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Abstract

Introduced to enhance the efficiency of large language model (LLM) inference,
speculative decoding operates by having a smaller model generate a draft. A larger
target model then reviews this draft to align with its output, and any acceptance by
the target model results in a reduction of the number of the target model runs, ulti-
mately improving efficiency. However, the drafting process in speculative decoding
includes slow autoregressive generation and allocates equal time to generating
tokens, irrespective of their importance. These inefficiencies collectively contribute
to the suboptimal performance of speculative decoding. To further improve LLM
inference, we introduce Cascade Speculative Drafting (CS Drafting), a speculative
execution algorithm that incorporates two types of cascades. The Vertical Cascade
eliminates autoregressive generation from neural models, while the Horizontal
Cascade optimizes time allocation in drafting for improved efficiency. Combining
both cascades, CS Drafting achieves greater speedup compared to the baselines in
our experiments, while preserving the same output distribution as the target model.1

1 Introduction

The advent of Large Language Models (LLMs), like GPT-4 [17], has marked a significant milestone
in the field of natural language processing (NLP). These models have not only excelled in various
NLP tasks but have also found widespread applications in user-interactive settings, such as chatbots
and virtual assistants. However, these applications involve an extremely high number of users, up
to hundreds of millions daily. To serve in real-time at this scale, a low-latency system is not only
cost-saving but also crucial for keeping the service running. In addition, the sheer scale of the service
means that even a slight improvement in the latency of LLMs can greatly contribute to both the
service provider and the community. Consequently, optimizing the latency of LLMs has become a
critical area of research.

Unfortunately, the ever-growing size of LLMs significantly increases the latency, especially in
long-form generation, as autoregressive LLMs generate tokens one by one. An emerging solution,
known as speculative decoding [14, 4, 25], shows potential to mitigate this issue. In speculative
decoding, a draft model (which is smaller and faster) generates k tokens in each step (with k being
a hyperparameter) autoregressively, and these tokens are then reviewed by a target model (which
is larger and slower) in parallel. In one single run, the target model will accept any tokens aligned
with its output and further generate one token. The drafting process in speculative decoding enables
the target model to generate multiple tokens in a single run while maintaining its output distribution
unchanged. With a properly sized draft model, speculative decoding achieves a speedup of 2 to 3
times, making it a potential method for solving high latency issues.

1Code is publicly available at https://github.com/lfsszd/CS-Drafting.
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Figure 1: The CS Drafting algorithm features a recursive and resource-efficient design, implemented
through two cascades: the horizontal cascade and the vertical cascade. The horizontal cascade
involves using larger draft models to generate the earlier tokens and smaller models for the later
tokens. The vertical cascade requires each model to review drafts from smaller models with the
exception of the smallest model, which is a statistical language model. As the horizontal cascade and
vertical cascade are orthogonal, CS Drafting combines both approaches for optimal efficiency. The
figure shows an example of Cascade Speculative Drafting with target modelMt and draft models
Md1 ,Md2 , andMd3 .

However, since draft models are typically required to generate multiple tokens in multiple steps, where
each generation still involves inefficient autoregressive decoding, the performance of speculative
decoding could be limited by the drafting latency. This inefficiency is also indicated by Leviathan
et al. [14], where it was observed that very small models (e.g., around two orders of magnitude
smaller than the target model) are usually the best choice for drafting because their inference cost is
lower compared to that of a larger draft model, despite the fact that larger draft models usually have
higher-quality generation. This underscores that improving drafting efficiency is crucial for further
enhancing the performance of speculative decoding.

In light of this, one key strategy to address this bottleneck is to avoid the inefficient autoregressive
generation of neural draft models. Based on this consideration, it is noted that statistical language
models, such as bigram language models, incur negligible latency and computational resource costs
compared to neural language models, owing to their simple structure. However, because the tokens
generated by statistical language models usually do not have a high probability of being accepted by
the target model, speculative decoding with statistical language models alone may not yield optimal
results compared to using a well-sized neural language model from the same family as the draft
model. Nonetheless, we notice that it is not necessary to use only one draft model in speculative
decoding—statistical language models can serve as the “draft” model for the neural draft model,
thereby eliminating autoregressive generation from the neural draft model.

Furthermore, our analysis in Figure 2 reveals a pattern during the drafting step: tokens generated
later in the sequence by the draft model show a progressively lower probability of being accepted
by the target model. This is because the probability of a token being accepted is conditioned on the
acceptance of the previous tokens. It indicates that later tokens from draft models are more prone to
rejection, contributing less to the expected number of accepted tokens per draft step, yet incurring the
same latency.

