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ABSTRACT

While adversarial fine-tuning can enhance the robustness of vision-language models
(VLMs), such approaches are computationally expensive. Adversarial prompt
tuning has emerged as a practical alternative. However, existing methods are
limited by their reliance on vulnerable continuous image features. To mitigate
the vulnerability in the feature representation, we propose DEFEAT (Discrete
LatEnt FeaturE based Adversarial Training), a robust prompt tuning framework
for VLMs. Specifically, the DEFEAT method introduces a perturbation discrete
shield module that reconstructs discrete latent features and designs a logits fusion
strategy, substantially reducing the discrepancy between clean and adversarial
image representations. Moreover, the DEFEAT method integrates prompt tuning
with adversarial training while applying regularization from learnable prompts
to hand-crafted prompts, further enhancing the adversarial robustness. Extensive
experiments across 15 datasets validate the effectiveness of the proposed DEFEAT
method among existing adversarial prompt tuning methods.

1 INTRODUCTION
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Figure 1: The harmonic mean
accuracy of the robustness
(ϵ = 4/255) and accuracy
of baselines and the proposed
DEFEAT method under the
adversarial few-shot classifica-
tion setting.

In recent years, vision-language models (VLMs), particularly CLIP
(Radford et al., 2021) and its successors (Sun et al., 2023; 2024;
Zhang et al., 2024a; Li et al., 2022; Jia et al., 2021), have demon-
strated remarkable performance across various visual tasks. As these
models are deployed for real-world applications, it is crucial to ad-
dress their vulnerabilities. Recent studies (Touvron et al., 2023; Zou
et al., 2023; Schlarmann & Hein, 2023; Zhao et al., 2023; Carlini
et al., 2023) have shown that VLMs are highly susceptible to adver-
sarial examples (Szegedy et al., 2013), which can lead to significant
security issues by possessing imperceptible perturbations.

Adversarial training (Madry et al., 2018) is widely regarded as the
most effective defense against such attacks. While many studies
(Mao et al., 2023; Schlarmann et al., 2024; Hossain & Imteaj, 2024;
Gong et al., 2025) have improved the robustness of CLIP-like models
by adversarially fine-tuning the entire model, this approach is im-
practical for large-scale deployment due to the immense parameter
counts of modern VLMs. To improve efficiency, Parameter-Efficient
Fine-Tuning (PEFT) techniques (Ding et al., 2023) have emerged as a promising solution to enable
the adaptation of large models by tuning only a small subset of parameters. Building on this, Li et al.
(2024); Zhou et al. (2024); Zhang et al. (2024b) have integrated adversarial training with prompt
tuning (Zhou et al., 2022b), a PEFT method highly effective for VLMs, to efficiently enhance the
robustness on downstream tasks.

Among those existing methods, most of them rely on continuous image features for adversarial
defense and mainly focus on how to train robust models. In contrast, we mainly focus on the feature
representation, a different direction. After exploring this direction, we have a finding that discretizing
the latent image feature could effectively mitigate adversarial attacks. To see that, as illustrated in
Figure 2, latent features processed with a discretization exhibit a significantly smaller shift between
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clean and adversarial examples than continuous image features, where the experimental settings are
introduced in Section 3.2. This indicates that the latent feature discretization could reduce the impact
of feature shifts induced by adversarial attacks.

Figure 2: The left and right images illustrate the
latent image features without and with the feature
discretization, respectively.

Based on this finding, we propose a Discrete
LatEnt FeaturE based Adversarial Training
(DEFEAT) method, a robust prompt tuning
framework for VLMs. DEFEAT designs a per-
turbation discrete shield (PerturbShield) mod-
ule that mitigates adversarial attacks through
grid-based discrete feature reconstruction and
semantic alignment projection. To optimize the
trade-off between the robustness and accuracy,
the DEFEAT method uses a logits fusion strat-
egy that combines predictions from PerturbShield and original image features. Additionally, DEFEAT
applies regularization to the learnable prompt using hand-crafted prompts and demonstrates that this
regularizer enhances the adversarial robustness. Extensive experiments across 15 datasets demon-
strate that the proposed DEFEAT method achieves state-of-the-art performance compared to existing
methods and offers an improved trade-off between the robustness and performance (see Figure 1).
Specifically, the proposed DEFEAT method achieves an average improvement of 13.76% in terms of
the harmonic mean of the robustness and accuracy compared to the previous state-of-the-art method
under the adversarial few-shot classification setting.

Our contributions are three-fold. (i) To the best of our knowledge, we are the first to use latent
feature discretization to mitigate adversarial attacks. (ii) We analyze the mitigating effect of feature
discretization on visual adversarial perturbation and propose the DEFEAT method as a robust prompt
tuning framework for VLMs; (iii) Extensive experiments on 15 datasets demonstrate the effectiveness
of the proposed DEFEAT method under various settings, including adversarial few-shot classification,
adversarial domain generalization, and adversarial cross-dataset generalization.

2 RELATED WORK

CLIP-based VLMs. VLMs have significantly boosted cognitive capabilities by merging visual
and textual modalities, excelling in real-world vision tasks (Liu et al., 2023; Zhu et al., 2024). The
introduction of CLIP (Radford et al., 2021), trained on about 400 million image-text pairs, was
particularly transformative, establishing a new paradigm for vision-language representation learning.
Numerous subsequent works have followed this paradigm, proposing a broad family of CLIP-like
models, including ALIGN (Jia et al., 2021), EVA-CLIP (Sun et al., 2023), OpenCLIP (Ilharco et al.,
2021), and LongCLIP (Zhang et al., 2024a). Given the trailblazing role and widespread adoption of
this architecture, we focus our work on CLIP as the representative model to investigate robust prompt
tuning within this foundational VLM paradigm.

Prompt tuning for VLMs. Prompt tuning (Zhou et al., 2022b; Khattak et al., 2023a; Chen et al.,
2025; Zhou et al., 2022a; Khattak et al., 2023b) has emerged as a popular lightweight model
adaptation technique, particularly in VLMs. Unlike conventional fine-tuning approaches that involve
updating all parameters of a pre-trained model, prompt tuning focuses on optimizing only the
prompt representations, which significantly reduces computational overhead. CoOp (Zhou et al.,
2022b) introduces an efficient adaptation strategy by optimizing learnable prompt vectors that replace
manually crafted textual prompts (e.g., “a photo of a panda”) in the textual branch of CLIP, marking a
significant milestone in the vision-language alignment. However, CoOp tends to overfit base classes
with limited generalization ability. To address this, several studies (Zhu et al., 2023; Yao et al., 2023;
Chen et al., 2024; Khattak et al., 2023b) use the knowledge captured in pre-trained CLIP through
hand-crafted prompts to enhance the generalization of learnable prompts. In this paper, our study
builds on prompt tuning of CoOp to explore robust prompt tuning for VLMs.

Adversarial training of VLMs. Adversarial attacks (Madry et al., 2018; Goodfellow et al., 2014)
fool models by adding imperceptible perturbations to input images. Several studies (Touvron et al.,
2023; Zou et al., 2023; Schlarmann & Hein, 2023; Zhao et al., 2023; Carlini et al., 2023) have shown
that VLMs are highly vulnerable to adversarial attacks. Among various defense strategies, adversarial
training (Madry et al., 2018; Zhang et al., 2019; Goodfellow et al., 2014; Zhang et al., 2020) is one
of the most effective defense methods against such attacks. It strengthens the model robustness by
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incorporating adversarial examples into the training data and optimizing the model to classify both
clean and adversarial examples correctly. Building on this idea, TeCoA (Mao et al., 2023) enhances
adversarial robustness in CLIP through supervised adversarial fine-tuning. FARE (Schlarmann et al.,
2024) introduces an unsupervised adversarial fine-tuning framework to obtain a robust CLIP, which
preserves nominal performance while transferring robustness to downstream tasks. However, fine-
tuning the entire model is not so economical. Alternatively, AdvPT (Zhang et al., 2024b) and APT (Li
et al., 2024) combine prompt tuning with adversarial training, introducing adversarial prompt tuning
for CLIP to enhance adversarial robustness through a PEFT way. Building on multi-modal prompt
tuning (Khattak et al., 2023a), FAP (Zhou et al., 2024) improves the consistency of multimodal
features and encourages differentiation in unimodal features between clean and adversarial examples,
thereby enhancing adversarial robustness. Unlike previous adversarial prompt tuning methods that
focus on learning robust prompts, the proposed DEFEAT method integrates VQ-VAE to mitigate the
impact of adversarial attacks, achieving a better trade-off between robustness and accuracy.

3 METHODOLOGY

In this section, we begin with a brief overview of CLIP, adversarial attacks and training in CLIP, and
VQ-VAE. Then we analyze the impact of VQ-VAE on visual adversarial perturbation. After that, we
introduce the proposed DEFEAT in detail.

3.1 PRELIMINARIES

CLIP. CLIP facilitates zero-shot image classification by evaluating the similarity between visual
and textual embeddings. It comprises a visual encoder and a text encoder. Let I represent the class
feature extracted by CLIP’s visual encoder for an image, which serves as the image representation
and is generated by a class token. t = {tc}Cc=1 denotes a collection of textual embeddings produced
by the text encoder for textual prompts, where each tc corresponds to the textual embedding for
class c, and C is the number of classes. Those prompts typically follow the format “a photo of a
[CLS]”, where “[CLS]” is a placeholder for class tokens that are specific class names like “panda”,
“dog”, and “bird”. Based on those embeddings, the probability of classifying an image to belong to
a class can be calculated as pclip(y|x) = exp (fy(x)/τ)∑C

c=1 exp (fc(x)/τ)
, where τ is the temperature parameter,

fc(x) = cos(tc, I), and cos(·, ·) denotes the cosine similarity.

Adversarial attack and training in CLIP. An adversarial attack (Madry et al., 2018) fools the model
by learning an imperceptible perturbation δ added to a clean example x, generating an adversarial
example xa. Specifically, in CLIP, the adversarial example xa is optimized by maximizing the
image-to-text contrastive loss (Mao et al., 2023; Li et al., 2024; Zhou et al., 2024) as

xa = argmax
xa

L(xa, t,y), s.t. xa = x+ δ, ∥δ∥p ⩽ ϵ, (1)

where L(xa, t,y) = −
∑C

i=1 yi log p
clip(yi|xa), label y is a one-hot vector with yi equal to 1 when

class i is the ground-truth label for x and 0 otherwise, ϵ denotes the perturbation size, and ∥ · ∥p
denotes the ℓp norm of a vector. Here we focus on the ℓ∞ threat model (i.e., p =∞).

