
Stein Variational Newton Neural Network Ensembles

Klemens Flöge 1 2 Muhammad Abdul Moeed 1 Vincent Fortuin 1 2

Abstract
Deep neural network ensembles are powerful
tools for uncertainty quantification, which have
recently been re-interpreted from a Bayesian
perspective. However, current methods inad-
equately leverage second-order information of
the loss landscape, despite the recent availabil-
ity of efficient Hessian approximations. We pro-
pose a novel approximate Bayesian inference
method that modifies deep ensembles to incor-
porate Stein Variational Newton updates. Our
approach uniquely integrates scalable modern
Hessian approximations, achieving faster conver-
gence and more accurate posterior distribution ap-
proximations. We validate the effectiveness of our
method on diverse regression and classification
tasks, demonstrating superior performance with a
significantly reduced number of training epochs
compared to existing ensemble-based methods,
while enhancing uncertainty quantification and
robustness against overfitting.

1. Introduction
Effectively approximating intractable probability distribu-
tions with finite samples is crucial for evaluating expecta-
tions and characterizing uncertainties in machine learning
and statistics (Pearson, 1895; Silverman, 1986; Givens &
Hoeting, 2012). This challenge is particularly pronounced
in high-dimensional and multimodal distributions, such as
those in approximate Bayesian inference for deep neural
networks. Traditional methods to address these challenges
include parametric variational inference (VI; Blei et al.,
2017) and Markov chain Monte Carlo (MCMC; Andrieu
et al., 2003), each with tradeoffs between computational
efficiency and estimation accuracy.

Stein Variational Gradient Descent (SVGD; Liu & Wang,

1Department of Computer Science, Technical University of
Munich, Munich, Germany 2Helmholtz AI, Munich, Germany.
Correspondence to: Klemens Flöge <klemens.floege@helmholtz-
munich.de>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

iii
n.io

aol.comifiia

i.io

i

at i.ii iii ii ii

Figure 1. Conceptual overview of the SVN method. The green
curvature-informed SVN updates are much higher quality and
require fewer steps than the corresponding blue SVGD ones.

2016) is a potent non-parametric VI technique that balances
efficiency and performance by coupling a tractable reference
distribution with a complex target distribution via transport
maps. Enhancing SVGD with curvature information results
in Stein Variational Newton (SVN; Detommaso et al., 2018),
which, despite the increased cost of Hessian computations,
achieves significantly faster convergence. However, until
now, SVN’s application has been limited to low-dimensional
inference problems.

Since the advent of neural networks, researchers have ap-
plied Bayesian principles to them (BNNs; Neal, 1995).
SVGD has also been extended to neural networks (D’Angelo
et al., 2021), however, for SVN, this still remains elusive.
Li et al. (2018) showed that deep neural network loss land-
scapes are complex yet structured (Garipov et al., 2018),
suggesting that curvature information can improve learning
dynamics (Lin et al., 2023; 2024; Eschenhagen et al., 2024).
Therefore, we aim to extend SVN to high-dimensional neu-
ral network posteriors.

The recent resurgence of interest in second-order methods
in machine learning stems from more efficient Hessian ap-
proximations (Heskes, 2000; Botev et al., 2017; Martens &
Grosse, 2015) and the availability of plug-and-play software
libraries (Dangel et al., 2020; Osawa et al., 2023). These
advances have made Hessians more practical, particularly
in the Laplace approximation for Bayesian deep learning
(MacKay, 1992a; Laplace, 1774), now available as a Py-
Torch package (Daxberger et al., 2021a). This progress has
motivated us to re-evaluate the use of Hessians in ensemble-
based Bayesian inference methods.

1

Stein Variational Newton Neural Network Ensembles

The primary contribution of this work is demonstrating
SVN’s capabilities in BNNs through extensive empirical
studies and providing a user-friendly guide and modular
codebase for practical deployment. Our adaptation, Stein
Variational Newton Neural Network Ensembles, incorpo-
rates local curvature information of the posterior landscape
using modern, scalable Hessian approximations, achieving
faster convergence than traditional gradient-based meth-
ods. Additionally, we use geometry-aware kernels within
the SVN framework to enhance convergence and perfor-
mance. Figure 1 illustrates how SVN ensembles make more
informed gradient updates by incorporating second-order
information.

Our main contributions are to

• Incorporate modern, scalable Hessian approximations
into particle-based inference

• Extend SVN from simple low-dimensional problems
to deep neural network posteriors, including with a
scalable last-layer version

• Demonstrate effective BNN inference on various syn-
thetic and real-world datasets

2. Stein Variational Newton Neural Network
Ensembles

The SVN algorithm (Detommaso et al., 2018) enhances
SVGD (Liu & Wang, 2016) by incorporating curvature or
Hessian information. While Hessian approximations are
more computationally involved, they significantly improve
convergence rates and stability by leveraging second-order
optimization principles. We will first discuss these tech-
niques in deep learning, focusing on Newton’s method.
Next, we will explore various approaches for modern Hes-
sian approximations. Finally, we will introduce the Stein
Variational Newton (SVN) algorithm. Consider a dataset
D = {(xj ∈ Rm, yj ∈ Rk)}nj=1 and a neural net-
work model gϕ : Rm → Rk, parameterized by ϕ. Let
ℓ : Rk × Rk → R be the loss function, e.g., mean squared
error, or negative log-likelihood. The empirical risk for a
batch of data B = {(xi ∈ Rm, yi ∈ Rk)}bi=1 ⊂ D, with
|B| = b, is defined as:

L(B;ϕ) = Eỹ∼p(y|gϕ(x)) [ℓ(gϕ(x), y)] (1)

≈ 1

b

b∑
i=1

ℓ(gϕ(xi), yi). (2)

Newton’s method optimizes the empirical risk using a
second-order Taylor approximation:

L(B;ϕ) ≈ L(B;ϕt) + (ϕ− ϕt)
⊤∇ϕ L(B;ϕt) (3)

+
1

2
(ϕ− ϕt)

⊤Hϕt
(ϕ− ϕt), (4)

at timestep t, where

Hϕt
= ∇2

ϕL(B;ϕt) ≈
1

b

b∑
i=1

∇2
ϕℓ(gϕ(xi), yi), (5)

is the Hessian matrix of L with respect to ϕ, evaluated at
ϕt for a given batch B. Following Goodfellow et al. (2016),
the Newton parameter update would then be defined as:

ϕt+1 = ϕt −H−1
ϕt
∇ϕL(B;ϕt). (6)

This update step adjusts parameters by considering both the
gradient and curvature of the empirical risk function. For
locally quadratic functions with a positive definite Hessian,
rescaling the gradient by H−1 allows Newton’s method to
move directly to the minimum. For convex functions with
higher-order terms, iterative updates lead to faster and more
stable convergence than first-order methods, a feature that
we visualize in Figure 1 and demonstrate empirically for
SVN Ensembles in Section 3.

2.1. Hessian Approximations in Deep Learning

As previously noted, a crucial component in implementing
the SVN algorithm for neural networks is the Hessian matrix
Hϕ (Detommaso et al., 2018). However, directly computing
the Hessian, as defined in Equation (5), is often impractical
due to its quadratic scaling with the number of network
parameters. Therefore, a good approximation is necessary.
A positive-definite approximation is particularly beneficial
for optimization purposes, as mentioned above. In this
context, we will consider the Fisher Information Matrix
(FIM) (Amari, 1998) defined for batch B as follows:

Fϕ =

b∑
i=1

Eỹ∼p(y|gϕ(xi))

[
Jϕ(ỹ|xi) Jϕ(ỹ|xi)

⊤]
, (7)

with Jϕ(ỹ|xi) = ∇ϕ log p(ỹ|gϕ(xi)). It is also possible to
use the Generalized-Gauss-Netwon (GGN) approximation
(Schraudolph, 2002):

Gϕ =

b∑
i=1

∇ϕgϕ(xi)
(
∇2

ϕ log p(yi|gϕ(xi))
)
∇ϕgϕ(xi)

⊤.

(8)

2

Stein Variational Newton Neural Network Ensembles

Figure 2. Overview of the Hessian approximations used in our
SVN algorithm.

For most common likelihoods, and the ones we consider in
this paper, the FIM and GGN are equivalent (Martens, 2020).
For the deep Laplace approximation, these have emerged
as the default choices (Ritter et al., 2018b;a; Kristiadi et al.,
2020; Lee et al., 2020; Daxberger et al., 2021b; Immer et al.,
2021b) and are thus the ones we implement in this work.
While F and G can be estimated efficiently, their entries
are still quadratic in the number of parameters. We thus
consider three Hessian approximations in our work. Full
represents the matrices as defined in Equation (7) and Equa-
tion (8). The Diagonal (Denker & LeCun, 1990; LeCun
et al., 1989) approximation considers only diagonal entries
of these matrices. Lastly, the Kronecker-Factored Approxi-
mate Curvature (KFAC or Kron; Heskes, 2000; Martens &
Grosse, 2015; Botev et al., 2017) considers block-diagonal
entries that correspond to the layers of the neural network.
These are represented as lightweight Kronecker factors. The
KFAC can be improved by using low-rank approximation
factors (Lee et al., 2020) and leveraging the eigendecompo-
sition (George et al., 2018). An overview of these methods
is shown in Figure 2. They are efficiently implemented for
NNs by Daxberger et al. (2021a).