Inspired by the above observations, we propose Cascade Speculative Drafting (CS Drafting), a
speculative execution algorithm that comprises multiple draft models, with the smallest being a
statistical language model. Each neural draft model reviews generations from a smaller model and
then proposes its reviewed content to either a larger draft model or the target model. In this design,
the drafting of each neural model is accelerated by drafting from a smaller model, avoiding the
inefficiency of autoregressive generation from neural models. We refer to this tiered speculative
decoding approach as the Vertical Cascade. In addition, we suggest the use of smaller, faster draft
models for generating high-rejection tokens that are trailing in drafting generation, forming the
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Figure 2: The probability of acceptance of draft tokens in relation to their positions in a single step of
speculative decoding, evaluated on FLAN-T5-SMALL, BASE, and LARGE models on GSM8K and
MMLU. The draft model generates 30 tokens at each step.

Horizontal Cascade. Along with the aforementioned Vertical Cascade, these strategies compose our
complete CS Drafting approach, as illustrated in Figure 1.

Through theoretical analysis and empirical studies, we demonstrate that the CS Drafting algorithm
outperforms speculative decoding in terms of latency across various tasks and settings, achieving an
additional speedup of up to 81% over speculative decoding. These findings highlight the practical
advantages and efficiency enhancements offered by both vertical and horizontal cascades.

The main contributions are summarized as follows:

• We introduce Cascade Speculative Drafting (CS Drafting), a speculative-execution-based algorithm
that improves language model inference speed without sacrificing generation quality.

• We provide theoretical analyses supporting the effectiveness of the proposed CS Drafting approach.
• We conduct empirical experiments showing that CS Drafting achieves further speedup over specu-

lative decoding across different tasks and settings.

2 Preliminary

The core concept of speculative decoding [14] involves the utilization of a small draft model for
sequential token generation with validation by a larger target model resulting in reduced latency. This
design accelerates sampling from autoregressive models without altering output distributions. At its
heart, there are two key observations: 1) certain generations in language modeling are simpler than
others and can be predicted by more efficient models correctly, and 2) using speculative execution
along with a new sampling method enables faster, exact decoding from large models.

Specifically, let x be the input tokens at a run andMt andMd are the target and the draft model
respectively, k be the number of draft tokens generated per step, andMt(x)[i] andMd(x)[i] be
their probability output at i-th token when input is x. We interpret speculative sampling as a
two-stage operation. In the proposing stage, we sample {xt+1, ..., xt+k} from draft model Md

autoregressively and append them to x. In the reviewing stage, let xi ∈ {xt+1, ..., xt+k} represents
the token at the current position, and we accept it ifMd(x)[i− 1] ≤Mt(x)[i− 1]; in the event that
Md(x)[i − 1] >Mt(x)[i − 1], we reject xi with a probability of 1 − Mt(x)[i−1]

Md(x)[i−1] and proceed to
resample xi from a recalibrated distribution norm(max(0,Mt(x)[i−1]−Md(x)[i−1])) and reject
any token following xi. At the end, the target model will generate one additional token following the
accepted tokens. Such a design guarantees the output is the same as sampling autoregressively using
the target model alone [14].

Speculative decoding was empirically validated on various tasks and model sizes, demonstrating
a significant acceleration in inference times (2x-3x faster) compared to standard implementations,
without affecting the outputs. Importantly, it does not require task-specific training, altering model
architectures, or changing training procedures, making it a practical solution for reducing the latency
of LLM inference.
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Algorithm 1 CascadeSpeculativeDraftingStep

Require: draft models {Md1 , ...,Mdn}, target modeMt, prefix, flag isF irstCall, hyperpa-
rameters Knn, l
draftList← [Md1 , ...,Mdn ]
▷ Initialize curGen and curProb.
curGen← prefix, curProbs← a list of ones with the same length as prefix
▷ Unpack the a list of k for the current function call.
[k1, ..., kn−1]← first row of Knn

