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ABSTRACT

Stochastic gradient descent (SGD) is a cornerstone algorithm for high-
dimensional optimization, renowned for its empirical successes. Recent theo-
retical advances have provided a deep understanding of how SGD enables fea-
ture learning in high-dimensional nonlinear models, most notably the single-index
model with i.i.d. data. In this work, we study the sequential learning problem
for single-index models, also known as generalized linear bandits or ridge ban-
dits, where SGD is a simple and natural solution, yet its learning dynamics remain
largely unexplored. We show that, similar to the optimal interactive learner, SGD
undergoes a distinct “burn-in” phase before entering the “learning” phase in this
setting. Moreover, with an appropriately chosen learning rate schedule, a sin-
gle SGD procedure simultaneously achieves near-optimal (or best-known) sample
complexity and regret guarantees across both phases, for a broad class of link func-
tions. Our results demonstrate that SGD remains highly competitive for learning
single-index models under adaptive data.

1 INTRODUCTION

Stochastic gradient descent (SGD) and its many variants have achieved remarkable empirical suc-
cess in solving high-dimensional optimization problems in machine learning. Recent theoretical
advances have provided rigorous analyses of SGD in high-dimensional, non-convex settings for a
range of statistical and machine learning tasks, such as tensor decomposition (Ge et al., 2015), PCA
(Wang et al., 2017), phase retrieval (Chen et al., 2019; Tan & Vershynin, 2023), to name a few. A
particularly intriguing setting is that of single-index models (Dudeja & Hsu, 2018; Ben Arous et al.,
2021) (and generalizations to multi-index models (Abbe et al., 2022; 2023; Damian et al., 2022;
Arnaboldi et al., 2023; Bietti et al., 2025)) with Gaussian data. In this framework, each observation
(xt, yt) consists of a Gaussian feature xt ∼ N (0, Id) and a noisy outcome

yt = f(⟨θ⋆, xt⟩) + εt,

where f : R → R is a known link function, θ⋆ ∈ Sd−1 is an unknown parameter vector on the
unit sphere in Rd, and εt denotes the unobserved noise. With a learning rate ηt > 0 and a random
initialization θ1 ∼ Unif(Sd−1), the SGD update for learning single-index models is given by

θt+1/2 = θt − ηt(f(⟨θt, xt⟩)− yt)f
′(⟨θt, xt⟩) · (I − θtθ

⊤
t )xt, θt+1 =

θt+1/2

∥θt+1/2∥
. (1)

Here, the first update is a descent step of the population loss θ 7→ 1
2E (f(⟨θ, x⟩)− y)

2 at θ = θt,
whose spherical gradient1 is estimated based on the current sample (xt, yt). It is well known (cf. e.g.
(Ben Arous et al., 2021)) that the evolution of SGD in this context exhibits two distinct phases: an
initial “search” phase, during which the correlation ⟨θt, θ⋆⟩ gradually improves from O(d−1/2) to
Ω(1), followed by a “descent” phase in which the iterates θt converge rapidly to the global optimum
θ⋆, driving ⟨θt, θ⋆⟩ arbitrarily close to 1.

Beyond statistical learning, single-index models have found applications in interactive decision-
making problems, including bandits and reinforcement learning, where the reward is a nonlinear

1Recall that the spherical gradient of a function f : Sd−1 → R is defined as ∇f = Df − ∂f
∂r

∂
∂r

, where Df

is the Euclidean gradient, and ∂
∂r

is the derivative in the radial direction.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

function of the action. An example is manipulation with object interaction, which represents one
of the largest open problems in robotics (Billard & Kragic, 2019) and requires designing good se-
quential decision rules that can deal with sparse and non-linear reward functions and continuous
action spaces (Zhu et al., 2019). This setting is known as the generalized linear bandit or ridge
bandit in the bandit literature, where the mean reward satisfies E[rt|at] = f(⟨θ⋆, at⟩) with a known
link function f . Classical results (Filippi et al., 2010; Russo & Van Roy, 2014) show that when
0 < c1 ≤ f ′(x) ≤ c2 everywhere, both the optimal regret and the optimal learner are essentially
the same as in the linear bandit case (where f(x) = x). Recent studies (Lattimore & Hao, 2021;
Huang et al., 2021; Rajaraman et al., 2024) have considered challenging settings where f ′(x) could
be small around x = 0. This line of work yields two main insights:

1. While the final “learning” phase has the same regret as linear bandits, there could be a long
“burn-in” period until the learner can identify some action at with ⟨θ⋆, at⟩ = Ω(1);

2. New exploration algorithms are necessary during this burn-in period, as classical methods
such as UCB are provably suboptimal for minimizing the initial exploration cost.

In response to the second point, this line of research has proposed various exploration strategies for
the burn-in phase that are often tailored to the specific link function f and rely on noisy gradient
estimates via zeroth-order optimization. In contrast, SGD offers a natural and straightforward alter-
native, as its intrinsic “search” and “descent” phases align well with the “burn-in” and “learning”
phases encountered in interactive decision-making.

This paper is devoted to a systematic study of SGD for learning single-index models, including the
aforementioned challenging setting where f ′(x) could be small around x ≈ 0, within interactive
decision-making settings. In these scenarios, the actions at are no longer Gaussian, prompting us to
adopt the following exploration strategy:

at =
√

1− σ2
t θt + σtZt, Zt ∼ Unif

({
a ∈ Sd−1 : ⟨a, θt⟩ = 0

})
, (2)

where an additional hyperparameter σt ∈ [0, 1] governs the exploration-exploitation tradeoff. After
playing the action at and observing the reward rt, we update the parameter θt via the same SGD as
Equation (1):

θt+1/2 = θt − ηt(f(⟨θt, at⟩)− rt)f
′(⟨θt, at⟩) · (I − θtθ

⊤
t )at, θt+1 =

θt+1/2

∥θt+1/2∥
. (3)

By simple algebra, the stochastic gradient in Equation (3) is also an unbiased estimator of the popu-
lation (spherical) gradient of θ 7→ 1

2E (f(⟨θ, a⟩)− r)
2 at θ = θt, with the distribution of a given by

Equation (2) and the reward r = f(⟨θ⋆, a⟩)+ε. Our main result will establish that, for a broad class
of link functions, this SGD procedure, with appropriately chosen hyperparameters (ηt, σt), achieves
near-optimal performance in both the burn-in and learning phases.

Notation. For x ∈ Rd, let ∥x∥ be its ℓ2 norm. For x, y ∈ Rd, let ⟨x, y⟩ be their inner product.
Let Sd−1 be the unit sphere in Rd. Throughout this paper we will use θ⋆ ∈ Sd−1 to denote the true
parameter, θt to denote the current estimate, and mt = ⟨θ⋆, θt⟩ ∈ [−1, 1] to denote the correlation.
The standard asymptotic notations o,O,Ω, etc. are used throughout the paper, and we also use Õ, Ω̃,
etc. to denote the respective meanings with hidden poly-logarithmic factors.

1.1 MAIN RESULTS

First we give a formal formulation of the single-index model in the interactive setting. Let θ⋆ ∈ Sd−1

be an unknown parameter vector, and A = Sd−1 be the action space. Upon choosing an action
at ∈ A, the learner receives a reward rt = f(⟨θ⋆, at⟩)+εt for a known link function f : [−1, 1] → R
and an unobserved noise εt which is assumed to be zero-mean and 1-subGaussian.
Remark 1. The scaling considered here differs crucially from the prior study on learning single-
index models under non-interactive environments (such as (Dudeja & Hsu, 2018; Ben Arous et al.,
2021) with Gaussian or i.i.d. features). In the non-interactive setting, it is usually assumed that
xt ∼ N (0, Id), so that ∥xt∥ ≍

√
d. In the interactive setting, we stick to the convention that actions

belong to the unit ℓ2 ball, in line with settings considered in the bandit literature (Filippi et al.,
2010; Russo & Van Roy, 2014; Rajaraman et al., 2024). As a consequence, sample complexity com-
parisons between the interactive and non-interactive settings must be made with care. We discuss
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this in more detail in Section 5 and compare with results established for online SGD with Gaussian
features (Ben Arous et al., 2021) after normalizing for the difference in scaling.

Throughout the paper we make the following mild assumptions on the link function f .
Assumption 1. The following conditions hold for the link function f :

1. (monotonicity) f : [−1, 1] → [−1, 1] is non-decreasing, with ∥f∥∞ ≤ 1;

2. (locally linear near x = 1) 0 < γ1 ≤ f ′(x) ≤ γ2 for all x ∈ [1 − γ0, 1], with absolute
constants γ0, γ1, γ2 > 0. Without loss of generality we assume that γ0 ≤ 0.1.