2.2. Particle-based BNN inference

The goal of BNN inference is to approximate the intractable
Bayesian posterior distribution p(ϕ | D) on Rd, abbrevi-
ated as π, where d is the dimensionality of ϕ and number
of parameters in the neural network gϕ. In particle-based
BNN inference, π is approximated using an ensemble of N
models {gϕ1 , · · · , gϕN

}, which can be written as:

ρ(ϕ) =
1

N

N∑
i=1

δϕi(ϕ), (9)

where δϕ(x) denotes the Dirac delta function centered at
ϕ. In Deep Ensembles (Lakshminarayanan et al., 2017),
each neural network is trained independently with MAP
training. Due to the stochasticity of neural network training,
gϕi
̸= gϕj

, for i ̸= j. A major breakthrough in approxi-
mate Bayesian inference was Stein Variational Gradient
Descent (Liu & Wang, 2016), which defines a sequence
of transport maps T = T1 ◦ · · · ◦ Tk ◦ · · · to minimize

DKL(T (ρ)∥π). This method updates the particles at each
iteration to minimize the Kullback-Leibler (KL) divergence
(Kullback & Leibler, 1951) between the true posterior π
and our approximation T (ρ). The update rule Tl is chosen
to be a perturbation of the identity mapping in the vector-
valued RKHSHd = H× · · · × H. The sequence of maps
{T1, T2, · · · , Tl, · · · } then corresponds to gradient descent
with respect to the KL divergence. Following Liu & Wang
(2016), Tl, with ϕl+1

i = Tlϕ
l
i, can be expressed explicitly

as: Tl = I − ϵ vSVGD
l (·), where

vSVGD
l (ϕ) =

1

N

N∑
j=1

k(ϕl
j , ϕ)∇ϕl

j
log π(ϕl

j)︸ ︷︷ ︸
weighted average steepest descent direction

(10)

+∇ϕl
j
k(ϕl

j , ϕ)︸ ︷︷ ︸
repulsive force

(11)

Since I is the identity mapping, vSVGD
l (·) serves as a gra-

dient update. The first term moves particles towards high-
probability regions in π, while the second term acts as a
’repulsive force,’ dispersing particles to prevent clustering
around a single mode. SVGD was extended to neural net-
work ensembles by D’Angelo et al. (2021), and we will
compare our results to this method in Section 3.

2.3. Stein Variational Newton

The SVN algorithm, as proposed by Detommaso et al.
(2018), enhances SVGD by performing steepest gradient
descent in the functional Newton direction. This is repre-
sented by the transport map Tl = I − ϵ vSVN

l (·) at time
step l. The SVN update can be expressed as a Galerkin
approximation in the finite-dimensional linear spaceHd

N =
span{k(ϕ1, ·), · · · , k(ϕN , ·)}. The j-th component of vSVN

then corresponds to:

vSVN
j (ϕ) =

N∑
k=1

αk
j k(ϕk, ϕ) (12)

We use the Hessians Hϕ1
, · · · ,HϕN

to solve for the alpha
vector α⃗j = (α1

j , · · · , αN
j)⊤ for each particle ϕj . Follow-

ing the framework in Gallego & Insua (2020) and Leviyev
et al. (2022)’s SVN formulation, we define the kernel matrix
K ∈ RNd×Nd as:

K =
1

N

 k (ϕ1, ϕ1) Id×d · · · k (ϕ1, ϕN) Id×d

...
. . .

...
k (ϕN , ϕ1) Id×d · · · k (ϕN , ϕN) Id×d

 ,

(13)

3

Stein Variational Newton Neural Network Ensembles

where N refers to the number of particles as before, and
d is the number of parameters in each ensemble member.
Therefore, a vector of length Nd can represent the whole
ensemble. Furthermore, for 1 ≤ m,n ≤ N , we define the
matrix blocks hm,n ∈ Rd×d,

hm,n :=
1

N

N∑
p=1

[
−k (ϕp, ϕm) k (ϕp, ϕn)Hϕp (14)

+ ∇ϕp
(k (ϕp, ϕn)) ∇ϕp

(k (ϕp, ϕm))
⊤
]
. (15)

The first term in the equation above can be regarded as a
weighted kernel average of the Hessians in Equation (6).
The second term corresponds to a repulsive force between
particles in the RKHS similar to Equation (11). Denoting
the SVN-Hessian as

HSVN =

 h11 · · · h1N

...
. . .

...
hN1 · · · hNN

 , (16)

computing the SVN update amounts to solving the following
linear system of Nd equations:

HSVNα = vSVGD. (17)

Finally, solving for α ∈ RNd, the SVN update vector cor-
responding to the functional Newton direction of steepest
descent of the KL divergence can be calculated as:

vSVN = NKα. (18)

2.4. SVN Ensembles Algorithm

Algorithm 1 summarizes SVN neural network ensembles.
While we demonstrate in Section 3 that the method above
is computationally feasible and yields better results for
moderately-sized neural networks with the full Hessian ap-
proximation, the linear system in Equation (17) has Nd
equations and needs to be computed for every gradient
step. Moreover, a naïve implementation of K scales with
O(N2d2) in memory terms, which is extremely prohibitive
for larger deep learning models.

To this end, Detommaso et al. (2018) already proposed two
modifications to the above procedure to improve its scal-
ability. The first approach is using the Newton-conjugate-
gradient (NCG) (Wright & Nocedal, 1999, Chapters 5 and
7), which approximates Equation (17). Furthermore, this
approach only requires evaluating the matrix-vector product
HSVNα, without explicitly constructing the matrix. This

Algorithm 1 One iteration of our SVN neural network en-
semble algorithm

1: Input: Particles {ϕl
i}Ni=1 at stage l; step size ε, ker-

nel k(·, ·) ∈ {kMSVN , kI}, Hessian approximation H ∈
{HFull,HKFAC,HDiag}

2: Output: Particles {ϕl+1
i }Ni=1 at stage l + 1

3: Compute vSVGD
l

4: for i = 1, 2, . . . , n do
5: if Block Diagonal Approximation then
6: Solve the linear system from Equation (19) for

α1, . . . , αn

7: else
8: Solve the linear system from Equation (17) for

α1, . . . , αn

9: end if
10: Set ϕk+1

i ← ϕk
i + ε vSVN

l

(
ϕk
i

)
given α1, . . . , αn

11: end for

allows us to efficiently use the KFAC and Diagonal ap-
proximations detailed in Section 2.1. Additionally, one can
consider a block diagonal approximation to Equation (17),
where the off-diagonal matrix blocks in Equation (16) are
disregarded, and we solve the following linear system for
each particle:

hm,mαm = vSVGD
m for m = 1, · · · , N. (19)

This computes αm for each particle independently and in-
volves only d equations. Applying the inverse of the SVN
Hessian matrix block hm,m to both sides of Equation (19)
makes the computation of the α vector in kernel space simi-
lar to the Newtonian parameter update vector discussed in
Equation (6) at the beginning of this section.

Hessian kernel. Our Hessian approximation Hϕ ≈
∇2 log π characterizes the local curvature of the posterior.
Following Detommaso et al. (2018), we consider the aver-
age curvature metric of the posterior π with respect to our
ensemble:

Mπ = Eϕ∼π[∇2
ϕ log π(ϕ)] ≈

1

N

N∑
j=1

Hϕj = MSV N ,

(20)

and use it to construct an anisotropic Gaussian Kernel (Liu
& Wang, 2016):

kMl (ϕ, ϕ′) := exp

(
− 1

2d
∥ϕ− ϕ′∥MSVN

)
, (21)

with ∥ϕ∥MSVN = ϕ⊤ MSVN ϕ. In Appendix D.2, we perform

4

Stein Variational Newton Neural Network Ensembles

0 1 2 3 4 5 6 7
X

4

2

0

2

4

Y

Ensemble

0 1 2 3 4 5 6 7
X

4

2

0

2

4

Y
SVGD

0 1 2 3 4 5 6 7
X

4

2

0

2

4

Y

SVN

Figure 3. Synthetic regression example for Ensemble, SVGD, and SVN methods. The training data is marked with black dots, and the true
function is represented with a dashed line. The predictive mean of the neural network ensemble is shown in dark blue, with the standard
deviations highlighted in light blue. SVN best captures the underlying data distribution.

ablation studies between using M = MSVN and simply
using the scaled Gaussian kernel with M = I .