▷ Generate using MaG for the Base case of the recursive call.
if draftList is empty then
M← first element of draftList
res←M(curGen)
return res.generation, res.logits

end if
▷ Perform the horizontal cascade with the for loop.
for i← 1 to n do
▷ Prepare the arguments for the next recursive call.
curTarget← the i-th item of draftList
curDraftList← the sublist of draftList starting from index i+ 1
curK← the submatrix of Knn from with the top-left corner at (i+ 1, i+ 1) extending to the
bottom-right corner curPrefix← curGen
while curGen.length - curPrefix.length is less than ki do

curPrefix← curGen
▷ Perform the vertical cascade with the recursive call.
[x1, .., xu], [p1, p2, ..., pv]← CascadeSpeculativeDraftingStep(curDraftList, curTarget, cur-
Prefix, False, curK, l)
curGen← [x1, .., xu]
s← curProbs.length + 1
Add elements of [p1, p2, ..., pv] to curProbs

end while
end for
▷ Set lenience to 1 when the original target model reviews.
if isFirstCall then
l← 1

end if
▷ UseMt to review the draft generation.
[x1, ..., xout], [p

′
1, p

′
2, ..., p

′
out] = review(Mt, curGen, curProbs, l)

return [x1, ..., xout], [p
′
1, p

′
2, ..., p

′
out]

3 Cascade Speculative Drafting

In this section, we introduce our proposed method, Cascade Speculative Drafting (CS Drafting),
a speculative execution algorithm that incorporates two types of cascades: vertical cascade and
horizontal cascade.

3.1 Vertical Cascade

A notable inefficiency of the speculative decoding algorithm is the reliance on the autoregressive
generation of a smaller draft model. Since the draft model must run k times for each target model
run, the cost can still be significant despite its smaller size. In light of this, we reduce the drafting
inefficiency by using an even smaller model to assist in drafting and employing the original draft
model to review the generation of this smaller model. In addition, since this process can be performed
again on the draft model that drafts for the original model, we recursively perform this process until it
reaches a statistical draft model that involves negligent cost, such as a bigram language model. In this
approach, we expect each recursion step will reduce the drafting latency without altering the output
distribution. We refer to this recursive speculative approach as Vertical Cascade.
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Additionally, we incorporate lenience, a hyperparameter that loosens the review process by the
target model, allowing for faster speed at the trade-off of potentially differing results from the
target model [14]. Lenience can be adopted during sampling or greedy decoding with speculative
decoding. Let lenience l ∈ [1,∞). When sampling, the acceptance condition for token xi is
transformed to Md(x)[i] ≤ l × Mt(x)[i]. If the acceptance condition is not satisfied, with a
probability of 1 − l×Mt(x)

Md(x)
, we reject xi and any following tokens.2 When performing greedy

decoding, the acceptance condition becomes deterministic and is simply either argmaxMd(x)[i] =
argmaxMt(x)[i] orMd(x)[i] ≤ l ×Mt(x)[i].

For the speculative decoding algorithm, the reduced quality introduced by lenience is generally
undesirable. However, for the vertical cascade approach, lenience affects the final output only if
it is applied when the target model reviews. Therefore, we can limit the application of lenience in
the vertical cascade only when draft models review and do not apply lenience when the target model
reviews. This can ensure the final output is not altered while further reducing latency.

3.2 Horizontal Cascade

Another key observation is that during the drafting steps of speculative decoding, not all drafting
tokens are created equal, as illustrated in Figure 2. The first draft token is more likely to be accepted
as it only depends on itself; the last token is rarely accepted, as it has a chance of being reviewed only
if all preceding tokens are accepted. From a theoretical perspective, assume the event of acceptance
of each token being a Bernoulli distribution with probably p, the probability of n-th token being
accepted is pn, implying an exponential decrease of value for tokens generated later in the sequence.

Inspired by this observation, we designed Horizontal Cascade, an approach that improves time
allocation by draft token allocation. Horizontal Cascade assigns the largest draft model to perform
the generation of the first draft token due to its highest output alignment with the target model, and it
progressively uses a smaller as the new draft token to be generated is less likely to be accepted. This
process stops after the smallest model, i.e., a statistical language model finishes. This design reduces
the time cost of generating unimportant draft tokens with a costly draft model, leading to a reduction
in overall latency.

3.3 Max-Gram for Better Statistical Drafting

As both Vertical Cascade and Horizontal Cascade remark cascade toward faster draft models, a
statistical language model, which is the basis of the cascade, becomes essential for the efficiency of
both approaches. In our pursuit of a more effective statistical language model, we noticed a general
pattern: in language model generation, some words and phrases from the input query frequently
reappear in the generated content. In light of this observation, we designed the Max-Gram (MaG)
algorithm. It greedily identifies maximal matches between the initial input (or existing generation)
and tokens from the end of the generation. In cases where there is no match, we resort to a bigram
model based on the probability distribution of Wikipedia (chosen to maintain the generality). We
include a GPU-friendly version of the Max-Gram algorithm in Appendix A.

