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Abstract

Existing online class imbalance learning methods fail to achieve optimal performance because
their assumptions about enhancing minority classes are hardcoded in model parameters. To
learn the model for the performance measure directly instead of using heuristics, we introduce
a novel framework based on a dynamic evolutionary algorithm called Online Evolutionary
Cost Vector (OECV). By bringing the threshold moving method from the cost-sensitive
learning paradigm and viewing the cost vector as a hyperparameter, our method transforms
the online class imbalance issue into a bi-level optimization problem. The first layer utilizes
a base online classifier for rough prediction, and the second layer refines the prediction
using a threshold moving cost vector learned via a dynamic evolutionary algorithm (EA).
OECV benefits from both the efficiency of online learning methods and the high performance
of EA, as demonstrated in empirical studies against four state-of-the-art methods on 30
datasets. Additionally, we show the effectiveness of the EA component in the ablation study
by comparing OECV to its two variants, OECV-n and OECV-ea, respectively. This work
reveals the superiority of incorporating EA into online imbalance classification tasks, while
its potential extends beyond the scope of the class imbalance setting and warrants future
research attention. We release our code1 for future research.

1 Introduction

Online learning from streaming data is common in real-world applications, facing more challenges than
offline learning due to limited time and memory resources. Online class imbalance learning involves scenarios
where minority classes have notably fewer samples than the majority classes, which can detrimentally affect
predictive performance, particularly for minority classes. Current efforts fall into three categories: data-level,
algorithm-level, and ensemble approaches. Data-level methods use oversampling and undersampling to
rebalance the datasets. Ensemble methods commonly work together with data-level algorithms by randomly
resampling incoming data points for each base learner. Algorithm-level approaches react differently to samples
from different classes, addressing the tendency to neglect the minority classes.

While designed differently, the three types of methodology all focus on how to efficiently utilize class imbalance
information (e.g., imbalance ratio and data distribution) to handle the imbalance issue. However, to our
knowledge, they all rely on assumptions about the expected enhancement level for minority classes, which are
ad hoc and hardcoded in model parameters. For instance, cost-sensitive algorithms, one kind of algorithm-
level approach, assign different costs for misclassifying classes based on the class size or performance. But
determining optimal costs remains challenging (Liu & Zhou, 2010). In this article, we aim to explore
how to achieve optimality concerning any given online performance metric directly without making ad
hoc assumptions. It can extend beyond the scope of class imbalance, but we only focus on this online
class imbalance setting in this work for simplicity. Due to the non-differentiability of many performance
metrics, gradient-based optimization methods become impractical. Therefore, we focus on gradient-free
optimization methods, particularly the family of evolutionary algorithms (EAs). EAs have been widely
studied for classification tasks such as genetic programming (Espejo et al., 2009), learning classifier systems

1https://anonymous.4open.science/r/OECV-1088/
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(Sigaud & Wilson, 2007), and evolution of neural networks (Rocha et al., 2007). Besides, recent studies have
attempted to leverage EA to assist conventional algorithms in offline class imbalance learning problems (Pei
et al., 2023). However, applying EAs to online class imbalance learning remains unexplored and challenging
due to time and space constraints in streaming learning. More specifically, evolving classifiers on a large scale
and accessing the entire dataset are impossible. Besides, the dynamic environment of concept drift may exist
compared to offline learning. To this end, we have to examine a fundamental question: How can we create an
online learner that combines two essential traits? That is, it should update fast under a dynamic environment
like existing online models while also learning efficiently with non-differentiable objectives similar to EAs.

We propose a novel framework named Online Evolutionary Cost Vector (OECV) to answer this question.
OECV is conceptualized as a bi-level optimization problem, with a probabilistic online classifier in the lower
layer and a lightweight cost vector in the upper layer. The classifier extracts useful information from data to
provide a rough prediction while the cost vector refines the decision boundary. In the case of concept drift,
especially the prior drift where class size changes, a dynamic evolutionary algorithm is applied to track optimal
cost vectors using recent samples contained in a fixed-size buffer. The most crucial difference between our
dynamic EA and traditional EA is that it can track the optimal cost vector in a non-stationary environment
by maintaining population diversity instead of converging. Our approach can learn with non-differentiable
objectives under dynamic environments using a dynamic EA-based cost vector decision head and update in a
few computation efforts since the cost vector is lightweight.

The motivation for formulating OECV as a bi-level architecture is highly inspired by the threshold moving
method (Kukar et al., 1998; Zhou & Liu, 2005; Sheng & Ling, 2006; Voigt et al., 2014; Hancock et al., 2022)
from the paradigm of cost-sensitive learning. The gist of the threshold moving is weighting the probabilistic
prediction by the cost vector, which contains the relative cost of misclassifying each class. While the cost
vector used in our method is essentially the same as that in the threshold moving method, however, the
cost vector is usually predefined in the context of cost-sensitive learning. The key point in understanding
our motivation is viewing the cost vector as a set of hyperparameters. This would interpret OECV as an
online hyperparameter optimization (HPO) method built upon the threshold moving method. The simplest
way of setting the hyperparameter in class imbalance learning is to set it inversely proportional to the class
size, but it is not guaranteed to be an optimal solution. OECV, on the other hand, tries to optimize the
"hyperparameter" using dynamic evolutionary algorithms on the fly. In viewing OECV as a kind of HPO,
its two levels correspond to searching parameters and hyperparameters separately, where parameters (base
classifier) give an rough prediction and hyperparameters (cost vector) refine the prediction. This effectively
unifies EAs and online class imbalance learning within a cohesive framework.

The main contributions of this paper are listed as follows:

1. This study is the first to explore the problem of online class imbalance learning using an EA
approach. The novel approach OECV unifies EA and online class imbalance learning within a bi-level
optimization framework by applying a cost vector, effectively addressing the performance-resource
trade-off.

2. We present a novel dynamic evolutionary algorithm to learn the cost vector under potential con-
cept drift adaptively and incorporate specific prior knowledge about class imbalance to guide the
evolutionary learning simultaneously.

3. We study the superiority and efficiency of OECV across 30 real-world datasets. Empirical results show
its ability to significantly outperform state-of-the-art (SOTA) methods and confirm the effectiveness
of the EA component.

The remainder of this article is organized as follows. Section 2 presents related work. Section 3 details our
proposed method. Experimental setup and results are discussed in Section 4. The paper is concluded in
Section 5.
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2 Related Work

Our article is related to online class imbalance learning, threshold moving methods, and evolutionary algorithm
approaches for addressing the class imbalance.

2.1 Online Class Imbalance Learning

Approaches to address online class imbalance problems can typically be classified into three categories, as
mentioned in the introduction: data-level, algorithm-level, and ensemble-based methods.

2.1.1 Data-level Methods

Sampling methods work by oversampling and/or undersampling to rebalance data. An oversampling technique
based on classification contribution degree is proposed in Jiang et al. (2021), generating synthetic samples
by combining inter-class and intra-class information. SMOTE (Chawla et al., 2002) is a synthetic minority
over-sampling technique used to balance the class distribution by generating new instances of the minority
class. In online learning, it has been adopted in Online SMOTE (Wang & Pineau, 2016), which oversamples
using training samples within a sliding window. C-SMOTE (Bernardo et al., 2020) addresses binary class
imbalance by actively detecting concept drift via ADWIN (Bifet & Gavalda, 2007), a change detector with
a sliding detection window, and applying SMOTE to the minority class in the sliding window. SRE (Ren
et al., 2019) introduces a selection-based resampling mechanism to handle complex data distributions by
considering recent sample properties. These methods heavily rely on ad hoc heuristics and hyperparameters,
like safety degree (Jiang et al., 2021), sampling rate (Wang & Pineau, 2016), borderline factor, and disjunct
factor (Ren et al., 2019), which potentially hinder optimal performance.