LL-SVN. Inspired by recent work on subnetwork infer-
ence (Daxberger et al., 2021b) and competitive performance
of the last-layer Laplace approximation (Daxberger et al.,
2021a), we propose a novel and computationally efficient
modification to Algorithm 1, called LL-SVN, where the
SVN update vSVN is performed only for the last layer of
the network, while vSVGD is used for the other layers. This
approach leverages high-quality curvature information in
the most expressive part of the neural network, better utiliz-
ing the learned representation. We compute vSVGD

l for the
entire network, then use the last dll elements, correspond-
ing to the last layer, to compute the SVN vector vSVGD

l .
Algorithm 2 in Appendix B summarizes this procedure.

3. Experiments
We evaluate the proposed Stein Variational Newton neural
network ensemble (SVN) on a diverse range of synthetic
and real-world datasets, demonstrating its competitive or
superior performance for BNN inference. Our approach
is benchmarked against other particle-based VI methods,
including deep ensembles (Ensemble) (Lakshminarayanan
et al., 2017), repulsive ensembles (D’Angelo & Fortuin,
2021b) (specifically, the weight-space version (WGD)), and
Stein Variational Gradient Descent (SVGD) (Liu & Wang,
2016) for neural network ensembles (D’Angelo et al., 2021).
All these methods involve different training schemes for a
collection of neural networks. Thus, the resulting ensem-
ble model, denoted as {gϕ1

, · · · , gϕN
}, can be uniformly

evaluated across all methods. Note, however, that deep en-
sembles do not asymptotically converge to the true posterior
as N →∞.

3.1. Toy Regression

As a sanity check, we start with a synthetic one-dimensional
regression problem using a self-generated dataset. Details
on data generation are in Appendix C.1. In Figure 3, we
plot the predictive mean of the ensemble, ḡ = 1

N

∑N
i=1 gϕi ,

along with the predictive mean plus or minus three standard
deviations in increasingly lighter shades of blue. Training
data points are in black, and the true function is represented
with a dashed line. The plots show that while the ensemble
and SVGD yield better uncertainties between the two clus-
ters, they are underconfident within the clusters and overcon-
fident outside the data region. In contrast, SVN’s predictions
and uncertainties best match the underlying function and
given data, capturing the data distribution most effectively.

3.2. UCI Benchmark

To demonstrate the effectiveness of SVN on real-world
datasets, we follow Hernández-Lobato & Adams (2015)
and consider several regression and binary classification
datasets from the UCI Machine Learning Repository (Dua
& Graff, 2017). We use 5-fold cross-validation, combining
the training and test data. Additionally, we split off 20% of
the training data for validation. We report the mean perfor-
mance metrics along with the standard error. The primary
metric considered is the Gaussian negative log-likelihood
(NLL) (Nix & Weigend, 1994) on the test dataset. In the
regression tasks of Figure 4, SVN generally outperforms
other methods, except for the naval dataset. The correspond-
ing MSE and NLL results are listed in Table 5 and Table 4
in the Appendix. Next, we evaluate SVN on the UCI binary
classification tasks using standard metrics: accuracy, NLL,
and AUROC. We also include calibration metrics such as
the Expected Calibration Error (ECE) (Guo et al., 2017) and
the Brier score (Brier, 1950), which has been argued to offer

5

Stein Variational Newton Neural Network Ensembles

10

20

aut
om

pg

6

8

con
cre

te

2

4

6

ene
rgy

0

2

4

kin
8nm

5.50

5.25

5.00

nav
al

5

10

15

pow
er

10

20

pro
tein

0

5

10

15
wine

0

1

2
yac

ht

SVN SVGD Ensemble WGD
Figure 4. Test negative log-likelihood on UCI regression datasets. We truncated the power plot as a result of WGD’s inferior performance.
Our proposed SVN method outperforms the ensemble, WGD, and SVGD on all datasets except for naval.

many benefits over the ECE (Gruber & Buettner, 2024).
As shown in Table 1, SVN performs competitively across
all five tasks, outperforming the baselines on three datasets
with respect to NLL. Further details on this experiment can
be found in Appendix C.2.

Table 1. Classification metrics on test datasets of the UCI Binary
Classification tasks. Our method is competitive on all datasets and
outperforms the baselines on three datasets in terms of NLL.

Dataset Methods ACC ↑ NLL ↓ ECE ↓ Brier ↓ AUROC ↑

australian

Ensemble 0.840.01 1.040.12 0.170.01 0.240.01 0.910.01

WGD 0.840.01 1.050.10 0.160.01 0.240.02 0.920.01

SVGD 0.840.02 1.030.10 0.150.01 0.240.02 0.920.01

SVN 0.840.01 0.620.06 0.150.01 0.260.01 0.900.01

breast

Ensemble 0.970.00 0.230.05 0.030.00 0.050.00 0.990.00

WGD 0.960.00 0.290.08 0.040.00 0.050.00 0.960.02
SVGD 0.970.00 0.380.13 0.030.00 0.050.00 0.980.00
SVN 0.970.00 0.130.02 0.040.00 0.050.01 0.970.00

ionosphere

Ensemble 0.860.02 0.400.04 0.140.01 0.210.02 0.940.01

WGD 0.820.01 1.310.11 0.180.01 0.280.01 0.920.01

SVGD 0.860.01 0.420.04 0.150.01 0.210.02 0.920.01

SVN 0.860.01 0.400.04 0.160.01 0.210.02 0.930.01

parkinsons

Ensemble 0.850.03 0.430.04 0.180.01 0.260.03 0.850.03
WGD 0.910.03 0.560.27 0.090.03 0.140.05 0.920.03

SVGD 0.920.03 0.470.21 0.090.03 0.140.05 0.970.02

SVN 0.910.03 0.290.10 0.110.02 0.150.05 0.940.03

heart

Ensemble 0.780.02 1.220.09 0.210.01 0.370.02 0.860.01

WGD 0.760.01 2.020.19 0.220.01 0.380.02 0.870.01

SVGD 0.790.01 2.140.22 0.210.01 0.360.01 0.860.01

SVN 0.770.02 0.750.03 0.210.01 0.360.02 0.860.01

3.3. Computer Vision Benchmark

In order to further investigate our method, we now assess
the capabilities of SVN on the computer vision benchmarks
MNIST (LeCun, 1998) and FashionMNIST (Xiao et al.,
2017). Since these are multi-class classification problems,
we use the evaluation metrics from the previous section.
We use the LeNet (LeCun et al., 1998) architecture for our
experiments. Since this network is considerably larger, we
also evaluate our proposed LL-SVN algorithm. Recent
work suggested that for sufficiently large neural networks

(Farquhar et al., 2021), the diagonal approximation works
well. As such, our SVN experiments are conducted with the
diagonal approximation to the Hessian, while our LL-SVN
uses the KFAC approximation to the last layer. Our results
are detailed in Table 2 and further experiment details can
be found in Appendix C.3. We see that our methods are
competitive with the baselines, and LL-SVN outperforms
the baselines on FashionMNIST in terms of the NLL.

Table 2. Computer vision image datasets. Our LL-SVN algorithm
is competitive in almost all metrics and outperforms the ensemble,
WGD, and SVGD on the more complicated FashionMNIST dataset
in terms of the NLL.

Dataset Methods ACC ↑ NLL ↓ ECE ↓ Brier ↓ AUROC ↑

MNIST

Ensemble 0.9910.000 0.0390.001 0.0110.000 0.0140.000 1.0000.00

WGD 0.9910.000 0.0410.003 0.0120.001 0.0140.001 1.0000.000

SVGD 0.9910.000 0.0380.000 0.0120.001 0.0140.000 1.0000.000

SVN 0.9910.001 0.0410.001 0.0150.001 0.0160.000 1.0000.000

LL-SVN 0.9910.000 0.0380.000 0.0110.000 0.0140.000 1.0000.000

FashionMNIST

Ensemble 0.9160.001 0.2590.005 0.0510.000 0.1220.001 0.9950.000

WGD 0.9120.004 0.2570.009 0.0560.004 0.1280.007 0.9940.001

SVGD 0.9160.002 0.2530.006 0.0510.001 0.1230.002 0.9950.000

SVN 0.9070.005 0.2610.009 0.05610.001 0.1350.007 0.9940.001

LL-SVN 0.9180.001 0.2410.002 0.0510.001 0.1200.001 0.9950.000

3.4. Convergence Speed

As discussed in Section 2, incorporating curvature informa-
tion in the optimization of deep neural networks can yield
significantly faster convergence. We investigate whether
this intuition holds for SVN ensembles. We visualize the
validation NLL on three UCI datasets in Figure 5 at the end
of every epoch for the first 20 epochs. Interestingly, SVN’s
initial updates are worse than SVGD, resulting in signifi-
cantly higher validation NLL scores. However, within a few
epochs, SVN surpasses the ensemble and SVGD quickly.
We hypothesize that SVN requires a few iterations to fully
leverage the curvature information in the posterior land-
scape to position its particles for more efficient Newtonian
updates compared to the ’simple’ SVGD updates. More-

6

Stein Variational Newton Neural Network Ensembles

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

0

10

20

30

40

N
LL

Yacht

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

0

10

20

30

40

50

N
LL

Energy

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

0

10

20

30

40

50

60

N
LL

Method
SVN
SVGD
Ensemble

Wine

Figure 5. Comparison of validation negative log-likelihood computed at the end of every epoch for the first 20 epochs of training on Yacht,
Energy, and Wine datasets. While SVN’s initial performance is considerably worse than the other methods, it outperforms both within a
few epochs.

over, we visualize some Hessians on a downscaled example
in Appendix D.3, showing that initially the Hessian is not
very informative. As such, the SVN updates are likely not
effective initially, and we only benefit from second-order
optimization once our particles are better positioned in the
posterior.