After generating adversarial examples, Mao et al. (2023) employs adversarial training to optimize the
parameters θ of CLIP’s vision encoder, thereby developing a robust CLIP. The objective of adversarial
training is formulated as θ = argminθ L(xa, t,y).

VQ-VAE. VQ-VAE is a generative model based on discrete latent representations, with its core
mechanism to convert continuous representations into discrete codes. Specifically, VQ-VAE consists
of an encoder E, a decoder D, and a codebook e. The encoder maps input data x ∈ RH×W×C into a
continuous latent vector ze = E(x) ∈ Rn×d, where d is the dimensionality of the latent embedding,
n is the number of latent positions after encoding. The learnable codebook is defined as e = {ek}Kk=1,
where K is the size of the discrete latent space. The latent vector ze is then quantized into a discrete
latent representation, zq ∈ Rn×d. This is achieved by replacing each vector in ze with its nearest
neighbor from the codebook:

z(i)q = argmin
ek∈e

∥z(i)e − ek∥2 , ∀i ∈ {1, ..., n}, (2)

where z(i)q and z
(i)
e are the vectors at the i-th position of zq and ze, respectively, and ∥ · ∥2 denotes the

ℓ2 norm. The quantized discrete representation zq is then used to reconstruct the input by the decoder
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as x̂ = D(zq). Since there is no real gradient defined for Eq. (2), VQ-VAE copies gradients from the
decoder input zq to the encoder output ze. The entire training objective in VQ-VAE is formulated as

LVQ-VAE(x) = α ∥x− x̂∥22︸ ︷︷ ︸
reconstruction loss

+β ∥sg[ze]− zq∥22︸ ︷︷ ︸
codebook loss

+γ ∥ze − sg[zq]∥22︸ ︷︷ ︸
commitment loss

, (3)

where sg[·] is the stop gradient operator. By following the original implementation (van den Oord
et al., 2017), γ is set to be 0.25β. Since VQ-VAE is an end-to-end, trainable, and commonly used
discretization model, we use it to discretize and reconstruct latent image features.

3.2 MITIGATING EFFECT OF VQ-VAE ON VISUAL ADVERSARIAL PERTURBATION

(a) CLIP (b) VQ-VAE on images (c) VQ-VAE on latent features

Figure 3: Visualization of clean and adversarial examples on the EuroSAT dataset. The VQ-VAE is
trained with 16-shot samples per class under the adversarial few-shot classification setting.

In this section, we explore how VQ-VAE mitigates visual adversarial perturbations. We first visualize
the clean and adversarial image features output by the CLIP’s image encoder in Figure 3a. We observe
that imperceptible perturbations (ϵ = 4/255) cause a significant shift of latent features between clean
and adversarial examples, leading to a sharp decline in classification accuracy for adversarial samples
(i.e., from 19.44% to 11.21%).

Inspired by the quantization process of VQ-VAE, we hypothesize that the complex discretization
process could mitigate adversarial attacks by reducing the distribution shift between clean and
adversarial examples. To validate this hypothesis, we integrate VQ-VAE as a defense module within
the VLM framework against adversarial attacks. Firstly, we attempt to use VQ-VAE to reconstruct
input images as did in (Mao et al., 2022). As shown in Figure 3b, the shift of latent features between
clean and adversarial examples is significantly reduced, demonstrating that the discretization process
can suppress adversarial perturbations. However, pixel-level reconstruction with VQ-VAE introduces
significant information loss and structural distortions that compromise semantic content preservation
when training data is limited. To see that, we can find that the feature distributions in Figure 3b differ
greatly from the original image feature distributions shown in Figure 3a. The poor performance (i.e.,
Accuracy=9.26%, Robustness=0%) could verify this and also make this approach impractical.

Alternatively, we use VQ-VAE to reconstruct the latent feature output by ViT. As shown in Figure
3c, we find that the distribution shift of latent features between adversarial and clean examples is
significantly reduced. Moreover, the distribution of latent features after VQ-VAE (shown in Figure
3c) is more similar to the feature distribution by the CLIP (shown in Figure 3a). This suggests that
reconstructing latent features can also effectively suppress adversarial perturbations and achieve
better performance (i.e., Accuracy=17.90%, Robustness=12.90%). One possible reason is that
when adversarial perturbations are introduced into clean image features, the process of finding the
nearest codes often makes both clean and adversarially perturbed features be assigned to the same
discrete representation (i.e., codes). Hence, the discretization of VQ-VAE effectively neutralizes
the perturbations within its discrete representation space, thus hindering the updates of adversarial
perturbations and diminishing the distributional differences between clean and adversarial examples.

3.3 DEFEAT: DISCRETE LATENT FEATURE BASED ADVERSARIAL TRAINING

Motivated by the above observation, we propose the DEFEAT method for CLIP-based VLMs. Besides
a frozen image encoder and a frozen text encoder in CLIP, DEFEAT consists of a learnable prompt
and a perturbation discrete shield module. The architecture of DEFEAT is illustrated in Figure 4.

4
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Figure 4: Overview of the proposed DEFEAT method. Note that both image and text encoders remain
frozen, with only the learnable prompt and the perturbation discrete shield module being trained. In
our experiments, we exclusively use adversarial examples for training.

Prompt tuning for text encoder. We introduce learnable prompt vectors v = {v1,v2, . . . ,vM} to
replace the textual prompt (e.g., “a photo of a”), where each vi has the same dimension as the word
embeddings. The learnable prompt is subsequently constructed by concatenating v with the class
token. Formally, the learnable prompts are formed as {v1,v2, . . . ,vM , [CLS]}. Let ts = {tsc}Cc=1
be a set of textual embeddings generated by the text encoder for the learnable prompts, where each tsc
corresponds to the textual embedding of learnable prompt for class c. The probability of classifying
an image can be calculated as

ps(y|x) =
exp (f s

y(x)/τ)∑C
c=1 exp (f

s
c (x)/τ)

, (4)

where f s
c (x) = cos(tsc, I) and recall that I denotes the class feature.

Perturbation discrete shield (PerturbShield). As analyzed in Section 3.2, we propose integrating
VQ-VAE as a defense module within the prompt tuning framework to mitigate the impact of visual
adversarial perturbations. Given the outstanding performance of the Vision Transformer (ViT)
(Dosovitskiy et al., 2020) in visual tasks, we use CLIP’s ViT as the image encoder. The last
Transformer layer of ViT can output two types of image features: the class feature I ∈ Rdv generated
by the [class] token and the grid feature Ipatch ∈ RN×dv from image patches, where dv denotes the
dimension (i.e., 512 for CLIP) and N is the number of patchs.

Since CLIP uses the class feature I to represent an image, we initially consider reconstructing I with
VQ-VAE. However, this approach has some limitations. That is, the class feature essentially functions
as a global patch representation, meaning that we would be restricted to using only a single code
from the codebook to represent the entire image. However, the representation capacity of a single
code is far inferior to that of multiple codes combined, ultimately resulting in severe information loss.
In this case, if an adversarial attack successfully maps the class feature to an incorrect code, it will
lead to a wrong prediction.

To address this problem, we propose Perturbation Discrete Shield (PerturbShield), an end-to-end
defense module that utilizes discrete representation learning to mitigate adversarial perturbations
in VLMs. Specifically, PerturbShield operates through two designed stages: 1) grid-based discrete
feature reconstruction; 2) semantic alignment projection, which are introduced in the following.

1) Grid-based discrete feature reconstruction. Instead of reconstructing the class feature, we recon-
struct the grid feature Ipatch through the VQ-VAE. This process aims to represent the grid feature
using a combination of multiple codes to preserve more information. Additionally, the discretization
process can help mitigate minor perturbations and enhance the model’s robustness as analyzed in
Section 3.2. The reconstructed grid feature can be obtained as Îpatch = VQ-VAE(Ipatch), where
VQ-VAE(·) denotes a VQ-VAE and Îpatch ∈ RN×dv .

5
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2) Semantic alignment projection. We design a learnable matrix W that performs two functionalities.
First, since Îpatch is more robust than I, we could use it to learn a robust representation of the
whole image by a linear transformation: Îproj = W · Îpatch, where W ∈ R1×N and Îproj ∈ Rdv .
Another functionality is to semantically align the transformed latent feature with CLIP’s pre-trained
embedding space through a feature alignment regularization between Îproj and the class feature I as

LI
reg = ∥Îproj − I∥1, (5)

where ∥ · ∥1 denotes the ℓ1 norm. These dual functionalities ensure that the adversarial defense
process remains aligned with the embedding space of the VLM. Then the prediction probability for
an input image x can be computed as

pvq(y|x) =
exp (fvq

y (x)/τ)∑C
c=1 exp (f

vq
c (x)/τ)

, (6)

where fvq
c (x) = cos(tsc, Îproj).

Logits fusion. There is usually some information loss during the reconstruction process. Con-
sequently, using Îproj alone to compute logits (i.e., the prediction probability) reduces the clean
accuracy (e.g., from 19.44% to 17.90% in Figure 3). Since PerturbShield effectively mitigates
adversarial attacks, we propose a logits fusion strategy that uses logits from Îproj and ts to counter
adversarial attacks, while using logits from I and ts to maintain the clean accuracy, thus achieving a
better trade-off between the robustness and accuracy. Specifically, the former logits are defined in
Eq. (6), and the latter ones are defined in Eq. (4). Then, the fused logits are calculated as

p(y|x) = (pvq(y|x) + ps(y|x))/2. (7)

Prompt alignment regularization. To enhance the generalization of learnable prompts and prevent
overfitting (Zhou et al., 2022a), we use prompt alignment regularization for learnable prompts. This
ensures the consistency between text features generated by learnable prompts and hand-crafted
prompts, thereby improving adaptability while preserving CLIP’s inherent zero-shot inference capa-
bilities. Specifically, the prompt alignment regularization is formulated as

LT
reg = ∥ts − t∥1. (8)

Moreover, we find that using hand-crafted prompts to regularize learnable prompts as in Eq. (8) can
enhance the model’s robustness, which is detailed in Section 4.3.