2.1.2 Algorithm-level Methods

Qin et al. (2021) employs active learning to select the most important samples to train the classifier. Online
one-class Support Vector Machines (Klikowski & Woźniak, 2020) is a kind of one-class classifier that creates
a model for each class and achieves a one-class decomposition of multi-class problems. Algorithm-level
approaches work by modifying the training process. Cost-sensitive learning methods are a type of popular
algorithm in this approach. It assigns varying costs for misclassifying classes belonging to different classes
to reduce the dominating influence of majority classes, and it is commonly assumed that minority classes
incur higher costs. Our method belongs to this category. Ksieniewicz (2021) introduces Prior Imbalance
Compensation (PIC) for batch learning of imbalanced data streams, which adjusts the decision made by the
classifier using class prior probability to compensate for the minority classes. Yan et al. (2017) trains multiple
classifiers with various cost matrices and make predictions by adaptive ensembling. However, it is confined to
binary class cases and challenging to extend to multi-class scenarios due to the exponential growth in the
number of candidate cost matrices. Other related works (Wang et al., 2021; Ding et al., 2018; Qin et al.,
2021) in cost-sensitive methods are based on weighted extreme learning machine (WELM) (Zong et al., 2013),
which is a super efficient single hidden layer neural network with a weighting strategy for class imbalance.
WOS-ELM (Wang et al., 2021) integrates a weighting strategy akin to WELM with an online sequential
extreme learning machine (Huang et al., 2005) (OSELM). WOS-ELMK (Ding et al., 2018) incorporates
kernel mapping, addressing the non-optimal hidden node issue present in WOS-ELM. AI-WSELM (Qin et al.,
2021) integrates active learning to significantly reduce labeling costs, demonstrating satisfactory performance
compared to existing WELM variants. Despite their promising performance, the weight strategies within this
family are explicitly tailored for ELM, limiting their generalizability to other online learning models. We
notice that the class sizes are frequently utilized to determine weight strategy in literature. However, this
approach does not ensure an optimal weighting schedule.

2.1.3 Ensemble Methods

Ensemble methods, such as MOOB, MUOB (Wang et al., 2016), KUE (Cano & Krawczyk, 2020), ROSE (Cano
& Krawczyk, 2022), and BEDCOE (LI et al., 2023), effectively tackle the problem by combining resampling
techniques. MOOB and MUOB leverage time-decay class size to determine training times. Specifically, the
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Figure 1: Illustration of the working mechanism of cost vector. The cost vector pushes the decision boundary
towards the majority, and the dynamic evolutionary algorithm ensures the adaptability of the cost vector for
potential concept drift.

training time for each base classifier is determined by sampling from a Poisson distribution, whose parameter
is set according to the class size. The diversity is maintained by random training times on a sample for each
base classifier. Kappa Updated Ensemble (KUE) combines online and block-based ensemble approaches
and uses Kappa statistics to determine dynamic weighting and select base classifiers. After that, Cano &
Krawczyk (2022) proposes an advanced method called ROSE to improve the robustness of KUE by employing
adaptive self-tuning, adjusting its parameters, and ensembling the line-up dynamically. To directly deal
with class imbalance, ROSE computes the imbalance ratio of each class based on recent samples to derive
the training times of each sample. BEDCOE considers potential complex data distribution compared to
other works and introduces a borderline enhanced strategy and a disjunct cluster-based oversampling for
synthetic sample generation. Despite the improved performance achieved by using multiple base classifiers,
the ensemble methods entail a trade-off between the diversity of the ensemble and training time.

2.2 Threshold Moving Method

The threshold moving method (Kukar et al., 1998; Zhou & Liu, 2005; Sheng & Ling, 2006; Voigt et al., 2014;
Hancock et al., 2022) is a common technique in cost-sensitive learning. It trains a classifier on the original
dataset and prioritizes classes with higher misclassification costs during prediction, using a predefined cost
matrix. Formally, denote the cost matrix as Mij , where 1 ≤ i, j ≤ C, to represent the cost of misclassifying
class i to class j. Here C is the number of classes. Let Oi, where 1 ≤ i ≤ C, represent the probabilistic
output with

∑C
i=1 Oi = 1 and 0 ≤ Oi ≤ 1. The prediction is arg maxi O′

i in the threshold moving method
comparing to arg maxi Oi in standard classifiers, where O′

i is calculated according to

O′
i = η

C∑
j=1

OiMij = η(
C∑

j=1
Mij)Oi = ηviOi (1)

Here η is a normalization term such that
∑C

i=1 O′
i = 1 and 0 ≤ O′

i ≤ 1. Note we can use the cost vector
vi =

∑C
j=1 Mij (1 ≤ i ≤ C) of lower complexity O(C) instead. The cost vector represents the misclassification

cost of class i and adjusts the decision boundary toward less costly classes, making it harder to misclassify
samples with higher costs. In this paper, the threshold moving method is adapted to online class imbalance
learning by enabling the cost matrix/vector to be learnable in two novel ways, namely OECV-n and OECV,
so that it can respond to the current stream behavior (Fig. 1) rather than being predefined. The baseline
OECV-n is designed with time-decay class size, while the main algorithm OECV finds the optimal cost vector
based on OECV-n and EA.

2.3 Evolutionary Algorithm for Class Imbalance Learning

Recent studies (Pei et al., 2023) have shown the potential of EA in addressing class imbalance, while most
of the existing literature remains confined to offline scenarios. In Perry et al. (2015), a genetic algorithm
(GA) is used to optimize a class-dependent cost matrix for the weighted updating of a classifier. Sun et al.
(2006) introduces a cost-sensitive boosting algorithm that employs GA to optimize a class-dependent cost
vector. ECSB (Lemnaru & Potolea, 2017) uses GA to optimize a class-dependent cost matrix and classifier
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parameters simultaneously. GA is also applied to identify an optimal subset of instances in the majority
class (Drown et al., 2009; Khoshgoftaar et al., 2010). In a cost-sensitive SVM method proposed in Cao
et al. (2013), the misclassification cost ratio is optimized using particle swarm optimization. Furthermore,
differential evolution (DE) has also been tried to optimize class-dependent cost matrices for cost-sensitive
deep belief networks (Zhang et al., 2018; 2016). EA is also utilized to support data-level methods. For
instance, Jiang et al. (2016) introduces GASMOTE, a GA-based SMOTE approach that optimizes sampling
rates for minority class instances.

There are significant challenges to adapting these methods to online settings. Unlike offline learning, which
receives all training data upfront, online learning lacks this comprehensive data overview. Besides, the model
must continuously and rapidly adapt to potential concept drift rather than converging. To our knowledge,
only Wang & Wang (2023) has adopted a similar idea of EA in online class imbalance learning. It picks base
classifiers of different parameter configurations with the highest performance so far. However, characteristics
of class imbalance in Wang & Wang (2023) are only used by the original resampling method, and the class
imbalance issue is not handled by EA directly. Besides, it is currently tailored for binary classification tasks,
making it unsuitable for multi-class scenarios.

3 Online Evolutionary Cost Vector (OECV)

In this section, we introduce Online Evolutionary Cost Vector (OECV) to illustrate the EA-based cost vector
learning approach. Section 3.1 outlines the overall training process. Section 3.2 reformulates the problem into
a bi-level optimization. Section 3.3 gives the baseline algorithm OECV-n, and Section 3.4 gives the EA-based
algorithm OECV.

3.1 Overall Test-then-train Process of OECV

In a data stream {(Xt, yt)}+∞
t=1 , Xt ∈ Rd represents data and yt ∈ {1, . . . , C} represents the class label. C

is the total number of classes. Uneven class prior distribution leads to class imbalance, and concept drift
necessitates the algorithm to adapt to ever-changing data distribution. Xt arrives strictly one by one, being
predicted firstly by the latest classifier HC

t−1, and then refined using the cost vector v∗ to give the final
prediction p∗

t . p∗
t is used together with true label yt that comes before t + 1 to update classifier HC

t−1 to HC
t .

This process is known as the "test-then-train" process.

We present OECV in Alg. 1. At the beginning of the data stream, the cost vector population V initializes
randomly. At time step t, the model {HC

t−1, v∗}, where HC
t represents the latest online classifier, and v∗

denotes the optimal cost vector discovered by EA up to time t − 1, undergoes initial testing as depicted in
Lines 1-2. Here, the online classifier offers an initial prediction, which is then refined by the cost vector. The
classifier HC updates by its own rule in Line 3. The class size Ωt−1 and fixed-size buffer B are updated in
Lines 4-5, respectively. Cost vector population V evolves within the if statement (Lines 6-7) to yield a new
population along with an optimal cost vector V∗. We detail OECV in subsequent subsections individually.