4. Related Work
BNN inference. Approximate BNN inference methods
fall on a spectrum from cheap Laplace approximations
(Laplace, 1774; MacKay, 1992a; Daxberger et al., 2021a;
Immer et al., 2021b;a) and variational inference (VI; Blei
et al., 2017) to expensive Markov chain Monte Carlo
(MCMC; Andrieu et al., 2003; Welling & Teh, 2011) tech-
niques, with a notable tradeoff in computational efficiency
and estimation accuracy. Arguably, approximations to the
posterior can yield even better results than the actual pos-
terior (Wenzel et al., 2020a). While there has been some
recent interest in MCMC for deep neural networks (Izmailov
et al., 2021; Huang et al., 2023; Garriga-Alonso & Fortuin,
2021), the computational requirements of these techniques
remain a challenge (Papamarkou et al., 2021; Izmailov et al.,
2021; Papamarkou et al., 2024). However, mean-field VI,
especially for small neural nets, has also recently been criti-
cized (Farquhar et al., 2021; Foong et al., 2020).

Particle-based inference. Situated between mean-field
VI and MCMC, particle-based VI approaches offer a good
tradeoff between efficiency and performance (Liu et al.,
2019). Neural network ensembles have a rich history, be-
ginning with the work of (Hansen & Salamon, 1990). Deep
ensembles (Lakshminarayanan et al., 2017) and variations
(Wenzel et al., 2020b; Kobayashi et al., 2022; Wild et al.,
2023) are relatively simple scalable methods. Including re-

pulsive forces in the particle updates even results in asymp-
totic convergence to the true posterior (D’Angelo & Fortuin,
2021b). Variants of SVGD (Liu & Wang, 2016) include pro-
jected SVGD (Chen & Ghattas, 2020), Riemannian SVGD
(Liu & Zhu, 2017), message-passing SVGD (Zhuo et al.,
2018), annealed SVGD (D’Angelo & Fortuin, 2021a), as
well as their extensions to NN Ensembles (D’Angelo et al.,
2021). Variations of the SVN (Detommaso et al., 2018) in-
clude stochastic SVN (Leviyev et al., 2022), which turns the
method into an MCMC sampler by adding Gaussian noise,
and projected SVN (Chen et al., 2020). However, SVN has
so far only been used in low-dimensional problems and not
for high-dimensional BNN posteriors, as in our work.

Second-order methods. Second-order methods in VI
have been pivotal in improving optimization efficiency, and
parametric variational inference leveraging second-order in-
formation has shown accelerated convergence (Khan et al.,
2017a;b; 2018). Furthermore, curvature information can
significantly improve learning dynamics in deep neural net-
works (Lin et al., 2023; 2024; Eschenhagen et al., 2024),
which has spawned recent work on software packages for
scalable Hessian computations (Daxberger et al., 2021a; Im-
mer et al., 2021a). We make use of this development in our
work to scale up SVN to BNN posteriors.

5. Conclusion
In this paper, we have introduced the SVN algorithm for
BNN inference, which enhances traditional first-order
methods by incorporating second-order curvature infor-
mation through Hessian approximations. Our extensive
evaluations across synthetic and real-world datasets,
including UCI benchmarks and computer vision tasks,
demonstrate that SVN consistently matches or outperforms

7

Stein Variational Newton Neural Network Ensembles

existing particle-based methods like deep ensembles,
repulsive ensembles, and SVGD, in terms of predictive
performance, uncertainty estimation, and convergence
speed. Additionally, our novel Last-Layer SVN variant
proves computationally efficient for larger neural networks,
maintaining competitive performance. These findings
position SVN as a promising advancement in particle-based
variational inference, offering more accurate and reliable
deep learning models.

Limitations. We have demonstrated the competitive or
superior performance of our SVN algorithm on a range
of benchmark tasks, focusing on moderately-sized neural
networks. While the Hessian approximations discussed in
this work can be scaled to more complex models like GNNs,
ViTs (Eschenhagen et al., 2024), or LLMs (Yang et al.,
2024; Daxberger et al., 2021a; Onal et al., 2024), it remains
unclear how well our method will perform in these scenarios.
However, given the recent success of second-order methods
in large NN training (Lin et al., 2023), we remain optimistic.
Additionally, while some Hessian approximations can be
numerically unstable, we can mitigate this by selecting the
appropriate approximation for each specific task.

Acknowledgments We want to thank Alexander Immer,
Richard Paul, Emma Caldwell, Andrea Rubbi and Arsen
Sheverdin for helpful discussions. Moreover, we want to
thank the Jülich Supercumputing Centre’s support team
and in particular Rene Halver. VF was supported by a
Branco Weiss Fellowship. This work was supported by
Helmholtz AI computing resources (HAICORE) of the
Helmholtz Association’s Initiative and Networking Fund
through Helmholtz AI. This work was also supported by the
Helmholtz Association Initiative and Networking Fund on
the HAICORE@KIT partition.

References
Amari, S. Natural Gradient Works Efficiently in Learning.

Neural Computation, 10:251–276, 1998.

Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. An
Introduction to MCMC for Machine Learning. Machine
Learning, 50(1-2):5–43, January 2003. ISSN 1573-0565.
doi: 10.1023/A:1020281327116.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional Inference: A Review for Statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Botev, A., Ritter, H., and Barber, D. Practical Gauss-Newton
Optimisation for Deep Learning. In Precup, D. and Teh,

Y. W. (eds.), Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 557–565. PMLR, 06–11
Aug 2017.

Brier, G. W. Verification of Forecasts Expressed in Terms of
Probability. Monthly Weather Review, 78(1):1 – 3, 1950.

Chen, P. and Ghattas, O. Projected Stein Variational Gradi-
ent Descent. arXiv preprint arXiv:2002.03469, 2020.

Chen, P., Wu, K., Chen, J., O’Leary-Roseberry, T., and Ghat-
tas, O. Projected Stein Variational Newton: A Fast and
Scalable Bayesian Inference Method in High Dimensions,
2020.

Dangel, F., Kunstner, F., and Hennig, P. Backpack: Packing
more into backprop. In Proceedings of the 8th Interna-
tional Conference on Learning Representations (ICLR),
2020.

D’Angelo, F. and Fortuin, V. Annealed stein variational gra-
dient descent. arXiv preprint arXiv:2101.09815, 2021a.

D’Angelo, F. and Fortuin, V. Repulsive Deep Ensembles
are Bayesian. In Neural Information Processing Systems,
2021b.

D’Angelo, F., Fortuin, V., and Wenzel, F. On Stein Vari-
ational Neural Network Ensembles. arXiv preprint
arXiv:2106.10760, 2021.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R.,
Bauer, M., and Hennig, P. Laplace Redux - Effortless
Bayesian Deep Learning. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 34, pp. 20089–20103. Curran Associates,
Inc., 2021a.

Daxberger, E., Nalisnick, E., Allingham, J. U., Antorán, J.,
and Hernández-Lobato, J. M. Bayesian Deep Learning
via Subnetwork Inference. In Proceedings of the 38th
International Conference on Machine Learning (ICML),
pp. 2510–2521. PMLR, 2021b.

Denker, J. and LeCun, Y. Transforming Neural-Net Output
Levels to Probability Distributions. In Lippmann, R.,
Moody, J., and Touretzky, D. (eds.), Advances in Neu-
ral Information Processing Systems, volume 3. Morgan-
Kaufmann, 1990.

Detommaso, G., Cui, T., Marzouk, Y., Spantini, A., and
Scheichl, R. A Stein variational Newton method. In
Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems, pp. 9169–9179.
Curran Associates, Inc., 2018.

8

Stein Variational Newton Neural Network Ensembles

Dua, D. and Graff, C. UCI Machine Learning Repository,
2017.

Eschenhagen, R., Immer, A., Turner, R. E., Schneider, F.,
and Hennig, P. Kronecker-Factored Approximate Curva-
ture for Modern Neural Network Architectures, 2024.

Farquhar, S., Smith, L., and Gal, Y. Liberty or Depth: Deep
Bayesian Neural Nets Do Not Need Complex Weight
Posterior approximations, 2021.

Foong, A. Y. K., Burt, D. R., Li, Y., and Turner, R. E. On
the Expressiveness of Approximate Inference in Bayesian
Neural Networks, 2020.

Gallego, V. and Insua, D. R. Stochastic Gradient MCMC
with Repulsive Forces, 2020.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D.,
and Wilson, A. G. Loss Surfaces, Mode Connectiv-
ity, and Fast Ensembling of DNNs. arXiv preprint
arXiv:1802.10026, 2018.