In Assumption 1, the monotonicity condition is taken from (Rajaraman et al., 2024) to ensure that
reward maximization is aligned with parameter estimation, where improving the alignment ⟨θ⋆, at⟩
directly increases the learner’s reward. In addition, when it comes to SGD, we will show in Sec-
tion 5 that the population loss associated with the SGD dynamics in Equation (3) is decreasing in
the correlation mt = ⟨θ⋆, θt⟩ only if f is increasing. Without monotonicity, there also exists a coun-
terexample where the SGD can never make meaningful progress (cf. Proposition 1). Similar to
(Rajaraman et al., 2024), this condition can be generalized to f being even and non-decreasing on
[0, 1], which covers, for example, f(x) = |x|p for all p > 0. The second condition in Assumption 1
is very mild, satisfied by many natural functions, and ensures that the problem locally resembles a
linear bandit near the global optimum at ≈ θ⋆. Finally, we emphasize that this local linearity does
not exclude the nontrivial scenario where f ′(x) is very small when x ≈ 0.

Our first result is the SGD dynamics in the learning phase, under Assumption 1.
Theorem 1 (Learning Phase). Let ε, δ > 0. Under Assumption 1, let (at, θt)t≥1 be given by the SGD
evolution in Equation (2) and Equation (3), with an initialization θ1 such that ⟨θ1, θ⋆⟩ ≥ 1− γ0/4.

1. (Pure exploration) By choosing ηt = Θ̃(dt ∧
1
d ) and σ2

t = Θ(1), it holds that mT ≥ 1− ε

with probability at least 1− δT , with T = Õ(d
2

ε ).
2. (Regret minimization) By choosing ηt = Θ̃( 1√

t
∧ 1

d ) and σ2
t = Θ̃( d√

t
∧ 1), with probability

at least 1− δT it holds that
∑T

t=1(f(1)− f(mt)) = Õ(d
√
T ).

Both upper bounds in Theorem 1 are near-optimal and match the lower bounds Ω(d
2

ε ) and Ω(d
√
T )

for the respective tasks, shown in Theorem 1.7 of (Rajaraman et al., 2024). In other words, SGD
with proper learing rate and exploration schedules achieves an optimal learning performance in the
learning phase, given a “warm start” θ1 with ⟨θ1, θ⋆⟩ ≥ 1 − γ0/2. To search for this “warm start”
through the burn-in phase, we additionally make one of the following assumptions.
Assumption 2. There is an absolute constant c0 > 0 such that f ′(x) ≥ c0 for all x ∈ [0, 1].
Assumption 3. The link function f is convex on [0, 1].

Specifically, Assumption 2 and 3 cover two different regimes of generalized linear bandits: Assump-
tion 2 corresponds to the classical “linear bandit” regime studied in (Filippi et al., 2010; Russo &
Van Roy, 2014), and Assumption 3 covers the case with a long burn-in period where f ′(x) is small
at the beginning, e.g. in (Lattimore & Hao, 2021; Huang et al., 2021). We will discuss the challenges
in dropping the convexity assumption for the SGD analysis in Section 5.

Under Assumption 2 or 3, our next result characterizes the SGD dynamics in the burn-in phase.
Theorem 2 (Burn-in Phase). Let δ > 0, and Assumption 1 hold. Let (at, θt)t≥1 be given by the
SGD evolution in Equation (2) and Equation (3), with an initialization θ1 such that ⟨θ1, θ⋆⟩ ≥ 1√

d
.

1. Under Assumption 2, by choosing ηt = Θ̃( 1
d2 ) and σ2

t = Θ(1), it holds thatmT ≥ 1−γ0/4
with probability at least 1− δT , where T = Õ(d2).

2. Under Assumption 3, by choosing an appropriate learning rate schedule (cf. Lemma 8) and
σ2
t = Θ(1), it holds that mT ≥ 1− γ0/4 with probability at least 1− δT , where

T = Õ
(
d2
∫ 1−γ0/4

1/(2
√
d)

m

f ′(m)2
dm
)
.

Note that for θ1 ∼ Unif(Sd−1), the condition ⟨θ⋆, θ1⟩ ≥ 1/
√
d is fulfilled with a constant proba-

bility. A simple hypothesis testing subroutine in (Rajaraman et al., 2024, Lemma 3.1) could further
certify it using Õ((f(1/

√
d)− f(0))−2) samples. Therefore, combining Theorem 1 and 2, we have

the following corollary on the overall complexity of SGD.
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Corollary 1 (Overall sample complexity and regret). Under Assumption 1 and Assumption 2 or 3,
the SGD evolution in Equation (2) and Equation (3) with proper (ηt, σt)t≥1 and a hypothesis testing
subroutine for initialization satisfies the following:

1. (Pure exploration) For ε, δ > 0, mT ≥ 1− ε with probability at least 1− δT , where

T = Õ
(
d2
∫ 1−γ0/4

1/(2
√
d)

m

f ′(m)2
dm+

d2

ε

)
.

2. (Regret minimization) For δ > 0, with probability at least 1 − δT , the cumulative regret
satisfies

T∑
t=1

(f(1)− f(mt)) = Õ
(
min

{
T, d2

∫ 1−γ0/2

1/(2
√
d)

m

f ′(m)2
dm+ d

√
T
})
.

Under Assumption 2, Corollary 1 yields an overall sample complexity bound Õ(d2/ε) and a regret
bound Õ(min{T, d

√
T}), both of which are known to be near-optimal, e.g., in the case of linear

bandits (Lattimore & Szepesvári, 2020; Wagenmaker et al., 2022). Under Assumption 3, the upper
bounds in Corollary 1 also match the best known guarantees in (Rajaraman et al., 2024), using a
different algorithm based on successive hypothesis testing. In the special case f(x) = xp with odd
p ≥ 3, SGD achieves a regret bound Õ(min{T, dp + d

√
T}), which is near-optimal (Huang et al.,

2021; Rajaraman et al., 2024). By contrast, many other approaches, including all non-interactive
algorithms (in particular, non-interactive SGD) and UCB-based methods, provably incur a larger
burn-in cost of Ω̃(dp+1) (Rajaraman et al., 2024). Therefore, it is striking that SGD attains optimal
performance even in the burn-in phase, while simultaneously staying optimal in the learning phase.
Taken together, these results highlight SGD as a natural, efficient, and highly competitive algorithm
with near-optimal statistical guarantees for learning single-index models in the interactive setting.

1.2 RELATED WORK

Single-index models. Analyzing feature learning in non-linear functions of low-dimensional fea-
tures has a long history. The approximation and statistical aspects are well understood in (Barron,
2002; Bach, 2017); by contrast, the computational aspects remain more challenging, and positive
results typically require additional assumptions on the link function and/or the data distribution. Fo-
cusing on the link function f , a rich line of work (Kalai & Sastry, 2009; Shalev-Shwartz et al., 2010;
Kakade et al., 2011; Soltanolkotabi, 2017; Frei et al., 2020; Yehudai & Ohad, 2020; Wu, 2022) has
exploited its monotonicity or invertibility to obtain efficient learning guarantees under broad distri-
butional assumptions. At the other end of the spectrum, the seminal works (Dudeja & Hsu, 2018;
Ben Arous et al., 2021) developed a harmonic-analysis framework for studying SGD under Gaus-
sian data, sparking extensive follow-up research (Abbe et al., 2022; Bietti et al., 2022; Damian et al.,
2022; Ben Arous et al., 2022; Abbe et al., 2023; Zweig et al., 2023; Damian et al., 2024; Ben Arous
et al., 2024; Bietti et al., 2025).

A representative finding for the single-index model is that the sample complexity of SGD is gov-
erned by the information exponent of the link function, i.e., the index of its first non-zero Hermite
coefficient. In the interactive setting, however, where the data distribution is no longer i.i.d., the
information exponent ceases to be an informative measure of SGD’s performance. We defer more
discussions to Section 5.

Generalized linear bandits. The most canonical examples of generalized linear bandits are linear
bandits (Dani et al., 2008; Rusmevichientong & Tsitsiklis, 2010; Chu et al., 2011) and ridge bandits
with 0 < c1 ≤ |f ′(·)| ≤ c2 everywhere. In both cases, the minimax regret is Θ̃(d

√
T ) (Filippi

et al., 2010; Abbasi-Yadkori et al., 2011; Russo & Van Roy, 2014), attained by algorithms such
as LinUCB and information-directed sampling. For more challenging convex link functions, the
special cases f(x) = x2 and f(x) = xp with p ≥ 2 were analyzed in (Lattimore & Hao, 2021;
Huang et al., 2021), using either successive searching algorithms or noisy power methods. These
results were substantially generalized by (Rajaraman et al., 2024), which identified the existence of
a general burn-in period and established tight upper and lower bounds on the optimal burn-in cost
via differential equations. In particular, their upper bound strengthens Corollary 1 in the absence
of convexity, using an refined algorithm of (Lattimore & Hao, 2021) during the burn-in phase and
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an ETC (explore-then-commit) algorithm in the learning phase. By contrast, we show that a single,
much simpler SGD algorithm achieves the same upper bound for convex f .