3.4 Algorithm

Combining the horizontal and vertical cascades, the algorithm of cascade speculative decoding is
presented in Algorithm 1. At its center, the horizontal cascade is realized by the for loop, while the
vertical cascade is implemented through recursive calls. Notably, the MaG model is incorporated as
the smallest draft model to avoid autoregressive generation from a neural model. An example of CS
Drafting is shown in Figure 1.

The algorithm requires an upper-triangular hyperparameter, Knn, with each row serving as the stop
criteria for a layer of recursive calls. For simplicity, we assume the lenience l is universal for the
algorithm, except when the target model is under review; thus, the algorithm can benefit from the
speedup of lenience without altering the output distribution.

2For simplicity, we assume the probability outputs are not standardized. We refer the readers to the speculative
decoding paper [14] for the discussion on standardized sampling.
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4 Analysis

In this section, we provide theoretical analyses for Cascade Speculative Drafting. We begin with
some notions. LetMt be the target model,Md be the draft model, and k be the number of draft
tokens generated per step.

Expected acceptance rate α(Mt,Md) is the probability of draft generation byMd being accepted
by target modelMt.

Cost coefficient c(Mt,Md) is the ratio of time for a single run of draft modelMd over target model
Mt.

Expected walltime improvement factor (EWIF) is the expected time improvement achieved by an
algorithm under the i.i.d. assumption of token acceptance.

Despite the simple setting of EWIF, it is demonstrated that it aligns with the experimental results in
most instances[14]. Therefore, our analysis will concentrate on EWIF.

4.1 Vertical Cascade

We analyze EWIF of vertical cascade using generating functions, a well-studied topic in combinatorial
mathematics [24]. The properties of generating functions are useful in the recursion and evaluation
process making our final expression simple.

We begin with the derivation of the probability generating function for speculative decoding.
Theorem 4.1. For speculative decoding betweenMt andMd, let pi be the probability of generating
i tokens. The probability generating function of pi satisfies the following equation:

ϕ(α,k)(x) = 1 + (x− 1)
1− αk+1xk+1

(1− αx)
, (1)

where α = α(Mt,Md).

Proof in Appendix C.1.

Corollary 4.2. The EWIF of speculative decoding is
ϕ′
(α,k)(1)

(ck+1) = 1−αk+1

(1−α)(ck+1) .

We use the generating function to derive the EWIF of a vertical cascade and analyze the case involving
two draft models,Md1

andMd2
.

Theorem 4.3. Assume k to be the speculative decoding parameter betweenMd1
andMd2

, and n to
be the number of stepsMt reviews. The EWIF by this system is

1− αϕn(α)

(1− α)(1 + ncd1
+ nkcd2

)
, (2)

where ϕ(x) = ϕ(α(Md1
,Md2

),k)(x), α = α(Mt,Md), and cd1
, cd2

be c(Mt,Md1
), c(Mt,Md2

)
respectively.
Corollary 4.4. ϕα′,k(α) < α for any 1 > α > 0, 1 > α′ > 0, k > 0, so if cd2 ≪ 1, the EWIF of
Md1

andMd2
is higher than EWIF ofMd1

alone.

Proof in Appendix C.2.

Therefore, with the statistical model having negligible cost (i.e., cd2
≪ 1), it can almost always

improve the efficiency of an SD system.

4.2 Horizontal Cascade

We also present an analysis of the walltime improvement offered by the horizontal cascade.

To assist the analysis, we establish the notions. Let Mt be the target model, {Mi} be the draft
models assisting generation withMi being the draft model generating the i-th token. In the simpler
case of the speculative decoding,Mi =Md for any i. Let x be the input to the model at a single run,
Mt(x) andMi(x) are then the output probability distribution with input x. To simplify notation, let
αi = α(Mt(x),Mi(x)) and ci = c(Mt(x),Mi(x)).
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Dataset Md1
Md2

k1 k2 EWIF

CNNDM SMALL - 9 - 2.65
CNNDM BASE - 8 - 2.96
CNNDM BASE SMALL 5 3 3.03
ENDE SMALL - 12 - 3.61
ENDE BASE - 11 - 3.75
ENDE BASE SMALL 5 8 3.93

Table 1: Simulated EWIF under the assumption that the acceptance distribution is a Bernoulli
distribution. BASE and SMALL refer to FLAN-T5-BASE and FLAN-T5-SMALL. In the simulation,
speculative sampling with horizontal cascade exceeded the performance of the vanilla speculative
decoding on both CNN Dailymail [16] and WMT EnDe [2] datasets.

Theorem 4.5. The expected walltime improvement factor (EWIF) of the horizontal cascade is

T (k, α1, ..., αk, c1, ..., ck) =
∑k

i=0

∏i
j=1 αj

1+
∑k

i=1 ci
.