Garriga-Alonso, A. and Fortuin, V. Exact langevin
dynamics with stochastic gradients. arXiv preprint
arXiv:2102.01691, 2021.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and Vin-
cent, P. Fast Approximate Natural Gradient Descent in
a Kronecker Factored Eigenbasis. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Givens, G. and Hoeting, J. Computational Statistics. Wiley
Series in Computational Statistics. Wiley, 2012. ISBN
9780470533314.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016.

Gruber, S. G. and Buettner, F. Better Uncertainty Calibration
via Proper Scores for Classification and Beyond, 2024.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
Calibration of Modern Neural Networks. In Precup, D.
and Teh, Y. W. (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 1321–
1330. PMLR, 06–11 Aug 2017.

Hansen, L. K. and Salamon, P. Neural Network En-
sembles. IEEE Trans. Pattern Anal. Mach. Intell., 12
(10):993–1001, October 1990. ISSN 0162-8828. doi:
10.1109/34.58871.

Hernández-Lobato, J. M. and Adams, R. P. Probabilistic
Backpropagation for Scalable Learning of Bayesian Neu-
ral Networks, 2015.

Heskes, T. On “Natural” Learning and Pruning in Multilay-
ered Perceptrons. Neural Computation, 12(4):881–901,
2000.

Huang, Y., Chouzenoux, E., Elvira, V., and Pesquet, J.-C.
Efficient Bayes Inference in Neural Networks through
Adaptive Importance Sampling, 2023.

Immer, A., Bauer, M., Fortuin, V., Rätsch, G., and Khan,
M. E. Scalable Marginal Likelihood Estimation for
Model Selection in Deep Learning. arXiv preprint
arXiv:2104.04975, 2021a.

Immer, A., Korzepa, M., and Bauer, M. Improving predic-
tions of Bayesian neural nets via local linearization. In
International Conference on Artificial Intelligence and
Statistics, pp. 703–711. PMLR, 2021b.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A.
G. G. What Are Bayesian Neural Network Posteriors Re-
ally Like? In Meila, M. and Zhang, T. (eds.), Proceedings
of the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pp. 4629–4640. PMLR, 18–24 Jul 2021.

Jain, A. Fundamentals of Digital Image Processing.
Prentice-Hall information and system sciences series.
Prentice Hall, 1989. ISBN 9780133361650.

Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., and
Srivastava, A. Fast and scalable Bayesian Deep Learning
by Weight-Perturbation in Adam. In Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 2611–2620. PMLR,
10–15 Jul 2018.

Khan, M. E., Lin, W., Tangkaratt, V., Liu, Z., and Nielsen,
D. Variational Adaptive-Newton Method for Explorative
Learning, 2017a.

Khan, M. E., Liu, Z., Tangkaratt, V., and Gal, Y. Vprop:
Variational Inference using RMSprop, 2017b.

Kobayashi, S., Aceituno, P. V., and von Oswald, J. Disentan-
gling the Predictive Variance of Deep Ensembles through
the Neural Tangent Kernel, 2022.

Kristiadi, A., Hein, M., and Hennig, P. Being Bayesian,
Even Just a Bit, Fixes Overconfidence in ReLU networks.
In III, H. D. and Singh, A. (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
5436–5446. PMLR, 13–18 Jul 2020.

9

Stein Variational Newton Neural Network Ensembles

Kullback, S. and Leibler, R. A. On Information and Suffi-
ciency. The Annals of Mathematical Statistics, 22(1):79 –
86, 1951.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Sim-
ple and Scalable Predictive Uncertainty Estimation using
Deep Ensembles. In Advances in neural information
processing systems, pp. 6402–6413, 2017.

Laplace, P.-S. Mémoires de Mathématique et de Physique,
Tome Sixieme. Imprimerie Royale, 1774.

LeCun, Y. The MNIST Database of Handwritten Digits.
1998.

LeCun, Y., Denker, J., and Solla, S. Optimal Brain Damage.
In Touretzky, D. (ed.), Advances in Neural Information
Processing Systems, volume 2. Morgan-Kaufmann, 1989.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
Based Learning Applied to Document Recognition. Pro-
ceedings of the IEEE, 86(11):2278–2323, 1998. ISSN
0018-9219. doi: 10.1109/5.726791.

Lee, J., Humt, M., Feng, J., and Triebel, R. Estimating
Model Uncertainty of Neural Networks in Sparse Infor-
mation Form. In III, H. D. and Singh, A. (eds.), Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 5702–5713. PMLR, 13–18 Jul 2020.

Leviyev, A., Chen, J., Wang, Y., Ghattas, O., and Zimmer-
man, A. A stochastic Stein Variational Newton method,
2022.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the Loss Landscape of Neural Nets, 2018.

Lin, W., Dangel, F., Eschenhagen, R., Neklyudov, K.,
Kristiadi, A., Turner, R. E., and Makhzani, A. Struc-
tured Inverse-Free Natural Gradient: Memory-Efficient &
Numerically-Stable KFAC for Large Neural Nets, 2023.

Lin, W., Dangel, F., Eschenhagen, R., Bae, J., Turner, R. E.,
and Makhzani, A. Can We Remove the Square-Root in
Adaptive Gradient Methods? A Second-Order Perspec-
tive, 2024.

Liu, C. and Zhu, J. Riemannian Stein Variational Gradient
Descent for Bayesian Inference, 2017.

Liu, C., Zhuo, J., Cheng, P., Zhang, R., and Zhu, J. Un-
derstanding and Accelerating Particle-Based Variational
Inference. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 4082–4092. PMLR, 09–15 Jun
2019.

Liu, Q. and Wang, D. Stein Variational Gradient Descent:
A General Purpose Bayesian Inference Algorithm. In
Advances in neural information processing systems, pp.
2378–2386, 2016.

MacKay, D. J. Bayesian Interpolation. Neural Computation,
4(3):415–447, 1992a.

MacKay, D. J. A Practical Bayesian Framework for Back-
propagation Networks. Neural computation, 4(3):448–
472, 1992b.

Martens, J. New insights and perspectives on the natural
gradient method. Journal of Machine Learning Research,
21(146):1–76, 2020.

Martens, J. and Grosse, R. Optimizing Neural Networks
with Kronecker-Factored Approximate Curvature. In
Proceedings of the 32nd International Conference on
Machine Learning (ICML), pp. 2408–2417. PMLR, 2015.

Neal, R. M. Bayesian Learning for Neural Networks. 1995.

Nix, D. and Weigend, A. Estimating the mean and variance
of the target probability distribution. In Proceedings of
1994 IEEE International Conference on Neural Networks
(ICNN’94), volume 1, pp. 55–60 vol.1, 1994. doi: 10.
1109/ICNN.1994.374138.

Njieutcheu Tassi, C. R., Gawlikowski, J., Fitri, A. U., and
Triebel, R. The impact of averaging logits over probabili-
ties on ensembles of neural networks. In 2022 Workshop
on Artificial Intelligence Safety, AISafety 2022, CEUR
Workshop Proceedings, 2022.

Ober, S. W. and Rasmussen, C. E. Benchmarking the Neural
Linear Model for Regression, 2019.

Onal, E., Flöge, K., Caldwell, E., Sheverdin, A., and Fortuin,
V. Gaussian Stochastic Weight Averaging for Bayesian
Low-Rank Adaptation of Large Language Models, 2024.

Osawa, K., Ishikawa, S., Yokota, R., Li, S., and Hoefler, T.
ASDL: A Unified Interface for Gradient Preconditioning
in PyTorch, 2023.

Papamarkou, T., Hinkle, J., Young, M. T., and Womble, D.
Challenges in Markov chain Monte Carlo for Bayesian
neural networks, 2021.

Papamarkou, T., Skoularidou, M., Palla, K., Aitchison,
L., Arbel, J., Dunson, D., Filippone, M., Fortuin, V.,
Hennig, P., Hubin, A., Immer, A., Karaletsos, T., Khan,
M. E., Kristiadi, A., Li, Y., Mandt, S., Nemeth, C., Os-
borne, M. A., Rudner, T. G., Rügamer, D., Teh, Y. W.,
Welling, M., Wilson, A. G., and Zhang, R. Position Paper:
Bayesian Deep Learning in the Age of Large-Scale AI.
arXiv preprint arXiv:2402.00809, 2024.

10

Stein Variational Newton Neural Network Ensembles

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library, 2019.

Pearson, K. Contributions to the Mathematical Theory of
Evolution, II: Skew Variation in Homogeneous Material.
Philosophical Transactions of the Royal Society, 186:
343–414, 1895. doi: 10.1098/rsta.1895.0010.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pop, R. and Fulop, P. Deep Ensemble Bayesian Active
Learning : Addressing the Mode Collapse issue in Monte
Carlo dropout via Ensembles, 2018.

Ritter, H., Botev, A., and Barber, D. Online Structured
Laplace Approximations For Overcoming Catastrophic
Forgetting. In Advances in Neural Information Process-
ing Systems 31 (NeurIPS), 2018a.

