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ABSTRACT

Stochastic gradient descent (SGD) is a cornerstone algorithm for high-
dimensional optimization, renowned for its empirical successes. Recent theo-
retical advances have provided a deep understanding of how SGD enables fea-
ture learning in high-dimensional nonlinear models, most notably the single-index
model with i.i.d. data. In this work, we study the sequential learning problem
for single-index models, also known as generalized linear bandits or ridge ban-
dits, where SGD is a simple and natural solution, yet its learning dynamics remain
largely unexplored. We show that, similar to the optimal interactive learner, SGD
undergoes a distinct “burn-in” phase before entering the “learning” phase in this
setting. Moreover, with an appropriately chosen learning rate schedule, a sin-
gle SGD procedure simultaneously achieves near-optimal (or best-known) sample
complexity and regret guarantees across both phases, for a broad class of link func-
tions. Our results demonstrate that SGD remains highly competitive for learning
single-index models under adaptive data.

1 INTRODUCTION

Stochastic gradient descent (SGD) and its many variants have achieved remarkable empirical suc-
cess in solving high-dimensional optimization problems in machine learning. Recent theoretical
advances have provided rigorous analyses of SGD in high-dimensional, non-convex settings for a
range of statistical and machine learning tasks, such as tensor decomposition (Ge et al.,[2015), PCA
(Wang et al.l [2017)), phase retrieval (Chen et al., 2019; [Tan & Vershynin, [2023)), to name a few. A
particularly intriguing setting is that of single-index models (Dudeja & Hsul, 2018} Ben Arous et al.|
2021) (and generalizations to multi-index models (Abbe et al., [2022} [2023}; |Damian et al., 2022}
Arnaboldi et al.,|2023}; Bietti et al., |2025)) with Gaussian data. In this framework, each observation
(@1, y¢) consists of a Gaussian feature z; ~ N(0, ;) and a noisy outcome

ye = f(0F, 2¢)) + &y,

where f : R — R is a known link function, §* € S?-1 is an unknown parameter vector on the
unit sphere in R%, and ¢, denotes the unobserved noise. With a learning rate 1, > 0 and a random
initialization ; ~ Unif(S9~1), the SGD update for learning single-index models is given by

Orv1/2

6%4-1/2 =0; — 77t(f(<6taxt>) - yt)f/(<9t7xt>) : (I - 9t9;r)9€t7 Orp1 = m
+

ey
Here, the first update is a descent step of the population loss § — 1E (f((¢,z)) — y)*at b = 6,
whose spherical gradienlﬂis estimated based on the current sample (x4, y¢). It is well known (cf. e.g.
(Ben Arous et al., [2021))) that the evolution of SGD in this context exhibits two distinct phases: an
initial “search” phase, during which the correlation (6;,6*) gradually improves from O(d~'/2) to

Q(1), followed by a “descent” phase in which the iterates 8; converge rapidly to the global optimum
6*, driving (0;, 6*) arbitrarily close to 1.

Beyond statistical learning, single-index models have found applications in interactive decision-
making problems, including bandits and reinforcement learning, where the reward is a nonlinear

'Recall that the spherical gradient of a function f : S9~! — Ris definedas Vf = Df — % %, where D f

is the Euclidean gradient, and % is the derivative in the radial direction.



function of the action. An example is manipulation with object interaction, which represents one
of the largest open problems in robotics (Billard & Kragic,|2019) and requires designing good se-
quential decision rules that can deal with sparse and non-linear reward functions and continuous
action spaces (Zhu et al 2019). This setting is known as the generalized linear bandit or ridge
bandit in the bandit literature, where the mean reward satisfies E[r¢|a:] = f((0*, a;)) with a known
link function f. Classical results (Filippi et al., 2010; Russo & Van Royl, 2014)) show that when
0 < ¢ < f'(x) < ¢ everywhere, both the optimal regret and the optimal learner are essentially
the same as in the linear bandit case (where f(x) = x). Recent studies (Lattimore & Haol 2021}
Huang et al, 2021; Rajaraman et al., 2024) have considered challenging settings where f’(z) could
be small around z = 0. This line of work yields two main insights:

1. While the final “learning” phase has the same regret as linear bandits, there could be a long
“burn-in” period until the learner can identify some action a; with (0*, a;) = Q(1);

2. New exploration algorithms are necessary during this burn-in period, as classical methods
such as UCB are provably suboptimal for minimizing the initial exploration cost.

In response to the second point, this line of research has proposed various exploration strategies for
the burn-in phase that are often tailored to the specific link function f and rely on noisy gradient
estimates via zeroth-order optimization. In contrast, SGD offers a natural and straightforward alter-
native, as its intrinsic “search” and “descent” phases align well with the “burn-in” and “learning”
phases encountered in interactive decision-making.

This paper is devoted to a systematic study of SGD for learning single-index models, including the
aforementioned challenging setting where f’(z) could be small around = = 0, within interactive
decision-making settings. In these scenarios, the actions a; are no longer Gaussian, prompting us to
adopt the following exploration strategy:

ay — \/1-0’?0,5-*—0}2,5, ZtNUl’llf ({aeSdil : <(L,9t> :0}), (2)

where an additional hyperparameter o; € [0, 1] governs the exploration-exploitation tradeoff. After
playing the action a; and observing the reward r;, we update the parameter 6; via the same SGD as
Equation (1)):

Op1y2 = 00— m(f((Or, ) = 70) f' (O, a0)) - (1 = 0.0, Jar, 041 = ez 3)
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By simple algebra, the stochastic gradient in Equation (3)) is also an unbiased estimator of the popu-
lation (spherical) gradient of 6 — LE (f((0,a)) — r)? at § = 6,, with the distribution of a given by
Equation (2)) and the reward r = f 2 (0*, a)) + €. Our main result will establish that, for a broad class
of link functions, this SGD procedure, with appropriately chosen hyperparameters (7, o), achieves
near-optimal performance in both the burn-in and learning phases.

Notation. For z € R%, let ||z|| be its £5 norm. For z,y € RY, let (x,y) be their inner product.
Let S~ be the unit sphere in R%. Throughout this paper we will use 8* € S?~! to denote the true
parameter, 6; to denote the current estimate, and m; = (0*,0;) € [—1, 1] to denote the correlation.

The standard asymptotic notations o, O, €2, etc. are used throughout the paper, and we also use 6, §~2,
etc. to denote the respective meanings with hidden poly-logarithmic factors.

1.1 MAIN RESULTS

First we give a formal formulation of the single-index model in the interactive setting. Let #* € S?~!
be an unknown parameter vector, and A = S?~! be the action space. Upon choosing an action
a; € A, the learner receives areward r; = f({6*, a;))+¢; for aknown link function f : [-1,1] = R
and an unobserved noise €; which is assumed to be zero-mean and 1-subGaussian.

Remark 1. The scaling considered here differs crucially from the prior study on learning single-
index models under non-interactive environments (such as (Dudeja & Hsu, |2018; |Ben Arous et al.|
2021) with Gaussian or i.i.d. features). In the non-interactive setting, it is usually assumed that
xy ~ N(0, 1), so that ||z|| < \/d. In the interactive setting, we stick to the convention that actions
belong to the unit {5 ball, in line with settings considered in the bandit literature (Filippi et al.|
20105 |\Russo & Van Roy,|2014; Rajaraman et al.| [2024)). As a consequence, sample complexity com-
parisons between the interactive and non-interactive settings must be made with care. We discuss



this in more detail in Section[3|and compare with results established for online SGD with Gaussian
features (Ben Arous et al.||2021|) after normalizing for the difference in scaling.