A related line of work (Fan et al., 2023; Kang et al., 2025) studied the single-index model with
an unknown link function, where the central idea is to estimate the score function. Their resulting
algorithms are of the ETC type, and the regret guarantees rely on a positive lower bound for f ′.

Gradient descent in online learning and bandits. Gradient and mirror descent are classical al-
gorithms in online settings (including online learning and online convex optimization (Cesa-Bianchi
& Lugosi, 2006; Hazan et al., 2016; Orabona, 2019)), as well as in bandit problems with gradient es-
timation, such as EXP3 for adversarial multi-armed bandits and FTRL for adversarial linear bandits
(Lattimore & Szepesvári, 2020). A distinct feature of our work is that our SGD remains a first-order
method even in this bandit problem, in contrast to the zeroth-order stochastic optimization usually
used for single-index models such as (Huang et al., 2021). Moreover, the SGD dynamics for single-
index models demand a more fine-grained analysis than that required by standard online learning
guarantees. Further details are provided in Section 5.

1.3 ORGANIZATION

The rest of this paper is organized as follows. In Section 2 we present a general analysis of the SGD
update, including bounds on the mean drift, stochastic term, and normalization error. In Section 3
and 4, we analyze the learning and burn-in phases, respectively. Additional discussion is provided
in Section 5, and detailed proofs are deferred to the appendix.

2 ANALYSIS OF THE SGD UPDATE

To establish our main results Theorem 1 and 2, we first understand the properties of each SGD
update in Equation (2) and Equation (3). At each time step t, the improvement on the correlation
from mt := ⟨θ⋆, θt⟩ to mt+1 := ⟨θ⋆, θt+1⟩ consists of three parts:

1. Drift: the mean improvement E[mt+1/2|Ft]−mt of the descent step in Equation (3), where
mt+1/2 := ⟨θ⋆, θt+1/2⟩, and Ft denotes all historic observations up to the end of time t.

2. Martingale difference: the stochastic term mt+1/2 − E[mt+1/2|Ft] with zero mean.
3. Normalization error: the difference mt+1−mt+1/2 due to the normalization step in Equa-

tion (3).
We will present generic lemmas to bound each of the above terms in this section, and use them to
analyze the learning and burn-in phases in the next two sections. We start from the drift.
Lemma 1 (Drift). Let d ≥ 3. The following identity holds for the drift:

E[mt+1/2|Ft]−mt

=
ηtσ

2
t

d− 2
f ′
(√

1− σ2
t

)
(1−m2

t ) · E
[
f ′
(√

1− σ2
t mt + σt

√
1−m2

tX

)
(1−X2)

∣∣∣∣Ft

]
.

where X follows the one-dimensional marginal of the uniform distribution over Sd−2. In particular,
if mt > 0,

E[mt+1/2|Ft]−mt ≥ cdr

{
ηtσ

2
t

d f ′
(√

1− σ2
t

)
(1−m2

t ) under Assumption 2
ηtσ

2
t

d f ′
(√

1− σ2
t

)
(1−m2

t )f
′(
√
1− σ2

tmt) under Assumption 3
,

for a universal constant cdr > 0.

The next result concerns the subexponential concentration property of the martingale difference.
Lemma 2 (Martingale difference). The Ψ1-Orlicz norm (i.e., the subexponential norm) of the mar-
tingale difference has the following upper bound, conditioned on Ft:

∥mt+1/2 − E[mt+1/2|Ft]∥Ψ1
≤ Kt ≜ Cse

√
1−m2

t

d
ηtσtf

′(√
1− σ2

t

)
,

where Cse > 0 is a universal constant.

5
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Based on Lemma 2, we proceed to consider the (discounted) sum of martingale differences. For
t0 ≥ 0 and β > 0, let

St0,β
t :=

t−1∑
s=t0

βs−t0
(
ms+1/2 − E[ms+1/2|Fs]

)
be a martingale adapted to {Ft}t≥t0 , and V t0,β

t :=
∑t−1

s=t0
β2(s−t0)K2

s be a proxy for its predictable
quadratic variation. The following result is a self-normalized concentration inequality for such pro-
cesses established in (Whitehouse et al., 2023, Theorem 3.1):
Lemma 3 (Sum of martingale differences). Let ηt ≤ (Cseγ2)

−1 and σ2
t ≤ γ0 for all t ≥ 1, and

β ≥ 0. For δ > 0, it holds that

P

(
∃t ≥ t0 : |St0,β

t | ≥ Cmt

√
V t0,β
t ∨ 1 log

(
1 + log(V t0,β

t ∨ 1)

δ

)
and βt−t0 ≤ 2

∣∣∣∣∣ Ft0

)
≤ δ,

for some universal constant Cmt > 0.

Note that when β ∈ [0, 1], the condition βt−t0 ≤ 2 is vacuous. For β > 1, this condition results in
a smaller range of t ∈ [t0, t0 + logβ 2]. Finally, we bound the normalization error mt+1 −mt+1/2.
Lemma 4 (Normalization error). With probability at least 1− δ, it holds that

mt+1 ≥ mt+1/2 − Cnm · η2t σ2
t

(
f ′
(√

1− σ2
t

))2
log(1/δ),

for some universal constant Cnm > 0. In addition, if mt+1/2 ≥ 0, then with probability 1− δ,

mt+1/2 ≥ mt+1 ≥ mt+1/2

(
1− Cnm · η2t σ2

t

(
f ′
(√

1− σ2
t

))2
log(1/δ)

)
.

3 ANALYSIS OF THE LEARNING PHASE

In this section we analyze the SGD dynamics in the learning phase, given a “warm start” θ1 with
m1 = ⟨θ⋆, θ1⟩ ≥ 1− γ0/4.

3.1 PURE EXPLORATION

The crux of the proof of Theorem 1 lies in the following lemma, which shows that starting from a
correlation mt ≥ 1− ε, SGD will improve it to 1− ε/2 after Õ(d2/ε) steps.
Lemma 5 (Local improvement for pure exploration). Suppose mt ≥ 1− ε for some ε ≤ γ0/4. Let
ι := log2(d/εδ), and for s ≥ t, set

ηs ≡ η :=
cε

dι
, σ2

s ≡ σ2 := γ0,

where c > 0 is a small absolute constant. Then for ∆ := Cd/η and a large absolute constant C > 0
independent of c, we have mt+∆ ≥ 1− ε/2 with probability at least 1−∆δ.

We call the time interval [t, t + ∆] an “epoch”, and choose the learning rate based on the epoch.
Lemma 5 shows that, as long as the correlation is large at the beginning of an epoch, then it must
be improved in a linear rate at the end of the epoch. Therefore, by induction and a geometric
series calculation, it is clear that the learning rate schedule given by Lemma 5 corresponds to ηt =
Θ̃(dt ∧

1
d ), and Lemma 5 gives an overall sample complexity Õ(d

2

ε ) for pure exploration.

In the sequel we prove Lemma 5. We first show that by induction on s that with probability at least
1 − ∆δ/3, ms ≥ 1 − 2ε for all s ∈ [t, t + ∆]. The base case s = t is ensured by the assumption
mt ≥ 1− ε. For the inductive step, suppose mt, . . . ,ms−1 ≥ 1− 2ε. Then

ms −mt =

s−1∑
r=t

[ (
E[mr+1/2|Fr]−mr

)︸ ︷︷ ︸
≥0 by Lemma 1

+
(
mr+1/2 − E[mr+1/2|Fr]

)︸ ︷︷ ︸
=:Ar

+
(
mr+1 −mr+1/2

)︸ ︷︷ ︸
=:Br

]
.
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Thanks to the inductive hypothesis, Kr = O(η
√

ε
d ) for all r ∈ [t, s− 1] in Lemma 2, so Lemma 3

(with t0 = t, β = 1) gives |
∑s−1

r=t Ar| = O(η
√

∆ε
d log(∆δ )) = O(

√
ηε log(∆δ )) <

ε
8 with prob-

ability 1 − δ
6 , by choosing c > 0 small enough. Similarly,

∑s−1
r=t |Br| = O(∆η2 log(∆δ )) =

O(dη log(∆δ )) <
ε
8 with probability 1 − δ

6 , by Lemma 4 and choosing c > 0 small enough. This
implies that ms ≥ mt − ε

4 > 1− 2ε with probability 1− δ
3 , completing the induction.

Conditioned on the event ms ≥ 1− 2ε for all s ∈ [t, t+∆], we distinguish into two regimes in this
epoch. Let T0 ≥ t be the stopping time when ms > 1− ε/4 for the first time.