Ritter, H., Botev, A., and Barber, D. A Scalable Laplace
Approximation for Neural Networks. In Proceedings of
the 6th International Conference on Learning Represen-
tations (ICLR), 2018b.

Rogozhnikov, A. Einops: Clear and Reliable Tensor Ma-
nipulations with Einstein-like Notation. In International
Conference on Learning Representations, 2022.

Schraudolph, N. Fast Curvature Matrix-Vector Products for
Second-Order Gradient Descent. Neural computation, 14:
1723–38, 08 2002.

Silverman, B. W. Density Estimation for Statistics and Data
Analysis. Chapman & Hall, London, 1986.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

Welling, M. and Teh, Y. W. Bayesian Learning via Stochas-
tic Gradient Langevin Dynamics. In Proceedings of the
28th international conference on machine learning, pp.
681–688, 2011.

Wenzel, F., Roth, K., Veeling, B. S., Światkowski, J.,
Tran, L., Mandt, S., Snoek, J., Salimans, T., Jenatton,
R., and Nowozin, S. How Good is the Bayes Poste-
rior in Deep Neural Networks Really? arXiv preprint
arXiv:2002.02405, 2020a.

Wenzel, F., Snoek, J., Tran, D., and Jenatton, R. Hyperpa-
rameter Ensembles for Robustness and Uncertainty Quan-
tification. In Advances in Neural Information Processing
Systems, 2020b.

Wild, V. D., Ghalebikesabi, S., Sejdinovic, D., and
Knoblauch, J. A Rigorous Link between Deep Ensembles
and (Variational) Bayesian Methods. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Wright, S. and Nocedal, J. Numerical Optimization.
Springer Science, 1999.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learn-
ing Algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yang, A. X., Robeyns, M., Wang, X., and Aitchison, L.
Bayesian Low-rank Adaptation for Large Language Mod-
els, 2024.

Zhuo, J., Liu, C., Shi, J., Zhu, J., Chen, N., and Zhang,
B. Message Passing Stein Variational Gradient Descent.
In International Conference on Machine Learning, pp.
6018–6027. PMLR, 2018.

11

Stein Variational Newton Neural Network Ensembles

A. Hessian Approximation Details
Diagonal The Diagonal approximation disregards off diagonal elements in the Fisher Information Matrix Fϕ . As such we
can rewrite Equation (7) as:

Fϕ =

b∑
i=1

Eỹ∼p(y|gϕ(xi)) [∇ϕ(log p(ỹ|gϕ(xi)))⊙∇ϕ(log p(ỹ|gϕ(xi)))] , (22)

where⊙ represents the element-wise or Hadamard product. While MacKay has suggested to refrain from this approximation
due to its oversimplification (MacKay, 1992b) the computational benefits are immense. Inverting a diagonal Fisher Fϕ,
ϕ ∈ Rd, can be done in O(d), which is considerably lower than for the full hessian O(d3). Moreover, recent works suggests
that for sufficiently large neural networks the approximation can yield good results (Farquhar et al., 2021).

KFAC The KFAC factorization serves as a balance between two extremes: diagonal factorization, which can be overly
restrictive, and the full Fisher matrix, which is computationally impractical. The main idea is to capture the correlation
between weights within the same layer while assuming that weights from different layers are independent. This assumption
is more refined than the diagonal factorization, where all weights are considered independent. As such are approximating
the GGN Hϕ in the l-th layer with parameters ϕl

Hϕl
= Qϕl

⊗Kϕl
.

Here the factors are computed with the outer products of pre-activations and Jacobians with respect to the output of a layer
(Martens & Grosse, 2015; Botev et al., 2017). Following (George et al., 2018) the kronecker factors are represented in their
eigendecompositions in (Daxberger et al., 2021a).

B. SVN Algorithm details
We implemented all algorithms using the popular machine learning PyTorch (Paszke et al., 2019) framework. We also
make extensive use of the EinOps (Rogozhnikov, 2022) library to handle some of the more involved tensor operations. The
Hessian computations are done using the Laplace-Redux library (Daxberger et al., 2021a), which itself uses the Backpack
(Dangel et al., 2020) and ASDL (Osawa et al., 2023) libraries in its backend. In order to solve the linear systems presented
in Section 2.3 we utilise solvers implemented in the SciPy (Virtanen et al., 2020).

Block Diagonal Approximation In the block-diagonal approximation, we are just considering the diagonal entries of the
SVN Hessian, which uses the following block-diagonal SVN Hessian:

HSVN :=

 h11 · · · 0
...

. . .
...

0 · · · hNN

in Equation (17). This results in solving Equation (19) for each particle independently. This approach has significant
computational advantages over the full SVN Hessian HSVN.

Linear System Solver In order to solve the full linear system in Equation (17) or the block diagonal version Equation (19)
we utilize Scipy’s Conjugate Newton method. The conjugate newton method has strong theoretical grounding (Wright &
Nocedal, 1999) for sufficient numbers of iterations and was used by Detommaso et al. (2018) in their original implementation
as well. We use 50 iterations for all our computations. Leviyev et al. (2022) adjusted the Hessian with a Levenberg-like
damping term and then employ a Cholesky Decomposition to solve the resulting linear system, however we will leave this
for future work.

Matrix vector products for different Hessian Approximations In order to use the numerical techniques discussed above
to solve the linear systems in Equation (17), Equation (19) one needs to define a Hessian vector product. For Hϕ ∈ Rd×d and

12

Stein Variational Newton Neural Network Ensembles

x ∈ Rd. For the full Hessian approximation this is just the standard matrix-vector product. In the diagonal approximation we
just consider the diagonal elements, which means that HDiag

ϕ ∈ Rd is a vector. As such the matrix vector product collapses
to a simple Hadamard product of these two vectors:

HDiag
ϕ x = HDiag

ϕ ⊙ x (23)

The KFAC approximation involves a layer-wise block diagonal approximation. For the parameter vector ϕl representing
the l-th layer, we aim to calculate Hϕl

ϕl. The Hessian of the l-th layer is decomposed into its Kronecker factors:
HKFAC

ϕl
= Qϕl

⊗Kϕl
, which are represented in their eigendecomposition as Qϕl

= VQΛQV
⊤
Q and Kϕl

= VKΛKV ⊤
K . For

notational convenience, we omit the dependency on ϕl.

A straightforward approach to HKFAC
ϕl

x would involve using the eigenvectors (VQ, VK) and eigenvalues (ΛQ,ΛK) to
construct Qϕl

and Kϕl
, then explicitly calculate the Kronecker product Qϕl

⊗Kϕl
and perform a standard matrix-vector

product. However, this approach is highly inefficient in PyTorch. Instead, we utilize the "vec trick" (Jain, 1989) for
Kronecker products. With Q ∈ Ra and K ∈ Rb, we have ab = |ϕl| = |x| and write X ∈ Ra×b as a reshaped version of x.
The "vec trick" computes our desired product as follows:

v = (Q⊗K)x (24)

= (Q⊗K⊤)x (25)

= vec((QXK)⊤) (26)

= vec(Q⊤)X⊤)K⊤)). (27)

This approach allows us to use the Kronecker factors exactly without explicitly constructing HKFAC
ϕl

using the Kronecker
product.

LL-SVN Algorithm Algorithm 2 details our novel last-layer SVN algorithm. Conceptually, it is very similar to the SVN
Ensembles algorithm described in Section 2. The main difference is that it restricts the computation of the SVN update
to only the parameters in the last layer, while using vSVGD

l for the rest of the parameters. Since our SVN algorithm also
needs to compute vSVGD

l for the entire network, this part remains identical in both algorithms. The only difference is that
we approximate the Hessian only for the parameters in the last layer, ϕLL, using the KFAC approximation. We then solve
the full linear system Equation (17) or block diagonal linear systems Equation (19) only with the ϕLL parameters.

Algorithm 2 One iteration of our LL-SVN neural network ensemble algorithm

1: Input: Particles {ϕl
i}ni=1 at stage l; step size ε, Kernel k(·, ·) ∈ {kMSVN , kI}, Hessian Approximation H ∈

{HFull,HKFAC,HDiag}, number of parameters in last layer dll
2: Output: Particles {ϕl+1

i }ni=1 at stage l + 1
3: Compute vSVGD

l

4: for i = 1, 2, . . . , n do
5: Obtain last-layer weights: ϕi = ϕFL

i ∪ ϕLL
i

6: if Block Diagonal Approximation then
7: Solve linear system Equation (19) for α1, . . . , αn with ϕLL

i

8: else
9: Solve linear system Equation (17) for α1, . . . , αn with ϕLL

i

10: end if
11: Concatenate: vLL-SVN

l

(
ϕk
i

)
= vSVGD(ϕFL

i) ∪ vSVN
l (ϕLL

i)

12: Set ϕk+1
i ← ϕk

i + ε vLL-SVN
l

(
ϕk
i

)
given α1, . . . , αn

13: end for

13

Stein Variational Newton Neural Network Ensembles

C. Experiment Details
C.1. Toy Regression Details

The dataset for this study is a 1D regression dataset generated using a specific mapping function and domain. We use
task_set=4 of the Toy Regression presented in D’Angelo & Fortuin (2021b). The dataset characteristics are as follows:

The mapping function used to generate the dataset is given by:

f(x) = (x− 3)3 (28)

The dataset is created within the following domains:

• Training Domain: [2, 3] ∪ [4.5, 6]

• Test Domain: [0, 7]

To simulate real-world data variations, Gaussian noise with a standard deviation of 0.25 is added to the function values. The
dataset includes:

• Number of Training Samples: 150

• Number of Test Samples: 200

Additionally, specific clusters of data points, referred to as blobs, are included within the training domain at the inter-
vals [1.5, 2.5] and [4.5, 6.0]. These blobs introduce additional complexity to the dataset, providing a more challenging
environment for evaluating regression models.