3.2 Bi-level Optimization

Due to the impracticality of a full evolution, our framework only evolves partially, and breaks down both
the model and the problem into two layers (See Fig. 2). The first layer, being an online classifier, offers a
rough probabilistic prediction and updates by its own rule. The second layer, being a cost vector, refines
the rough prediction and undergoes a dynamic optimization process via dynamic EA. As shown in the left
part of Fig. 2, we denote the first and second layers as H1,t and H2,t, respectively. The complete model is
denoted by Ht = {H1,t, H2,t}. The lower-level problem is to minimize a loss function ℓ1(H1; Xt, yt), which
assesses the probabilistic prediction loss computed for each sample in the stream. The upper-level problem
involves minimizing a non-differentiable performance metric ℓ2(H2,t; p(·; H∗

1,t), yt), which measures the refined
prediction error based on the solution H∗

1,t of the first layer. The learning process of the upper layer occurs
at a fixed frequency f for computational efficiency. Importantly, the lower layer updates solely based on its
own rule, and optimizing the upper layer does not affect the lower layer. The overall bi-level optimization
problem is stated as minH2,t minH1,t ℓ2(H2,t; p(·; H1,t), yt).
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Algorithm 1: Training Procedures of Proposed OECV
Input: Classifier HC

t−1, class size Ωt−1, training sample (Xt, yt), evolutionary frequency f , optimal cost
vector v∗, cost vector population V, buffer B

Output: Prediction ŷt

1 Generate rough probabilistic prediction pt using HC
t−1.

2 Produce refined prediction p∗
t as final prediction ŷt using pt and v∗ by Eqn. 1.

3 Update HC
t−1 to HC

t by its own rule.
4 Update class size Ωt−1 → Ωt according to Eqn. 2.
5 Add the sample (Xt, yt) to B.
6 if t mod f == 0 then
7 Evolve V by Alg. 2 with Ωt, B and HC

t , and update V and v∗ based on evolution result.
8 return ŷt

Original Sample 𝑋𝑋𝑡𝑡

Probabilistic prediction 
ℋ1,𝑡𝑡−1(𝑋𝑋t)

Refined probabilistic prediction 
ℋ2,𝑡𝑡−1(ℋ1,𝑡𝑡−1(𝑋𝑋t))

ℋ1,𝑡𝑡−1→ ℋ1,𝑡𝑡

ℋ2,𝑡𝑡−1→ ℋ2,𝑡𝑡

𝑦𝑦𝑡𝑡
Update per sample

:
:

Add new sample 𝑋𝑋𝑡𝑡,𝑦𝑦𝑡𝑡

Pop out outdated sample

Buffer ℬ

ℬℬ′
oversampling

{𝑦𝑦𝑖𝑖 ,ℋ2,𝑡𝑡 ℋ1,𝑡𝑡 𝑋𝑋𝑖𝑖 }
predict

G-mean

Update per 𝑓𝑓 samples

ℋ1,𝑡𝑡: probabilistic classifier after updating at time step 𝑡𝑡
ℋ2,𝑡𝑡: cost vector after updating at time step 𝑡𝑡

Figure 2: Illustration of OECV as a bi-level optimization problem (Section 3.2). The first layer consists of a
probabilistic classifier, while the second layer is a cost vector (Section 2.2). A fixed-size buffer is maintained
to perform oversampling and avoid potential overfitting. The cost vector is learned by a dynamic evolutionary
algorithm at frequency f on the oversampled buffer, using G-mean for objective evaluation (Section 3.4).

In this study, H1 is set to an online classifier HC along with its ℓ1 from existing work. HC may not consider
the specific characteristics of the performance metric to be optimized. For instance, it may not care about
the class imbalance in online class imbalance learning. H2 is set to a cost vector v, and the choice of ℓ2
varies depending on specific needs, such as G-mean or balanced accuracy. In this way, only the upper layer is
metric-specific. In the following subsections, we only focus on the learning strategies for the cost vector.

3.3 Learning Cost Vector with Time Decay Class Sizes

The first approach OECV-n(naive) employs time-decay class sizes (Wang et al., 2018) Ωt = {ωi,t}C
i=1 at time

t to continuously track the imbalance status over time using a predefined time decay factor λ:

ωk,t = λωk,t−1 + (1 − λ) · I(yt = k) 0 ≤ λ ≤ 1 (2)

where ωk,t represents the size of the k-th class at time step t, and I is the indicator function. Cost matrix
Mij and cost vector vi are then determined heuristically as follows:

Mij = ωj,t

ωi,t
vi =

C∑
j=1

Mij (3)

In other words, the model faces heavier penalties for misclassifying class i to class j as class j gets larger
or class i gets smaller. It can adapt to current stream behavior by passively changing the imbalance status.
However, it cannot guarantee optimal performance as it relies on the heuristic form of the cost matrix as well
as the hyperparameter λ. The detailed training procedure of OECV-n is similar to that of OECV, by just
removing all the use of evolution and replacing v∗ in Alg. 1 by the cost vector determined by Eqn. 3
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3.4 Learning Cost Vector with Dynamic Evolutionary Algorithm

Algorithm 2: Cost Vector Evolution
Input: Buffer B, cost vector population V, online classifier HC , number of neighbors k, sampling rate r,

size of prior population m
Output: Optimal cost vector v∗, cost vector population V

1 // Maintain population diversity and integrate prior knowledge
2 Generate human-designed cost vector vh using Ωt by Eqn. 3.
3 Create prior population {v(i)}m

i=1 based on vh using Eqn. 4, and add to V.
4 // Oversampling for data diversity
5 Initialize augmented buffer B′ with samples from B.
6 for Xt in B do
7 for r − 1 times do
8 Find k nearest neighbors of Xt and randomly select X ′

t from them.
9 Generate a new sample using Eqn. 5 with α ∼ U(0, 1), and add it to B′.

10 // Evolution
11 Produce rough probabilistic prediction {pi}|B′|

i=1 for each sample in B′ using HC .
12 For each v(k), produce refined predictions {p(k)

i }|B′|
i=1 using {pi}|B′|

i=1 (Eqn. 1).
13 Calculate fitness f (k) for v(k) based on {p(k)

i }|B′|
i=1 and true labels {yi}|B′|

i=1.
14 Evolve V for one generation by crossover and mutation using {f (k)}|V|

k=1. Calculate {f (k)}|V|
k=1 to find the

optimal solution v∗ by comparing fitness.
15 return v∗, V

Compared to designing with time-decay class size, EAs can find cost vectors that optimize performance
measures directly. The evolution process along two related tricks of the resulting OECV are illustrated as
follows. See the complete algorithm in Alg. 2.

3.4.1 Evolution

• Chromosome Encoding: The cost vector v(k) is encoded into a chromosome straightforwardly,
with the C-dimensional vector being the chromosome.

• Fitness Calculation: The chance of passing genetic information to subsequent generations relies on
the fitness of a cost vector. We maintain recent samples in a fixed-size buffer B for fitness calculation2.
B is enlarged into B′ by oversampling (See next subsection) before being used for fitness evaluation.
Specifically, we first do classification using the latest classifier HC on B′, resulting in the set of rough
probabilistic predictions {pi}|B′|

i=1. For each individual v(k), it refines the rough predictions to give a
set of final predictions {p(k)

i }|B′|
i=1. {p(k)

i }|B′|
i=1 along with the set of true labels {yi}|B′|

i=1 are then used
to calculate a performance metric as the fitness f (k) of v(k). With the set of fitness {f (k)}|V|

k=1, the
optimal individual (cost vector) can be determined straightforwardly. Note the performance metric
used here is the corresponding offline metric (e.g., G-mean) instead of the online metric (e.g., online
G-mean) so that the fitness calculation is not affected by the order of samples in B′.

• Genetic Operator: EA employs genetic operators to produce new cost vectors by crossover and
mutation based on the fitness value of individuals. Any single objective genetic operator may be
used in the current framework.