Throughout the paper we make the following mild assumptions on the link function f.

Assumption 1. The following conditions hold for the link function f:
1. (monotonicity) f : [-1,1] — [—1, 1] is non-decreasing, with || f||cc < 1;

2. (locally linear near x = 1) 0 < 1 < f'(z) < o forall x € [1 — 7, 1], with absolute
constants o, V1, v2 > 0. Without loss of generality we assume that vy < 0.1.

In Assumption [T} the monotonicity condition is taken from (Rajaraman et al. [2024) to ensure that
reward maximization is aligned with parameter estimation, where improving the alignment (0*, a;)
directly increases the learner’s reward. In addition, when it comes to SGD, we will show in Sec-
tion 3] that the population loss associated with the SGD dynamics in Equation (3) is decreasing in
the correlation m; = (6*, 6;) only if f is increasing. Without monotonicity, there also exists a coun-
terexample where the SGD can never make meaningful progress (cf. Proposition [I). ~Similar to
(Rajaraman et al., [2024), this condition can be generalized to f being even and non-decreasing on
[0, 1], which covers, for example, f(x) = |z|? for all p > 0. The second condition in Assumption ]
is very mild, satisfied by many natural functions, and ensures that the problem locally resembles a
linear bandit near the global optimum a; ~ 6*. Finally, we emphasize that this local linearity does
not exclude the nontrivial scenario where f/(z) is very small when z = 0.

Our first result is the SGD dynamics in the learning phase, under Assumption|T}
Theorem 1 (Learning Phase). Lete,d > 0. UnderAssumption let (at,0t)¢>1 be given by the SGD

evolution in Equation (2)) and Equation , with an initialization 0y such that (61,0*) > 1 — vy /4.

1. (Pure exploration) By choosing 1; = (:)(% A YYand o} = ©(1), it holds that mp > 1 — ¢

with probability at least 1 — 6T, with T = 5(%2)

2. (Regret minimization) By choosing 1; = é(% AL)and o} = é(% A1), with probability

at least 1 — 8T it holds that 31—, (f(1) — f(my)) = O(dV/T).

Both upper bounds in Theoremare near-optimal and match the lower bounds Q(d;) and Q(dV/T)
for the respective tasks, shown in Theorem 1.7 of (Rajaraman et al) 2024)). In other words, SGD
with proper learing rate and exploration schedules achieves an optimal learning performance in the
learning phase, given a “warm start” 6; with (61,60*) > 1 — ~y/2. To search for this “warm start”
through the burn-in phase, we additionally make one of the following assumptions.

Assumption 2. There is an absolute constant co > 0 such that f'(x) > c¢q for all z € [0, 1].

Assumption 3. The link function f is convex on [0, 1].

Specifically, Assumption [2]and[3|cover two different regimes of generalized linear bandits: Assump-
tion [2] corresponds to the classical “linear bandit” regime studied in (Filippi et al] [2010; [Russo &
Van Roy, [2014), and Assumptioncovers the case with a long burn-in period where f’(x) is small
at the beginning, e.g. in (Lattimore & Haol [2021;/Huang et al.,2021)). We will discuss the challenges
in dropping the convexity assumption for the SGD analysis in Section 3}

Under Assumption [2]or [3] our next result characterizes the SGD dynamics in the burn-in phase.
Theorem 2 (Burn-in Phase). Let 6 > 0, and Assumption (I hold. Let (ay,0;);>1 be given by the

SGD evolution in Equation (2)) and Equation ll with an initialization 0y such that (01, 60*) > ﬁ.

1. UnderAssumption by choosing 1, = (:)(d%) and o? = ©(1), it holds that mp > 1—~y/4
with probability at least 1 — 8T, where T = O(d?).

2. Under Assumption[3} by choosing an appropriate learning rate schedule (cf. Lemmal[S) and
o? = O(1), it holds that mr > 1 — /4 with probability at least 1 — 6T, where

N 1-v0/4
T = O(d2/ ,dem).
1/(2v/4d) f'(m)

Note that for 6; ~ Unif(S¢~1), the condition (6*,6;) > 1/+/d is fulfilled with a constant proba-
bility. A simple hypothesis testing subroutine in (Rajaraman et al.| 2024, Lemma 3.1) could further

certify it using O((f(1/v/d) — f(0))~2) samples. Therefore, combining Theoremand we have
the following corollary on the overall complexity of SGD.



Corollary 1 (Overall sample complexity and regret). Under Assumption [I)and Assumption 2| or
the SGD evolution in Equation (2) and Equation (3)) with proper (1, 01)>1 and a hypothesis testing
subroutine for initialization satisfies the following:

1. (Pure exploration) For €,6 > 0, mp > 1 — € with probability at least 1 — 0T, where

_ 1-v0/4 2
1/(2vd) f'(m) €

2. (Regret minimization) For 6 > 0, with probability at least 1 — 6T, the cumulative regret
satisfies

1—v0/2

i(f(l) - f(my)) = 6<min {T, d2/1

Under Assumption |2, Corollary [1|yields an overall sample complexity bound O(d?/¢) and a regret
bound O(min{T,d+/T}), both of which are known to be near-optimal, e.g., in the case of linear
bandits (Lattimore & Szepesvari, 2020; [Wagenmaker et al.l 2022). Under Assumption (3} the upper
bounds in Corollary E] also match the best known guarantees in (Rajaraman et al., 2024), using a
different algorithm based on successive hypothesis testing. In the special case f(x) = xP with odd
p > 3, SGD achieves a regret bound O(min{7, d? + d\/T}), which is near-optimal (Huang et al.,
2021; Rajaraman et al., 2024). By contrast, many other approaches, including all non-interactive
algorithms (in particular, non-interactive SGD) and UCB-based methods, provably incur a larger
burn-in cost of Q(dp“) (Rajaraman et al., 2024). Therefore, it is striking that SGD attains optimal
performance even in the burn-in phase, while simultaneously staying optimal in the learning phase.
Taken together, these results highlight SGD as a natural, efficient, and highly competitive algorithm
with near-optimal statistical guarantees for learning single-index models in the interactive setting.

™ dm 4 dVTY).
seva) f'(m)? m \F}>

1.2 RELATED WORK

Single-index models. Analyzing feature learning in non-linear functions of low-dimensional fea-
tures has a long history. The approximation and statistical aspects are well understood in (Barron)
2002; Bach, 2017)); by contrast, the computational aspects remain more challenging, and positive
results typically require additional assumptions on the link function and/or the data distribution. Fo-
cusing on the link function f, a rich line of work (Kalai & Sastry, |2009; |Shalev-Shwartz et al., 2010;
Kakade et al.| 2011} |Soltanolkotabi, [2017; [Frei et al., [2020; [Yehudai & Ohadl [2020; [Wul 2022) has
exploited its monotonicity or invertibility to obtain efficient learning guarantees under broad distri-
butional assumptions. At the other end of the spectrum, the seminal works (Dudeja & Hsul 2018}
Ben Arous et al.| [2021)) developed a harmonic-analysis framework for studying SGD under Gaus-
sian data, sparking extensive follow-up research (Abbe et al.,[2022; |Bietti et al.,[2022;|Damian et al.,
2022;Ben Arous et al., 2022} |/Abbe et al.,|2023; |Zweig et al., [2023} | Damian et al.| 2024; |Ben Arous
et al.| [2024; Bietti et al., [2025)).