Regime I: t ≤ s < T0. In this regime ms ∈ [1 − 2ε, 1 − ε/4]. We show that T0 ≤ t + ∆ with
probability 1−∆δ/3. If T0 > t+∆, using the same high-probability bounds, we have

mt+∆ −mt ≥
t+∆−1∑
s=t

(
E[ms+1/2|Fs]−ms

)
− ε

4

with probability 1−∆δ/3. By Lemma 1 with 1−m2
s = Ω(ε) and

√
1− σ2

sms ≥ 1−γ0 for s < T0,
the total drift is Ω(∆ηε

d ) = Ω(Cε). Therefore, for a large absolute constant C > 0, we would have
mt+∆ ≥ 1− ε/4, a contradiction to the assumption T0 > t+∆.

Regime II: s ≥ T0. As shown above, this regime is non-empty with high probability. The same
induction starting from s = T0 shows that, with probability 1−∆δ/3, ms ≥ mT0

− ε/4 holds for
all s ∈ [T0, t+∆]. In particular, choosing s = t+∆ gives the desired result mt+∆ ≥ 1− ε/2.

3.2 REGRET MINIMIZATION

The proof of Theorem 1 for regret minimization follows similarly from the following lemma.

Lemma 6 (Local improvement for regret minimization). Suppose mt ≥ 1 − ε for some ε ≤ γ0/4.
Let ι := log2(d/εδ), and for s ≥ t, set

ηs ≡ η :=
cε

dι
, σ2

s ≡ σ2 := ε,

where c > 0 is a small absolute constant. Then for ∆ := Cd/(ηε) and a large absolute constant
C > 0 independent of c, with probability at least 1 − ∆δ, we have ⟨θ⋆, as⟩ ≥ 1 − 4ε for all
s ∈ [t, t+∆], and mt+∆ ≥ 1− ε/2.

The main distinction in Lemma 6 is the choice of a smaller σ2
s to encourage exploitation for a small

regret: using the local linearity assumption in Assumption 1, the total regret in the epoch is

t+∆∑
s=t

(f(1)− f(⟨θ⋆, as⟩)) ≤ (∆ + 1) · 4γ2ε = Õ

(
d2

ε

)
with probability 1−∆δ.

In addition, the duration of each epoch becomes longer, with a correspondence ε = Θ̃( d√
t
∧ 1).

This correspondence gives the learning rate and exploration schedule in Theorem 1, as well as the
Õ(d

√
T ) regret bound. The proof of Lemma 6 is deferred to the appendix.

4 ANALYSIS OF THE BURN-IN PHASE

The analysis of the SGD dynamics in the burn-in phase relies on similar induction ideas, with a more
complicated tradeoff among the three components in the correlation improvement mt+1 −mt.

4.1 LINK FUNCTION WITH DERIVATIVE LOWER BOUND

We first investigate the simpler scenario in Assumption 2, i.e., f ′(x) ≥ c0 for all x ∈ [0, 1]. In this
case, Theorem 2 is a direct consequence of the following lemma:
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Lemma 7 (Burn-in phase under Assumption 2). Suppose m1 ≥ 1√
d

. Let ι := log2(d/δ), and set

ηt ≡ η :=
c

dι
, σ2

t ≡ σ2 := γ0,

where c > 0 is a universal constant. Then for T := Cd/η and a large absolute constant C > 0
independent of c, we have mT ≥ 1− γ0/4 with probability at least 1− Tδ.

In the sequel we present the proof of Lemma 7. Again we consider the stopping time T0 = min{t ≥
1 : mt ≥ 1− γ0/8} and splits into two regimes.

Regime I: t ≤ T0. If T0 > T , we prove by induction that mt ≥ 1
2
√
d
+ c1

η(t−1)
d for all t ∈ [1, T ]

with probability at least 1− Tδ, for some absolute constant c′ > 0 independent of c. The base case
t = 1 is our assumption. Now suppose this lower bound holds for m1, . . . ,mt−1, then by Lemma 1
and 4, with probability at least 1− δ

4 , for each s = 1, . . . , t− 1,(
E[ms+1/2|Fs]−ms

)
+
(
ms+1 −ms+1/2

)
= Ω

(η
d

)
−O

(
η2 log(

2

δ
)

)
= Ω

(η
d

)
by our choice of η. Here we have critically used the condition ms = 1 − Ω(1) for s < T0 when
applying Lemma 1, and the inductive hypothesis to ensure ms > 0. By Lemma 2 and 3, with

probability 1− δ
4 , the sum of martingale difference is at mostO(η

√
T
d log(Tδ )) = O(

√
η log(Tδ )) ≤

1
2
√
d

for c > 0 small enough. Therefore,

mt ≥ m1 −
1

2
√
d
+

t−1∑
s=1

Ω
(η
d

)
≥ 1

2
√
d
+Ω

(
η(t− 1)

d

)
,

completing the induction step. Now choosing t = T with C > 0 large enough shows the opposite
result mT ≥ 1− γ0/8, implying that the event T0 > T only occurs with probability at most Tδ/2.

Regime II: T0 ≤ t ≤ T . Under the high-probability event T0 ≤ T and starting from t = T0,

mT −mT0 =

T−1∑
t=T0

[ (
E[mt+1/2|Ft]−mt

)︸ ︷︷ ︸
≥0 by Lemma 1

+
(
mt+1/2 − E[mt+1/2|Ft]

)︸ ︷︷ ︸
=:At

+
(
mt+1 −mt+1/2

)︸ ︷︷ ︸
=:Bt

]
.

By Lemma 2 and 3, |
∑T−1

t=T0
At| = O(η

√
T
d log(Tδ )) = O(

√
η log(Tδ )) <

γ0

16 with probability

1 − Tδ/2, for c > 0 small enough. In addition, Lemma 4 gives
∑T−1

t=T0
|Bt| = O(Tη2 log(Tδ )) =

O(dη log(Tδ )) <
γ0

16 with probability 1−Tδ/2, again for c > 0 small enough. Therefore, at the end
of this regime, mT ≥ mT0

− γ0/8 ≥ 1− γ0/4 with probability 1− Tδ, as desired.

4.2 CONVEX LINK FUNCTION

When f is convex in Assumption 3, we establish the following lemma.
Lemma 8 (Local improvement for convex link function). For 1 ≤ k ≤ d − 1, let mk := (1 −
γ0)

2
√
k/d, and mk := (1 − γ0/4)

√
k/d. Suppose that mt ≥ mk at the beginning of the k-th

epoch. Let ι := log2(d/δ), and for s ≥ t, set

ηs ≡ η :=
cf ′(mk)

ιdmk

, σ2
s ≡ σ2 := γ0,

where c > 0 is a small absolute constant. Then for ∆ := Cd(mk+1 −mk)/(ηf
′(mk)) and a large

absolute constant C > 0 independent of c, we havemt+∆ ≥ mk+1 with probability at least 1−∆δ.

Since m1 ≥
√
1/d ≥ m1, a recursive application of Lemma 8 for k = 1, . . . , d − 1 leads to

mT ≥ 1− γ0/4 with probability at least 1− Tδ, with (recall that γ0 ≤ 0.1)

T = O

(
log2

(
d

δ

)
· d2

d−1∑
k=1

mk(mk+1 −mk)

f ′(mk)
2

)
= Õ

(
d2
∫ 1−γ0/4

1

2
√

d

xdx

f ′(x)2

)
.

This completes the proof of Theorem 2. The proof of Lemma 8 is more involved, and we defer the
details to the appendix.
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5 DISCUSSION

Comparison with other descent algorithms. Our SGD update in Equation (3) is an online gra-
dient descent applied to the loss ℓt(θ) := 1

2 (rt − f(⟨θ, at⟩))2, with at chosen according to Equa-
tion (2). A typical guarantee in online learning takes the form (e.g., via the sequential Rademacher
complexity (Rakhlin et al., 2015))

T∑
t=1

(f(⟨θt, at⟩)− f(⟨θ⋆, at⟩))2 = Õ(d).

which is known as an online regression oracle (Foster & Rakhlin, 2020; Foster et al., 2021). How-
ever, this oracle guarantee alone does not yield the optimal regret of θt in single-index models; see
Theorem 1.5 of (Rajaraman et al., 2024) for a general negative result. This motivates us to move
beyond standard online learning guarantees and directly analyze the SGD dynamics.

A different descent algorithm for single-index models is also in (Huang et al., 2021), using zeroth-
order stochastic optimization to approximate the gradient and implement a noisy power method. In
contrast, our SGD is not a zeroth-order method: rather than performing gradient descent on the link
function θ 7→ f(⟨θ⋆, θ⟩) where only a zeroth-order oracle is available, we apply gradient descent
to the population loss θ 7→ 1

2E(r − f(⟨θ, a⟩))2 for which an unbiased gradient estimator exists for
every θ. This change of objective makes SGD a natural yet novel solution to nonlinear ridge bandits.