If the generation of new cost vectors at Line 15 in Alg. 2 is removed, while the selection of the optimal
individual in Line 16 is retained, we get a comparison algorithm OECV-ea as demonstrated in the ablation

2If additional memory is unavailable, an adaptive generative model can be used to generate samples in replace of the buffer.
But it is not the focus of this work.
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study. In this case, OECV-ea can be used to show whether OECV works by finding better individuals with
evolution instead of simply relying on the extra data in the buffer to select a good solution from a large
number of candidates.

3.4.2 Maintain Population Diversity and Integrate Prior Knowledge

The cost vector designed by time-decay class size as in OECV-n can be used to guide EA. This benefits OECV
by integrating the prior knowledge of imbalance status and preventing it from converging to a temporary
optimal solution. Analogous to the time decay class size approach in spirits, the dynamic evolutionary also
acts passively to counter the effect of concept drift, i.e., it would not detect the concept drift directly. We
want to emphasize that this approach may not be the best choice in more complicated scenarios since it
currently only focuses on the class-prior concept drift. How to adapt to more complicated drift scenarios is
beyond the scope of this work. Specifically, we add m different cost vectors {v(i)}m

i=1 randomly generated by
vh from Eqn. 3 in a heuristic way:

v(i) = vh + w wj ∼ Uj

(
0,

i

m

)
(4)

Recall in the definition of cost vector (Eqn. 1), we require each dimension of v(i) = 1 be in [0, 1] and sum up
to 1. Therefore, each dimension of v(i) is clipped to [0, 1] and re-normalized. {v(i)}m

i=1 are then merged with
the previous population to form the initial population for later evolution. After a fixed frequency f , the prior
population is mixed in, and the population evolves over one generation.

3.4.3 Oversampling for Data Diversity

To ensure accurate fitness calculation, an oversampling trick for enhancing data diversity is applied to B.
This creates an augmented buffer B′. Specifically, we expand B to r times its original size by generating r − 1
samples {(X(i)

t , y
(i)
t )}r−1

i=1 (r ∈ N+) for each sample (Xt, yt):

X
(i)
t = Xt + α · (X ′

t − Xt), y
(i)
t = yt (5)

where α ∼ U(0, 1) and X ′
t is randomly selected from k nearest neighbors of Xt.

4 Experimental Studies

This section evaluates OECV from four aspects: comparing it to SOTA methods, testing the effectiveness of
EA, evaluating runtime efficiency, and exploring its inner workings mechanism.

4.1 Experimental Setup

We use 30 datasets in total as shown in Table 1, including 10 streaming datasets (Elec, Abrupt, Gradual,
Incremental1, Luxembourg, NOAA, Ozone, Airlines, Covtype, Incremental2, available in the USP-DS
repository (Souza et al., 2020)) and 20 real-world offline datasets (remaining 20 datasets in Table 1, available
in the Keel repository (Derrac et al., 2015)). The 20 offline datasets are processed in a streaming way to
simulate online scenarios. The overall static imbalance ratio for each dataset illustrates the severity of class
imbalance, while fluctuation of class imbalance ratio throughout the online learning scenario exists.

The initial 30% samples of each stream are used for model initialization in an offline fashion. The initialization
samples are further split into two datasets in equivalent sizes for training the classifier and the cost vector
separately. In this stage, the cost vector population evolves 10 generations to give an initial population for
later online training. The buffer size |B| for OECV is fixed at 200 samples, and the oversampling rate is set
to 3 for all datasets. Offline G-mean is used for fitness evaluation on the augmented buffer. The cost vector
evolves every 5 sample (i.e., f = 5), with the number of individuals set to 25. We employ DE/best/1/L
(Opara & Arabas, 2019) as the genetic operator. The implementation of evolutionary algorithms is easy
and straightforward by directly adopting from the existing Python packages (such as geatpy 3, which was

3https://geatpy.github.io/
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Table 1: Overview of the dataset. "#Data" denotes the total number of samples within this dataset, "#Fea"
denotes the number of features, "#Class" denotes the number of classes, and IR denotes the overall static
imbalance ratio being computed as the ratio between the largest and smallest class sizes.

Dataset #Data #Fea #Class IR Dataset #Data #Fea #Class IR Dataset #Data #Fea #Class IR
Elec 5000 8 2 1.6 Abalone1 2338 8 2 39.3 Win1 691 11 2 68.1

Abrupt 5000 33 6 4.0 Abalone2 1622 8 2 49.7 Win2 1599 11 2 29.2
Gradual 5000 33 6 171.2 Car1 1728 6 2 24.0 Win3 656 11 2 35.4

Incremental1 5000 33 6 1.0 Car2 1728 6 2 25.6 Win4 1482 11 2 58.3
Luxembourg 1901 31 2 1.06 Kddcup 2225 41 2 100.1 Win5 900 11 2 44.0

NOAA 5000 8 2 2.4 Kr 2901 6 2 26.6 Yeast1 947 8 2 30.6
Ozone 2534 72 2 14.8 Segment 2308 19 2 6.0 Yeast2 1484 8 10 92.6

Airlines 5000 7 2 2.1 Shuttle1 3316 9 2 66.7 Yeast3 1484 8 2 8.1
Covtype 5000 54 7 7.0 Shuttle2 1829 9 2 13.9 Yeast4 1484 8 2 32.7

Incremental2 5000 33 6 25.4 Thyroid 720 21 3 39.2 Yeast5 1484 8 2 41.4

used in our experiments). All the hyperparameters related to genetic operators are set to the default values.
Specifically, the scaling factor of DE is set to 0.5, and exponential crossover is applied with the probability of
crossover set to 0.7.

We compare OECV with four SOTA online multi-class imbalance learning methods: MOOB, MUOB (Wang
et al., 2016), AI-WSELM (Qin et al., 2021), and BEDCOE (LI et al., 2023). The total number of base learners
is set to 10, following (Wang et al., 2016; LI et al., 2023). All methods adhere to a strict online learning
setup. Multilayer perceptron serves as the base classifier for all methods, except AI-WSELM, following the
setup in Wang et al. (2016). Prequential G-mean with a fading factor of 0.99 is selected as performance
metrics, following Wang et al. (2018) and LI et al. (2023). Mean performance across 10 runs is evaluated on
the remaining samples after the initialization number. Friedman tests (Demšar, 2006) are used to compare
competing methods across datasets statistically. The null hypothesis (H0) posits that all models are equivalent
in terms of the predictive performance metric. The alternative hypothesis (H1) suggests that at least one
pair of methods differs significantly. If H0 is rejected, the Conover test (Conover & Iman, 1979) is conducted
as the post-hoc test.

4.2 Performance Comparison

We can see from Table 2(a) that in terms of G-mean, OECV performs the best in 14 out of 30 datasets
and the 2nd best in 8 datasets. Friedman tests at significance level 0.05 reject H0 with p-value 1.11 × 10−3,
showing a significant difference between methods. Average ranks ("avgRank") across datasets are reported to
show how well each method performs compared to others across datasets. The average rank of OECV is
1.967, being the best. Post-hoc tests are then conducted to detect whether OECV has a significant difference
from the competitors, for which OECV is chosen as the control method. Post-hoc comparisons show that
OECV can significantly outperform all of the competitors.

4.3 Ablation Study

Two comparison models OECV-n and OECV-eahave been built in Section 3.3 and Section 3.4, which differ
from OECV by just the way on learning cost vector. They are employed here to study the effectiveness
of EA. We would expect the performance of OECV, with the full assistance of evolutionary optimization,
to be the best. The performance of OECV-ea should be in the middle since while evolution is not used,
several candidates of cost vectors are still under consideration for selecting the best one using extra data.
The performance of OECV-n should be the worst because only human knowledge is used. If this occurs, we
can conclude that the EA used for optimizing the cost vector is crucial for dealing with class imbalance, and
extra data in the buffer is not the determinative reason for performance improvement.

Table 2(b) shows the result in terms of G-mean. The three methods are compared to each other, with
Wilcoxon signed rank tests (Wilcoxon, 1992) used to determine if there are significant differences between
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Table 2: Performance comparison in terms of G-mean (%). Each entry is the mean±std performance across
10 runs. The best performance on each dataset is highlighted in bold, and the 2nd best performance is
highlighted in italics. The last row lists the average ranks (avgRank) of each model across datasets in each
subtable. Part (a) compares SOTA methods and the proposed OECV. A significant difference against OECV
is highlighted in yellow. Part (b) reports the ablation results between variants of OECV.