Furthermore, theorem 4.5 can be used to analyze the importance of the tokens in the drafting step.

Corollary 4.6. The probability of i-th token being accepted is
∏i

j=1 αj . The derivative of EWIF

with respect to αl is dT (k,α1,...,αk,c1,...,ck)
dαl

=
∑k

i=l

∏i
j=1,j ̸=l αj

1+
∑k

i=1 ci
. Specifically, dT (k,α1,...,αk,c1,...,ck)

dα1
=∑k

i=1

∏i
j=2 αj

1+
∑k

i=1 ci
and dT (k,α1,...,αk,c1,...,ck)

dαk
=

∏k−1
j=1 αj

1+
∑k

i=1 ci
.

Using the information provided by Leviathan et al. [14], we calculate a simulated EWIF under the
assumption that the event of acceptance by the target model is a Bernoulli trial. The results, shown
in Table 1, indicate that speculative sampling with a horizontal cascade achieved better EWIF than
vanilla speculative sampling under this assumption.

5 Experiments

5.1 Experimental Setup

Metrics We use both our proposed standardized walltime improvement and walltime for evaluation:

• Standardized walltime improvement (SWI) assumes each forward run of a model takes a constant
amount of time which can be recorded data of previous work [14] or heuristics such as the total
number of the parameters of a model. Under this assumption, the value of SWI is the speedup
of the speculative method over autoregressive generation. SWI alleviates hardware variation and
features full reproducibility of experiment results.

• Walltime refers to the actual elapsed time taken to complete a specific task or operation in a real-
world scenario. Despite being less reproducible and sensitive to noise, walltime better represents
the performance for individual users. In our experiment, walltime is measured in the form of the
number of tokens generated per second on our GPU.

Datasets We chose two commonly used datasets for our experiments. For both datasets, we conducted
experiments in a zero-shot chain-of-thought setup [13, 23]:

• GSM8K [7] is a dataset comprising 8,500 high-quality, linguistically diverse, grade-school math
word problems. It focuses on multi-step reasoning with problems that are typically solvable using
basic arithmetic in 2 to 8 steps.

• MMLU [10], or Massive Multitask Language Understanding, is a benchmark for testing how
well large language models grasp knowledge. It encompasses 57 diverse subjects, ranging from
elementary science to advanced law.

Baselines To verify the effectiveness of both vertical and horizontal cascade strategies intuitively,
we first compare the performance of CS Drafting with different numbers of cascades, as well as its
performance against standard speculative decoding [14]. Additionally, CS Drafting can also operate
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Dataset Algorithm {Mdi
} Speedup (MS) Speedup (PW)

GSM8K Autoregressive - 1 1
GSM8K S Decoding BASE 3.38 2.99
GSM8K S Decoding SMALL 3.06 2.76
GSM8K CS Drafting BASE, MAG 3.70 3.27
GSM8K CS Drafting SMALL, MAG 3.19 2.82
GSM8K CS Drafting BASE, SMALL, MAG 3.88 3.43
MMLU Autoregressive - 1 1
MMLU S Decoding BASE 3.97 3.42
MMLU S Decoding SMALL 4.12 3.51
MMLU CS Drafting BASE, MAG 4.56 4.21
MMLU CS Drafting SMALL, MAG 4.39 3.99
MMLU CS Drafting BASE, SMALL, MAG 4.88 4.32

Table 2: The experimental results on FLAN-T5. Speedup (MS) is the standardized walltime improve-
ment with the assumption that the latency of each run of a model is its number of parameters (model
size). Speedup (PW) is the SWI with the assumption that the latency of each run of a model is the
time cost data reported from previous work [14].

vertically by combining with other advanced decoding methods. To verify this, we also leverage tree
attention, as used in Medusa [3], and compare its performance with Medusa.

Implementation Details To ensure the generality of our findings, we perform experiments on both
encoder-decoder and decoder-only models. For encoder-decoder models, we choose our target
and draft models from the FLAN-T5 [6] family for our experiment, as there is a large variation in
model sizes within the FLAN-T5 family (ranging from 77 million to 11 billion parameters). We use
FLAN-T5-XXL as our target model, FLAN-T5-BASE and FLAN-T5-SMALL as our reviewing draft
models. For decoder-only models, we select Vicuna-7B [28], a fine-tuned version of LLaMA [20]
as the target model. We use a 68M model with the same tokenizer as the reviewing draft model3.
We also leverage tree attention [15, 3] with CS Drafting for the experiments on Vicuna-7B. In both
cases, the Max-Gram algorithm is used as the generating draft model. Since we do not observe
any significant difference between sampling with temperature 1 and greedy decoding in previous
speculative decoding experiments [14], and to ensure our experiments are fully reproducible, we
perform sampling at temperature 0, i.e., using greedy decoding by default. To align our experiment
with current common usage, we do not perform fine-tuning for CS Drafting, and the generation
is conducted in a zero-shot manner. We include hyperparameter details in Appendix B. All of our
experiments involving walltime are performed on a single NVIDIA A40 GPU.