Necessity of monotonicity. Throughout this paper we assume that the link function f is mono-
tone, an assumption that is not needed in the non-interactive setting (see, e.g., (Ben Arous et al.,
2021)). This condition, however, turns out to be essentially necessary for SGD to succeed under our
exploration strategy equation 2. Indeed, when σt ≡ σ, SGD is performed on the population loss

E
[
(rt − f(⟨θt, at⟩))2

]
= E

[
(f(⟨θ⋆, at⟩)− f(⟨θt, at⟩))2

]
+Var(rt)

= E
[(
f
(√

1− σ2
)
− f

(√
1− σ2⟨θ⋆, θt⟩+ σ⟨θ⋆, Zt⟩

))2]
+Var(rt)

≈
(
f
(√

1− σ2
)
− f

(√
1− σ2⟨θ⋆, θt⟩

))2
+Var(rt),

where the last approximation uses that ⟨θ⋆, Zt⟩ is typically of order Õ(1/
√
d) and thus often neg-

ligible. Recall that for SGD to succeed at the population level, the population loss must decrease
with the alignment ⟨θ⋆, θt⟩ (stated as Assumption A in (Ben Arous et al., 2021)). Treating Var(rt)

as a constant, this requires f to be increasing on [0,
√
1− σ2] in the interactive setting (assuming

f ′(0) > 0). Hence, whenever σ is bounded away from 1, a monotonicity assumption on f is indis-
pensable in the interactive setting. By contrast, when σ = 1 the monotonicity condition is unneces-
sary: in this case Equation (2) reduces to pure exploration, and the problem essentially collapses to
the non-interactive setting. However, this would eliminate the statistical benefits of interaction.

We also provide an explicit counterexample to formally support the above intuition.

Proposition 1. Consider the SGD dynamics in Equation (3) applied to the link function

f(m) =


0 if m ≤ 0

−m if 0 < m ≤ 1
3

m− 2
3 if 1

3 < m ≤ 1

,

with any initialization m1 = ⟨θ⋆, θ1⟩ ≤ 0.1, any exploration schedule σt ≤ 0.1, and any learning
rate ηt ≤ c

log(T/δ) for some small absolute constant c > 0. Then P(maxt∈[T ]mt ≤ 0.2) ≥ 1− δ.

Note that the above link function f violates the monotonicity condition: it first decreases and then
increases on [0, 1]. By choosing δ = T−2, Proposition 1 shows that with any practical initialization,
any exploration schedule that does not essentially correspond to a non-interactive exploration, and
any learning rate that is not too large to escape the local optima, with high probability the resulting
SGD cannot achieve an alignment better than a small constant (say 0.2).
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Comparison with information exponent. In the non-interactive case with at ∼ N (0, Id), it
is known that the information exponent of f determines the sample complexity of SGD. In the
interactive case, however, the monotonicity of f ensures that the information exponent is always 1.
Indeed, for the first Hermite polynomial H1(x) = x, Chebyshev’s sum inequality yields

EZ∼N (0,1)[f(Z)H1(Z)] ≥ EZ∼N (0,1)[f(Z)] · EZ∼N (0,1)[H1(Z)] = 0,

with equality iff f ≡ c is a constant. Moreover, the sample complexity predicted by the information
exponent is no longer tight. For instance, when f(x) = xp with an odd p ≥ 3, the sample complexity
of SGD with at ∼ N (0, Id/d) is Õ(dp+1) (see remark below), which is strictly worse than the Õ(dp)
guarantee obtained by our interactive SGD. These observations show that the information exponent
ceases to be an informative measure for SGD in the interactive case, for the actions at are no longer
Gaussian.
Remark 2. For f(x) = xp with odd p ≥ 3, the population square loss has information exponent
equal to 1. Let c1 be the coefficient of the linear term ⟨θ⋆, θt⟩ in

EX∼N (0,Id)

[
(f(⟨θ⋆, X⟩)− f(⟨θt, X⟩))2

]
,

then c1 = −2u1(f)
2 with u1(f) being the first Hermite coefficient of f . When we scale down the

input features into X ∼ N (0, Id/d), we effectively changes f to f̃(x) = (x/
√
d)p, so c1 becomes

d−pc1. Therefore, the SNR effectively worsens by a factor of dp.

Dropping the convexity assumption. The convexity assumption in Assumption 3 is not required
in the statistical complexity framework developed for ridge bandits in (Rajaraman et al., 2024).
Relying only on the monotonicity of f , they establish the upper bound

Õ
(
d2
∫ 1/2

1/
√
d

d[x2]

max 1√
d
≤y≤x f

′(y)2

)
on the sample complexity of finding an action at with ⟨θ⋆, at⟩ ≥ 1/2. In comparison, under our con-
vexity assumption the denominator simplifies to f ′(x)2. There are two main obstacles to recovering
this sharper bound. First, our analysis in Lemma 4 requires a conservative choice of the learning
rate ηt, which in turn depends on having a lower bound for f ′(mt) at the current correlation mt.
Obtaining such a bound is challenging without further conditions on f . In this paper we handle this
by using f ′(mt) ≥ c in the generalized linear case, and f ′(mt) ≥ f ′(mt) in the convex case, where
mt ≤ mt is known. Second, achieving the factor max1/

√
d≤y≤x f

′(y)2 requires a careful tuning of
σt to target the maximizer of f ′, which in turn relies on knowledge of the current correlation mt. In
(Rajaraman et al., 2024), this is accomplished by running a separate hypothesis test. However, such
an additional testing step is not compatible with the dynamics of SGD.
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A PROOFS OF MAIN LEMMAS

A.1 PROOF OF COROLLARY 1

By Theorem 1 and 2, it remains to show that both the initialization cost Õ((f(1/
√
d) − f(0))−2)

and the burn-in cost Õ(d2) under Assumption 2 are dominated by the integral.

For the initialization cost, we have

1

(f( 1√
d
)− f(0))2

(a)

≤ 1

(f( 1√
d
)− f( 1

2
√
d
))2

=
4d(

2
√
d
∫ 1/

√
d

1/(2
√
d)
f ′(m)dm

)2
(b)

≤ 4d · 2
√
d

∫ 1/
√
d

1/(2
√
d)

1

f ′(m)2
dm ≤ 16d2

∫ 1/
√
d

1/(2
√
d)

m

f ′(m)2
dm,

where (a) follows from the monotonicity of f , and (b) applies Jensen’s inequality.

For the burn-in cost Õ(d2) under Assumption 2, we simply note that f ′(x) ≤ γ2 when x ∈ [1−γ0, 1]
by Assumption 1, so that

d2
∫ 1−γ0/4

1−γ0

m

f ′(m)2
dm ≥ d2 · 3γ0

4

1− γ0
γ22

= Ω(d2).

These complete the proof.

A.2 PROOF OF LEMMA 1

Observe that

E[θt+1/2|Ft] = E [θt − ηtσt [(f(⟨at, θt⟩)− f(⟨at, θ⋆⟩)−Nt)f
′(⟨at, θt⟩)] · Zt|Ft]

= θt − ηtσtE [[(f(⟨at, θt⟩)− f(⟨at, θ⋆⟩))f ′(⟨at, θt⟩)] · Zt|Ft] .

Recall that at =
√

1− σ2
t θt + σtZt in Equation (2). Since Zt ⊥ θt almost surely, ⟨at, θt⟩ =√

1− σ2
t . Taking an inner product with θ⋆ on both sides,

E[mt+1/2|Ft]−mt = ηtσtf
′(√

1− σ2
t

)
· E
[
f
(√

1− σ2
t ⟨θt, θ⋆⟩+ σt⟨Zt, θ

⋆⟩
)
⟨Zt, θ

⋆⟩
∣∣∣Ft

]
.

Since Zt ∼ Unif({x ∈ Sd−1 : x ⊥ θt}), the random variable (1−m2
t )

−1/2⟨Zt, θ
⋆⟩ is distributed as

the one-dimensional marginal of a uniform random vector on Sd−2; denote by X a random variable
following this distribution. Consequently, for

g(x) = f

(√
1− σ2

t ⟨θt, θ⋆⟩+ σt

√
1−m2

tx

)
,

an application of the spherical Stein’s lemma (cf. Lemma 10) gives

E[mt+1/2|Ft]−mt

= ηtσtf
′(√

1− σ2
t

)√
1−m2

t · E [g (X)X|Ft]

=
ηtσt
d− 2

f ′
(√

1− σ2
t

)√
1−m2

t · E
[
g′ (X) (1−X2)

∣∣Ft

]
=

ηtσ
2
t

d− 2
f ′
(√

1− σ2
t

)
(1−m2

t ) · E
[
f ′
(√

1− σ2
t mt + σt

√
1−m2

tX

)
(1−X2)

∣∣∣∣Ft

]
.

