually, thus preventing further harm to model generalizability.
However, when the model complexity is too high (w = 10), memorizing is dominant relative to
forgetting absolutely. The model has the capability to memorize a vast amount of details from the
training dataset. Additionally, since the extremum tendency of F is inhibited, these memorized
details are difficult for the model to forget, resulting in excellent performance on the training dataset
but poor generalizability on the test dataset, leading to overfitting.

Figure 6: The change in model complexity affects the dominance of memorizing over forgetting: (a)
the model tends to exhibit overfitting with the model complexity; (b) The dominance of memorizing
over forgetting continuously increases with the model complexity.

The above analysis reveals that the neural network-training dataset system transitions through three
distinct regimes with model complexity: When forgetting is dominant absolutely, the model per-
forms poorly on both training and test datasets, exhibiting underfitting; When neither memorizing
nor forgetting can dominate absolutely, the model shows a U-shaped test loss curve with model com-
plexity; When memorizing is dominant absolutely, the model excels on training dataset but performs
poorly on test dataset, exhibiting overfitting, as shown in Figure 7. Moreover, label noise in training
datasets significantly impacts model generalizability. This study examines the effects of varying
label noise on M and F , as depicted in Figure 8 . The findings indicate that increased label noise
hinders the model’s memorizing of training data, but enhances the forgetting of memorized data.
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Figure 7: Three regimes occur successively with increasing dominance of memorizing over forget-
ting. They are the forgetting-dominated regime, the forgetting-memorizing compromising regime,
and the memorizing-dominated regime, respectively.

Figure 8: Increasing levels of label noise across different neural networks with different widths(w)-
CIFAR-10 dataset system consistently result in decrease in M and increase in F , indicating that
label noise can decrease the relative dominance of memorizing over forgetting during the training
process.
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3.2 CHANGES IN EPOCH

In the field of NLP, the training of a TextCNN with width (w) = 5 on the TREC dataset with label
noise (p = 0.2) illustrates how the changing dominance of memorizing over forgetting affects model
generalizability. Figure 9(a) shows that training loss decreases with epochs, while test loss initially
decreases and then increases, indicating overfitting as the number of epochs becomes excessive.
Figure 9(b) reveals that M and F in the neural network-training dataset system evolve continuously
with epochs. With insufficient epochs, limited parameter updates lead to the absolute dominance of
forgetting, resulting in inadequate memorizing and rapid forgetting, thus poor performance on both
training and test datasets, indicative of underfitting. The system transitions from being forgetting-
dominated to being memorizing-dominated with the number of training epochs. When the ninth
epoch is completed, the model achieves optimal generalizability on the test dataset by prioritizing
the fitting of regular data Arpit et al. (2017), enabling it to memorize intrinsic patterns while for-
getting non-generalizable details. However, with excessive epochs, memorizing becomes absolutely
dominant, causing the model to retain too many non-generalizable details. The suppression of the
extremum tendency of F makes it difficult to forget these details, resulting in excellent training
performance but poor test performance, indicative of overfitting.

Figure 9: The changes in epoch affect the dominance of memorizing over forgetting: (a) The model
tends to exhibit overfitting with the number of epochs; (b) The dominance of memorizing over
forgetting continuously increases with the number of epochs.

3.3 REGULARIZATIONS

This study explores the effectiveness of regularization techniques, such as dropout and L2 regulariza-
tion, in mitigating overfitting. In neural networks, neurons form co-adaptation relationships through
interconnections and signal transmissions, capturing intrinsic patterns in training data. The dropout
technique temporarily removes random neurons during training, reducing sensitivity to training data.
Figure 10(a) shows that without dropout (dropout rate = 0), the model tends to overfit. An optimal
dropout rate, like 0.7, enhances generalizability, whereas an excessive dropout rate, such as 0.95, can
cause underfitting. Figure 10(b) indicates that without dropout, memorizing is absolutely dominant
over forgetting, leading to overfitting. Moderate dropout rates, which disrupt some co-adaptations,
compel the model to focus on common features of the training dataset while forgetting specific
details, leading to optimal generalizability. Conversely, the excessive dropout rate increases the
dominance of forgetting over memorizing which makes the model struggle to memorize but forget
easily the effective information in the training dataset, leading to underfitting.