(a) Performance comparison

Dataset AI-WSELM MOOB MUOB BEDCOE OECV
Elec 78.2±1.6 90.9±0.2 88.7±0.4 95.5±0.1 83.7±0.9
Abrupt 66.2±1.4 60.2±1.7 60.4±2.2 60.0±0.4 62.8±0.6
Gradual 0.0±0.0 22.4±9.1 0.1±0.3 34.8±20.4 8.5±4.2
Incremental1 46.0±0.7 53.8±0.6 48.5±2.0 52.9±0.4 46.4±1.5
Luxembourg 85.5±2.4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
NOAA 71.3±0.8 65.3±0.7 64.6±0.6 68.2±0.7 73.1±0.5
Ozone 65.0±2.9 72.3±1.8 78.0±0.6 70.6±1.3 77.1±1.7
Airlines 50.8±1.0 34.6±2.8 47.6±1.6 50.6±0.4 51.8±0.9
Covtype 0.0±0.0 65.4±0.8 0.0±0.0 64.6±1.2 28.6±1.5
Incremental2 0.8±0.2 30.8±5.0 0.9±1.2 40.9±1.6 15.6±1.6
Abalone1 43.6±5.2 55.0±0.9 64.5±3.8 59.1±0.8 67.8±4.3
Abalone2 48.0±9.3 4.6±0.0 26.8±8.2 33.2±0.0 38.7±7.6
Car1 80.4±2.9 33.3±4.3 56.3±4.9 44.5±5.0 78.2±2.2
Car2 96.5±2.9 74.9±0.7 79.8±3.7 74.4±1.5 96.1±1.0
Kddcup 78.1±11.8 100.0±0.0 95.9±3.5 100.0±0.0 100.0±0.0
Kr 94.3±1.7 94.4±0.7 90.5±1.8 90.2±0.7 94.7±1.3
Segment 98.7±0.4 98.9±0.1 93.0±0.6 99.0±0.0 99.1±0.1
Shuttle1 100.0±0.0 99.4±0.6 97.9±1.7 99.0±0.9 99.9±0.0
Shuttle2 99.4±0.1 99.6±0.0 99.8±0.1 99.7±0.1 99.7±0.0
Thyroid 29.0±14.0 38.9±2.7 0.6±0.0 56.7±2.2 71.6±1.5
Win1 29.1±34.1 6.8±0.0 6.8±0.0 36.5±36.4 80.6±1.2
Win2 39.0±4.8 15.4±5.1 62.0±5.0 27.3±1.4 59.2±3.6
Win3 26.2±11.3 22.1±2.4 19.6±10.0 26.5±2.8 79.9±1.2
Win4 9.7±10.7 43.2±11.6 16.7±9.5 27.7±1.6 50.6±5.7
Win5 22.8±19.3 32.8±4.7 11.0±4.2 14.7±0.0 53.3±7.1
Yeast1 47.8±8.0 32.0±0.5 36.1±13.8 33.2±4.1 48.0±18.9
Yeast2 28.0±6.0 0.1±0.1 0.0±0.0 8.8±4.2 0.2±0.4
Yeast3 81.5±2.3 89.2±0.3 89.8±1.2 87.5±0.3 87.8±1.0
Yeast4 72.9±6.6 86.5±0.8 82.4±9.5 71.7±2.8 81.7±5.7
Yeast5 70.3±3.8 64.1±1.9 51.7±7.1 53.1±3.0 86.5±1.7
avgRank 3.35 3.133 3.517 3.033 1.967

(b) Ablation studies

OECV-n OECV OECV-ea
83.1±0.4 83.7±0.9 83.6±0.9
62.0±0.7 62.8±0.6 62.6±0.9
15.8±2.5 8.5±4.2 4.3±2.8
45.9±1.2 46.4±1.5 46.2±1.2
100.0±0.0 100.0±0.0 100.0±0.0
73.0±0.5 73.1±0.5 72.9±0.5
71.8±1.9 77.1±1.7 76.1±1.6
50.7±0.5 51.8±0.9 51.7±0.8
38.7±1.1 28.6±1.5 26.6±1.3
21.2±1.8 15.6±1.6 13.0±1.0
55.7±3.0 67.8±4.3 59.0±5.7
25.6±0.1 38.7±7.6 33.1±5.9
77.0±3.1 78.2±2.2 77.5±2.0
94.7±1.2 96.1±1.0 95.2±0.9
100.0±0.0 100.0±0.0 100.0±0.0
91.5±0.8 94.7±1.3 92.2±1.3
99.1±0.1 99.1±0.1 99.4±0.1
99.9±0.0 99.9±0.0 99.9±0.0
99.7±0.0 99.7±0.0 99.6±0.0
68.5±3.8 71.6±1.5 73.6±2.2
79.9±0.1 80.6±1.2 80.6±0.9
48.1±0.9 59.2±3.6 49.6±1.9
39.0±4.2 79.9±1.2 60.6±12.9
18.9±7.7 50.6±5.7 29.1±4.1
53.3±5.6 53.3±7.1 41.0±7.4
16.5±0.9 48.0±18.9 15.5±0.2
0.0±0.0 0.2±0.4 0.0±0.0
85.0±1.1 87.8±1.0 86.8±0.8
68.3±4.0 81.7±5.7 75.0±3.7
84.8±0.1 86.5±1.7 81.8±2.8
2.467 1.333 2.2

them. We can see that the average rank of OECV (1.333) is better than that of OECV-n (2.467) and
OECV-ea (2.2). Wilcoxon signed rank test rejects H0 with p-value 0.0036 and 9.62 × 10−5, respectively,
meaning OECV is significantly superior to OECV-n and OECV-ea. But in comparison between OECV-ea
and OECV-n, the average rank of OECV-ea (2.2) is better than OECV-n (2.467), and the Wilcoxon signed
rank test fails to reject H0 with p-value 0.178, meaning there is no significant difference between OECV-ea
and OECV-n. From the comparison between OECV and OECV-n, we see that eliminating the whole EA
strategy would significantly decline performance. However, this can be caused by the extra data from the
buffer used in OECV. We can see from the comparison between OECV-ea and OECV, as well as OECV-ea
and OECV-n, that the extra data does not play a determinative role. To see this, OECV-ea also uses extra
data in finding optimal cost vector with performance set to the objective of performance metric, but it does
not perform significantly better than OECV-n and performs significantly worse than OECV. This means it is
the EA instead of extra data making OECV outperform SOTA methods, showing the effectiveness of EA.
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Figure 3: Prequential G-mean, imbalance ratio, and standard deviation of fitness of the population in
dataset Ozone. The higher the standard deviation, the greater the diversity. Imbalance ratio is calculated by
time-decay class sizes (Eqn. 2).

4.4 Further Discussions

We explore two related questions to assess the working mechanism of OECV.

4.4.1 Analysis on Population Diversity

We explore whether OECV can maintain population diversity over time instead of converging. The population
diversity enables OECV to track the optimal cost vector instead of converging to a certain solution. We
present the standard derivation of individual fitness in Fig. 3 with a further analysis of the Spearman
correlation (Fieller et al., 1957). The result shows correlation coefficients of 0.715 and 0.772 between the
imbalance ratio and standard deviation (std) of fitness of OECV and OECV-ea, respectively, being strongly
correlated. It also shows a high correlation coefficient of 0.869 between the std of fitness of OECV and
OECV-ea. We can draw two observations: 1) The diversity adapts to data stream behavior. This means
OECV and OECV-ea can expand the exploration of new cost vectors (high std) during a concept drift while
adopting temporary elitists by leveraging learned knowledge about class imbalance (low std) during the
steady stream. 2) Despite similar diversity and changing behavior, OECV outperforms OECV-ea. This
indicates the superiority of EA in that it can maintain a population of cost vectors with higher quality under
the same diversity.