This is the desired identity. For the other inequalities, under Assumption 2 and mt ≥ 0, for

h(x) = f ′
(√

1− σ2
t ⟨θt, θ⋆⟩+ σt

√
1−m2

tx

)
≥ 0,
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we have

E[h(X)(1−X2)] ≥ E[h(X)(1−X2)1(X ≥ 0)]

≥ c0E[(1−X2)1(X ≥ 0)] = c0 ·
d− 2

2(d− 1)
= Ω(1)

for d ≥ 3. Under Assumption 3 and mt ≥ 0, we then write

E[h(X)(1−X2)] ≥ E[h(X)(1−X2)1(X ≥ 0)]

≥ f ′(
√

1− σ2
t mt) · E[(1−X2)1(X ≥ 0)]

= Ω(f ′(
√
1− σ2

t mt)).

A.3 PROOF OF LEMMA 2

By definition,

mt+1/2 −mt = ηtσt(f(⟨at, θ⋆⟩) +Nt − f(⟨at, θt⟩))f ′(⟨at, θt⟩) · ⟨Zt, θ
⋆⟩

Define two new random variables:

ξ(1) = ηtσt(f(⟨at, θ⋆⟩)− f(⟨at, θt⟩))f ′(⟨at, θt⟩) · ⟨Zt, θ
⋆⟩,

ξ(2) = ηtσtNtf
′(⟨at, θt⟩) · ⟨Zt, θ

⋆⟩,

such that mt+1/2 −mt = ξ(1) + ξ(2). We will show that each of these random variables is subex-
ponential with a bounded Ψ1-Orlicz norm.

For ξ(1), note that |f(⟨at, θ⋆⟩)− f(⟨at, θt⟩)| ≤ 2∥f∥∞ and ⟨at, θt⟩ =
√
1− σ2

t . In addition,

⟨Zt, θ
⋆⟩ d

=
√
1−m2

tX,

whereX follows the one-dimensional marginal of a uniform random vector on Sd−2. By Lemma 11,
it holds that ∥X∥Ψ2

≤ ∥N (0, d−1)∥Ψ2
= O(d−1/2). Therefore,

∥ξ(1)∥Ψ1

(a)
= O(∥ξ(1)∥Ψ2) = O

(
ηtσtf

′(
√

1− σ2
t )
√
1−m2

t√
d

)
,

where (a) follows from (Vershynin, 2018, Remark 2.8.8).

For ξ(2), note that ∥Nt∥Ψ2
≤ 1 by the 1-subGaussian assumption on the noise. Therefore, by

independence of Zt and Nt, (Vershynin, 2018, Lemma 2.8.6) gives

∥ξ(2)∥Ψ1
≤ ηtσtf

′(
√

1− σ2
t )∥Nt∥Ψ2

∥⟨Zt, θ
⋆⟩∥Ψ2

= O

(
ηtσtf

′(
√

1− σ2
t )
√
1−m2

t√
d

)
.

Finally, the triangle inequality of the Ψ1 norm gives

∥mt+1/2 − E[mt+1/2|Ft]∥Ψ1
≤ ∥ξ(1)∥Ψ1

+ ∥ξ(2)∥Ψ1
= O

(
ηtσtf

′(
√

1− σ2
t )
√

1−m2
t√

d

)
.

A.4 PROOF OF LEMMA 3

For notational simplicity we write St := St0,β
t . By Lemma 2,

logE[exp(λ(St+1 − St))|Ft] ≤ Cβ2(t−t0)K2
t λ

2, for all |λ| ≤ 1

Cβt−t0Kt
.

HereC > 0 is a universal constant. We show thatKt ≤ 1 almost surely. In fact, f ′(
√

1− σ2
t ) ≤ γ2

by Assumption 1 when σ2
t ≤ γ0, and

Kt ≤ Cseηtγ2 ≤ 1
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by the choice of ηt. Consequently, for Vt = C
∑t−1

s=t0
β2(s−t0)K2

s , λmax := 1
2C , and

ψ(λ) =
λ2

1− λ/λmax
, λ ∈ [0, λmax),

it holds that

E[exp(λSt+1 − ψ(λ)Vt+1)|Ft] ≤ exp(λSt − ψ(λ)Vt), λ ∈ [0, λmax), β
t−t0 ≤ 2.

Therefore, the conditions of Lemma 9 are fulfilled, and the claimed upper tail of St follows from
choosing ω = 1. Replacing St by −St in the above analysis gives the lower tail of St.

A.5 PROOF OF LEMMA 4

Since θt ⊥ Zt, the iterate θt+1/2 in Equation (3) satisfies

∥θt+1/2∥2 = 1 + η2t σ
2
t f

′(
√
1− σ2

t )
2(f(⟨θt, at⟩)− rt)

2.

Therefore, ∥θt+1/2∥ ≥ 1, it is clear that

mt+1 =
mt+1/2

∥θt+1/2∥
= mt+1/2 −

mt+1/2

∥θt+1/2∥
(
∥θt+1/2∥ − 1

)
≥ mt+1/2 −

1

2
η2t σ

2
t f

′(
√

1− σ2
t )

2(f(⟨θt, at⟩)− rt)
2,

using
√
1 + x − 1 ≤ x

2 for x ≥ 0, and |mt+1/2|/∥θt+1/2∥ ≤ 1. The first statement now follows
from the sub-Gaussian concentration of rt, which implies (f(⟨θt, at⟩) − rt)

2 = O(log(1/δ)) with
probability at least 1− δ.

For the second statement, mt+1 ≤ mt+1/2 follows from ∥θt+1/2∥ ≥ 1. The other direction follows
from the same high-probability upper bound of ∥θt+1/2∥−1, and the simple inequality 1

1+x ≥ 1−x
for x ≥ 0.

A.6 PROOF OF LEMMA 6

As we showed in the proof of Lemma 5, we will show by induction on s that with probability at least
1 −∆δ/3, ms ≥ mt − ε

4 for all s ∈ [t, t +∆]. The base case s = t is ensured by the assumption
mt ≥ 1− ε. For the inductive step, the induction hypothesis implies that mt, . . . ,ms−1 ≥ 1− 2ε.
Then

ms −mt =

s−1∑
r=t

[ (
E[mr+1/2|Fr]−mr

)︸ ︷︷ ︸
≥0 by Lemma 1

+
(
mr+1/2 − E[mr+1/2|Fr]

)︸ ︷︷ ︸
=:Ar

+
(
mr+1 −mr+1/2

)︸ ︷︷ ︸
=:Br

]
.

Thanks to the inductive hypothesis, Kr = O(η ε√
d
) for all r ∈ [t, s − 1] in Lemma 2, so Lemma 3

(with t0 = t, β = 1) gives |
∑s−1

r=t Ar| = O(η
√

∆ε2

d log(∆δ )) = O(
√
ηε log(∆δ )) <

ε
8 with prob-

ability 1 − δ
6 , by choosing c > 0 small enough. Similarly,

∑s−1
r=t |Br| = O(∆η2ε log(∆δ )) =

O(dη log(∆δ )) <
ε
8 with probability 1 − δ

6 , by Lemma 4 and choosing c > 0 small enough. This
implies that ms ≥ mt − ε

4 with probability 1− δ
3 , completing the induction.

Conditioned on the event ms ≥ 1− 2ε for all s ∈ [t, t+∆], we distinguish into two regimes in this
epoch. Let T0 ≥ t be the stopping time where ms > 1− ε/4 for the first time.

Regime I: t ≤ s < T0. In this regime ms ∈ [1 − 2ε, 1 − ε/4]. We show that T0 ≤ t + ∆ with
probability 1−∆δ/3. If T0 > t+∆, using the same high-probability bounds, we have

mt+∆ −mt ≥
t+∆−1∑
s=t

(
E[ms+1/2|Fs]−ms

)
− ε

4

with probability 1−∆δ/3. By Lemma 1 with 1−m2
s = Ω(ε) and

√
1− σ2

sms ≥ 1−γ0 for s < T0,
the total drift is Ω(∆ηε2

d ) = Ω(Cε). Therefore, for a large absolute constant C > 0, we would have
mt+∆ ≥ 1− ε/2, a contradiction to the assumption T0 > t+∆.
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Regime II: s ≥ T0. As shown above, this regime is non-empty with high probability. The same
induction starting from s = T0 shows that, with probability 1−∆δ/3, ms ≥ mT0

− ε/4 holds for
all s ∈ [T0, t+∆]. In particular, choosing s = t+∆ gives the desired result mt+∆ ≥ 1− ε/2.