5.2 Experimental Results

Table 2 presents the main experimental results. In two settings of SWI, Cascade Speculative Drafting
has outperformed the speculative decoding algorithm. For GSM8K, CS Drafting achieved a maximum
additional speedup of 44% over the fastest speculative algorithm; for MMLU, the maximum additional
speedup improvement over speculative decoding is 81%.

Effectiveness of MaG When comparing CS Drafting with one neural model and MaG against the
fastest speculative decoding setup, we found that CS Drafting with one neural model gained up to a
70% speedup on MMLU and a 32% speedup on GSM8K. Notably, the MaG algorithm only involves
a bigram model with parameters equal to the tokenizer size, making its memory cost negligible."
In addition, the speedup gained using CS Drafting with one neural model involves no additional
deployment overhead while reducing both latency and computational cost, making it a superior choice
over speculative decoding.

Draft Model Size Despite FLAN-T5-SMALL mostly outperforming FLAN-T5-BASE as a draft
model for speculative decoding, in CS Drafting with the aid of MaG, FLAN-T5-BASE consistently

3https://huggingface.co/double7/vicuna-68m
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Algorithm GSM8K Walltime (Tokens/s) MMLU Walltime (Tokens/s)

Autoregressive 33.34 33.11
S Decoding 44.31 43.65
CS Drafting 56.72 55.60

Medusa 61.87 56.19
CS Drafting + Tree Attention 63.81 63.37

Table 3: The experimental results on Vicuna-7B.

K00 Walltime (tokens/s)

1 56.16
2 55.51
3 53.73

Table 4: Results on GSM8K with Vicuna-7B under different generation length limits.

outperforms FLAN-T5-SMALL. This implies that with the limitation of a single draft model, the ideal
size of the draft model might increase with the assistance of the MaG model.

Results of Decoder-only Models As shown in Table 3, CS Drafting achieves a significant walltime
improvement over speculative decoding. Moreover, CS Drafting exceeds Medusa when combined
with tree attention [15, 3]. This suggests that CS Drafting can be integrated with other efficient
designs for speculative decoding to further accelerate inference. We leave the exploration of more
advanced combinations as future work.

Ablation Study We perform a hyperparameter study on K00, the hyperparameter with the greatest
effect on our experiments. As shown in Table 4, the performance of CS Drafting only decreases
slightly when this hyperparameter is sub-optimal. Therefore, end users who do not require maxi-
mum performance can use a simple setup to achieve near-optimal performance with CS Drafting.
Furthermore, we conduct an ablation study by removing the horizontal cascade. On GSM8K, with
Vicuna-7B and K00 = 1, this results in a performance drop from 56.16 to 53.55.

6 Related Work

6.1 Efficienct Methods for Language Model Inference

In the era of large language models, efficiency during inference becomes a key to model service. To
reduce the model inference cost and speed up, several efficient methods have been proposed, including
pruning, knowledge distillation and quantization [21]. Model pruning takes structured [26, 22] or un-
structured [9, 5] methods to remove the redundant model parameters to reduce the storage memory and
increase inference speed. Knowledge distillation takes the approach of transferring knowledge from a
superior teacher model to a smaller student model [11, 8]. Quantization maps high-precision data rep-
resentations (e.g. 32 bits) into low-precision ones (e.g. 8 bits) to reduce memory consumption [1, 18].

6.2 Speculative Decoding

With the success of Speculative Decoding [4, 14] in reducing the large language model inference
latency, some recent works have attempted to improve Speculative Decoding by reducing the
rejection rate. Zhou et al. [29] propose using generalized knowledge distillation and achieve a lower
rejection rate compared to other knowledge distillation methods. Avoiding an additional draft model,
self-drafting is an approach to speculative decoding by reusing part of the target model together with
added weight to perform drafting [27, 12]. Tree attention involves generating multiple candidates
during drafting to increase the chance of acceptance [19, 15]. Besides reducing the rejection rate,
improving drafting efficiency can also reduce latency. Spector et al. [19] propose using speculative
decoding for drafting, showing similarities to the vertical cascade; however, their method only has
two layers of speculative decoding and does not observe the recursive nature of the vertical cascade
nor the lenience among draft models, two crucial aspects for the performance of vertical cascade.
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7 Conclusion

In this work, we propose a novel algorithm, CS Drafting, which involves two cascades: the vertical
cascade and the horizontal cascade. The vertical cascade eliminates the necessity of autoregressive
generation from a neural language model, while the horizontal cascade effectively allocates the cost
of drafting tokens at different positions. CS Drafting achieves additional speedup over baselines in
various settings while maintaining the same output distribution as the target model.