4.4.2 Analysis on EA-based Cost Vector

We explore how the cost vector found by the EA-based method outperforms that of OECV-n. We define
the weight ratio (WR) as v1

v0
to visualize the cost vector in a binary classification scenario in Fig. 4. Here,

vi represents the i-th dimension of the cost vector. Analogous to the imbalance ratio, the WR serves as a
belief of the imbalance level indicated by the cost vector. We analyze the Spearman correlation between the
WR of three variants and the imbalance ratio, yielding correlation coefficients of 0.971, 0.897, and 0.887 for
OECV-n, OECV-ea, and OECV respectively, indicating strong correlations. This means the cost vectors
found by EA can also reflect the beliefs about class imbalance, while some of these beliefs are sacrificed to
seek more appropriate values of the cost vector in finding the optimal solution. Besides, Fig. 4 illustrates the
challenge of finding the optimal solution by ad hoc assumptions: While OECV outperforms that of OECV-n,
the WR of OECV fluctuates compared to OECV-n. This suggests that relying solely on the imbalance ratio is
insufficient for identifying the best cost vector. The dynamic evolutionary algorithm addresses this limitation
by directly setting the performance measure as the objective and avoiding heuristic reliance.

5 Conclusion

This article introduces a novel approach Online Evolutionary Cost Vector (OECV) along with its two variants
to tackle the online class imbalance issue by eliminating heuristic assumptions about class imbalances widely
used in existing methods. The OECV instead tries to maximize performance on any specified performance
metrics directly. This is achieved by adopting a dynamic evolutionary algorithm for online model evolution.
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Figure 4: Prequential G-mean, imbalance ratio, and weight ratio in dataset Airlines. Imbalance ratio is
calculated by time-decay class sizes (Eqn. 2).

The model is explicitly deconstructed into two layers: an online classifier for rough probabilistic prediction
and a cost vector for refining the decision boundary. The cost vector is the only part subject to the
dynamic evolutionary algorithm used for directly optimizing any specific performance metrics. This bi-level
architecture is motivated by viewing the cost vector as a hyperparameter in the threshold moving method
and the evolutionary algorithm as an approach to fine-tune the cost vector. This is based on the assumption
that the cost vector, utilized to adjust the decision boundary, has an optimal value that yields the best
online metric for a dynamic base classifier. A dynamic evolutionary algorithm is employed to find a superior
value to a human-designed counterpart. Cost vectors designed by time-decay class size are integrated into
the prior population to sustain population diversity and integrate prior knowledge. To mitigate overfitting,
an oversampling method is used to augment the buffer and attain more beneficial evolutionary results.
Comparison with SOTA methods, ablation studies, and runtime comparison demonstrate the validity and
efficiency of our approach. Analysis of the working mechanism of OECV reveals how it can generate a
superior cost vector compared to the human-designed counterpart.

We want to emphasize that the potential of the OECV framework extends beyond the class imbalance setting.
It has further exploration values in various other classification tasks. High performance across a broad range
of metrics unrelated to class imbalance can be achieved with only slight adjustments to the cost vector.
For instance, OECV can simultaneously serve multi-objective purposes by optimizing for multiple metrics,
including accuracy, recall, and F1-score.
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A Appendix

A.1 Running Time Comparison

Since EA is known for high time complexity, we conduct a runtime experiment to show the practicality of
OECV. All experiments are benchmarked on a server configured with Intel(R) Xeon(R) Gold 6338 CPU
@ 2.00GHz. The geometric average of runtime across datasets is reported in the case of varying runtime
scales across datasets. Specifically, suppose N datasets are used, we report N

√∏N
i=1 ti, where ti represents

the runtime on the i-th dataset. Two key observations can be made from the results in Table 3. Firstly, while
some methods exhibit significantly shorter runtimes, such as MUOB and OECV-n, this comes at the expense
of their inferior performance, as evidenced in Table 2(a). Secondly, our approach demonstrates remarkable
efficiency, as OECV achieves the best rank with tolerably short runtime compared to other SOTA methods.
This validates the time efficiency and practicality of OECV despite using EA.

A.2 Performance Comparison in Terms of Balanced Accuracy

In Table 4, we include a complementary performance comparison in terms of balanced accuracy of Section
4.2.

We can see from Table 4 that in terms of balanced accuracy, OECV performs the best in 12 out of 30 datasets
and the 2nd best in 8 data sets. Friedman tests (Demšar, 2006) at the significance level 0.05 reject H0 with
the p-value 4.21 × 10−3, showing that there is a significant difference between methods. The average rank
of OECV is 2.167, being the best. Post-hoc tests are then conducted to investigate whether OECV has
a significant difference from the competitors, for which OECV is chosen as the control method. Post-hoc
comparisons show that OECV can significantly outperform all of the competitors except BEDCOE, where
the p-value is 0.052, being only marginally higher than 0.05. We conjecture this is because the optimization
objective is set to G-mean instead of balanced accuracy in OECV, making the algorithm not aware of this
performance metric.

A.3 Ablation Studies in Terms of Balanced Accuracy

Table 4 shows the predictive performance of the three models in terms of balanced accuracy. Then, the three
methods are compared to each other, with Wilcoxon signed rank tests (Wilcoxon, 1992) used to determine if
there are significant differences between them.

We can see from Table 4 that in terms of balanced accuracy, the average rank of OECV (1.55) is better than
that of OECV-n (2.233) and OECV-ea (2.217). Wilcoxon signed rank test rejects H0 with p-value 0.042 and
4.98 × 10−4, respectively, meaning OECV is significantly superior to OECV-n and OECV-ea. This indicates
that eliminating the EA strategy would significantly decline predictive performance in terms of balanced
accuracy, showing its effectiveness.

We follow a similar procedure to compare OECV-ea and OECV-n. In terms of balanced accuracy, the average
rank of OECV-ea (2.217) is better than OECV-n (2.233). Wilcoxon signed-rank test fails to reject H0 with
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Table 3: Comparison between methods in terms of runtime in seconds. The geometry average of runtime is
shown in the last row.

Dataset AI-WSELM MOOB MUOB BEDCOE OECV-n OECV OECV-ea
Elec 6.9±1.2 49.8±1.4 22.5±0.6 134.2±3.4 6.5±0.1 47.5±0.3 53.6±3.9

Abrupt 13.3±2.6 51.2±1.5 11.2±0.2 292.8±20.3 6.5±0.3 81.4±3.4 75.5±1.2
Gradual 15.0±3.2 52.9±0.4 5.1±0.1 212.8±5.1 6.7±0.2 110.3±20.5 74.9±1.4

Incremental1 15.1±3.2 49.7±0.2 16.2±0.4 383.4±5.8 6.5±0.2 101.5±2.9 76.1±1.2
Luxembourg 5.3±0.1 16.4±0.1 12.6±0.1 28.2±0.5 2.5±0.3 38.0±2.1 27.6±0.7

NOAA 10.0±0.2 48.4±0.2 23.8±0.2 307.8±13.2 7.0±0.7 53.9±0.6 49.6±0.7
Ozone 8.0±0.1 38.5±1.7 6.3±0.3 139.4±56.7 4.5±0.1 55.9±1.8 42.7±0.7

Airlines 12.9±0.4 49.0±0.9 25.8±0.3 364.2±6.4 7.3±0.5 52.8±0.6 47.1±0.4
Covtype 27.8±0.3 58.7±1.0 5.3±0.0 252.7±4.7 7.3±0.2 115.4±1.7 80.6±1.0

Incremental2 17.5±0.5 62.4±0.7 5.6±0.0 379.0±7.1 7.2±0.2 107.5±3.2 75.1±0.9
Abalone1 2.4±0.0 24.2±0.4 4.0±0.2 73.4±3.1 3.3±0.1 25.1±0.4 22.7±0.3
Abalone2 1.6±0.0 16.0±0.4 2.5±0.1 52.2±1.6 2.4±0.2 17.4±0.6 15.6±0.2

Car1 1.6±0.0 22.5±0.8 4.6±0.8 76.5±5.0 2.5±0.1 18.3±0.3 16.4±0.2
Car2 1.6±0.0 21.3±0.4 3.7±0.6 46.2±0.7 2.5±0.1 18.6±0.5 16.3±0.1

Kddcup 7.3±0.3 21.1±0.2 3.1±0.1 36.4±0.8 3.3±0.1 43.9±2.4 31.9±0.6
Kr 3.8±0.1 36.4±0.8 5.7±0.4 65.9±0.8 4.3±0.2 30.8±0.6 27.4±0.3