A representative finding for the single-index model is that the sample complexity of SGD is gov-
erned by the information exponent of the link function, i.e., the index of its first non-zero Hermite
coefficient. In the interactive setting, however, where the data distribution is no longer i.i.d., the
information exponent ceases to be an informative measure of SGD’s performance. We defer more
discussions to Section 3

Generalized linear bandits. The most canonical examples of generalized linear bandits are linear
bandits (Dani et al., [2008}; |Rusmevichientong & Tsitsiklis}, [2010; (Chu et al., 2011) and ridge bandits

with 0 < ¢; < [f/(-)] < co everywhere. In both cases, the minimax regret is ©(dv/T) (Filippi
et al.l 2010; |Abbasi-Yadkori et al.l 2011} [Russo & Van Roy, |2014), attained by algorithms such
as LinUCB and information-directed sampling. For more challenging convex link functions, the
special cases f(x) = 2% and f(x) = 2P with p > 2 were analyzed in (Lattimore & Haol 2021}
Huang et al.| [2021)), using either successive searching algorithms or noisy power methods. These
results were substantially generalized by (Rajaraman et al.| 2024), which identified the existence of
a general burn-in period and established tight upper and lower bounds on the optimal burn-in cost
via differential equations. In particular, their upper bound strengthens Corollary [T]in the absence
of convexity, using an refined algorithm of (Lattimore & Hao, 2021)) during the burn-in phase and



an ETC (explore-then-commit) algorithm in the learning phase. By contrast, we show that a single,
much simpler SGD algorithm achieves the same upper bound for convex f.

A related line of work (Fan et al.l 2023} [Kang et al.| [2025) studied the single-index model with
an unknown link function, where the central idea is to estimate the score function. Their resulting
algorithms are of the ETC type, and the regret guarantees rely on a positive lower bound for f’.

Gradient descent in online learning and bandits. Gradient and mirror descent are classical al-
gorithms in online settings (including online learning and online convex optimization (Cesa-Bianchi
& Lugosi, 2006;|Hazan et al., 2016} Orabona, |2019))), as well as in bandit problems with gradient es-
timation, such as EXP3 for adversarial multi-armed bandits and FTRL for adversarial linear bandits
(Lattimore & Szepesvari, [2020). A distinct feature of our work is that our SGD remains a first-order
method even in this bandit problem, in contrast to the zeroth-order stochastic optimization usually
used for single-index models such as (Huang et al.,2021). Moreover, the SGD dynamics for single-
index models demand a more fine-grained analysis than that required by standard online learning
guarantees. Further details are provided in Section [3]

1.3 ORGANIZATION

The rest of this paper is organized as follows. In Section[2] we present a general analysis of the SGD
update, including bounds on the mean drift, stochastic term, and normalization error. In Section 3|
and 4] we analyze the learning and burn-in phases, respectively. Additional discussion is provided
in Section 5] and detailed proofs are deferred to the appendix.

2 ANALYSIS OF THE SGD UPDATE

To establish our main results Theorem |l and [2} we first understand the properties of each SGD
update in Equation (2) and Equation (3). At each time step ¢, the improvement on the correlation
from my := (0*,0:) to myy1 := (0*,0:11) consists of three parts:

1. Drift: the mean improvement [E[1,; 1 /2| F;] —m, of the descent step in Equation , where
Myy1/2 1= (0*,0,11 /2), and F; denotes all historic observations up to the end of time ¢.

2. Martingale difference: the stochastic term 1,1 /o — E[m 1 /2| F;] with zero mean.

3. Normalization error: the difference my11 —m; 1 /o due to the normalization step in Equa-
tion (3).
We will present generic lemmas to bound each of the above terms in this section, and use them to
analyze the learning and burn-in phases in the next two sections. We start from the drift.

Lemma 1 (Drift). Let d > 3. The following identity holds for the drift:

E[my 172 F) —my
2
- 2o (TR - md) B [ (VIZ o1 mix) (1= x| 7).

where X follows the one-dimensional marginal of the uniform distribution over S*=2. In particular,
ifmt > 0,

%f’(m)(l —m7) underAssumption7
mT}jtf/(\/W)(l —m?)f'(\/1 —o?m;) under Assumption[3]

for a universal constant cqr > 0.

E[myq1 /2| Fi] —mye > Cdr{

The next result concerns the subexponential concentration property of the martingale difference.

Lemma 2 (Martingale difference). The V-Orlicz norm (i.e., the subexponential norm) of the mar-
tingale difference has the following upper bound, conditioned on F;:

/1 —m?
||mt+1/2 - E[mt+1/2\]:t“|\1/1 < K; £ Cse Ttnto'tf/<\/ 1-— ot2 ),

where C'se > 0 is a universal constant.



Based on Lemma [2] we proceed to consider the (discounted) sum of martingale differences. For
to > 0and 5 > 0, let

t—1

Slof .= Z B (ms1je — Elmgi /2| i)

S:to

be a martingale adapted to {F; };>y,, and Vtto’ﬁ = Zi;io BQ(S_tU)KSQ be a proxy for its predictable
quadratic variation. The following result is a self-normalized concentration inequality for such pro-
cesses established in (Whitehouse et al.,|2023| Theorem 3.1):

Lemma 3 (Sum of martingale differences). Let 1y < (Cse¥2) ™! and 02 < o forall t > 1, and
B> 0. For 6 > 0, it holds that
Fto) S 57

1+ log(V/oP v 1
P <E|t >tg: |Sf0’ﬂ| > C’mt\/mlog ( + log( (; )> and =t < 2
Note that when 3 € [0, 1], the condition 3¢~* < 2 is vacuous. For 3 > 1, this condition results in

for some universal constant Cpy > 0.
a smaller range of ¢ € [to,to + logﬁ 2]. Finally, we bound the normalization error my41 — M1 /2

Lemma 4 (Normalization error). With probability at least 1 — 6, it holds that

mit1 > Myy1/2 — Com - n;o; (f (\/ 1—oj )) log(1/6),

for some universal constant Cpm > 0. In addition, if my /o > 0, then with probability 1 — 9,
Myp1/2 2 Mgl 2> Myi1/2 ( —Cpm - Tlt o} (f (\/ 1—of )) 10%(1/5))

3 ANALYSIS OF THE LEARNING PHASE

In this section we analyze the SGD dynamics in the learning phase, given a “warm start” 6, with
mi = (0%,61) > 1 —70/4.

3.1 PURE EXPLORATION

The crux of the proof of Theorem [I]lies in the following lemma, which shows that starting from a

correlation m; > 1 — &, SGD will improve it to 1 — £/2 after O(d2/e) steps.