The dataset generation process is controlled by a fixed random seed of 42 to ensure reproducibility. The training, testing,
and validation sets are drawn from their respective domains, incorporating noise and blobs to enhance the dataset’s realism
and complexity.

We utilized the M2 Apple Chip CPU on our local machine to run these experiments, which last about 30 minutes for SVN
with a full SVN-Hessian and using the anisotropic Gaussian Curvature Kernel.

C.2. UCI Experiments

For all the UCI experiments, we use the following hyperparameters originally based on (Ober & Rasmussen, 2019) for all
methods:

• number of particles: N = 5

• learning rate: lr ∈ [1e−4, 3e−4, 5e−4, 1e−3, 3e−3, 5e−3, 1e−2, 3e−2, 5e−2]

• Batch size: B ∈ [8, 16, 32, 64]

• Hidden layer sizes: [50, 50]

• Number of Epochs: 50

For all experiments we perform K = 5 fold cross validation and then split off an additional 20% off the training set as
validation data. This yields the following splits:

To normalize the training and test datasets using the StandardScaler from (Pedregosa et al., 2011), we start by fitting
the scaler to the training data, which calculates and stores the mean and standard deviation for each feature. After the scaler
is fitted and the training data is transformed, we use the same scaler to transform the test data. The transformation of the test
data uses the mean and standard deviation calculated from the training data, ensuring that both datasets are standardized
based on the same criteria. This consistency is crucial for the performance of many machine learning algorithms, which

14

Stein Variational Newton Neural Network Ensembles

Split Percentage (%)

Training Set 64
Validation Set 16
Test Set 20

Table 3. Data Split Percentages

require features to be on a similar scale to function properly. After this we then split the validation data from the training
data.

For the SVN algorithm we used the full Hessian approximation, with the full SVN Hessian matrix HSVN and the anistropic
Gaussian Kernel detailed in Equation (21) on all datasets except for protein. On the protein dataset we used the KFAC
Hessian approximation without the anisotropic Gaussian Kernel.

We have included the full numerical results for the UCI regression tasks in the test MSE Table 5 and test NLL Table 4. We
train all the models for 50 epochs and then load the model with the lowest validation loss for final testing. For the binary
classification experiments detailed in Table 1 we load the model from the epoch with the lowest negative log-likelihood on
the validation dataset.

The Gaussian Negative Log-Likelihood (NLL) Loss (Nix & Weigend, 1994) is used in regression tasks to evaluate the
performance of a neural network that predicts both the mean and variance of a target variable, assuming the target follows a
Gaussian distribution. The loss function is designed to handle both heteroscedastic and homoscedastic cases. For a target y
with predicted mean µ and predicted variance σ2, the Gaussian NLL loss is given by:

loss =
1

2

(
log(max(σ2, ϵ)) +

(y − µ)2

max(σ2, ϵ)

)
+ const. (29)

Here, ϵ is a small positive value (default 10−6) used to ensure numerical stability. The constant term is omitted in our
experiments. While Gaussian NLL loss is primarily used for regression, it can also be adapted for certain classification
contexts, such as probabilistic regression classification or estimating continuous class scores with uncertainty, where the
network predicts mean and variance for the continuous outputs.

For the Negative Log-Likelihood in all our classification experiments, so the UCI binary classification as well as the
computer vision experiments we follow (Njieutcheu Tassi et al., 2022) and average the predicted logits over our ensemble.
We then use PyTorch (Paszke et al., 2019) to compute the corresponding cross-entropy/NLL based on the unnormalized
averaged logits and targets.

We utilized a supercomputing environment for our experiments, featuring NVIDIA A100 GPUs in its compute nodes.
Depending on the dataset size, the SVN algorithm takes around 2 hours for smaller datasets and up to 18 hours to perform
the entire cross-validation for K = 5 splits. These times can vary between sweeps, as they depend on the learning rate and
batch size.

C.3. Computer Vision Experiments

For our computer vision experiments on the MNIST (LeCun, 1998) and FashionMNIST datasets (Xiao et al., 2017), we
performed cross-validation with K = 5. We then split the validation data as described in Appendix C.2 to obtain the final
splits, as detailed in Table 3.

• number of particles: N = 5

• learning rate: lr ∈ [1e−3, 3e−3, 5e−3, 1e−2, 3e−2]

• learning rate schedule: constant

• Batch size: B ∈ [64, 128, 256]

• Optimizer: Adam

15

Stein Variational Newton Neural Network Ensembles

Table 4. Test negative log-likelihood on UCI regression datasets. Our proposed SVN method generally outperforms the baselines.

Test Negative Log-Likelihood ↓
Dataset Ensembles WGD SVGD SVN

autompg (n = 392) 17.532.85 24.232.73 14.151.93 3.940.99

concrete (n = 1030) 7.010.82 9.130.21 7.661.19 4.770.47

energy (n = 768) 3.440.69 6.450.83 2.900.61 1.480.11

kin8nm (n = 8192) 1.070.17 1.350.43 4.140.68 −1.270.16

naval (n = 11934) −5.170.09 −4.930.12 −5.370.07 −5.380.20

power (n = 9568) 17.420.49 66.5713.63 14.561.27 3.360.24

protein (n = 45730) 18.691.06 22.771.28 20.830.76 3.240.21

wine (n = 1599) 12.241.37 13.692.39 14.291.16 0.390.09

yacht (n = 308) 1.510.61 0.660.18 1.100.64 −0.360.19

Table 5. Test MSE on UCI Regression Tasks

Test MSE ↓
Dataset Ensembles WGD SVGD SVN

autompg (n = 392) 2.530.04 0.770.28 3.220.15 1.610.28
concrete (n = 1030) 2.680.66 2.610.31 2.420.81 2.450.72

energy (n = 768) 0.190.04 0.190.05 0.140.02 0.070.01

kin8nm (n = 8192) 7.4e−6 ± 2.36e−6 4.5e−5 ± 1.3e−5 1.9e−5 ± 0.3e−5 7.06e−5 ± 1.42e−5

naval (n = 11934) 6.2e−8 ± 1.4e−8 5.4e−7 ± 1.2e−7 2.8e−7 ± 0.7e−7 1.2e−7 ± 0.3e−7

power (n = 9568) 0.160.02 0.490.09 0.770.06 0.080.02

protein (n = 45730) 0.110.11 0.060.01 0.110.11 0.360.10
wine (n = 1599) 0.050.01 0.020.01 0.040.01 0.020.01

yacht (n = 308) 0.510.20 0.260.08 0.630.10 0.610.47

• Number of Epochs SVN: 20

• Number of Epochs LL-SVN: 100

• Number of Epochs SVGD: 100

• Number of Epochs Ensemble: 100

For all our experiments, we used the LenNet architecture (LeCun et al., 1998). We also experimented with weight decay and
gradient clipping but found no improvement. For our SVN algorithm, we used the Diagonal Hessian Approximation as well
as the Block Diagonal Approximation in conjunction with the anisotropic curvature kernel to ensure the method scales well
to larger models. We limited the number of epochs to evaluate its ability to converge faster than the other methods and to
decrease the computational requirements of the experiments. For LL-SVN, we used the KFAC Hessian approximation for
the parameters of the last layer.

e utilized a supercomputing environment for our experiments, with NVIDIA A100 GPUs in its compute nodes. The LL-SVN
algorithm takes about 2− 3 hours to finish training. SVN requires around 16 hours for the MNIST dataset and around 25
hours for running 20 epochs on the MNIST and FashionMNIST datasets, respectively. These numbers can vary depending
on the batch size used and the learning rate.

D. Further Experiments
D.1. SVN in low-data regime

To further investigate the performance of SVN ensembles in low-data scenarios, we conducted an additional evaluation
using subsamples of the MNIST dataset (LeCun, 1998). By employing a random seed, we created subsampled datasets with

16

Stein Variational Newton Neural Network Ensembles

sizes n ∈ {500, 2000, 5000, 10000}. The results of this evaluation are depicted in Figure 6, where we present the accuracy,
negative log-likelihood, and expected calibration error for three methods: Ensemble, Stein Variational Gradient Descent
(SVGD), and SVN.