Finally, to lower bound ⟨θ⋆, as⟩ during this epoch, we simply note that

⟨θ⋆, as⟩ =
√

1− σ2
sms + σs⟨θ⋆, Zs⟩

=
√

1− σ2
sms + σs⟨θ⋆ −msθs, Zs⟩

≥
√
1− σ2

sms − σs∥θ⋆ −msθs∥

=
√
1− σ2

sms − σs
√

1−m2
s.

Under the good event ms ≥ mt − ε
4 ≥ 1− 3ε

2 , by σs ≡
√
ε we have ⟨θ⋆, as⟩ ≥ 1− 4ε, as desired.

A.7 PROOF OF LEMMA 8

Let

β := 1− Cnmγ
2
2η

2σ2 log

(
4∆

δ

)
, (4)

with Cnm given in Lemma 4. By the choice of η, when the constant c > 0 is small enough, we have
β ∈ (1/2, 1). In addition, let

T0 = min
{
s ≥ t : ms ≥

(
1− γ0

8

)√k + 1

d

}
(5)

be the stopping time when the correlation ms first hits a given threshold. Unlike the other proofs,
the event T0 ≤ t+∆ no longer occurs with high probability, and our proof will discuss both cases.

Case I: T0 > t+∆. Define the following event:

Es :=
{
ms ≥ mk − γ0

d
+
c′ηf ′(mk)

d
(s− t)

}
, (6)

where c′ > 0 is a small absolute constant (to be chosen later) independent of c. We will prove by
induction that

P ((∪s
r=tEc

r ) ∩ {T0 > t+∆}) ≤ (s− t)
δ

2
, for all s = t, t+ 1, . . . , t+∆. (7)

The base case follows from the assumption mt ≥ mk, so that P(Ec
t ) = 0. For the inductive step,

suppose that Equation (7) holds for s−1. Since P(A∪B) = P(A)+P(Ac∩B), it suffices to prove
that

P
(
Ec
s ∩

(
∩s−1
r=tEr

)
∩ {T0 > t+∆}

)
≤ δ

2
. (8)

To this end, we introduce some additional events. First, applying Lemma 3 with t0 = t and β−1 ≤ 2
in Equation (4) gives

P(Es,1) := P

(∣∣∣∣∣
s∑

r=t

mr+1/2 − E[mr+1/2|Fr]

βr−t

∣∣∣∣∣ ≤ Cη

√
∆

d
log

(
d

δ

))
≥ 1− δ

4∆
, (9)

for some absolute constant C > 0. To see Equation (9), note that

β−∆ = exp (O((1− β)∆)) = exp

(
O

(
η2∆ log

d

δ

))
= exp

(
O

(
cC

ιd

))
= 1 +

oc(1)

d
, (10)

so that the condition β−∆ ≤ 2 holds for small c > 0, and
∑s

r=t β
−2(r−t) = O(s− t+1) = O(∆).

In addition, let Es,2 be the good event that the lower bound in Lemma 4 holds forms+1, with δ/(4∆)
in place of δ.
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Note that Er ∩ Er,2 ∩ {T0 > t+∆} implies that

mr+1 ≥ βmr+1/2

= β
(
mr+1/2 − E[mr+1/2|Ft] + E[mr+1/2|Ft]−mr +mr

)
≥ β

(
mr+1/2 − E[mr+1/2|Ft] + c1

ηf ′(mk)

d
+mr

)
,

where c1 > 0 is an absolute constant, and the last step invokes Lemma 1, uses mr ≤ 1−Ω(1) since
r ≤ t+∆ < T0, and√

1− σ2mr ≥
√
1− γ0

(
mk − γ0

d

)
≥ (1− γ0)

2

√
k

d
= mk

by Equation (6) and the definitions ofmk,mk. Summing over r = t, . . . , s−1, the event ∩s−1
r=t (Er∩

Er,2) ∩ {T0 > t+∆} implies that

ms ≥ βs−t

(
mt +

s−1∑
r=t

mr+1/2 − E[mr+1/2|Ft]

βr−t

)
+ c1

ηf ′(mk)

d

s−1∑
r=t

βr+1−t.

In view of Equation (9) and Equation (10), a further intersection with Es−1 implies that

ms ≥
(
1− oc(1)

d

)
mk − Cη

√
∆

d
log

(
d

δ

)
+
c′ηf ′(mk)

d
(s− t)

=

(
1− oc(1)

d

)
mk −O

(
cC

d

)
+
c′ηf ′(mk)

d
(s− t)

≥ mk − γ0
d

+
c′ηf ′(mk)

d
(s− t)

for c > 0 small enough; this is precisely the event Es. In other words, we have shown that

Ec
s ∩

(
∩s−1
r=t (Er ∩ Er,1 ∩ Er,2)

)
∩ {T0 > t+∆} = ∅. (11)

By Equation (11), we have

P
(
Ec
s ∩

(
∩s−1
r=tEr

)
∩ {T0 > t+∆}

)
≤ P(∪s−1

r=tEc
r,1) + P

((
∪s−1
r=tEc

r,2

)
∩
(
∩s−1
r=t (Er ∩ Er,1)

)
∩ {T0 > t+∆}

)
.

By Equation (9) and the union bound, the first probability is at most δ
4 . For the second probability, the

same program above shows that (∩r−1
i=t Ei,2)∩ (∩r

i=t(Er ∩ Er,1))∩{T0 > t+∆} implies mr+1/2 ≥
0, which is the prerequisite of Lemma 4. Therefore, the conditional probability of Er,2 is at least
1 − δ

4∆ , and by a union bound the second probability is at most δ
4 . This proves Equation (8) and

completes the induction.

Finally, note that Et+∆ implies that

mt+∆ ≥ mk − γ0
d

+
c′ηf ′(mk)

d
∆

= mk − γ0
d

+ c′C(mk+1 −mk) ≥ mk+1,

by choosing C > 0 large enough. Therefore, Equation (7) with s = t+∆ implies that

P({mt+∆ < mk+1} ∩ {T0 > t+∆}) ≤ ∆δ

2
. (12)

Case II: T0 ≤ t+∆. We apply our usual program to this case: if T0 ≤ t+∆, then

mt+∆ −mT0
=

t+∆−1∑
s=T0

[ (
E[ms+1/2|Fs]−mt

)︸ ︷︷ ︸
≥0 by Lemma 1

+
(
ms+1/2 − E[ms+1/2|Fs]

)︸ ︷︷ ︸
=:As

+
(
ms+1 −ms+1/2

)︸ ︷︷ ︸
=:Bs

]
.
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By Lemma 3, with probability at least 1− ∆δ
4 ,∣∣∣∣∣

t+∆−1∑
s=T0

As

∣∣∣∣∣ = O
(
η

√
∆

d
log
(d
δ

))
= O

(
cC

d

)
.

By Lemma 4, with probability at least 1− ∆δ
4 ,

t+∆−1∑
s=T0

|Bs| = O
(
∆ · η2 log

(d
δ

))
= O

(
cC

d

)
.

Therefore, conditioned on T0 ≤ t+∆, with probability at least 1− ∆δ
2 ,

mt+∆ ≥
(
1− γ0

8

)√k

d
−O

(
cC

d

)
≥
(
1− γ0

4

)√k

d
= mk

for a small enough constant c > 0. In other words,

P({mt+∆ < mk+1} ∩ {T0 ≤ t+∆}) ≤ ∆δ

2
. (13)

Finally, a combination of Equation (12) and Equation (13) gives P(mt+∆ < mk+1) ≤ ∆δ, which
is the desired result.

A.8 PROOF OF PROPOSITION 1

Let T0 be the first time t ≥ 1 such that mt ≥ 0.1. If T0 > T , the target claim maxt∈[T ]mt ≤ 0.2
is clearly true. Hence in the sequel we condition on the event T0 ≤ T . In addition, by Gaussian tail
bounds, we have maxt∈[T ] |rt| = O(

√
log(T/δ)) with probability at least 1−δ/4. By Equation (3),

we then have a deterministic inequality

mT0−1/2 ≤ mT0−1 + CηT0−1

√
log(T/δ) ≤ mT0−1 + 0.05 ≤ 0.15,

by assumption of ηt ≤ c
log(T/δ) for a sufficiently small constant c > 0, and the definition of T0 that

mT0−1 ≤ 0.1. By Lemma 4, this implies that mT0
≤ 0.15.

In the sequel, we start from mT0 ∈ [0.1, 0.15], and for notational simplicity we redefine mT0 to be
our starting point, i.e. T0 = 1. Next we consider the time interval [1, T1] with

T1 = min
{
t ≥ 1 :

∑
s≤t

η2sσ
2
s

d
≥ c1

log2(T/δ)

}
,

for some absolute constant c1 > 0 to be chosen later. We prove the following claims.