Segment 6.3±0.2 31.1±0.6 8.9±0.3 52.6±1.8 3.5±0.4 41.4±1.8 29.4±0.8
Shuttle1 6.4±0.4 39.0±1.2 6.0±0.5 55.4±0.9 4.9±0.2 38.1±0.5 32.5±0.4
Shuttle2 3.8±0.2 22.9±0.6 4.5±0.1 31.9±0.8 2.8±0.6 21.2±0.5 17.7±0.2
Thyroid 2.0±0.1 10.1±0.1 1.0±0.1 37.1±0.6 1.2±0.3 12.2±0.8 8.5±0.3

Win1 1.5±0.1 7.7±0.2 0.9±0.1 19.4±0.3 1.0±0.2 8.4±0.3 6.8±0.1
Win2 3.6±0.2 17.0±0.9 3.0±0.2 64.6±1.2 2.3±0.2 18.6±0.5 15.5±0.2
Win3 1.4±0.1 8.1±0.4 1.2±0.4 23.2±1.1 1.0±0.1 7.5±0.3 6.4±0.1
Win4 3.3±0.1 16.7±0.4 2.2±0.4 37.2±1.0 2.1±0.1 17.0±0.3 14.3±0.1
Win5 2.0±0.1 11.1±0.6 1.3±0.1 27.7±0.9 1.3±0.1 10.4±0.3 8.7±0.1
Yeast1 1.9±0.1 13.1±0.8 1.7±0.3 36.5±0.8 1.4±0.1 10.2±0.3 9.2±0.1
Yeast2 3.2±0.1 22.5±0.5 1.8±0.3 150.2±5.2 2.1±0.3 20.7±0.4 15.8±0.1
Yeast3 3.1±0.1 17.6±0.3 4.7±0.2 57.5±1.0 2.1±0.1 15.7±0.2 14.5±0.1
Yeast4 3.1±0.2 17.7±0.5 2.4±0.2 40.4±0.6 2.3±0.6 15.6±0.2 14.3±0.2
Yeast5 3.0±0.1 17.4±0.4 2.3±0.3 42.5±0.7 2.1±0.2 15.9±0.5 14.2±0.1

G-mean time 4.501 24.471 4.378 75.8 3.074 28.517 23.66

p-value 0.838, meaning there is no significant difference between OECV-ea and OECV-n. This indicates that
using extra samples in the buffer is solely insufficient to find a significantly better cost vector. In other words,
although our method uses extra data, this is not the determinative reason why OECV can outperform SOTA
methods.

A.4 Continuous Performance Throughout Time

Figure 5 shows performance comparisons over various time steps on two representative datasets in terms of
G-mean and balanced accuracy. Similar patterns were observed in other datasets but are not included here
due to space constraints. We can see that OECV consistently outperforms most other methods across most
time steps in terms of both G-mean and balanced accuracy. This demonstrates the continuous effectiveness
of our approach in improving performance over time.

For ablation studies, we demonstrate continuous performance over time in Figure 6 in terms of G-mean and
balanced accuracy. We notice removing the evolutionary cost vector strategy leads to a continual decline in
performance across most test steps. As a result, we assert that using EA is crucial in our approach.
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Table 4: Performance comparison in terms of balanced accuracy (%). Each entry is the mean±std performance
across 10 runs. The best performance on each dataset is highlighted in bold, and the 2nd best performance is
highlighted in italics. The last row lists the average ranks (avgRank) of each model across datasets in each
subtable. Part (a) reports the comparison between SOTA methods and the proposed OECV. A significant
difference against OECV is highlighted in yellow. Part (b) reports the ablation results between variants of
OECV.

(a) Performance comparison

Dataset AI-WSELM MOOB MUOB BEDCOE OECV
Elec 79.5±1.7 91.0±0.2 88.9±0.4 95.5±0.1 84.2±0.9
Abrupt 68.2±1.1+ 65.9±0.6 67.3±0.6 63.7±0.3 64.6±0.6
Gradual 34.1±0.4 63.1±0.4 20.2±0.8 64.1±1.3 52.3±1.0
Incremental1 48.5±0.6 58.6±0.4 58.1±0.6 54.7±0.4 48.2±1.3
Luxembourg 85.6±2.4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
NOAA 72.0±0.7 66.0±0.6 64.9±0.6 69.0±0.6 73.2±0.5
Ozone 67.7±2.2 74.9±1.3 78.3±0.6 74.1±1.0 77.4±1.6
Airlines 51.6±0.6 51.6±0.5 51.1±0.7 51.7±0.4 52.2±0.8
Covtype 21.1±2.9 70.6±0.4 16.4±3.0 70.3±0.9 38.6±1.1
Incremental2 30.1±0.5 49.3±0.4 25.2±1.9 49.4±1.0 40.0±0.6
Abalone1 60.6±2.3 65.6±0.6 66.5±2.9 68.0±0.5 71.9±2.5
Abalone2 61.0±3.3 51.6±0.2 45.2±3.4 56.2±0.2 54.2±3.1
Car1 82.1±2.5 53.7±1.1 62.4±6.0 57.4±2.2 79.0±2.1
Car2 96.7±2.6 77.3±0.5 81.2±3.7 77.7±1.1 96.2±1.0
Kddcup 83.5±7.3 100.0±0.0 96.1±3.3 100.0±0.0 100.0±0.0
Kr 94.5±1.6 94.4±0.7 91.0±1.6 90.6±0.7 94.7±1.2
Segment 98.7±0.4 98.9±0.1 93.3±0.6 99.0±0.0 99.1±0.1
Shuttle1 100.0±0.0 99.4±0.6 98.0±1.7 99.1±0.9 99.9±0.0
Shuttle2 99.4±0.1 99.6±0.0 99.8±0.1 99.7±0.1 99.7±0.0
Thyroid 54.6±4.6 53.9±2.8 34.7±0.0 63.9±1.9 75.0±1.5
Win1 62.6±14.6 53.0±0.1 53.4±0.0 65.5±15.7 83.3±0.5
Win2 54.9±1.7 51.0±0.9 65.0±2.5 52.6±0.6 64.6±2.0
Win3 52.4±2.8 51.8±0.8 51.5±3.5 52.1±1.0 80.2±1.2
Win4 52.7±1.8 59.8±4.6 50.1±2.3 54.4±0.5 59.5±4.4
Win5 55.5±5.0 53.3±2.0 49.4±1.3 49.6±0.3 58.5±3.8
Yeast1 60.1±3.7 56.7±0.4 53.1±5.8 57.1±1.0 59.0±7.7
Yeast2 45.7±2.7 39.4±2.6 10.8±1.7 41.2±0.8 39.9±1.1
Yeast3 82.3±2.0 89.3±0.3 90.1±1.0 87.8±0.3 87.9±1.0
Yeast4 76.7±4.8 88.9±0.8 84.6±7.4 76.7±2.0 83.4±4.3
Yeast5 75.3±2.4 73.5±1.1 65.8±4.3 66.1±1.9 86.8±1.6
avgRank 3.1 3.1 3.717 2.917 2.167

(b) Ablation studies

OECV-n OECV OECV-ea
83.7±0.4 84.2±0.9 84.1±0.8
64.4±0.7 64.6±0.6 64.7±0.8
59.2±0.9 52.3±1.0 50.6±1.1
47.9±1.1 48.2±1.3 48.0±1.1
100.0±0.0 100.0±0.0 100.0±0.0
73.1±0.5 73.2±0.5 73.0±0.5
73.6±1.4 77.4±1.6 76.7±1.5
51.6±0.6 52.2±0.8 52.2±0.9
50.1±1.1 38.6±1.1 33.9±1.2
43.2±0.6 40.0±0.6 36.4±0.7
65.8±1.4 71.9±2.5 67.2±2.7
54.0±0.3 54.2±3.1 54.4±1.8
79.1±2.4 79.0±2.1 78.8±1.7
94.9±1.1 96.2±1.0 95.3±0.9
100.0±0.0 100.0±0.0 100.0±0.0
91.8±0.7 94.7±1.2 92.5±1.2
99.1±0.1 99.1±0.1 99.4±0.1
99.9±0.0 99.9±0.0 99.9±0.0
99.7±0.0 99.7±0.0 99.6±0.0
73.1±2.7 75.0±1.5 77.1±2.1
83.5±0.1 83.3±0.5 83.8±0.6
60.3±0.4 64.6±2.0 59.7±1.2
56.4±2.2 80.2±1.2 66.0±7.7
51.2±1.5 59.5±4.4 51.1±2.2
63.8±2.7 58.5±3.8 54.8±4.3
53.2±0.3 59.0±7.7 51.6±0.7
40.0±1.7 39.9±1.1 36.4±1.7
85.5±1.0 87.9±1.0 87.0±0.7
73.8±3.0 83.4±4.3 78.5±2.7
85.7±0.1 86.8±1.6 83.2±2.2
2.233 1.55 2.217