Lemma 5 (Local improvement for pure exploration). Suppose m; > 1 — € for some ¢ < 7y /4. Let
= log?(d/ed), and for s > t, set

ce
2 2.
> S o = 707

where ¢ > 0 is a small absolute constant. Then for A := Cd/n and a large absolute constant C' > 0
independent of ¢, we have mya > 1 — /2 with probability at least 1 — AJ.

We call the time interval [¢,¢ + A] an “epoch”, and choose the learning rate based on the epoch.
Lemma [5] shows that, as long as the correlation is large at the beginning of an epoch, then it must
be improved in a linear rate at the end of the epoch. Therefore, by induction and a geometric
series calculation, it is clear that the learning rate schedule glven by Lemma [5| corresponds to 7, =

é(% A L), and Lemma gives an overall sample complexity O( ) for pure exploration.

In the sequel we prove Lemma 5] We first show that by induction on s that with probability at least
1—-A§/3,ms >1—2cforall s € [t,t + A]. The base case s = ¢ is ensured by the assumption

my > 1 — €. For the inductive step, suppose my, ..., mgs—1 > 1 — 2¢. Then
s—1
Ms — My = Z { (Elmy 12| Fr] = me) + (myg1/2 — Elmyg1 2] F]) 4+ (mes1 — mygq2) }
=t >0 by Lemma[] =A, =B,



Thanks to the inductive hypothesis, K, = O(n,/%) forall r € [¢,s — 1] in Lemma SO Lemma

(with tg = ¢, 5 = 1) gives |Zf;z Ayl = O(ny/ &2 log(5)) = O(\/iElog(5)) < £ with prob-
ability 1 — %, by choosing ¢ > 0 small enough. Similarly, Z‘:;i |B,| = O(An?log(%)) =
O(dn log(%)) < § with probability 1 — g, by Lemmaand choosing ¢ > 0 small enough. This
implies that ms > my — § > 1 — 2 with probability 1 — g, completing the induction.

Conditioned on the event m, > 1 — 2¢ for all s € [t, t + A], we distinguish into two regimes in this
epoch. Let Ty > t be the stopping time when mg > 1 — &/4 for the first time.

Regime I: t < s < Tj. In this regime m; € [1 — 2¢,1 — £/4]. We show that T, < t + A with
probability 1 — A§/3. If Ty > ¢ + A, using the same high-probability bounds, we have

t+A—1
My A — My > Z (E[merl/Q‘]:S] - ms) -

s=t

=1 ™

with probability 1 — Ad/3. By Lemmawith 1-m?2 = Q(e) and \/1 — 02mg > 1—7q for s < Ty,
the total drift is Q(AU’ZS) = Q(Ce¢). Therefore, for a large absolute constant C' > 0, we would have
mera > 1 — /4, a contradiction to the assumption Ty > t + A.

Regime II: s > T,,. As shown above, this regime is non-empty with high probability. The same
induction starting from s = Tj shows that, with probability 1 — Ad/3, ms > mg, — /4 holds for
all s € [Ty, t + Al. In particular, choosing s = ¢ + A gives the desired result m;ya > 1 —¢/2.

3.2 REGRET MINIMIZATION

The proof of Theorem |I] for regret minimization follows similarly from the following lemma.
Lemma 6 (Local improvement for regret minimization). Suppose m; > 1 — & for some € < 7o /4.
Let 1 := log*(d/ed), and for s > t, set

ce 9 9
hd 2 :
where ¢ > 0 is a small absolute constant. Then for A := Cd/(ne) and a large absolute constant

C > 0 independent of ¢, with probability at least 1 — AJ, we have (0*,as) > 1 — 4e for all
s €[t,t+ Al and mypn >1—¢€/2.

The main distinction in Lemma@ is the choice of a smaller o2 to encourage exploitation for a small
regret: using the local linearity assumption in Assumption ] the total regret in the epoch is

t+A " d2
Z(f(l) — f((0%,as))) < (A+1)-4ye =0 <€> with probability 1 — AJ.

s=t

In addition, the duration of each epoch becomes longer, with a correspondence ¢ = (:)(% A1)
This correspondence gives the learning rate and exploration schedule in Theorem I} as well as the
O(d/T) regret bound. The proof of LemmalEI is deferred to the appendix.

4 ANALYSIS OF THE BURN-IN PHASE

The analysis of the SGD dynamics in the burn-in phase relies on similar induction ideas, with a more
complicated tradeoff among the three components in the correlation improvement ;11 — my.

4.1 LINK FUNCTION WITH DERIVATIVE LOWER BOUND

We first investigate the simpler scenario in Assumption 2} i.e., f/(x) > ¢¢ for all z € [0, 1]. In this
case, Theorem [2]is a direct consequence of the following lemma:



Lemma 7 (Burn-in phase under Assumption . Suppose my > ﬁ Let 1 := log®(d/6), and set
2 2

c
=n:=—, o0;f=0°:=",
ne="n du t Yo

where ¢ > 0 is a universal constant. Then for T := Cd/n and a large absolute constant C > 0

independent of ¢, we have mp > 1 — ~o /4 with probability at least 1 — T').

In the sequel we present the proof of Lemma Again we consider the stopping time T = min{¢ >
1:my > 1—y/8} and splits into two regimes.

Regime I: ¢t < Ty. If Ty > T, we prove by induction that m; > ﬁ + 01@ forallt € [1,T)

with probability at least 1 — T'4, for some absolute constant ¢’ > 0 independent of ¢. The base case
t = 1 is our assumption. Now suppose this lower bound holds for m, ..., m;_1, then by Lemmal[T]
and@ with probability at least 1 — g, foreachs=1,...,t—1,

(Elmgir/2|Fs] = ms) + (Meg1 — mggry2) = Q (g) -0 (772 log(§)> =0 (g)

by our choice of 7. Here we have critically used the condition m; = 1 — Q(1) for s < Ty when
applying Lemma [} and the inductive hypothesis to ensure m, > 0. By Lemma [2] and 3] with

probability 1 — 2, the sum of martingale difference is at most O(n\/%log(%)) =O0(ynlog(%)) <
1

5/d for ¢ > 0 small enough. Therefore,

t—1
1 n 1 n(t—1)
ez - e Sa (1) oo ,
=T v ; d) = 2/d d
completing the induction step. Now choosing t = T" with C' > 0 large enough shows the opposite
result mp > 1 — 70/8, implying that the event Ty > T only occurs with probability at most 76 /2.

Regime II: Ty < ¢ < T. Under the high-probability event Ty < T and starting from ¢ = Tj,
T-1

mr —mr, = Z [ (E[mt+1/2|]:t] - mt) + (mt+1/2 - E[mt+1/2|}—t]) + (mt+1 - mt+1/2) }
t=T,

>0 by Lemmal[] =:A, =:B;

By Lemmaand |ZtT=7:,}0 Ay = O(nﬁlog(%)) = O(y/nlog(%)) < & with probability
1 —T46/2, for ¢ > 0 small enough. In addition, Lemma@gives Ef:_j}o |B| = O(Tn*log(%)) =

O(dn log(%)) < 7% with probability 1 —7'§/2, again for ¢ > 0 small enough. Therefore, at the end
of this regime, mp > mq, — Y0/8 > 1 — 70/4 with probability 1 — T'9, as desired.