Training objective. Based on Eq. (7), the cross-entropy loss is defined as Lce(x, t
s,y) =

−
∑C

i=1 yi log p(yi|x). To learn a robust prompt, Li et al. (2024); Zhou et al. (2024) combines
prompt tuning with adversarial training. Following this paradigm, we use the learnable prompts
updated in the previous epoch to generate adversarial examples dynamically in each epoch as

xa = argmax
xa

Lce(xa, t
s,y), s.t. ∥ xa − x ∥p⩽ ϵ. (9)

Finally, based on those adversarial examples, the overall training objective of the DEFEAT method is
formulated as

L(xa, t
s, t,y) = Lce(xa, t

s,y) + LVQ-VAE(Ipatch) + λLI
reg + µLT

reg. (10)

Due to page limit, the whole algorithm for the proposed DEFEAT method is shown in Appendix A.

4 EXPERIMENTS

4.1 SETUPS

Datasets. By following APT (Li et al., 2024) and CoOp (Zhou et al., 2022b), experiments are
conducted under three settings, including adversarial few-shot classification, adversarial cross-dataset
generalization, and adversarial domain generalization. The first two settings are performed on 11
image classification datasets, including ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al.,
2004) for generic object classification, OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al.,
2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), and FGVCAircraft

6
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(Maji et al., 2013) for fine-grained visual categorization, SUN397 (Xiao et al., 2010) for scene
recognition, DTD (Cimpoi et al., 2014) for texture classification, EuroSAT (Helber et al., 2019) for
satellite image classification, and UCF101 (Soomro et al., 2012) for action recognition. Adversarial
domain generalization is conducted on the ImageNet dataset and its variants, including ImageNetV2
(Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b),
and ImageNet-R (Hendrycks et al., 2021a).

Baselines. To demonstrate the effectiveness of the proposed DEFEAT method, we compare it against
three baseline methods, including zero-shot CLIP (Radford et al., 2021), the textual prompt tuning
method (i.e., Adversarial Prompt Tuning (APT) (Li et al., 2024)), and the multi-modal prompt tuning
method (i.e., Few-shot Adversarial Prompt learning (FAP) (Zhou et al., 2024)).

Implementation details. Our implementation is based on CoOp (Zhou et al., 2022b) and APT
(Li et al., 2024). For all baseline methods, we maintain the same experimental settings (e.g.,
training epochs, training schedules, and data augmentation settings) as specified in their original
implementations. All experiments are conducted with a ViT-B/32 CLIP model. Following APT (Li
et al., 2024), the image encoder weights for all baselines were pre-trained using TeCoA (Mao et al.,
2023). The length of the prompt vectors is fixed to 16. For the DEFEAT methods, α, β, λ, and
µ are set to 0.5, 0.1, 10, and 20, respectively, across all experiments. For adversarial training and
evaluation, we employ the PGD attack (Madry et al., 2018) under the ℓ∞ threat model. Following
Li et al. (2024); Mao et al. (2023); Schlarmann et al. (2024), two perturbation sizes, ϵ = 1/255 and
ϵ = 4/255, are used. During training, we use 3 steps with a step size of 2ϵ/3, and for evaluation, 100
steps with a step size of ϵ/4 and a random start. More details are provided in Appendix B.

4.2 MAIN RESULTS

In this section, we report experimental results under different settings.

Adversarial few-shot classification. In this scenario, we assess the model’s capability to develop
robust representations from limited labeled data. Specifically, models are tuned using 1, 4, 16 shots
per class and evaluated on the remaining samples. The average performance of DEFEAT and baselines
on 11 datasets is shown in Table 1, where ‘H’ denotes the harmonic mean accuracy of robustness
and accuracy, measuring the trade-off between these metrics. DEFEAT consistently outperforms
zero-shot CLIP, even with 1-shot tuning, achieving significant improvements in accuracy, robustness,
and ‘H’. For example, under ϵ = 1/255, DEFEAT provides gains of 6.01%, 6.01%, and 6.15% in
accuracy, robustness, and ‘H’, respectively. Furthermore, these improvements scale with the number
of shots. With 16-shot tuning, DEFEAT achieves gains of 18.97% (17.31%), 27.79% (25.26%), and
24.39% (25.89%) in accuracy, robustness, and ‘H’ for ϵ = 1/255 (4/255), respectively.

Table 1: The average performance on the 11
datasets for different ϵ and shots under the adver-
sarial few-shot classification setting. ‘H’ denotes
the harmonic mean accuracy.

ϵ Method
1 shot 4 shots 16 shots

Acc. Rob. H Acc. Rob. H Acc. Rob. H

1/255

CLIP 46.06 32.98 38.44 46.06 32.98 38.44 46.06 32.98 38.44
APT 46.99 33.36 39.02 58.19 41.34 48.34 65.41 47.88 55.29
FAP 52.72 37.15 43.59 59.77 42.21 49.48 66.40 48.86 56.30
DEFEAT 52.07 38.99 44.59 58.37 53.04 55.58 65.03 60.77 62.83

4/255

CLIP 33.67 10.79 16.34 33.67 10.79 16.34 33.67 10.79 16.34
APT 32.97 11.62 17.18 42.29 14.40 21.48 51.08 20.26 29.01
FAP 38.16 13.44 19.88 44.63 15.34 22.83 50.50 19.82 28.47
DEFEAT 35.78 14.73 20.87 44.13 25.28 32.15 50.98 36.05 42.23

Existing adversarial prompt tuning methods (i.e.,
APT and FAP) improve performance over CLIP,
confirming the effect of combining adversar-
ial training with prompt tuning. Compared to
those methods, DEFEAT performs comparably
to the current state-of-the-art method FAP in
terms of the accuracy, while consistently out-
performs both APT and FAP in terms of the
robustness and ‘H’ across all shot and pertur-
bation sizes. Notably, with 16-shot training un-
der ϵ = 4/255, DEFEAT surpasses APT (FAP)
by 15.79% (16.23%) in robustness, and 13.22%
(13.76%) in ‘H’, respectively. Detailed results for each dataset are provided in Appendix C.1.

Adversarial domain generalization. We assess the model’s capability to generalize to out-of-
distribution (OOD) data in the adversarial domain generalization setting. Specifically, models are
tuned using 16-shot and 100-shot samples from each of the 1000 classes on ImageNet (source), and
then evaluated on four different target domains (i.e., ImageNetV2, ImageNet-Sketch, ImageNet-A,
and ImageNet-R). Table 2 shows that all baselines achieve comparable accuracy on ImageNet, as
they use the same robust image encoder (Mao et al., 2023) pre-trained on the full ImageNet training
set. Nevertheless, with 16-shot training, DEFEAT surpasses CLIP, APT, and FAP in terms of the
robustness by 8.92%, 7.04%, and 7.0%, respectively. Across the four target domains, DEFEAT
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achieves good robustness and ‘H’, outperforming the strongest baseline (i.e., APT) by 3.31% in
robustness and 3.36% in ‘H’. Those results confirm that the robustness learned by DEFEAT can be
effectively transferred to OOD data. Furthermore, as the number of training samples increases from
16 shots to 100 shots, DEFEAT demonstrates consistent improvements in terms of the robustness,
achieving +3.31% on ImageNet and an average of +1.94% across the target domains, which highlights
the scalability of our approach. In contrast, the two prompt tuning baselines (i.e., APT and FAP)
show little to no improvement.

Table 2: Performance under adversarial domain generalization setting. ϵ = 4/255.

Method

Source Target

ImageNet ImageNet-V2 ImageNet-Sketch ImageNet-A ImageNet-R Average
Acc. Rob. H Acc. Rob. H Acc. Rob. H Acc. Rob. H Acc. Rob. H Acc. Rob. H

zero shot CLIP 40.11 10.14 16.19 33.11 7.49 12.22 17.59 7.24 10.26 4.04 0.28 0.52 37.52 12.51 18.76 23.07 6.88 10.60

16 shots
APT 41.06 12.02 18.60 33.67 9.09 14.32 18.22 7.87 10.99 4.19 0.36 0.66 37.04 13.29 19.56 23.28 7.65 11.52
FAP 40.32 12.06 18.57 32.81 9.17 14.33 16.42 7.11 9.92 3.87 0.43 0.77 36.04 13.55 19.70 22.29 7.57 11.30
DEFEAT 40.68 19.06 25.96 33.12 14.96 20.61 18.27 9.87 12.82 3.97 0.88 1.44 37.35 18.14 24.42 23.18 10.96 14.88

100 shots
APT 40.35 12.11 18.63 33.38 9.19 14.41 18.86 8.16 11.39 4.21 0.40 0.73 37.81 13.70 20.11 23.57 7.86 11.79
FAP 40.76 12.35 18.96 33.60 9.14 14.37 16.41 6.98 9.79 3.65 0.39 0.70 36.36 13.60 19.80 22.51 7.53 11.28
DEFEAT 40.23 22.71 29.03 32.77 16.44 21.90 18.49 11.53 14.20 4.20 1.37 2.07 37.34 21.45 27.25 23.20 12.70 16.41

Adversarial cross-dataset generalization. We assess the model’s zero-shot adversarial robustness
in the adversarial cross-dataset generalization setting. Models are tuned using 16-shot and 100-shot
samples from each of the 1000 classes on ImageNet and evaluated on the other 10 datasets. Table 3
shows that DEFEAT achieves competitive accuracy and the highest robustness and ‘H’ compared to all
baseline methods across all datasets, including both source and target domains. Specifically, with 16-
shot tuning, DEFEAT outperforms the strongest baseline (i.e., FAP) by an average of 5.61% in terms
of robustness and 5.37% in terms of ‘H’. Similar to the adversarial domain generalization setting,
APT and FAP show no significant performance improvements when the number of training samples
increases from 16 shots to 100 shots. In contrast, DEFEAT demonstrates scalability, achieving gains
of 3.65% in terms of robustness on ImageNet and 3.18% in terms of average robustness on 10 target
datasets. Those results demonstrate the good zero-shot adversarial robustness of DEFEAT.

Table 3: Performance under adversarial cross-dataset generalization setting. ϵ = 4/255.

16 shots Method
Source Target

ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Avg.

Acc.

CLIP 40.11 78.78 66.26 10.32 30.13 23.52 7.17 33.24 24.29 19.56 36.98 33.03
APT 41.06 79.63 64.92 11.55 27.24 23.58 4.77 30.87 22.22 16.31 33.68 31.48
FAP 40.32 79.19 63.67 9.64 30.25 22.82 5.43 31.92 23.23 16.79 32.25 31.52
DEFEAT 40.68 78.22 66.69 9.40 31.10 22.01 6.09 32.28 23.94 17.95 33.15 32.08

Rob.