Our analysis revealed that while SVGD consistently achieved higher accuracy across all subsample sizes, SVN demonstrated
superior calibration performance, particularly in the low-data regime. Despite these differences, the overall performance
of the three methods remained comparable under the conditions tested. This suggests that both SVN offers a competitive
alternative to the Ensemble and SVGD methods in scenarios with limited data availability.

D.2. Ablation Studies:

An overview of SVN’s main hyperparameters are:

• Choice of Hessian Approximation

• Anistropic Gaussian Curvature Kernel

• Use of the Block Diagonal Approximation

• Number of particles N

Block Diagonal Approximation and Curvature Kernel Figure 7 demonstrates several key findings regarding the
performance and stability of different kernel choices in the SVN algorithm for the Yacht dataset. Firstly, using the
anisotropic Gaussian kernel or the curvature kernel appears to improve performance in terms of mean squared error (MSE)
and stabilize training, as indicated by smaller standard errors. Secondly, with regard to the negative log-likelihood (NLL)
metric, the curvature kernel interestingly makes a more significant impact on improving NLL when using the full SVN
Hessian. In contrast, when the block-diagonal approximation is employed, the anisotropic Gaussian kernel slightly improves
performance.

Number of Particles Since an important hyperparameter in particle-based variational inference (VI) is the number of
particles N , we investigated the behavior of the methods with different numbers of particles. As depicted in Figure 8, the
results for the Yacht dataset provide significant insights into the impact of particle quantity on performance.

It can be observed that all methods generally improve with an increasing number of particles, as one might expect. However,
while the test NLL of Ensembles and SVGD appears to plateau with larger numbers of particles, SVN demonstrates a more
consistent improvement trend. This suggests that SVN’s performance continues to benefit from additional particles without
encountering the diminishing returns seen in the other methods.

We hypothesize that the curvature information incorporated in SVN updates allows it to more effectively allocate particles
within the posterior landscape. This capability likely enables SVN to scale better with a larger number of particles,
maintaining its performance improvement. In contrast, Ensembles may suffer from mode collapse, where particles fail to
adequately explore the posterior distribution beyond a certain point. SVGD, while more robust than Ensembles, also appears
to reach a saturation point where additional particles do not translate into significant performance gains.

These findings underscore the potential advantages of SVN in scenarios requiring the deployment of numerous particles,
highlighting its robustness and scalability. Further research could investigate the underlying mechanisms in more detail and
explore ways to mitigate the mode collapse observed in Ensemble methods (Pop & Fulop, 2018).

D.3. Hessian Plots during SVN training

In order to gain deeper insights into the behavior of our method, particularly in light of the observation in Section 3 that SVN
exhibits considerably faster convergence of the validation NLL scores during training compared to SVGD or Ensembles.
However, during the first one to two epochs its performance is considerably worse. As such we conducted additional
experiments on a scaled-down architecture. The aim is to visualize the Hessian matrix throughout the training process.
For this purpose, we trained the model on the Yacht dataset from the UCI regression benchmark datasets. The following
hyperparameters are used for the experiment: number of particles: N = 5, learning rate: lr = 1e−2, batch size: B = 16,
single hidden fully connected layer of size: 10. This results in a total of 81 trainable parameters of the model.

17

Stein Variational Newton Neural Network Ensembles

2000 4000 6000 8000 10000
Number of Samples

0.90

0.95

Ac
cu

ra
cy

SVN
SVGD
Ensemble

2000 4000 6000 8000 10000
Number of Samples

0.0

0.2

0.4

NL
L

2000 4000 6000 8000 10000
Number of Samples

0.05

0.10

EC
E

Figure 6. Performance metrics for Ensemble, SVGD, and SVN on subsampled MNIST data with varying sizes (n ∈
{500, 2000, 5000, 10000}). The plots display accuracy, negative log-likelihood, and expected calibration error.

18

Stein Variational Newton Neural Network Ensembles

Gaussian Curvature
Group

1

0

1

2

3

Da
ta

MSE Full SVN Hessian

Gaussian Curvature
Group

1

0

1

2

3

Da
ta

MSE Block Diagonal Approximation

Gaussian Curvature
Group

2

1

0

1

2

3

Da
ta

NLL Full SVN Hessian

Gaussian Curvature
Group

2

1

0

1

2

3

Da
ta

NLL Block Diagonal Approximation

Figure 7. Ablation study on the use of the Block Diagonal Approximation and Anistropic Curvature Kernel. The first and third plot
correpsond to the use of the Full SVN in computing the SVN update, while the second and fourth plot show the Block Diagonal
approximation.

19

Stein Variational Newton Neural Network Ensembles

4 6 8 10 12 14
Number of Particles

0.0

2.5

5.0

7.5

10.0

12.5

Te
st

 N
LL

Method
SVN
SVGD
Ensemble

Figure 8. Test NLL for methods with varying numbers of particles for the Yacht dataset. While SVN exhibits superior performance for all
considered numbers of particles, it is the only method with a consistent downwards trend, in contrast to SVGD and Ensembles, which
appear to flatten for larger numbers of particles.

We utilized full Hessian approximations for the gradient update using the Laplace library (Daxberger et al., 2021a). The
results were evaluated on a 20% holdout of unseen data. The training was conducted over 100 epochs, and snapshots of the
Hessian were taken at six different points during the training process. The experiment converged to a test MSE score of
0.164 and a test NLL score of 0.382.

Figures Figures 9 to 13 visualize the Hessian matrices throughout the training process for the five different particles. Figure
Figure 14 shows the state of the curvature matrix at the same timestamps. These visualizations were crucial for understanding
the dynamic behavior of the Hessian and its impact on the training process.

The primary motivation for this analysis was to investigate why our method, despite converging faster in the initial gradient
steps, exhibited the worst performance among all methods during the first two epochs. Empirically, we observed that our
method needed some time to stabilize before achieving its rapid convergence speed. By plotting the Hessians for this
downscaled example, we aimed to obtain more detailed insights and a better understanding of our method’s behavior. These
visualizations help in diagnosing potential issues such as instability in the Hessian matrix or improper allocation of particles,
which could contribute to the observed performance drop.

Figures Figures 9 to 13 illustrate the Hessian matrices for different particles throughout the training process, while Figure 14
depicts the average curvature matrix used in the anisotropic Gaussian kernel. In all these plots, it can be observed that
the Hessian matrix is not particularly expressive at the beginning of the training process. Consequently, we do not expect
our SVN method to benefit significantly from more informed gradient steps through curvature information initially. This
lack of initial expressiveness means that our method requires a few gradient steps to start effectively utilizing the curvature
information and improving its performance. Thus, the SVN method needs some time to settle in before achieving its
characteristic convergence speed. While this is a scaled-down example, we are confident that the same principles hold for
larger neural networks as well, as seen in Section 3.

20

Stein Variational Newton Neural Network Ensembles

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(a) end of epoch 1

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(b) end of epoch 20

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(c) end of epoch 40

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d) end of epoch 60

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(e) end of epoch 80

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(f) end of epoch 100

Figure 9. Visualization of snapshots of Hessian approximations for Particle 1 at different times during the training process. Furthermore,
the drawn lines in (d) illustrate the separation of weights and biases of different layers. The top left area for axes [0,59] represent the
weight connections of input layer with the hidden layer, the next range [60,69] represent bias terms of the first layer, the next range [70,79]
represent weight connections from hidden layer to output layer and the axes at 80 represent the bias term for output neuron.

21

Stein Variational Newton Neural Network Ensembles

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(a) end of epoch 1

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(b) end of epoch 20

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(c) end of epoch 40

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d) end of epoch 60

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(e) end of epoch 80

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(f) end of epoch 100

Figure 10. Visualization of snapshots of Hessian approximations for Particle 2 at different times during the training process.

22

Stein Variational Newton Neural Network Ensembles

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(a) end of epoch 1

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(b) end of epoch 20

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(c) end of epoch 40

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d) end of epoch 60

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(e) end of epoch 80

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(f) end of epoch 100

Figure 11. Visualization of snapshots of Hessian approximations for Particle 3 at different times during the training process.

23

Stein Variational Newton Neural Network Ensembles

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(a) end of epoch 1

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(b) end of epoch 20

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(c) end of epoch 40

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d) end of epoch 60

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(e) end of epoch 80

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(f) end of epoch 100

Figure 12. Visualization of snapshots of Hessian approximations for Particle 4 at different times during the training process.

24

Stein Variational Newton Neural Network Ensembles

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(a) end of epoch 1

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(b) end of epoch 20

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(c) end of epoch 40

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d) end of epoch 60

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(e) end of epoch 80

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(f) end of epoch 100

Figure 13. Visualization of snapshots of Hessian approximations for Particle 5 at different times during the training process.

25

Stein Variational Newton Neural Network Ensembles

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(a) end of epoch 1

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(b) end of epoch 20

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(c) end of epoch 40

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d) end of epoch 60

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(e) end of epoch 80

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(f) end of epoch 100

Figure 14. Visualization of snapshots for the mean curvature matrix MSVN, which is the average of the Hessian matrices of all 5
particles at different times during the training process.

26