4.2 CONVEX LINK FUNCTION

When f is convex in Assumption 3| we establish the following lemma.
Lemma 8 (Local improvement for convex link function). For 1 < k < d — 1, let m;, :== (1 —

v0)2\/k/d, and Wy, = (1 — ~yo/4)\/k/d. Suppose that m; > My, at the beginning of the k-th
epoch. Let 1 := log?(d/§), and for s > t, set

— cf'(my,)

2 2
tdmy, s

s =1 ol =0 =,
where ¢ > 0 is a small absolute constant. Then for A := Cd(my, ., —my,)/(nf'(my,)) and a large

absolute constant C > 0 independent of ¢, we have myya > M1 with probability at least 1 — AJ.

Since my > /1/d > T, a recursive application of Lemma |8 for £ = 1,...,d — 1 leads to
mr > 1 — 70/4 with probability at least 1 — T, with (recall that vy < 0.1)

ol (1) 2SS e )\ 5 [T ade
T_O<log (6) d; P ) ~° d/f f@e )

This completes the proof of Theorem [2] The proof of Lemma [§]is more involved, and we defer the
details to the appendix.



5 DISCUSSION

Comparison with other descent algorithms. Our SGD update in Equation (3) is an online gra-
dient descent applied to the loss £;(6) := % (ry — f((6, a;)))?, with a; chosen according to Equa-
tion (2). A typical guarantee in online learning takes the form (e.g., via the sequential Rademacher
complexity (Rakhlin et al.,[2015))

D (F((0ear)) — F((0%, ar)))? = O(d).

t=1

which is known as an online regression oracle (Foster & Rakhlin, 2020; [Foster et al., [2021)). How-
ever, this oracle guarantee alone does not yield the optimal regret of 8, in single-index models; see
Theorem 1.5 of (Rajaraman et al.,[2024) for a general negative result. This motivates us to move
beyond standard online learning guarantees and directly analyze the SGD dynamics.

A different descent algorithm for single-index models is also in (Huang et al., [2021), using zeroth-
order stochastic optimization to approximate the gradient and implement a noisy power method. In
contrast, our SGD is not a zeroth-order method: rather than performing gradient descent on the link
function 0 — f({6*,0)) where only a zeroth-order oracle is available, we apply gradient descent
to the population loss 6 — LE(r — f((0,a)))? for which an unbiased gradient estimator exists for
every 6. This change of objective makes SGD a natural yet novel solution to nonlinear ridge bandits.

Necessity of monotonicity. Throughout this paper we assume that the link function f is mono-
tone, an assumption that is not needed in the non-interactive setting (see, e.g., (Ben Arous et al.,
2021))). This condition, however, turns out to be essentially necessary for SGD to succeed under our
exploration strategy equation 2] Indeed, when o, = o, SGD is performed on the population loss

E[(re = f({6sa)))2] = E[(F((0,ar)) = F((61,a1)))?| + Var(ro)
—E [(f(m —0?) = f(V1=a2(6",60) + o6, Zt>))2] + Var(r,)
(f(x/l - 02) _ f(\/l - 02<9*,9t>>)2 + Var(ry),

where the last approximation uses that (§*, Z,) is typically of order O(1/+/d) and thus often neg-
ligible. Recall that for SGD to succeed at the population level, the population loss must decrease
with the alignment (6*, ;) (stated as Assumption A in (Ben Arous et al.|,[2021)). Treating Var(r)
as a constant, this requires f to be increasing on [0, /1 — ¢2] in the interactive setting (assuming
£(0) > 0). Hence, whenever ¢ is bounded away from 1, a monotonicity assumption on f is indis-
pensable in the interactive setting. By contrast, when o = 1 the monotonicity condition is unneces-
sary: in this case Equation (Z) reduces to pure exploration, and the problem essentially collapses to
the non-interactive setting. However, this would eliminate the statistical benefits of interaction.

Q

We also provide an explicit counterexample to formally support the above intuition.

Proposition 1. Consider the SGD dynamics in Equation (3)) applied to the link function

0 ifm <0
flm)=<—-m fo<m< i,
mf% lf%<m§1

with any initialization m1 = (0*,6,) < 0.1, any exploration schedule oy < 0.1, and any learning
rate ny < mﬂ” some small absolute constant ¢ > 0. Then P(max;crym; < 0.2) > 1 — 4.

Note that the above link function f violates the monotonicity condition: it first decreases and then
increases on [0, 1]. By choosing § = T2, Proposition shows that with any practical initialization,
any exploration schedule that does not essentially correspond to a non-interactive exploration, and
any learning rate that is not too large to escape the local optima, with high probability the resulting
SGD cannot achieve an alignment better than a small constant (say 0.2).



Comparison with information exponent. In the non-interactive case with a; ~ N(0, Iy), it
is known that the information exponent of f determines the sample complexity of SGD. In the
interactive case, however, the monotonicity of f ensures that the information exponent is always 1.
Indeed, for the first Hermite polynomial H;(x) = x, Chebyshev’s sum inequality yields

Ezono)[f(Z)H1(Z)] 2 Ezono)[f(Z2)] - Ezenro,)[H1(Z)] = 0,

with equality iff f = c is a constant. Moreover, the sample complexity predicted by the information
exponent is no longer tight. For instance, when f(z) = zP with an odd p > 3, the sample complexity

of SGD with a; ~ N(0, I;/d) is O(dP*?) (see remark below), which is strictly worse than the O(d®)
guarantee obtained by our interactive SGD. These observations show that the information exponent
ceases to be an informative measure for SGD in the interactive case, for the actions a; are no longer
Gaussian.

Remark 2. For f(x) = aP with odd p > 3, the population square loss has information exponent
equal to 1. Let ¢q be the coefficient of the linear term (0*,0,) in

Ex-n(o,1 | (F(0*, X)) = £((0, X0))?]

then c; = —2uy(f)? with ui(f) being the first Hermite coefficient of f. When we scale down the
input features into X ~ N(0,1/d), we effectively changes f to f(x) = (x//d)P, so ¢; becomes
d~Pcy. Therefore, the SNR effectively worsens by a factor of dP.

Dropping the convexity assumption. The convexity assumption in Assumption [3|is not required
in the statistical complexity framework developed for ridge bandits in (Rajaraman et al., [2024).
Relying only on the monotonicity of f, they establish the upper bound

(2 1z d[2?]
O(d , 2)
1/vd MaX L <<z f'(y)

on the sample complexity of finding an action a; with (6*, a;) > 1/2. In comparison, under our con-
vexity assumption the denominator simplifies to f/(x)2. There are two main obstacles to recovering
this sharper bound. First, our analysis in Lemma |4 requires a conservative choice of the learning
rate 7;, which in turn depends on having a lower bound for f’(m;) at the current correlation m;.
Obtaining such a bound is challenging without further conditions on f. In this paper we handle this
by using f’(m;) > cin the generalized linear case, and f’(m:) > f’(m,) in the convex case, where
m; < my is known. Second, achieving the factor max, JVA<y<z I’ (y)2 requires a careful tuning of

oy to target the maximizer of f/, which in turn relies on knowledge of the current correlation m;. In
(Rajaraman et al.| |2024), this is accomplished by running a separate hypothesis test. However, such
an additional testing step is not compatible with the dynamics of SGD.
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A PROOFS OF MAIN LEMMAS

A.1 PROOF OF COROLLARY ]

By Theorem |1|and it remains to show that both the initialization cost O((f(1/v/d) — f(0))~2)
and the burn-in cost O(d?) under Assumption [2fare dominated by the integral.