CLIP 10.14 43.61 15.56 0.99 8.93 3.27 0.36 6.20 11.35 11.22 7.01 10.85
APT 12.02 46.86 21.10 1.49 8.89 3.75 0.60 6.85 9.93 11.15 7.56 11.82
FAP 12.06 46.25 20.71 1.55 9.74 3.67 0.66 7.15 10.82 11.38 7.45 11.94
DEFEAT 19.06 54.32 31.97 3.84 18.80 8.72 2.34 13.47 15.60 12.89 13.59 17.55

H

CLIP 16.19 56.14 25.20 1.81 13.78 5.74 0.69 10.45 15.47 14.26 11.79 16.33
APT 18.60 59.00 31.85 2.64 13.41 6.47 1.07 11.21 13.73 13.25 12.35 17.18
FAP 18.57 58.40 31.25 2.67 14.74 6.32 1.18 11.68 14.76 13.57 12.10 17.32
DEFEAT 25.96 64.12 43.22 5.45 23.43 12.49 3.38 19.01 18.89 15.00 19.28 22.69

100 shots Method ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Avg.

Acc.

CLIP 40.11 78.78 66.26 10.32 30.13 23.52 7.17 33.24 24.29 19.56 36.98 33.03
APT 40.35 80.28 64.60 11.76 29.03 23.87 5.85 32.91 25.71 14.17 34.87 32.31
FAP 40.76 75.54 64.30 10.21 29.76 23.37 3.93 30.49 24.94 22.01 31.51 31.61
DEFEAT 40.23 76.63 65.74 9.46 30.25 20.02 6.51 31.31 23.94 16.67 31.69 31.22

Rob.

CLIP 10.14 43.61 15.56 0.99 8.93 3.27 0.36 6.20 11.35 11.22 7.01 10.85
APT 12.11 46.82 21.18 1.52 9.66 3.76 0.69 7.20 12.41 11.06 8.33 12.26
FAP 12.35 44.50 20.47 1.47 9.50 3.89 0.39 6.91 10.17 12.19 7.35 11.68
DEFEAT 22.71 59.35 42.95 5.58 21.52 11.91 3.78 16.29 16.49 12.98 16.44 20.73

H

CLIP 16.19 56.14 25.20 1.81 13.78 5.74 0.69 10.45 15.47 14.26 11.79 16.33
APT 18.63 59.15 31.90 2.69 14.50 6.50 1.23 11.82 16.74 12.42 13.45 17.78
FAP 18.96 56.01 31.05 2.57 14.40 6.67 0.71 11.27 14.45 15.69 11.92 17.06
DEFEAT 29.03 66.89 51.96 7.02 25.15 14.94 4.78 21.43 19.53 14.60 21.65 24.92

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to analyze the effectiveness of the PerturbShield module,
logits fusion strategy, and hyperparameter (i.e., µ). Experiments are conducted using 16 examples
per class on the EuroSAT dataset under the adversarial few-shot classification setting.

Effects of components. Table 4 shows the ablation study for PerturbShield and logits fusion strategy.
Due to information loss during the reconstruction process, using PerturbShield alone without logits
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fusion results in limited performance improvements on CLIP and can negatively impact DEFEAT.
Unlike CLIP, which computes logits using hand-crafted prompts, DEFEAT relies on learnable
prompts. The information loss can impair prompt learning, thereby causing adverse effects.

Table 4: Ablation study. ϵ = 4/255.

Baselines
Adversarial

PerturbShield
Logits

Acc. Rob. Hprompt tuning fusion

CLIP
% % % 19.44 11.21 14.22
% ! % 17.90 12.90 14.99 (+0.77)
% ! ! 25.53 22.88 24.13 (+9.91)

DEFEAT
! % % 64.12 25.33 36.31
! ! % 22.21 17.48 19.56 (-16.75)
! ! ! 58.88 54.65 56.69 (+20.38)

By combining PerturbShield with the logits fusion
strategy, adversarial attacks can be mitigated effec-
tively while maintaining good clean accuracy, thus
achieving a better trade-off between accuracy and
robustness. Specifically, CLIP combining Perturb-
Shield and logits fusion strategy outperforms the orig-
inal CLIP by 9.91% in ‘H’ (24.13% v.s. 14.22%), and
DEFEAT with this combination outperforms its coun-
terpart without it by 20.38% in ‘H’ (56.69% v.s. 36.31%). Therefore, we combine PerturbShield with
the logits fusion strategy.
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Figure 5: The aver-
age performance of DE-
FEAT on all datasets
w.r.t. different µ values.

Effect of µ. µ controls the weight of LT
reg, which apply regularization

from learnable prompts to hand-crafted prompts. According to Figure 5,
we can see that applying regularization (i.e., µ > 0) of learnable prompts
can enhance the model’s robustness. As µ increases, the robustness of
DEFEAT improves, achieving the best overall performance at µ = 20.
Therefore, we set µ = 20 in our experiments.

How does DEFEAT enhance adversarial robustness? To answer this
question, we visualize the image feature (i.e., class feature) output by the
image encoder using t-SNE. Figure 6 shows that CLIP exhibits a significant
distribution shift between clean and adversarial examples, while adversarial
prompt tuning methods (i.e., APT and FAP) reduce this shift. Notably,
the image encoder remains frozen during training and testing for all methods, demonstrating that
adversarial prompt tuning can mitigate the backward adversarial gradient, thereby enhancing model
robustness. DEFEAT not only incorporates adversarial prompt tuning but also further mitigates
the backward adversarial gradient through PerturbShield. So the distribution shift of latent features
between clean and adversarial examples is further reduced compared to APT and FAP, providing
additional evidence of the effectiveness of the proposed DEFEAT method.

(a) CLIP (b) APT (c) FAP (d) DEFEAT

Figure 6: Visualization of clean and adversarial examples on the EuroSAT dataset. Models are trained
with 16-shot samples per class. ϵ = 4/255.

Moreover, due to page limit, more experiments can be found in Appendix C, including evaluations
against stronger attacks and a custom adaptive attack designed for DEFEAT, generalization to
alternative backbones, detailed hyperparameter analysis, and computational cost analysis.

5 CONCLUSION

This work presents a robust prompt tuning framework for VLMs. We begin by analyzing the
mitigating effect of feature discretization on visual adversarial perturbation. Building on this, we
propose the Discrete LatEnt FeaturE based Adversarial Training (DEFEAT) method, which ablates
adversarial attacks in the feature representation. Specifically, DEFEAT introduces a perturbation
discrete shield module that reconstructs discrete latent features, and designs a logits fusion strategy
to improve the trade-off between robustness and accuracy. Moreover, DEFEAT integrates prompt
tuning with adversarial training and applies prompt alignment regularization, further enhancing the
adversarial robustness. Extensive experiments on 15 datasets demonstrate that DEFEAT achieves
state-of-the-art performance.
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ETHICS STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning by improving the
safety and reliability of AI systems. The authors have read and comply with the ICLR Code of Ethics.
The research did not involve human subjects, animal experiments, or personally identifiable data. All
experiments were conducted on publicly available benchmarks and open-source models. We have
carefully considered the broader impacts and believe that this work poses no foreseeable risks of
harm while contributing to the development of robust and secure vision-language models.

REPRODUCIBILITY STATEMENT

The authors have made significant efforts to ensure the reproducibility of results. Section 4.1
details the experimental setup, including datasets, model configurations, and hyperparameter settings.
Additional ablations in Section 4.3 and Appendix C.2 further analyze the effect of each module and
hyperparameters. During the reviewing process, the source code is supplied anonymously as part
of the supplementary materials. Additionally, upon the acceptance of the paper, this code will be
publicly released.
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A ALGORITHM

The whole algorithm for the proposed DEFEAT methods is shown in Algorithm 1.

Algorithm 1 Discrete Latent Feature based Adversarial Training (DEFEAT)

1: Input: Dataset D, learnable prompt vectors v, textual embeddings of hand-crafted prompts t,
CLIP pre-trained image encoder I and text encoder T , VQ-VAE model θVQ-VAE, learnable
matrix W, weight parameters λ, µ, learning rate η, and perturbation size ϵ.

2: for all training epochs do
3: for all x, y∈ minibatch do
4: Use v and [CLS] to generate textual embeddings of learnable prompts ts;
5: Generate adversarial examples

xa ← argmax
xa

Lce(xa, t
s,y), s.t. ∥ xa − x ∥p⩽ ϵ;

6: Feed xa to I to generate class feature I and grid feature Ipatch;
7: Reconstruct Ipatch using a VQ-VAE, obtaining Îpatch;
8: Obtain a robust representation by a transformation

Îproj ←W · Îpatch
9: Fuse the logits from Îproj in Eq. (6) and I in Eq. (4)

p(y|xa)← (pvq(y|xa) + ps(y|xa))/2;
10: Train with the objective

L(xa, t
s, t,y)← Lce(xa, t

s,y) + LVQ-VAE(Ipatch) + λLI
reg + µLT

reg,
where Lce(xa, t

s,y)← −
∑C

i=1 yi log p(yi|xa), LI
reg is defined in Eq. (5), LT

reg

is defined in Eq. (8), and LVQ-VAE (·) is defined in Eq. (3);
11: Upadate the learnable parameters

v← v − η∇vL(xa, t
s, t,y);

W←W − η∇WL(xa, t
s, t,y);

θVQ-VAE ← θVQ-VAE − η∇θVQ-VAEL(xa, t
s, t,y).

12: end for
13: end for

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

All experiments are conducted on NVIDIA GeForce RTX 3090, except for the ImageNet dataset,
which is on Quadro RTX 8000. Training is conducted using SGD with an initial learning rate of
0.002, which is decayed using the cosine annealing rule. The maximum epoch is set to 200, 100, and
50 for 16, 4, and 1 shots, respectively. For ImageNet, they are 50, 20, and 20. A warm-up strategy is
used by fixing the learning rate to 10−5 during the first epoch. The VQ-VAE within the PerturbShield
module is configured with an input dimension of 512 to align with CLIP ViT-B/32 grid features,
projecting them into a latent dimension of 256 using a codebook of 512 unique embedding vectors.
The encoder of VQ-VAE consists of two convolutional layers followed by a residual block, while the
decoder of VQ-VAE mirrors this structure with a residual block and a transposed convolutional layer
for feature reconstruction.