Claim I: maxt∈[T1]mt ≤ 0.2 with probability at least 1 − δT1/(4T ). To prove this claim, we
first show that when mt ≤ 0.2, then

E[mt+1/2|Ft] ≤ mt. (14)

Indeed, by Lemma 1,

E[mt+1/2|Ft]−mt

=
ηtσ

2
t

d− 2
f ′
(√

1− σ2
t

)
(1−m2

t ) · E
[
f ′
(√

1− σ2
t mt + σt

√
1−m2

tX

)
(1−X2)

∣∣∣∣Ft

]
.

Since σt ≤ 0.1,mt ≤ 0.2, and |X| ≤ 1 almost surely, we have√
1− σ2

t mt + σt

√
1−m2

tX ≤ mt + σt ≤ 0.3 <
1

3
.

Since f ′(m) ≤ 0 for all m ≤ 1/3 in our construction, and f ′(
√
1− σ2

t ) > 0, we obtain Equa-
tion (14).
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Next, without loss of generality we assume that mt ≥ 0 for all t ∈ [T1], since a negative mt only
makes the target claim simpler. For every t ∈ [T1],

mt −m1 =

t−1∑
r=1

[ (
E[mr+1/2|Fr]−mr

)︸ ︷︷ ︸
≤0 by Equation (14)

+
(
mr+1/2 − E[mr+1/2|Fr]

)︸ ︷︷ ︸
=:Ar

+
(
mr+1 −mr+1/2

)︸ ︷︷ ︸
≤0 by Lemma 4

]
.

By Lemma 3 with β = 1, we get

∣∣∣ t−1∑
r=1

Ar

∣∣∣ ≤ C log

(
T

δ

)√√√√t−1∑
r=1

σ2
rη

2
r

d

with probability at least 1− δ/(4T ), for some absolute constant C > 0. By the definition of T1, we
obtain |

∑t−1
r=1Ar| ≤ 0.05 for a sufficiently small c1 > 0. Therefore, mt ≤ m1 + 0.05 ≤ 0.2 with

probability at least 1− δ/(4T ), and an induction on t with a union bound gives the target claim.

Claim II: mint∈[T1]mt ≤ 0.1 with probability at least 1−δT1/(4T ). In the sequel, we condition
on the good event in Claim I. Let T2 be the first time t ≥ 1 such thatmt ≤ 0.1; note that it is possible
to have T2 > T1 or even T2 = ∞. We first show that if mt ≥ 0.1, then

E[mt+1/2|Ft]−mt ≤ −c2ηtσ
2
t

d
(15)

for some absolute constant c2 > 0. Indeed, for σt ≤ 0.1,mt ∈ [0.1, 0.2], and |X| ≤ 1, we have

0 ≤
√
0.99mt −

√
0.99σt ≤

√
1− σ2

t mt + σt

√
1−m2

tX ≤ mt + σt <
1

3
.

Since f ′(m) = −1 for all m ∈ [0, 1/3] in our construction, Equation (15) follows from Lemma 1.

Next, for every t ≤ min{T2, T1}, we write

mt −m1 =

t−1∑
r=1

[ (
E[mr+1/2|Fr]−mr

)︸ ︷︷ ︸
≤− c2ηtσ

2
t

d by Equation (15)

+
(
mr+1/2 − E[mr+1/2|Fr]

)︸ ︷︷ ︸
=:Ar

+
(
mr+1 −mr+1/2

)︸ ︷︷ ︸
≤0 by Lemma 4

]
.

Similar to Claim I, we have |
∑t−1

r=1Ar| ≤ 0.05 with probability at least 1 − δ/(4T ). On the other
hand, the total drift is

T1−1∑
r=1

(
E[mr+1/2|Fr]−mr

)
≤ −c2

d

T1−1∑
r=1

ηtσ
2
t

(a)

≤ −c2 log
2(T/δ)

cd

T1−1∑
r=1

η2t σ
2
t

(b)

≤ −c1c2
2c

,

where (a) uses the upper bound of ηt, and (b) uses the definition of T1. By choosing c > 0 small
enough, the total drift can be made smaller than −0.1, so that if T2 > T1, then mT1

≤ m1 − 0.1 +
0.05 ≤ 0.1, which in turn means that T2 ≤ T1, a contradiction. Therefore, with probability at least
1− δT1/(4T ), we have T2 ≤ T1, or equivalently mint∈[T1]mt ≤ 0.1.

Finally, it is clear that a repeated application of Claim I and II implies Proposition 1: starting from
the first time T0 with mT0

≥ 0.1, the above claims show that with high probability, future alignment
mt will fall below 0.1 before it rises above 0.2. Oncemt falls below 0.1, we repeat the entire process
again and wait for the next time it falls below 0.1. Since the failure probability at each step of the
analysis is at most δ/T , a union bound gives the total failure probability of δ.

B AUXILIARY RESULTS

Below we state a self-normalized concentration inequality for martingales (Whitehouse et al., 2023,
Theorem 3.1) adapted to our setting.
Definition 1 (CGF-like function). A function ψ : [0, λmax) → R≥0 is said to be CGF-like if it is (a)
twice continuously-differentiable on its domain, (b) strictly convex, (c) satisfies ψ(0) = ψ′(0) = 0,
and (d) ψ′′(0) > 0.
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Definition 2 (Sub-ψ). Let ψ : [0, λmax) → R≥0 be a CGF-like function. Let {St}t≥0 and {Vt}t≥0

be respectively R-valued and R≥0-valued processes adapted to some filtration {Ft}t≥0. We say that
{St, Vt}t≥0 is sub-ψ if for every λ ∈ [0, λmax),

Mλ
t := exp (λSt − ψ(λ)Vt) ≤ Lλ

t ,

where {Lλ
t }t≥0 is a non-negative supermartingale adapted to {Ft}t≥0.

The following result is a corollary of (Whitehouse et al., 2023, Theorem 3.1) with the choice h(k) =
(1 + k)2 for k ≥ 1.

Lemma 9 (Self-normalized concentration inequality). Suppose {St, Vt}t≥0 is a real-valued sub-ψ
process for ψ : [0, λmax) → R≥0 satisfying

ψ(λ) =
λ2

1− λ/λmax

on its domain. Let δ ∈ (0, 1) denote the error probability. Define the function ℓ : R≥0 → R≥0 by

ℓω(v) = 2 log (1 + log (vω ∨ 1)) + log

(
1

δ

)
,

then there exists a universal constant C > 0 such that,

Pr
(
∃t ≥ 1 : St ≥ C

(√
(Vt ∨ ω−1) ℓω (Vt) + λ−1

maxℓω (Vt)
))

≤ δ.

Proof. By simple algebra, the convex conjugate ψ⋆ of ψ satisfies (ψ⋆)−1(u) = 2
√
u+ λ−1

maxu. The
rest follows from (Whitehouse et al., 2023, Theorem 3.1).

Lemma 10 (Spherical Stein’s Lemma). Suppose Z ∼ Unif(Sd−1) and consider a fixed α ∈ Rd and
let X = ⟨α,Z⟩. For any bounded function f ,

E[Xf(X)] =
1

d− 1
E
[
f ′(X)(1−X2)

]
.

Proof. The density of X is given by

Pd(x) ≜
2
(
1− x2

) d−1
2 −1

Beta
(
1
2 ,

d−1
2

) I(|x| ≤ 1).

Consequently,

E[Xf(X)] =

∫ 1

−1

xf(x) ·
2
(
1− x2

) d−1
2 −1

Beta
(
1
2 ,

k−1
2

) dx

(a)
=

2

d− 1

∫ 1

−1

f ′(x) ·
(
1− x2

) d−1
2

Beta
(
1
2 ,

k−1
2

)dx
=

1

d− 1

∫ 1

−1

f ′(x)(1− x2) ·
2
(
1− x2

) d−1
2 −1

Beta
(
1
2 ,

k−1
2

) dx

=
1

d− 1
E
[
f ′(X)(1−X2)

]
,

where (a) follows from integration by parts.

Lemma 11. Suppose X ∼ N (0, I/d) and X ′ ∼ Unif(Sd−1). For any fixed α ∈ Rd, ⟨α,X⟩2
dominates ⟨α,X ′⟩2 in the convex order. Namely, for every convex function g : R → R,

E[g(⟨α,X ′⟩2)] ≤ E[g(⟨α,X⟩2)].
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Proof. Observe that X follows the same distribution as NX ′, where N and X ′ are independent,
and N is a scaled chi-squared random variable such that E[N2] = 1. Therefore,

E[g(⟨α,X⟩2)] = E[g(N2⟨α,X ′⟩2)]
= E[E[g(N2⟨α,X ′⟩2)|X ′]]

≥ E[g(E[N2]⟨α,X ′⟩2)]
= E

[
g
(
⟨α,X ′⟩2

)]
.
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