For the initialization cost, we have

1 (a) 1 4d
1y 2 < 1y _ po_ 1 2
(f(77) — F(0)) (f(7) — f(55)7° (Q\ffl//(;ff) )dm)
1/Vd 1/Vd
d- -~ 4 4 L
< ! 2\[/ (2v/d) I ) m= 10 /1/(2\/3) J'(m)? "

where (a) follows from the monotonicity of f, and (b) applies Jensen’s inequality.

For the burn-in cost O(d2) under Assumptlonl we simply note that f/(z) < v whenz € [1—~p, 1]
by Assumption|[T] so that

1—v0/4
2 m 2 3% 1—7 2
1y f'(m) 73

These complete the proof.

A.2 PROOF OF LEMMA[T]

Observe that

E[0y 412 Fi] = E [0 — neoe [(f ((ae, 00)) — f({ar, 0%)) — No) f'({ar, 00))] - Z4|Fi
=0 — mo B [[(f({ar, 0r)) — f({ar, 0%))) ' ({ar, 00))] - Ze| Fi] -

Recall that a; = /1 — 0?2 0; + 04Z; in Equation || Since Z; L 6; almost surely, {(a;,6;) =
\/1 — o7 . Taking an inner product with #* on both sides,

E[mt+1/2|ft] — my = nto'tf/(\/ ]_ — Jt2) . E |:f (\/ 1 — Ut2 <9t79*> + O—t<Zt;9*>) <Zt,9*>‘fti| .
Since Z; ~ Unif({x € S*' : 2 L 6;}), the random variable (1 —m?)~1/2(Z;, 6*) is distributed as

the one-dimensional marginal of a uniform random vector on S?~2; denote by X a random variable
following this distribution. Consequently, for

o) = 1 (VI= a7 0,6 + o0y /1 - iz ).

an application of the spherical Stein’s lemma (cf. Lemma[T0) gives

E[mHl/g\ft} — my

= nouf (VI=o?)y/1 -~ mi -Elg(X) X|7]
:%f/(m) 1-m? E[g (X)(1-X?) |F]
:%f’(m)(l—mt [ (ﬂmtwt 1—mtX)(1—X2) ft]

This is the desired identity. For the other inequalities, under Assumption[2]and m; > 0, for

o) = 1 (VIZ 0 0,09 + /1= mie) 20,
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we have
E[h(X)(1 - X?)] > E[A(X)(1 - X*)1(X > 0)]
> ¢oE[(1 - X2)L(X > 0)] = co - 2(‘;_21) — (1)
for d > 3. Under Assumptionand my; > 0, we then write
E[R(X)(1 — X2)] > E[h(X)(1 - X*)1(X > 0)]
> f'(V1 =07 me)-E[(1 - X*)L(X > 0)]

= Q(f (V1= a7 my)).
A.3 PROOF OF LEMMA 2]

By definition,
Myy1/2 —me = 000 (f((ar, 07)) + Nie = f({ar, 0:))) f' ({ar, 0)) - (Ze, 0%)
Define two new random variables:
&N = mor(f((ar,0%)) — F({ar, 0))) ' ((ar, 04)) - (Z1,6%),
£ = o N f' ((a, 1)) - (Z1,607),

such that my /5 —my = § (1) 4 £®2). We will show that each of these random variables is subex-
ponential with a bounded ¥;-Orlicz norm.

For ¢, note that | f ({a;, 0*)) — f({a¢, 0,))| < 2||f]loc and (a;,6;) = /1 — o2 . In addition,

(Z4,60%) L /1 —m2X,

where X follows the one-dimensional marginal of a uniform random vector on S%~2. By Lemma
it holds that || X ||y, < |IN(0,dY)||w, = O(d~'/?). Therefore,

morf' (V1 —02)4/1 _mt2>

(a)
1EM e, = O(IEV lw,) = O ( Vd
where (a) follows from (Vershynin, 2018, Remark 2.8.8).

For £, note that || N¢||g, < 1 by the 1-subGaussian assumption on the noise. Therefore, by
independence of Z; and Ny, (Vershynin, |2018, Lemma 2.8.6) gives

morf' (V1 —02)y/1—m?
7 )

162 [, < meoef (V1= 02) [ Nellw, [1(Ze, 6%)|w, = O (

Finally, the triangle inequality of the ¥; norm gives

Ime1/a = Elmesayol Follle, < 1€V v, + 162w, = O (

mocf' (V1 —02)y/1—m?
Vd '
A.4 PROOF OF LEMMA 3]

For notational simplicity we write S; := S/ 0B, By Lemma

10gE[€Xp()\<St+1 _ St))|]:t] < CBZ(t—tO)Ktz)\Q’ for all |)\| < W

Here C' > 0 is a universal constant. We show that K; < 1 almost surely. In fact, f'(1/1 — 07 ) < 7o
by Assumption|[l]when o7 < 7o, and

K; < Csemy2 <1
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by the choice of 7;. Consequently, for V; = C ZZ;O BHET K2, Apax = 55, and
/\2

P(N) = ma A € [0, Amax),

it holds that
E[exp(ASi41 — (A)Vig1)|Fe] < exp(ASy — w(M)V;), A € [0, Amax), gt <2,

Therefore, the conditions of Lemma [9] are fulfilled, and the claimed upper tail of .S; follows from
choosing w = 1. Replacing S; by —.S; in the above analysis gives the lower tail of .S;.

A.5 PROOF OF LEMMA [4]

Since 0; L Zj, the iterate 01 /5 in Equation @) satisfies

10e1/211* =1+ n7o7 (V1= 07 ) (f({Be, ae)) — 1e)°
Therefore, ||0;41/2| > 1, itis clear that
Mt1/2 Mit1/2

TUAV2 g — L2 (1 1
Borryal = "2 " Tryayal W2l = 1)

1
> Myy1/2 — 57%20152 "(V1 =02 )2(f((Or,ar)) — 1),

using 1 +2 —1 < Z forz > 0, and [m41/2]/]|0441/2]] < 1. The first statement now follows
from the sub-Gaussian concentration of r;, which implies (f((0;,a;)) — r:)? = O(log(1/5)) with
probability at least 1 — .

miy1 =

For the second statement, 171 < 1241 /2 follows from ||6;1 /2| > 1. The other direction follows
from the same high-probability upper bound of ||0; 1 /2| — 1, and the simple inequality IJ%I >1-x
for x > 0.

A.6 PROOF OF LEMMA [G

As we showed in the proof of Lemma[5] we will show by induction on s that with probability at least
1 —A0/3, mg > my — § forall s € [t,t 4 A]. The base case s = t is ensured by the assumption

my > 1 — €. For the inductive step, the induction hypothesis implies that my,...,ms—1 > 1 — 2e.
Then
s—1
ms —my = Z { (Elmyy1/2|Fr] = me) + (myg1 /2 — Elmygq 2] F]) 4 (mes1 — mygq2) }
r=t >0 by Lemmall] —A, —.B,

Thanks to the inductive hypothesis, K, = O(nﬁ) forall r € [t,s — 1] in Lemma SO Lemma
(with tg = ¢, 8 = 1) gives \Zf;i Ay = O(n A{f log(%)) = O(/Elog(5)) < £ with prob-
ability 1 — %, by choosing ¢ > 0 small enough. Similarly, Zi: |B,| = O(An%log(%)) =
O(dn log(%)) < ¢ with probability 1 — %, by Lemmaand choosing ¢ > 0 small enough. This
implies that mg > m; — § with probability 1 — g, completing the induction.