The hand-crafted prompts for different datasets used in the prompt alignment regularization follow
Radford et al. (2021); Zhou et al. (2022b) and are shown below:

ImageNet: "a photo of a [CLS]."
Caltech101: "a photo of a [CLS]."
OxfordPets: "a photo of a [CLS], a type of pet."
StanfordCars: "a photo of a [CLS]."
OxfordFlowers: "a photo of a [CLS], a type of flower."
Food101: "a photo of [CLS], a type of food."
FGVCAircraft: "a photo of a [CLS], a type of aircraft."
SUN397: "a photo of a [CLS]."
DTD: "a photo of a [CLS], a type of texture."
EuroSAT: "a centered satellite photo of [CLS]."
UCF101: "a photo of a person doing [CLS]."

Note that [CLS] denotes the placeholder for the class name.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPREHENSIVE RESULTS OF ADVERSARIAL FEW-SHOT CLASSIFICATION

In this section, we provide the full results of adversarial few-shot classification performance on 11
datasets. The results in Tables A5 and A6 show that the proposed DEFEAT method can consistently
outperform the baseline methods in terms of the robustness and harmonic mean accuracy across
nearly all datasets and shot settings. For each specific dataset, DEFEAT consistently outperforms
CLIP across all shots. For adversarial prompt tuning methods, DEFEAT outperforms APT and FAP
across almost all the datasets and shot settings, with particularly notable improvements on EuroSAT,
UCF101, etc.. For example, with 16-shot training, DEFEAT surpasses APT and FAP by 20.13%
and 23.79% in terms of ‘H’ (i.e., 56.69% vs. 36.56% vs. 32.90%) on EuroSAT, and by 23.21% and
21.35% (i.e., 48.45% vs. 25.24% vs. 27.10%) on UCF101.

Figure A7 shows that as the number of shots increases, DEFEAT achieves greater improvements
compared to APT and FAP. Those results demonstrate DEFEAT’s effectiveness and scalability.

C.2 ANALYSIS ON MORE HYPERPARAMETER SENSITIVITY

In this section, we conduct ablation studies to analyse the effectiveness of hyperparameters (i.e., α, β,
and λ).

Effect of α. In Eq. (3), α controls the weight of the reconstruction loss, which is used to optimize
the decoder and the encoder of VQ-VAE. According to Figure A8a, we can see that DEFEAT is
insensitive within the range [0,5]. We set α = 0.5 in our experiments.

Effect of β. In Eq. (3), β controls the weight of the codebook loss, which is used to learn the
embedding space of the codebook. According to Figure A8b, applying the codebook loss (i.e.,
β > 0) results in better overall performance compared to excluding it (i.e., β > 0). Failure to
update the codebook reduces the representational capacity of the embeddings, thereby increasing
the reconstruction quantization error of the VQ-VAE. Additionally, the model may collapse if the
codebook is poorly initialized. The overall performance of DEFEAT is insensitive within the range
β ∈ [0.01, 0.1]. In our experiments, we set β = 0.1.
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Table A5: The performance on the 11 datasets for different shots under the adversarial few-shot
classification setting when ϵ = 1/255, where ‘H’ denotes the harmonic mean accuracy.

Dataset ϵ = 1/255
1 shot 4 shot 16 shot

CLIP APT FAP DEFEAT APT FAP DEFEAT APT FAP DEFEAT

Average
Acc. 46.06 46.99 52.72 52.07 58.19 59.77 58.37 65.41 66.40 65.03
Rob. 32.98 33.36 37.15 38.99 41.34 42.21 53.04 47.88 48.86 60.77

H 38.44 39.02 43.58 44.59 48.34 49.48 55.57 55.29 56.29 62.83

ImageNet
Acc. 55.34 55.48 55.01 54.33 56.31 57.39 56.11 50.73 58.46 57.54
Rob. 38.48 39.00 37.79 39.68 39.30 39.63 41.36 33.37 40.37 53.07

H 45.40 45.80 44.80 45.86 46.29 46.88 47.62 40.26 47.76 55.21

Caltech101
Acc. 85.92 86.46 88.15 89.66 89.17 90.87 91.16 92.90 92.21 93.39
Rob. 75.21 77.32 78.86 80.73 79.68 80.81 87.99 83.98 84.30 91.12

H 80.21 81.63 83.25 84.96 84.16 85.55 89.55 88.22 88.08 92.24

OxfordPets
Acc. 79.48 78.33 79.56 77.19 83.48 83.21 84.08 83.95 85.55 84.71
Rob. 63.26 61.57 60.56 62.36 66.18 66.34 73.37 65.14 69.15 79.53

H 70.45 68.95 68.77 68.99 73.83 73.82 78.36 73.36 76.48 82.04

StanfordCars
Acc. 25.21 41.09 45.55 42.87 49.51 51.14 47.69 60.20 57.54 56.42
Rob. 12.50 22.44 24.05 26.81 26.94 27.47 44.05 37.21 32.79 51.65

H 16.71 29.03 31.48 32.99 34.89 35.74 45.80 45.99 41.77 53.93

Flowers102
Acc. 48.15 23.63 59.60 53.39 76.61 70.36 72.72 86.80 82.46 84.90
Rob. 32.68 17.46 42.14 40.80 59.68 51.48 69.02 73.57 66.63 81.81

H 38.93 20.08 49.37 46.25 67.09 59.46 70.82 79.64 73.70 83.33

Food101
Acc. 46.58 41.18 55.36 49.83 45.37 59.24 51.29 54.68 64.48 56.31
Rob. 27.38 22.12 33.32 32.07 24.95 36.20 46.84 33.02 41.19 49.45

H 34.49 28.78 41.60 39.02 32.20 44.94 48.96 41.18 50.27 52.66

FGVCAircraft
Acc. 12.51 2.01 18.69 17.55 14.64 21.00 21.27 28.74 26.55 25.74
Rob. 6.09 1.08 10.41 11.16 7.44 11.43 19.98 16.53 14.97 23.46

H 8.19 1.41 13.37 13.64 9.87 14.80 20.60 20.99 19.15 24.55

SUN397
Acc. 48.67 51.17 53.50 52.63 56.35 58.90 58.75 62.56 62.69 62.83
Rob. 31.70 32.44 34.90 35.73 36.48 38.71 54.01 42.31 42.67 57.53

H 38.39 39.71 42.24 42.56 44.29 46.72 56.28 50.48 50.78 60.06

DTD
Acc. 31.97 34.10 36.83 38.48 47.04 48.58 47.93 55.26 56.68 57.15
Rob. 23.88 23.40 24.23 28.55 33.33 35.87 44.33 39.54 41.67 52.66

H 27.34 27.75 29.23 32.78 39.02 41.27 46.06 46.10 48.03 54.81

EuroSAT
Acc. 23.62 51.44 31.80 42.00 61.43 55.38 47.98 74.15 74.89 67.20
Rob. 16.48 35.37 21.89 31.80 39.10 31.88 43.86 51.53 52.48 62.80

H 19.41 41.92 25.93 36.20 47.78 40.47 45.83 60.80 61.71 64.93

UCF101
Acc. 49.22 52.02 55.86 54.80 60.22 61.43 63.05 69.55 68.89 69.10
Rob. 35.13 34.73 40.47 39.15 41.63 44.49 58.58 50.52 51.23 65.40

H 41.00 41.65 46.94 45.67 49.23 51.61 60.73 58.53 58.76 67.20

Table A6: The performance on the 11 datasets for different shots under the adversarial few-shot
classification setting when ϵ = 4/255, where ‘H’ denotes the harmonic mean accuracy.

Dataset ϵ = 4/255
1 shot 4 shot 16 shot

CLIP APT FAP DEFEAT APT FAP DEFEAT APT FAP DEFEAT

Average
Acc. 33.67 32.97 38.16 35.78 42.29 44.63 44.13 51.08 50.50 50.98
Rob. 10.79 11.62 13.44 14.73 14.40 15.34 25.28 20.26 19.82 36.05

H 16.34 17.19 19.88 20.87 21.49 22.83 32.14 29.02 28.47 42.24

ImageNet
Acc. 40.11 37.88 36.95 37.32 39.13 38.94 39.28 41.06 40.45 41.09
Rob. 10.14 10.79 11.41 12.48 11.49 11.86 12.66 12.02 12.03 18.42

H 16.19 16.80 17.44 18.70 17.76 18.18 19.15 18.60 18.54 25.44

Caltech101
Acc. 78.78 77.89 76.67 79.55 81.62 77.61 83.16 86.29 80.04 87.63
Rob. 43.61 45.84 48.36 51.03 47.59 51.81 58.74 56.75 55.42 78.30

H 56.14 57.71 59.31 62.18 60.12 62.14 68.85 68.47 65.49 82.70

OxfordPets
Acc. 66.26 59.58 63.01 57.51 65.99 66.86 69.45 67.29 69.09 72.17
Rob. 15.56 15.54 20.31 22.16 17.80 22.59 27.42 19.98 26.17 30.77

H 25.20 24.65 30.72 31.99 28.04 33.77 39.32 30.81 37.96 43.14

StanfordCars
Acc. 10.32 19.49 27.41 22.96 23.93 33.96 25.90 31.60 41.06 32.45
Rob. 0.99 2.90 3.27 4.74 4.44 4.76 8.20 7.70 6.33 19.51

H 1.81 5.05 5.84 7.86 7.49 8.35 12.46 12.38 10.97 24.37

Flowers102
Acc. 30.13 35.93 42.55 34.59 60.25 55.58 56.11 76.41 66.10 71.13
Rob. 8.93 11.49 14.21 14.01 22.45 20.46 48.60 37.52 30.82 58.26

H 13.78 17.41 21.30 19.94 32.71 29.91 52.09 50.33 42.04 64.05

Food101
Acc. 23.52 20.73 33.46 26.96 21.97 38.84 29.75 30.39 45.60 33.57
Rob. 3.27 3.42 5.46 6.01 4.01 6.39 8.29 7.90 8.23 20.50

H 5.74 5.87 9.39 9.83 6.78 10.97 12.97 12.54 13.94 25.46

FGVCAircraft
Acc. 7.17 1.41 11.94 11.67 2.31 15.27 14.58 20.31 18.57 18.03
Rob. 0.36 0.42 2.52 2.73 0.51 2.73 10.26 6.15 5.07 11.94