A.5 Analysis on Sensitivity of Population Size

We include a further experiment on the sensitivity of population size setting in OECV. Fixing the other
original hyperparameter settings of OECV, we manually alter only the population size (i.e., number of
individuals) to get four comparison methods: Pop-25 (original setting), Pop-50, Pop-100, Pop-200, standing
for OECV with a population size of 25, 50, 100, and 200, respectively. The detailed comparison setting
remains the same as in previous experiments. We report the performance in terms of G-mean in Table 5 and
the performance in terms of balanced accuracy in Table 5.

The result shows that increasing the population size wouldn’t boost performance significantly, however, the
time complexity increases correspondingly. This can be because the problem scale is commonly small in an
online learning setting, meaning a small number of individuals can already find a good enough cost vector.
We conclude that OECV is not sensitive to this hyperparameter in a certain range. This is also why we
only applied a relatively small population size in our main experiment: this setting can significantly improve
performance compared to baseline methods while not incurring a long updating delay. In offline learning,
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(a) NOAA in G-mean (b) Yeast5 in G-mean

(c) NOAA in class-wise acc. (d) Yeast5 in class-wise acc.

Figure 5: Continuous performance comparison throughout time on representative datasets in terms of G-mean
and balanced accuracy.

(a) Ozone in G-mean (b) Yeast5 in G-mean

(c) Ozone in class-wise acc. (d) Yeast5 in class-wise acc.

Figure 6: Continuous performance comparison of ablation studies throughout time on representative datasets
in terms of G-mean and balanced accuracy.
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Table 5: Performance comparison between OECV with different population size in terms of G-mean (%) on
the left and balanced accuracy (%) on the right. Each entry is the mean±std performance across 10 runs.
The best performance on each dataset is highlighted in bold, and the 2nd best performance is highlighted
in italics. The last two rows list the average ranks (avgRank) of each model across datasets, as well as the
relative average time costs.

(a) G-mean

Dataset Pop-25 Pop-50 Pop-100 Pop-200
Elec 83.7±7.8 83.9±7.8 83.8±7.9 84.1±7.9
Abrupt 62.8±3.5 63.2±3.5 63.1±3.6 63.1±3.6
Gradual 8.5±15.6 13.2±19.3 24.8±23.6 5.5±12.5
Incremental1 46.4±5.4 46.1±5.7 46.2±5.6 46.3±5.4
Luxembourg 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
NOAA 73.1±4.0 73.0±3.9 72.9±3.9 73.0±4.0
Ozone 77.1±5.6 77.8±5.9 77.3±6.0 77.0±5.9
Airlines 51.8±4.7 51.7±4.7 51.8±4.8 51.8±4.7
Covtype 28.6±15.4 36.0±18.4 39.0±18.4 40.3±18.1
Incremental2 15.6±19.5 17.2±19.4 18.5±17.1 20.5±19.3
Abalone1 67.8±16.6 66.8±16.8 67.4±16.7 71.9±15.3
Abalone2 38.7±24.4 51.8±20.2 38.2±22.2 38.1±20.2
Car1 78.2±9.9 78.1±9.8 78.5±9.9 77.6±10.0
Car2 96.1±2.0 96.2±2.0 95.8±1.9 95.9±1.7
Kddcup 100.0±0.0 94.9±10.9 100.0±0.1 98.1±4.5
Kr 94.7±2.8 93.8±3.7 93.6±3.7 95.1±2.1
Segment 99.1±0.6 99.1±0.6 99.2±0.6 99.0±0.6
Shuttle1 99.9±0.2 98.1±6.1 99.9±0.2 99.8±0.4
Shuttle2 99.7±0.6 99.6±0.6 99.6±0.6 99.7±0.6
Thyroid 71.6±19.2 74.4±19.7 74.5±19.8 76.8±20.3
Win1 80.6±18.5 84.5±13.8 80.3±18.4 81.9±15.7
Win2 59.2±15.2 58.8±12.2 61.9±11.3 60.1±12.8
Win3 79.9±8.2 81.5±6.2 80.8±6.6 80.3±6.6
Win4 50.6±20.0 64.4±11.9 46.6±25.6 49.4±25.5
Win5 53.3±14.0 59.0±9.9 57.5±13.3 62.8±10.4
Yeast1 48.0±29.4 51.1±22.6 49.2±26.1 53.6±22.7
Yeast2 0.2±3.0 0.1±2.2 0.0±0.0 0.0±0.9
Yeast3 87.8±3.2 86.5±3.7 86.6±4.0 87.2±3.4
Yeast4 81.7±13.8 86.9±5.6 86.5±9.7 89.7±4.2
Yeast5 86.5±5.8 86.6±4.8 86.2±5.0 85.5±5.0
AvgRank 2.583 2.467 2.6 2.35
Time cost ×1 ×1.11 ×1.30 ×1.73

(b) Balanced accuracy

Pop-25 Pop-50 Pop-100 Pop-200
83.7±7.8 83.9±7.8 83.8±7.9 84.1±7.9
62.8±3.5 63.2±3.5 63.1±3.6 63.1±3.6
8.5±15.6 13.2±19.3 24.8±23.6 5.5±12.5
46.4±5.4 46.1±5.7 46.2±5.6 46.3±5.4
100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
73.1±4.0 73.0±3.9 72.9±3.9 73.0±4.0
77.1±5.6 77.8±5.9 77.3±6.0 77.0±5.9
51.8±4.7 51.7±4.7 51.8±4.8 51.8±4.7
28.6±15.4 36.0±18.4 39.0±18.4 40.3±18.1
15.6±19.5 17.2±19.4 18.5±17.1 20.5±19.3
67.8±16.6 66.8±16.8 67.4±16.7 71.9±15.3
38.7±24.4 51.8±20.2 38.2±22.2 38.1±20.2
78.2±9.9 78.1±9.8 78.5±9.9 77.6±10.0
96.1±2.0 96.2±2.0 95.8±1.9 95.9±1.7
100.0±0.0 94.9±10.9 100.0±0.1 98.1±4.5
94.7±2.8 93.8±3.7 93.6±3.7 95.1±2.1
99.1±0.6 99.1±0.6 99.2±0.6 99.0±0.6
99.9±0.2 98.1±6.1 99.9±0.2 99.8±0.4
99.7±0.6 99.6±0.6 99.6±0.6 99.7±0.6
71.6±19.2 74.4±19.7 74.5±19.8 76.8±20.3
80.6±18.5 84.5±13.8 80.3±18.4 81.9±15.7
59.2±15.2 58.8±12.2 61.9±11.3 60.1±12.8
79.9±8.2 81.5±6.2 80.8±6.6 80.3±6.6
50.6±20.0 64.4±11.9 46.6±25.6 49.4±25.5
53.3±14.0 59.0±9.9 57.5±13.3 62.8±10.4
48.0±29.4 51.1±22.6 49.2±26.1 53.6±22.7
0.2±3.0 0.1±2.2 0.0±0.0 0.0±0.9
87.8±3.2 86.5±3.7 86.6±4.0 87.2±3.4
81.7±13.8 86.9±5.6 86.5±9.7 89.7±4.2
86.5±5.8 86.6±4.8 86.2±5.0 85.5±5.0
2.583 2.467 2.6 2.35
×1 ×1.11 ×1.30 ×1.73

where the problem scale is much larger, especially when the number of classes is larger, a large population
size should be applied. We leave the exploration of our method in an offline setting to future work.
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