8 Limitations

Our experiments demonstrate strong performance for our methods. However, it is possible, though
unlikely, that the outcome might differ on a system with different hardware configurations. To
account for this, we report both standardized walltime improvement and raw walltime for a more
robust evaluation. Additionally, we provide theoretical analyses to justify the improvements, which is
independent of the hardware configurations.
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A Max-Gram Implementation

Listing 1: Max-Gram Algorithm
1 def torch_index(t, value):
2 return (t == value).nonzero(as_tuple=True)[0][0]
3

4

5 def max_gram(input_ids, encoder_ids, n=1):
6 matches = (encoder_ids[0] == input_ids[0, -1]).int()
7 if matches.sum() < 1:
8 return None
9 for i in range(2, input_ids.shape[-1] + 1):

10 new_matches = (encoder_ids[0, :(-1 * (i - 1))] == input_ids[0, -1 * i]).int()
11 combined_matches = (2 - new_matches == matches[1:]).int()
12 if combined_matches.sum() < 1:
13 index = torch_index(torch.cat(
14 (
15 torch.tensor([0] * (i - 1), device=torch.device(encoder_ids.device)),
16 matches
17 ),
18 dim=-1
19 ), 1)
20 return encoder_ids[:, index:index + n]
21 else:
22 matches = combined_matches
23 index = torch_index(torch.cat((
24 torch.tensor([0] * (encoder_ids.shape[-1] - matches.shape[-1])), matches), dim=-1
25 ), 1)
26 return encoder_ids[:, index+1:index + n+1]

B Hyperparameters

To reduce the number of hyperparameters to tune, we use MaG to generate 10 tokens at once, as it is
rare for more than 10 tokens to be accepted with the exception when CS Drafting is combined with
tree attention. We do not use lenience when the reviewer isMt to ensure the output distribution does
not change. We also avoid lenience between MaG and its reviewer, since there is still a significant
performance gap between MaG and a neural model. With these constraints, we are left with at most
four hyperparameters: k11, k12, k22, and l. For the CS Drafting step where the target model is the
reviewer, k11 and k12 are used. k21 and l are used in the step whereMd1

is the reviewer. The results
of experiments on encoder-decoder models with hyperparameters are shown in Table 5.

When performing experiments with the decoder-only model, we fixed the hyperparameters of CS
Drafting for different datasets to better align with most users who do not perform hyperparameter
tuning. The k-matrix for CS Drafting is [[2, 10], [0, 10]]. When adding tree attention, we limit it to
only the lead node with the highest probability of having children; the k-matrix is [[1, 3], [0, 1]] with
the number of children for each leading node being 8, while the other nodes have no children.

C Proof

C.1 Proof for Theorem 4.1

Proof. The probability of accepting i tokens is αi − αi+1, with the exception of the k + 1-th token,
which has a probability of αk of being accepted. This is because it requires all the first i tokens to be
accepted and the i+ 1-th token to be rejected for this to happen. Therefore,

ϕ(α,k)(x) = αkxk+1 +

k−1∑
i=0

(αi − αi+1)xi+1. (3)
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Dataset Algorithm {Mdi
} Speedup (MS) k11 k12 k22 l

GSM8K Autoregressive - 1 - - - -
GSM8K S Decoding BASE 3.38 10 - - -
GSM8K S Decoding SMALL 3.06 11 - - -
GSM8K CS Drafting BASE, MAG 3.70 10 - - -
GSM8K CS Drafting SMALL, MAG 3.19 11 - - -
GSM8K CS Drafting BASE, SMALL, MAG 3.88 8 13 1 3

MMLU Autoregressive - 1 - - - -
MMLU S Decoding BASE 3.97 13 - - -
MMLU S Decoding SMALL 4.12 19 - - -
MMLU CS Drafting BASE, MAG 4.56 13 - - -
MMLU CS Drafting SMALL, MAG 4.39 14 - - -
MMLU CS Drafting BASE, SMALL, MAG 4.88 5 19 1 5
Dataset Algorithm {Mdi