H 0.69 0.65 4.16 4.42 0.84 4.63 12.04 9.44 7.97 14.37

SUN397
Acc. 33.24 32.32 36.44 35.68 39.06 39.68 41.29 45.21 43.66 46.26
Rob. 6.20 5.76 8.63 9.14 7.92 9.69 19.99 11.27 11.44 28.88

H 10.45 9.78 13.96 14.55 13.17 15.58 26.94 18.04 18.13 35.56

DTD
Acc. 24.29 23.29 27.78 25.24 36.17 37.41 38.18 45.86 42.85 44.15
Rob. 11.35 9.46 10.87 11.88 14.13 15.60 26.48 21.51 20.98 32.33

H 15.47 13.45 15.63 16.16 20.32 22.02 31.27 29.28 28.17 37.33

EuroSAT
Acc. 19.56 21.09 28.02 25.49 49.98 40.58 39.47 64.33 57.37 58.88
Rob. 11.22 14.53 13.94 15.77 16.44 8.57 28.07 25.54 23.06 54.65

H 14.26 17.21 18.62 19.49 24.74 14.15 32.81 36.56 32.90 56.69

UCF101
Acc. 36.98 33.10 35.58 36.56 44.75 46.21 48.27 53.16 50.67 55.43
Rob. 7.01 7.72 8.86 12.11 11.66 14.27 29.32 16.55 18.50 43.03

H 11.79 12.52 14.19 18.19 18.50 21.81 36.48 25.24 27.10 48.45
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Figure A7: Performance on the 11 datasets under the adversarial few-shot classification setting when
ϵ = 4/255. As the accuracies among prompt tuning methods are comparable, we only plot the curves
for robustness and ‘H’ to improve readability.

Effect of λ. In Eq. (10), λ controls the weight of LI
reg, which is designed to ensure consistency

between the Îproj and the CLIP pre-trained class feature I. According to Figure A8c, as λ increases,
the overall performance of DEFEAT improves, and then remains stable thereafter (i.e., λ > 10),
making it easy to choose an appropriate λ in practice. Those results highlight the importance of
regularizing Îproj. In our experiments, we set λ = 10.
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Figure A8: The average performance of DEFEAT on all datasets w.r.t. hyperparameters (i.e., α, β,
and λ) under the adversarial few-shot classification setting.

C.3 ANALYSIS OF LOGITS FUSION STRATEGY

In this section, we analyse a variant of the logtis fusion strategy. Specifically, to control the trade-off
between robustness and accuracy flexibility, we can modify the fused logits in Eq. (7) to the following
form:

p(y|x) = (1− ω) pvq(y|x) + ωps(y|x) (11)
where ω is the hyperparameter. We analyze how different ω values impact DEFEAT’s performance.
Figure A9 shows that as ω increases, accuracy gradually improves because the logits of I and ts,
which contribute to clean accuracy, have a larger weight in the fused logits. Robustness and ‘H’
initially increase with ω, then plateau, and eventually decline. Although the range of ω values where
‘H’ stabilizes varies slightly across different datasets, ω = 0.5 consistently falls within or near this
range. Therefore, we set ω = 0.5 for all datasets in our experiments.
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Figure A9: Performance of DEFEAT on Caltech101, EuroSAT, UCF101, and OxfordPets datasets
w.r.t. different ω values under the adversarial few-shot classification setting.

C.4 ADVERSARIAL ROBUSTNESS EVALUATION UNDER VARIOUS ATTACKS

In this section, we evaluate the adversarial robustness of prompt tuning methods using a wider variety
of attacks, including Carlini & Wagner (CW) attack (Carlini & Wagner, 2017) and AutoAttack (AA)
(Croce & Hein, 2020). CW is a stronger optimization-based adversarial attack that finds the minimal
perturbation required to cause a model to misclassify an input. AutoAttack (Croce & Hein, 2020)
is a standardized benchmark suite that combines multiple attacks to evaluate a model’s adversarial
robustness reliably. Specifically, we use the standard AutoAttack setting, which executes a suite of
four attacks: APGD-CE (untargeted), APGD-T (targeted), FAB-T (targeted), and Square (black-box).
All component attacks utilize the default setting of 1 restart. We apply non-deterministic seeding to
each component attack. As shown in Table A7, both CW and AA generate more potent adversarial
examples than PGD, resulting in lower robustness for all methods (i.e., APT, FAP, and DEFEAT).
Despite this, DEFEAT consistently outperforms the APT and FAP baselines across all datasets.
This consistent superiority against a diverse and powerful suite of attacks provides strong evidence
that DEFEAT’s robustness is genuine and not an artifact of attack-specific overfitting or gradient
obfuscation.

Table A7: Performance of adversarial prompt tuning methods under the adversarial few-shot classifi-
cation setting with various attacks.

16shot, ϵ = 4/255 Average Caltech101 OxfordPets StanfordCars Flowers102

Method Acc. PGD AA CW Acc. PGD AA CW Acc. PGD AA CW Acc. PGD AA CW Acc. PGD AA CW

TeCoA 33.00 11.37 9.64 11.07 78.78 43.61 40.93 44.30 66.26 15.56 11.28 15.26 10.32 0.99 0.62 0.99 30.13 8.93 6.54 7.59
APT 52.85 22.18 17.27 20.07 86.29 56.75 53.75 56.51 67.29 19.98 13.33 16.98 31.60 7.70 3.69 5.19 76.41 37.52 30.86 33.46
FAP 53.17 21.62 16.02 17.58 80.04 55.42 50.87 53.35 69.09 26.17 16.46 18.34 41.06 6.33 2.43 4.00 66.10 30.82 23.02 24.81
DEFEAT 52.60 39.92 27.02 34.89 87.63 78.30 70.30 77.32 72.17 30.77 18.86 23.63 32.45 19.51 9.63 16.71 71.13 58.26 45.11 55.38

Food101 FGVCAircraft DTD EuroSAT UCF101

Method Acc. PGD AA CW Acc. PGD AA CW Acc. PGD AA CW Acc. PGD AA CW Acc. PGD AA CW

TeCoA 23.52 3.27 1.81 2.57 7.17 0.36 0.06 0.21 24.29 11.35 9.75 10.17 19.56 11.22 10.49 11.30 36.98 7.01 5.26 7.22
APT 30.39 7.90 4.48 5.54 20.31 6.15 3.06 4.05 45.86 21.51 15.07 17.14 64.33 25.54 18.35 25.04 53.16 16.55 12.82 16.68
FAP 45.60 8.23 3.92 5.37 18.57 5.07 2.58 3.06 42.85 20.98 17.32 18.09 64.51 23.06 15.19 16.33 50.67 18.50 12.42 14.83
DEFEAT 33.57 20.50 11.08 18.23 18.03 11.94 6.48 10.41 44.15 42.33 25.95 30.85 58.88 54.65 27.35 40.00 55.43 43.03 28.42 41.48

C.5 ADAPTIVE ATTACK ON DEFEAT

To provide a more rigorous evaluation and to demonstrate DEFEAT’s robustness, we design a defense-
aware adaptive attack specifically tailored to circumvent its core architectural components. Following
the principles outlined by Athalye et al. (2018), an adaptive attack must take the specific defense
mechanism into account. Our attack targets the logits fusion strategy, which is a unique characteristic
of the DEFEAT framework.

An attacker with knowledge of the DEFEAT architecture would realize that the final prediction comes
from a standard, continuous feature branch and a defended, discretized feature branch. Based on
this insight, we hypothesize that the most effective adaptive attack strategy is to identify the more
vulnerable of these two branches and concentrate the full adversarial pressure on it.

To validate this hypothesis and identify the worst-case attack, we design a logits fusion-aware adaptive
attack. Instead of maximizing the standard cross-entropy loss on the fused output, we maximize
a weighted sum of the individual cross-entropy losses from each branch. The adaptive attack loss
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Figure A10: Robustness of DEFEAT on the DTD dataset under the logits fusion-aware adaptive
attack with varying κ values. Standard PGD attacks on CLIP and DEFEAT are provided as baselines.

Ladapt is defined as:

Ls
ce(x, t

s,y) =
∑C

i=1
yi log p

s(y|x) (12)

Lvq
ce (x, t

s,y) =
∑C

i=1
yi log p

vq(y|x) (13)

Ladapt = κ ∗ Ls
ce(x, t

s,y) + (1− κ) ∗ Lvq
ce (x, t

s,y) (14)

where ps(y|x) and pvq(y|x) are defined in Eq. (4) and Eq. (6), κ is a hyperparameter controls the
focus of the attack. By varying the value of κ, we can explore the effect of attacking different
branches. We then use a PGD-based optimizer to find the perturbation that maximizes Ladapt.

We conduct experiments on the DTD dataset under the adversarial few-shot (16-shot) classification
setting with ϵ = 4/255 to analyze DEFEAT’s performance under this adaptive attack. The results are
presented in Figure A10.

The experimental results clearly validate our hypothesis. When we concentrate the full attack pressure
on the standard, non-discretized feature branch (κ = 1), DEFEAT’s robustness drops to its lowest
point of 18.20%. This demonstrates that, with knowledge of DEFEAT’s defense mechanism, the most
effective adaptive attack is indeed to focus entirely on the branch unprotected by the PerturbShield
module.

Conversely, when the attack exclusively targets the defended PerturbShield branch (κ = 0), the
model’s robustness reaches its highest point of 34.75%, even surpassing its performance against a
standard PGD attack on the fused logits (32.33%). This provides strong evidence for the effectiveness
of our proposed discretization module.

In summary, this experiment validates the design of our adaptive attack. Even under this custom-
designed, worst-case adaptive attack, DEFEAT’s robustness (18.20%) remains significantly higher
than the CLIP baseline (11.35%), providing evidence for the good robustness of DEFEAT.

C.6 GENERALIZATION TO STRONGER PERTURBATION BUDGETS

A critical measure of a defense mechanism’s effectiveness is its ability to generalize to attacks stronger
than those seen during training. To evaluate this, we conduct a challenging experiment where all
models are trained using 16 examples per class under a standard PGD attack with a perturbation
budget of ϵ = 4/255, but are then evaluated against a much stronger, unseen PGD attack with
ϵ = 8/255.

As shown in Table A8, the results demonstrate a consistent advantage for DEFEAT. While the
stronger attack significantly degrades the robustness of all baselines (compared to the 16-shot results
in Table A6), DEFEAT maintains a substantially higher level of robustness across every dataset. On
average, DEFEAT achieves a robust accuracy of 23.32%, which is over 4 times higher than FAP
(5.81%) and 5 times higher than APT (4.62%).