Conditioned on the event m, > 1 — 2¢ for all s € [t,t + A], we distinguish into two regimes in this
epoch. Let Ty > ¢ be the stopping time where mg > 1 — &/4 for the first time.

Regime I: t < s < Tj. In this regime m; € [1 — 2¢,1 — £/4]. We show that Ty < t + A with
probability 1 — Ad/3. If Ty > t + A, using the same high-probability bounds, we have

t+A—1
9

My — My > Z (Elmss1/2|Fs] — ms) — 1

s=t
with probability 1 — Ad/3. By Lemmawith 1-m?2 = Q(e) and \/1 — 02mg > 1—7q for s < Ty,

the total drift is Q(A#Ez) = Q(C%). Therefore, for a large absolute constant C' > 0, we would have

mera > 1 — /2, a contradiction to the assumption Ty > ¢ + A.
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Regime II: s > T,,. As shown above, this regime is non-empty with high probability. The same
induction starting from s = Tj shows that, with probability 1 — Ad/3, ms > mg, — /4 holds for
all s € [Ty, t + Al. In particular, choosing s = ¢ + A gives the desired result m;ya > 1 —¢/2.

Finally, to lower bound (6*, a;) during this epoch, we simply note that
(0% as) = /1 —02mgs+ 050", Zs)
=/1=02ms+ 05(0" —msbls, Zs)
> /1—02ms — 0s)|0" — msb;||
=1—-02ms —os\/1—m2.

Under the good event mg > my — % >1-— 375, by o5 = /e we have (0%, as) > 1 — 4e, as desired.

A.7 PROOF OF LEMMA [§]

Let

4A
Bi=1-— Cnm'ygn202 log (6) , 4)

with Cpm given in Lemmafd] By the choice of 77, when the constant ¢ > 0 is small enough, we have
B € (1/2,1). In addition, let

Tozmin{SZt:mSZ(l—%)\/%} (5)

be the stopping time when the correlation m first hits a given threshold. Unlike the other proofs,
the event Ty < ¢t + A no longer occurs with high probability, and our proof will discuss both cases.

CaseI: Ty > t + A. Define the following event:

eszz{mszmk—?+W(s—t)}7 (©6)

where ¢/ > 0 is a small absolute constant (to be chosen later) independent of ¢. We will prove by
induction that

1)
P(U_ &) n{To >t+ A}) < (s _t)i’ forall s =t t+1,...,t+ A. (7)
The base case follows from the assumption m; > Ty, so that P(Ef) = 0. For the inductive step,
suppose that Equation (7)) holds for s — 1. Since P(AU B) = P(A) +P(A°N B), it suffices to prove
that

P (&SN (MZi&) N{Ty > t+ A}) < g (8)

To this end, we introduce some additional events. First, applying Lemma withtg =tand 37! < 2
i mr+1/2 - IE[an-ﬁ—l/Q ‘fr]

in Equation () gives
A d J
< — — >1—
i _Cm/dlog<5)>_1 = O

for some absolute constant C' > 0. To see Equation @]} note that

B2 = exp (O((1 — B)A)) = exp (0 <7]2A10g Z)) = exp (0 (ig)) =1+ chll), (10)

so that the condition 32 < 2 holds for small ¢ > 0,and 3°;_, 37209 = O(s —t + 1) = O(A).
In addition, let £, » be the good event that the lower bound in Lemma[d|holds for m.1, with § /(4A)
in place of 9.

P(&q) =P <

r=t
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Note that & N &2 N {Tp >t + A} implies that
Mypg1 > BMyg2

= ﬁ (mr+1/2 - E[mr+1/2|ft] + ]E[mr+1/2|]:t] —my + mr)

nf'(m
>3 <mr+1/2 —E[m, 10| 7] + Cl% + mr> )

where ¢; > 0 is an absolute constant, and the last step invokes Lemma uses m, < 1 —Q(1) since
r<t+A<Tpy and

k
1—02m, > /11— (mk*%o> 2(170)2\/;7%

by Equation @) and the definitions of 773, m;,. Summing over 7 = ¢, ..., s— 1, the event N3_; (£, N
Er2) N{Ty >t + A} implies that

s—1 s—1
ot My y1/2 — Elm, /0] F nf' (my,) +1-t
e > 6 <mt s 0 e M

In view of Equation (9) and Equation (T0), a further intersection with £;_ implies that

ms > (1 - 06;”) My — Cn\/glog (?) + ij’“)(s —1)

r=t

for ¢ > 0 small enough; this is precisely the event £. In other words, we have shown that
EEN(MZHENEINER)) N{Ty > t+ A} = 2. (11)
By Equation (TT), we have
P (SN (MZLE) N{Ty > t+ A})
SP(UZER) + P (U2 €72) N (726N &) N{Ty > £+ A}).
By Equation @ and the union bound, the first probability is at most g. For the second probability, the
same program above shows that (M} 2,'&;.2) N (N7_, (&, N Er1)) N{To >t + A} implies m,.1 /2 >

0, which is the prerequisite of Lemma [Zl_f} Therefore, the conditional probability of &, o is at least

1 - &, and by a uqion bound the second probability is at most g. This proves Equation and
completes the induction.

Finally, note that £, A implies that

Y |, dnf'(my)
1o SO AR A
PR

__ Yo __
== o Oy gy —my,) > Mg,

MipA 2> Mg —

by choosing C' > 0 large enough. Therefore, Equation (7) with s =t + A implies that

Ad
P({mt+A < mk_;,_l} n {To >t 4+ A}) < 7 (12)
Case II: Ty <t + A. We apply our usual program to this case: if Ty < ¢t + A, then
t+A—1
mirA — M, = Z [ (E[ms+1/2|-7:s] - mt) + (ms+1/2 - E[ms+1/2|fs}) + (ms+1 - ms+1/2) }
S:TO

>0 by Lemmal[T] =:A, =:B,
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By Lemma with probability at least 1 — AT‘S,

~o{n/3es(9) =0 ().

By Lemma@ with probability at least 1 — %,

S = o(a s (4)) =0 ().

S:To

t+A—1

> A

s=Tp

Therefore, conditioned on Ty < t + A, with probability at least 1 — %,
Y |k cC Yy [k _
> 1_7) Y olZ >(1_7) b
mt+A—( s/ Vi <d>— 4 ) Vg~
for a small enough constant ¢ > 0. In other words,
_ Ad

Finally, a combination of Equation and Equation gives P(mypa < Mig1) < AJ, which
is the desired result.