} Speedup (PW) k11 k12 k22 l

GSM8K Autoregressive - 1 - - - -
GSM8K S Decoding BASE 2.99 8 - - -
GSM8K S Decoding SMALL 2.76 8 - - -
GSM8K CS Drafting BASE, MAG 3.27 9 - - -
GSM8K CS Drafting SMALL, MAG 2.82 11 - - -
GSM8K CS Drafting BASE, SMALL, MAG 3.43 5 9 1 3

MMLU Autoregressive - 1 - - - -
MMLU S Decoding BASE 3.42 10 - - -
MMLU S Decoding SMALL 3.51 11 - - -
MMLU CS Drafting BASE, MAG 4.21 6 - - -
MMLU CS Drafting SMALL, MAG 3.99 13 - - -
MMLU CS Drafting BASE, SMALL, MAG 4.32 5 8 1 5

Table 5: The experimental results on FLAN-T5 with hyperparameter details. Speedup (MS) is the
standardized walltime improvement with the assumption that the latency of each run of a model is its
number of parameters (model size). Speedup (PW) is the SWI with the assumption that the latency of
each run of a model is the time cost data reported from previous work [14]. k11, k12, k22, l are the
hyperparameters. k11 and k12 represent the step limitation target model and the draft models, k22 is
the step limitations between the first and second draft model, and l is lenience as shown in algorithm
1. For speculative decoding, the k11 is simply the k.

By rearranging the terms, we can achieve an expression much easier to work with

ϕ(α,k)(x) = x+

k∑
i=1

αi(xi+1 − xi) (4)

= x+ (x− 1)

k∑
i=1

αi(xi) (5)

= x+ (x− 1)
1− αi+1xi+1

1− αx
. (6)

C.2 Proof for Theorem 4.3

Proof. Let α′ = α(Md1 ,Md2). We first calculate the expected number of tokens being generated in
a step of vertical cascade withMd1 ,Md2 . With the property of generating function, the coefficient
of term xj of ϕn(x) is the probability of the sum of acceptance length of n speculative step being
j. Therefore, ϕn(x) represents the probability generating function right beforeMt performs the
generation.
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To achieve the expected number of token acceptances of a probability-generating function, we seek
for an operator that can map the probability-generating function into the desired expectation.

To achieve the operator, we begin with a single polynomial term of xj . Fortunately, given the end
result of 1−αj+1

(1−α) [14], the operator Tα(f(x)) =
1−αf(α)
(1−α) will convert xj to 1−αj+1

(1−α) . In addition, due
to the linearity of the operator, this can be extended to any polynomial. Therefore, we achieved the
desired operator to map a probability-generating function into the desired expectation.

Apply operator Tα to ϕn(x), we achieved the result of 1−αϕn(α)
(1−α) for the expected number of accepted

tokens. Furthermore, since the number ofMd1
calls is n, andMd2

is called k time for eachMd1

call given a total of nk calls ofMd2
. The time cost is 1 + ncd1

+ nkcd2
which implied the EWIF of

the system being 1−αϕn(α)
(1−α)(1+ncd1+nkcd2 )

.

For Corollary 4.4, since both 0 < α < 1 and 0 < α′ < 1, we have αi+1α′i+1 < αα′, meaning that
1−αk+1α′k+1

1−αα′ < 1. Together with α − 1 < 0, we have ϕα′,k(α) < 1 + (α − 1) = α. If we also

let nkcd2 = 0, we have 1−αϕn(α)
(1−α)(1+ncd1+nkcd2 )

> 1−ααn

(1−α)(1+ncd1 )
, which is the EWIF for speculative

decoding with step size n.
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You should answer [Yes] , [No] , or [NA] .

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper is focused on the scope introduced in the abstract and introduction.
We provided experiments and analysis that fully support our claim in the abstract and
introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We included a limitation section to discuss the potential limitation of our work.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We introduced the assumptions and all notions used. We included proofs for
non-trivial claims.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided our code and implementation details which is sufficient for
reproducing the experiments in the paper.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We included our code and instructions in the code. We also provided details
such as hyperparameters in the appendix.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We included the experimental details in the main paper as well as the appendix.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We reported the results across different metrics and explained the assumptions
made.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discussed the GPU we used to run our experiments.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work focuses on efficiency, so it’s unlikely to violate any code of ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our work focuses on efficiency, so we do not think it will incur societal
impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not release any models or datasets.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provided proper citations to the datasets and models we use.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not release new asset.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper did not involve any crowdsourcing or research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper did not involve any research with human subjects.
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