Crucially, this significant gain in robustness is achieved with no sacrifice in clean accuracy. DEFEAT
remains competitive with the baselines in this regard. This experiment provides compelling evidence
that DEFEAT learns a more fundamental and generalizable defense mechanism. Instead of merely
overfitting to a specific perturbation budget, its discrete feature reconstruction allows it to more
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effectively ablate perturbations, making it a more reliable defense for real-world scenarios where
attack strengths are unknown.

Table A8: Performance against larger perturbation budgets (trained on ϵ = 4/255, tested on ϵ =
8/255).

train (ϵ = 4/255)
Method

Average Caltech101 OxfordPets EuroSAT UCF101 DTD Flowers102 StanfordCars FGVCAircraft

test (ϵ = 8/255) Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

PGD
APT 55.66 4.62 86.29 20.89 67.29 1.31 64.33 1.62 53.16 1.43 45.86 6.68 76.41 4.26 31.60 0.52 20.31 0.27
FAP 53.22 5.81 80.04 25.03 69.09 2.02 57.37 2.41 50.67 2.06 42.85 8.33 66.10 5.68 41.06 0.29 18.57 0.66
DEFEAT 54.98 23.32 87.63 58.46 72.17 2.94 58.88 31.09 55.43 21.46 44.15 19.56 71.13 36.09 32.45 7.61 18.03 9.33

C.7 GENERALIZATION TO ALTERNATIVE ROBUST BACKBONES

To demonstrate that the effectiveness of DEFEAT is not limited to a specific robust backbone, we
replace the TeCoA-trained image encoder (Mao et al., 2023) with a more recent and powerful one
pre-trained via the FARE method (Schlarmann et al., 2024). We then evaluate all adversarial prompt
tuning baselines under the adversarial 16-shot classification setting.

The results in Table A9 show that DEFEAT maintains its superiority. Under the weaker PGD attack
(ϵ = 1/255), DEFEAT achieves an average robustness of 69.33%, outperforming the next-best
baseline (FAP) by nearly 15%. This advantage becomes even more pronounced under the stronger
attack (ϵ = 4/255), where DEFEAT’s average robustness of 52.46% is over 20% higher than the
strongest baseline (FAP at 30.53%). Those results validate that DEFEAT is a generalizable framework
that enhances robustness independently of the underlying pre-training method, and its benefits are
magnified when paired with stronger robust encoders.

Table A9: Performance on a CLIP ViT-B/32 image encoder pre-trained with FARE (Schlarmann
et al., 2024).

ϵ = 1/255 Method
Average Caltech101 OxfordPets EuroSAT UCF101 DTD Flowers102 StanfordCars FGVCAircraft

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

PGD

FARE 54.87 34.09 91.12 76.63 86.92 61.60 24.89 13.83 59.08 33.81 41.13 26.60 62.16 33.78 56.97 21.43 16.65 5.04
+APT 75.57 50.60 95.25 84.06 87.87 63.29 79.58 42.44 78.91 51.86 63.95 41.31 93.10 73.08 72.89 37.71 32.97 11.07
+FAP 71.73 54.79 93.67 86.17 88.53 72.31 80.49 52.46 72.83 55.80 61.94 45.80 85.06 72.07 63.41 37.78 27.93 15.96
+DEFEAT 74.75 69.33 95.17 93.02 89.78 83.02 76.63 68.88 79.57 74.23 64.13 58.39 91.64 87.09 70.71 63.11 30.33 26.91

ϵ = 4/255 Method
Average Caltech101 OxfordPets EuroSAT UCF101 DTD Flowers102 StanfordCars FGVCAircraft

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

PGD

FARE 42.84 15.87 86.00 54.69 77.60 24.64 16.28 10.88 43.01 8.96 31.26 15.19 39.22 7.75 39.17 3.56 10.20 1.32
+APT 64.86 29.04 92.41 66.61 81.36 30.36 57.42 24.96 67.96 24.45 53.31 23.05 84.49 42.55 57.08 14.99 24.84 5.37
+FAP 58.59 30.53 85.48 66.41 77.41 39.22 59.53 23.72 59.19 26.38 46.99 25.18 70.44 41.41 47.62 13.52 22.05 8.43
+DEFEAT 65.53 52.46 92.54 86.57 84.19 52.79 63.77 52.02 69.10 55.30 52.19 41.84 80.63 68.49 58.03 42.72 23.79 19.98

C.8 GENERALIZATION TO ALTERNATIVE VLM BACKBONES

To demonstrate that the effectiveness of DEFEAT is not limited to the ViT-B/32 CLIP backbone used
in our main paper, we conduct additional experiments on two distinct and powerful backbones: a
larger CLIP model (ViT-L/14) and a model from a different pre-training family (EVA-CLIP (Sun
et al., 2023)). The following results validate that DEFEAT is a broadly applicable framework.

First, to assess the scalability of our method, we replace the TeCoA-trained ViT-B/32 (Mao et al.,
2023) backbone with the much larger TeCoA-trained ViT-L/14. As shown in Table A10, DEFEAT
continues to provide significant robustness gains on this more powerful model. Those results
demonstrate that our method scales effectively with model size.

Next, we evaluate DEFEAT’s adaptability by applying it to EVA-CLIP (Sun et al., 2023), which
represents a different pre-training paradigm compared to the original OpenAI CLIP. The results in
Table A11 show that DEFEAT successfully enhances the robustness of this distinct model family.
Those results validate that DEFEAT can serve as a general-purpose robust prompt tuning framework.
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Table A10: Performance on the TeCoA-trained CLIP ViT-L/14 (Mao et al., 2023) backbone against
PGD attack (ϵ = 4/255) under the adversarial few-shot (16-shot) classification setting.

ϵ = 4/255 Method
Caltech101 DTD Flowers102 Average

Acc. Rob. H Acc. Rob. H Acc. Rob. H Acc. Rob. H

PGD

CLIP 94.81 17.85 30.04 53.72 0.59 1.17 79.46 0.45 0.89 76.00 6.30 11.63
TeCoA 87.38 75.98 81.28 34.63 28.19 31.08 39.02 25.38 30.76 53.68 43.18 47.86
+APT 95.42 86.77 90.89 57.21 44.92 50.33 88.67 76.53 82.15 80.43 69.41 74.51
+DEFEAT 95.70 91.81 93.71 57.57 46.81 51.64 85.95 79.01 82.33 79.74 72.54 75.97

Table A11: Performance on the EVA-CLIP (Sun et al., 2023) backbone against PGD attack (ϵ =
1/255) under the adversarial few-shot (16-shot) classification setting.

ϵ = 1/255 Method
Caltech101 DTD Flowers102 Average

Acc. Rob. H Acc. Rob. H Acc. Rob. H Acc. Rob. H

PGD
EVA-CLIP 97.20 3.81 7.33 49.41 2.78 5.26 75.92 0.81 1.60 74.18 2.47 4.77
+APT 97.85 5.23 9.93 74.70 2.60 5.03 98.05 2.64 5.14 90.20 3.49 6.72
+DEFEAT 96.80 11.70 20.88 71.28 5.61 10.40 95.86 4.47 8.54 87.98 7.26 13.41

C.9 ROBUST VISUAL BACKBONE RELIANCE

In this section, we analyse the reliance of the robust visual backbone on the proposed DEFEAT
method. While DEFEAT significantly enhances adversarial robustness under few-shot prompt tuning
conditions, it relies heavily on pre-trained robust visual backbones (e.g., TeCoA (Mao et al., 2023))
like other adversarial prompt tuning methods (e.g., APT (Li et al., 2024) and FAP (Zhou et al.,
2024)). The results in Table A12 show that APT failed to improve robustness when not using
TeCoA. DEFEAT and FAP show less dependence on TeCoA when the perturbation size is small
(i.e., ϵ = 1/255). However, using the robust image encoder TeCoA still substantially enhances the
robustness of both FAP and DEFEAT. When increasing perturbation size to ϵ = 4/255, we find
that all methods, i.e., APT, FAP, and DEFEAT) exhibit near-zero robustness or even collapse during
training, a phenomenon also reported in Li et al. (2024); Zhou et al. (2024). The reasons may be the
considerably smaller parameter space available for tuning compared to fine-tuning the entire model.
Those results show that a robust visual backbone is necessary for adversarial prompt tuning methods.

Table A12: Performance of adversarial prompt tuning methods with (w/) or without (w/o) TeCoA
on Flowers102 and DTD datasets for 16 shots under the adversarial few-shot classification setting
when ϵ = 1/255. The numbers in the parentheses denote the improvement or decline compared to
the methods without TeCoA.

Dataset ϵ = 1/255 TeCoA
APT FAP DEFEAT

w/o TeCoA w/ TeCoA w/o TeCoA w/ TeCoA w/o TeCoA w/ TeCoA

Flowers102
Acc. 48.15 85.06 (+36.91) 86.80 (+38.65) 80.15 (+32.00) 82.46 (+34.31) 91.72 (+43.57) 84.90 (+36.75)
Rob. 32.68 0.85 (-31.83) 73.57 (+40.89) 51.36 (+18.68) 66.63 (+33.95) 55.99 (+23.31) 81.81 (+49.13)

H 38.93 1.68 (-37.25) 79.64 (+40.71) 62.60 (+23.67) 73.70 (+34.77) 69.53 (+30.60) 83.33 (+44.40)

DTD
Acc. 31.97 60.11 (+28.14) 55.26 (+23.29) 55.50 (+23.53) 56.68 (+24.71) 65.13 (+33.16) 57.15 (+25.18)
Rob. 23.88 2.60 (-21.28) 39.54 (+15.66) 28.67 (+4.79) 41.67 (+17.79) 30.91 (+7.03) 52.66 (+28.78)

H 27.34 4.98 (-22.35) 46.10 (+18.76) 37.81 (+10.47) 48.03 (+20.69) 41.92 (+14.58) 54.81 (+27.47)

C.10 COMPUTATIONAL COST ANALYSIS

To evaluate the practicality and efficiency of DEFEAT, we provide a comprehensive analysis of
its computational overhead compared to APT and FAP. For a fair comparison, we adopt the same
experimental settings as APT (e.g., training epochs, schedules, and data augmentation), while for FAP,
we maintain its original implementation to ensure a faithful reproduction of its results. All experiments
were conducted on the ImageNet dataset under the adversarial few-shot (16-shot) classification setting
with ϵ = 4/255.