A.8 PROOF OF PROPOSITION[]

Let T} be the first time ¢ > 1 such that m; > 0.1. If Ty > T, the target claim maxge[r) me < 0.2
is clearly true. Hence in the sequel we condition on the event Ty < 7. In addition, by Gaussian tail

bounds, we have max;¢[r) || = O(y/log(T'/d)) with probability at least 1 — /4. By Equation ,
we then have a deterministic inequality

mr,—1/2 < mq,—1 + Cnpy—1\/1og(T/0) < mr,—1 4 0.05 < 0.15,

by assumption of 7; < m for a sufficiently small constant ¢ > 0, and the definition of 7} that
mr,—1 < 0.1. By Lemma[%t this implies that m7, < 0.15.

In the sequel, we start from my, € [0.1,0.15], and for notational simplicity we redefine my, to be
our starting point, i.e. Top = 1. Next we consider the time interval [1, T}] with

2 2
. nNs0 C1
lemm{t21: 55 > }7
2T 2 o)

for some absolute constant ¢; > 0 to be chosen later. We prove the following claims.

Claim I: max;c[7,;m; < 0.2 with probability at least 1 — 67 /(4T'). To prove this claim, we
first show that when m; < 0.2, then

E[mgyq/2|Fi] < my. (14)
Indeed, by LemmalT]

E[mt+1/2|ft] —my
2
_ gtggf’(M)(l—m?)-E[f’ (mmﬁat 1—m§X) (1-x?)

Since oy < 0.1, m; < 0.2, and | X| < 1 almost surely, we have

7.

1
\/1—0t2mt+ot I*m%Xgmt+Ut§03<§

Since f’(m) < 0 for all m < 1/3 in our construction, and f’(1/1 — o7 ) > 0, we obtain Equa-

tion (T4).
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Next, without loss of generality we assume that m; > 0 for all ¢ € [T7], since a negative m; only
makes the target claim simpler. For every ¢ € [T1],

t—1

my —my = Z [ (Elmys12Fr] = mp) 4+ (myy1/2 — Elmygq 0| Fo]) + (meg1 — mig12) }
r=1

<0 by Equation (T4) =:A, <0 by Lemma[d]

By Lemma[3|with 8 = 1, we get

t—1
DIRE

with probability at least 1 — 6 /(47T"), for some absolute constant C' > 0. By the definition of T}, we

obtain | E:;ll A,| <0.05 for a sufficiently small ¢; > 0. Therefore, m; < mq + 0.05 < 0.2 with
probability at least 1 — 6/(47"), and an induction on ¢ with a union bound gives the target claim.

Claim II: min,¢7,) m; < 0.1 with probability at least 1 —67, /(4T). In the sequel, we condition
on the good event in Claim I. Let 75 be the first time ¢ > 1 such that m; < 0.1; note that it is possible
to have T5 > T} or even Ty = oo. We first show that if m; > 0.1, then

antaf
d
for some absolute constant co > 0. Indeed, for o; < 0.1, m; € [0.1,0.2], and | X| < 1, we have
1
0< \/@mt —0.990; < \/1—at2mt+ot l—me <my 4o < 3
Since f’(m) = —1 for all m € [0, 1/3] in our construction, Equation (I5) follows from Lemmal[]

E[myqq 2| Fe] —my < — (15)

Next, for every ¢t < min{T5, T} }, we write

t—1

my —Mmy = Z [ (E[m7-+1/2|fr} - mr) + (m7-+1/2 - E[mr+1/2\fr]) + (mr+1 - m7-+1/2) ]

r=1

< c2ndtcrt2 by Equation @ =:A, <0 by LemmaE
Similar to Claim I, we have | Zi;ll A,| < 0.05 with probability at least 1 — §/(47"). On the other
hand, the total drift is

Tl*1 T1 1 T1 1

Z (E[mr+1/2|}‘r] S _x2 Z o i czlog T/5 Z 01027

2c
r=1 r=1

where (a) uses the upper bound of 7, and (b) uses the definition of 77. By choosing ¢ > 0 small
enough, the total drift can be made smaller than —0.1, so that if 75 > T1, then mp, < m; — 0.1 +
0.05 < 0.1, which in turn means that 75 < 77, a contradiction. Therefore, with probability at least
1 — 6Ty /(4T'), we have Ty < T, or equivalently ming¢p,jm; < 0.1.

Finally, it is clear that a repeated application of Claim I and II implies Proposition[T} starting from
the first time Tp with mg, > 0.1, the above claims show that with high probability, future alignment
my will fall below 0.1 before it rises above 0.2. Once m, falls below 0.1, we repeat the entire process
again and wait for the next time it falls below 0.1. Since the failure probability at each step of the
analysis is at most d /7", a union bound gives the total failure probability of 0.

B AUXILIARY RESULTS

Below we state a self-normalized concentration inequality for martingales (Whitehouse et al., [2023],
Theorem 3.1) adapted to our setting.

Definition 1 (CGF-like function). A function ) : [0, Amax) — R>¢ is said to be CGF-like if it is (a)
twice continuously-differentiable on its domain, (b) strictly convex, (c) satisfies 1(0) = 1'(0) = 0,

and (d) ¢"'(0) > 0
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Definition 2 (Sub-¢)). Let ¢ : [0, Aax) — R>¢ be a CGF-like function. Let {S;}i>0 and {V;}1>0
be respectively R-valued and R>o-valued processes adapted to some filtration {F, }1>¢. We say that
{St, Viti>o is sub-1) if for every X € [0, Amax),

M} = exp (AS; — p(M)Vi) < L7,
where { L} } 1> is a non-negative supermartingale adapted to {F; }+>0.

The following result is a corollary of (Whitehouse et al.l[2023| Theorem 3.1) with the choice h(k) =
(14 k)2 for k > 1.
Lemma 9 (Self-normalized concentration inequality). Suppose {S;, Vt}tzo is a real-valued sub-v
process for 1 : [0, Amax) — R>g satisfying
)\2
A)=——F—
/(/)( ) 1 - >\/>\max

on its domain. Let § € (0, 1) denote the error probability. Define the function { : R>q — R>¢ by

£, (v) =2log (1 +log (vw Vv 1)) + log (;) ,

then there exists a universal constant C' > 0 such that,

max

Pr (315 >1:8,>C <\/(Vt VDb, (V) + Azl 4, (Vt)>) <.
Proof. By simple algebra, the convex conjugate 1* of ¢ satisfies (¢/*) ™! (u) = 2\/u + AL u. The
rest follows from (Whitehouse et al.,[2023, Theorem 3.1). O

Lemma 10 (Spherical Stein’s Lemma). Suppose Z ~ Unif(S?~1) and consider a fixed oo € R? and
let X = («a, Z). For any bounded function f,

E[X f(X)] = EE f(x)(1-x?%)].

Proof. The density of X is given by

Consequently,

- B[00 - X)),

where (a) follows from integration by parts. O

Lemma 11. Suppose X ~ N(0,1/d) and X' ~ Unif(S?1). For any fixed o € R?, (o, X)?
dominates (o, X')? in the convex order. Namely, for every convex function g : R — R,

E[g({a, X")*)] < E[g({a, X)?)].
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Proof. Observe that X follows the same distribution as NX', where N and X’ are independent,
and N is a scaled chi-squared random variable such that E[N?] = 1. Therefore,

Elg({a, X)*)] = Elg(N*{a, X")?)]

[E[g(N* (e, X)) X]
[9(EIN?}(a, X")*)]
(e, X%)].

Y

E
E
E
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