Introducing an additional penalty term, such as L2 regularization, to the loss function during training
is a common method to constrain model complexity. L2 regularization reduces model complexity by
adding a penalty term for the L2 norm of weight parameters to the loss function. The regularization
parameter ω is used to control the strength of the regularization term. A larger ω increases the degree
of regularization, forcing the model to adopt a simpler form and thereby reduce its complexity. For
instance, in training a Four-layer CNN on MNIST with label noise ((p=0.2)), Figure 11 illustrates
that similar to dropout, L2 regularization modulates the model generalizability by controlling the
relative dominance between memorizing and forgetting.
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Figure 10: Dropout changes the relative dominance between memorizing and forgetting: (a) The
model gradually transitions from underfitting to overfitting with dropout rate increasing from 0 to
0.95; (b) The dominance of memorizing over forgetting continuously increases with dropout rate.

Figure 11: L2 regularization changes the relative dominance between memorizing and forgetting:
(a) The model gradually transitions from underfitting to overfitting with ω increases from 0 to 0.5;
(b) The dominance of memorizing over forgetting continuously increases with ω.

4 CONCLUSION

This work explains the generalizability of ML models based on the principle of mesoscience, focus-
ing on the model’s memorizing and forgetting of training samples during training, and analyzes the
CIC between memorizing and forgetting. Additionally, this work proposes M and F to quantify the
relative dominance between memorizing and forgetting. The following conclusions are as follows:

(1) The individual training sample is considered as the element-scale, where memorizing and forget-
ting only compete during training; a batch of training samples is considered as the meso-scale, where
memorizing and forgetting exhibit spatio-temporal compromise; and the entire training dataset is
considered as the system-scale, where the spatio-temporal compromise is more evident.

(2) The increase of model complexity and the number of training epochs both can promote the
extremum tendency of M and inhibit the extremum tendency of F , which make the ML model-
training dataset system transition from being forgetting-dominated to being memorizing-dominated
gradually.

(3) Regularization methods such as dropout, L2 regularization, although proposed from different
research perspectives, control the relative dominance between memorizing and forgetting to improve
model generalizability essentially.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimen-
sion of objective landscapes. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018a. URL https://openreview.net/forum?id=ryup8-WCW.

Jinghai Li and Huang. Towards mesoscience: the principle of compromise in competition. Springer,
2014.

Jinghai Li and Mooson Kwauk. Exploring complex systems in chemical engineering—the multi-
scale methodology. Chemical Engineering Science, 58(3-6):521–535, 2003.

Jinghai Li, Jiayuan Zhang, Wei Ge, and Xinhua Liu. Multi-scale methodology for complex systems.
Chemical engineering science, 59(8-9):1687–1700, 2004.

Jinghai Li, Wei Ge, Wei Wang, Ning Yang, and Wenlai Huang. Focusing on mesoscales: from the
energy-minimization multiscale model to mesoscience. Current Opinion in Chemical Engineer-
ing, 13:10–23, 2016.

Jinghai Li, Wenlai Huang, Jianhua Chen, Wei Ge, and Chaofeng Hou. Mesoscience based on the
emms principle of compromise in competition. Chemical Engineering Journal, 333:327–335,
2018b.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics,
75(4):667–766, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Mojtaba Mozaffar, Ramin Bostanabad, W Chen, K Ehmann, Jian Cao, and MA Bessa. Deep learning
predicts path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52):
26414–26420, 2019.

In Jae Myung. The importance of complexity in model selection. Journal of mathematical psychol-
ogy, 44(1):190–204, 2000.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

12

https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=ryup8-WCW


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-
Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeoff in neural networks.
CoRR, abs/1810.08591, 2018. URL http://arxiv.org/abs/1810.08591.

Jian Peng, Xian Sun, Min Deng, Chao Tao, Bo Tang, Wenbo Li, Guohua Wu, Qing Zhu, Yu Liu, Tao
Lin, and Haifeng Li. Learning by active forgetting for neural networks. CoRR, abs/2111.10831,
2021. URL https://arxiv.org/abs/2111.10831.

Vinaychandran Pondenkandath, Michele Alberti, Sammer Puran, Rolf Ingold, and Marcus Liwicki.
Leveraging random label memorization for unsupervised pre-training. CoRR, abs/1811.01640,
2018. URL http://arxiv.org/abs/1811.01640.

Haili Qian and Adriana Sujey Beltran. Mesoscience in cell biology and cancer research. Cancer
Innovation, 1(4):271–284, 2022.

Ruoshi Qin and Jinsong Zhao. Adaptive multiscale convolutional neural network model for chemical
process fault diagnosis. Chinese Journal of Chemical Engineering, 50:398–411, 2022.

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE Access, 2024.

Jinqiang Ren, Qiming Mao, Jinghai Li, and Weigang Lin. Wavelet analysis of dynamic behavior in
fluidized beds. Chemical Engineering Science, 56(3):981–988, 2001.

Rylan Schaeffer, Mikail Khona, Zachary Robertson, Akhilan Boopathy, Kateryna Pistunova, Ja-
son W. Rocks, Ila Rani Fiete, and Oluwasanmi Koyejo. Double descent demystified: Identifying,
interpreting & ablating the sources of a deep learning puzzle. CoRR, abs/2303.14151, 2023.
doi: 10.48550/ARXIV.2303.14151. URL https://doi.org/10.48550/arXiv.2303.

14151.

Alyssa Shuang Sha, Bernardo Pereira Nunes, and Armin Haller. ”forgetting” in machine learning
and beyond: A survey. CoRR, abs/2405.20620, 2024. doi: 10.48550/ARXIV.2405.20620. URL
https://doi.org/10.48550/arXiv.2405.20620.

Mohammad Shehab, Laith Abualigah, Qusai Shambour, Muhannad A Abu-Hashem, Mohd
Khaled Yousef Shambour, Ahmed Izzat Alsalibi, and Amir H Gandomi. Machine learning in
medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine,
145:105458, 2022.

Uri Stern and Daphna Weinshall. Relearning forgotten knowledge: on forgetting, overfit and
training-free ensembles of dnns. CoRR, abs/2310.11094, 2023. doi: 10.48550/ARXIV.2310.
11094. URL https://doi.org/10.48550/arXiv.2310.11094.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018.

Antoinette Tordesillas, Sanath Kahagalage, Lachlan Campbell, Pat Bellett, Emanuele Intrieri, and
Robin Batterham. Spatiotemporal slope stability analytics for failure estimation (sssafe): linking
radar data to the fundamental dynamics of granular failure. Scientific Reports, 11(1):9729, 2021.

Cihan Uyanik, M Ahmed Khan, Iris C Brunner, John P Hansen, and Sadasivan Puthusserypady. Ma-
chine learning for motor imagery wrist dorsiflexion prediction in brain-computer interface assisted
stroke rehabilitation. In 2022 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pp. 715–719. IEEE, 2022.

Kaijie Wen, Li Guo, Zhaojie Xia, Sibo Cheng, and Jianhua Chen. A hybrid simulation method
integrating cfd and deep learning for gas–liquid bubbly flow. Chemical Engineering Journal,
495:153515, 2024.

13

http://arxiv.org/abs/1810.08591
https://arxiv.org/abs/2111.10831
http://arxiv.org/abs/1811.01640
https://doi.org/10.48550/arXiv.2303.14151
https://doi.org/10.48550/arXiv.2303.14151
https://doi.org/10.48550/arXiv.2405.20620
https://doi.org/10.48550/arXiv.2310.11094


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance trade-
off for generalization of neural networks. In International Conference on Machine Learning, pp.
10767–10777. PMLR, 2020.

Anthony Zador, Sean Escola, Blake Richards, Bence Ölveczky, Yoshua Bengio, Kwabena Boahen,
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