The results in Table A13 show that DEFEAT achieves a highly favorable trade-off between computa-
tional cost and robustness.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Training Memory. The training memory required by DEFEAT (21240M) is nearly identical to
that of APT (21204M) and significantly lower than that of FAP (37500M). This indicates that our
PerturbShield module adds minimal GPU memory overhead.

Training Time. The training time of DEFEAT (19.21h) is negligibly longer than APT’s (18.99h) and
is less than half that of FAP (39.04h), demonstrating a clear efficiency advantage.

Inference Time. During inference, the per-image processing time for DEFEAT (3.1431ms) is only a
minor increase of 0̃.15ms over APT (2.9959ms), which is insignificant for practical applications.

In summary, the computational overhead introduced by our method is minimal during both training
and inference. This slight cost is a highly favorable trade-off for the substantial improvement in
robustness that DEFEAT provides over both APT and FAP, showing the practicality and efficiency of
our method.

Table A13: Computational cost and performance comparison on ImageNet under the adversarial
few-shot (16-shot) classification setting with ϵ = 4/255.

Method Train.Memory Train.time (h) Infer.time (ms) Acc. Rob. H

APT 21204M 18.99 2.9959 41.06 12.02 18.60
DEFEAT (ours) 21240M 19.21 (+0.22) 3.1431 41.09 18.42 25.44
FAP 37500M 39.04 3.0020 40.45 12.03 18.54

C.11 PERFORMANCE COMPARISON UNDER THE ℓ2 THREAT MODEL

We extend our experiments to the ℓ2 threat model, evaluating all methods against the PGD-ℓ2 (ϵ = 0.5)
attack across 10 downstream datasets.

As shown in Table A14, DEFEAT performs well under the ℓ2 threat model. Our method achieves
an average robustness of 50.24%, surpassing both APT (47.34%) and FAP (47.07%). This result
demonstrates that the robustness gains provided by DEFEAT are generalizable and not restricted to
the ℓ∞ norm.

Table A14: Performance Comparison under the adversarial few-shot (16-shot) classification setting
with the ℓ2 threat model.

PGD-ℓ2 Average Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101

Method Acc. Rob.. H Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

TeCoA 33.03 29.17 30.98 78.78 74.40 66.26 59.14 10.32 7.80 30.13 26.59 23.52 19.34 7.17 5.07 33.24 28.13 24.29 22.51 19.56 17.73 36.98 31.03
APT 52.09 47.34 49.60 86.29 84.42 67.29 61.43 31.60 29.30 76.41 68.69 30.39 26.08 20.31 15.99 45.21 39.85 45.86 40.01 64.33 58.90 53.16 48.72
FAP 52.22 47.07 49.51 80.04 77.36 69.09 61.43 41.06 33.33 66.10 61.63 45.60 38.26 18.57 15.48 43.66 38.17 42.85 39.36 64.51 59.78 50.67 45.94
DEFEAT 51.97 50.24 51.09 87.63 86.41 72.17 67.10 32.45 30.93 71.13 69.43 33.57 31.99 18.03 16.65 46.26 44.14 44.15 42.61 58.88 58.85 55.43 54.27

C.12 COMBINATION WITH TEST-TIME DEFENSE STRATEGY

To address the scenario facing strong attacks without a pre-trained robust backbone, we propose
DEFEAT-T, a variant of the DEFEAT method. DEFEAT-T successfully adapts our core idea to the
non-robust backbone scenario by combining it with a test-time defense strategy (Shu et al., 2022;
Wang et al., 2025; Sheng et al., 2025).

The core of DEFEAT-T is to pivot our method from an “active defender” (via adversarial training)
to a “passive purifier” (via clean training), combined with an efficient, optimization-free test-time
ensemble. The mechanism is structured into two phases:

Phase 1: Clean Training. We first recognized that adversarial training on a non-robust backbone
could be a source of the training collapse. Therefore, we discard adversarial training. Instead, we train
our DEFEAT framework (including the learnable prompt and PerturbShield module) on a standard
(non-robust) backbone using clean data only. In this phase, our PerturbShield module learns to
reconstruct the clean feature distribution of the non-robust backbone.

Phase 2: Test-Time Ensemble Defense. At test time, we execute forward-pass ensemble defense,
avoiding per-sample backpropagation or optimization, which are major bottlenecks for test-time
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prompt tuning methods (Shu et al., 2022; Wang et al., 2025; Sheng et al., 2025). First, we generate
Naug (e.g., Naug=64) augmented views (e.g., random crop, random horizontal flip) of the test sample.
Second, all Naug views are fed through our model trained from clean data, to get Naug fused logits
by Eq. (7) as shown in Figure 4. Next, to obtain the final prediction, one can directly average these
Naug fused logits. Here, to have better performance, we perform a reliability-based weighted average.
Specifically, we use the Naug class features (which are collected alongside the grid features) to
compute a similarity matrix. We then average the top-k (e.g., k=20) values in each row to get a
reliability score for each augmented view. Finally, we use these reliability scores as weights for a
weighted average of the corresponding fused logits to obtain the final prediction.

The rationale for this design is our hypothesis that this view augmentation and weighted-average
prediction could mitigate the impact of unseen adversarial perturbations, and that combining it with
our DEFEAT framework provides a second stage of purification.

Table A15: Combination adversarial prompt tuning methods with test-time defense strategy under
the adversarial few-shot classification setting.

16shot, ϵ = 4/255 Method
Average Caltech101 OxfordPets Flowers102 DTD

Acc. Rob. H Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

zero-shot
CLIP 72.38 2.28 4.42 91.03 7.79 87.38 1.20 66.91 0.12 44.21 0.00

TeCoA 49.87 19.86 28.41 78.78 43.61 66.26 15.56 30.13 8.93 24.29 11.35

Test-time prompt tuning R-TPT 70.23 50.86 59.00 90.83 77.00 85.12 57.32 62.28 39.46 42.67 29.67

Train-time prompt tuning

APT w/o TeCoA 14.05 0.07 0.14 43.77 0.16 3.38 0.00 3.45 0.00 5.61 0.12
DEFEAT w/o TeCoA 18.45 0.16 0.32 51.89 0.41 3.05 0.00 9.62 0.00 9.22 0.24

APT (w/ TeCoA) 68.96 33.94 45.49 86.29 56.75 67.29 19.98 76.41 37.52 45.86 21.51
DEFEAT (w/ TeCoA) 68.77 49.92 57.84 87.63 78.30 72.17 30.77 71.13 58.26 44.15 32.33

Train-time prompt tuning APT-T (w/o TeCoA) 86.72 43.33 57.78 95.01 71.08 90.19 32.54 94.76 39.18 66.90 30.50
+ test-time defense DEFEAT-T (w/o TeCoA) 87.76 75.96 81.43 96.23 93.63 91.88 86.54 94.60 66.38 68.32 57.27

Empirical Verification. As shown in Table A15, DEFEAT-T (w/o TeCoA) achieves good average
performance (87.76% Acc., 75.96% Rob., 81.43% H), surpassing test-time prompt tuning methods
like R-TPT (70.23% Acc., 50.86% Rob., 59.00% H), and the standard DEFEAT (w/ TeCoA) (68.77%
Acc., 49.92% Rob. , 57.84% H) even without a robust backbone.

Simultaneously, we also extend the baseline APT to APT-T (w/o TeCoA) (i.e., APT trained on
clean data, evaluated with the same test-time ensemble but without the logits fusion strategy and
the PerturbShield module). We find that APT-T (w/o TeCoA) (43.33% Rob.) achieves performance
comparable to the original DEFEAT (w/ TeCoA) (49.92% Rob.). However, its robustness is still
significantly weaker than our DEFEAT-T (75.96% Rob.). This comparison further demonstrates the
effectiveness of our proposed logits fusion strategy and PerturbShield.

Crucially, our DEFEAT-T method has a decisive efficiency advantage over existing test-time prompt
tuning methods (Shu et al., 2022; Wang et al., 2025; Sheng et al., 2025). Existing methods require
per-sample optimization (batch size=1) involving backpropagation, making them slow. Our DEFEAT-
T is an inference-only scheme with no gradient calculations, allowing for batch parallelism and much
faster inference. However, even so, the time cost of DEFEAT-T’s inference is still much higher
than that of the original DEFEAT. As shown in Table A16, the inference time of DEFEAT-T is
approximately 2x slower than that of DEFEAT. On the other hand, the training time for DEFEAT-T is
much shorter, as it does not require adversarial training.

In summary, DEFEAT and DEFEAT-T can be adopted in different scenarios. The original DEFEAT
(w/ TeCoA) is ideal for low-latency inference scenarios, whereas DEFEAT-T is a perfectly viable and
highly robust alternative when a robust backbone is not available.

Table A16: Computational cost and performance comparison between DEFEAT, DEFEAT-T, and
R-TPT (Sheng et al., 2025) on Caltech101 under the adversarial few-shot (16-shot) classification
setting with ϵ = 4/255.

Method Train.Time (s) Infer.Memory Infer.Time (s/per img) Acc. Rob.. H

DEFEAT (w/ TeCoA) 3597 8481M 0.09 93.39 91.12 92.24
DEFEAT-T (w/o TeCoA) 1079 10420M 0.19 96.19 95.58 95.88
R-TPT 0 5248M (batch=1) 6.63 90.83 86.13 88.42
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C.13 THEORETICAL JUSTIFICATION

Here we provide a theoretical justification for why clean and adversarially perturbed features can be
mapped to the same discrete representation within the VQ-VAE framework.

Let Enc(·) denote the composite visual encoder, which consists of the CLIP image encoder followed
by the trainable VQ-VAE encoder. The clean latent features output by this composite encoder are
denoted by zce = Enc(x) ∈ Rn×d (where n is the number of latent positions after encoding, d is
the dimensionality of the latent embedding). Under an adversarial attack with perturbation δ, the
adversarial latent features become:

zae = Enc(x+ δ) = zce +∆z, (15)

where ∆z ∈ Rn×d is the mapped perturbation in the latent space.

The core of VQ-VAE is to discretize continuous latent features through a codebook E = {ek}Kk=1
(where K is the codebook size). The covering radius r of the codebook is defined as

r = max
z∈Z

min
ek∈E

∥z − ek∥2, (16)

where Z is the set of latent features output by the encoder from all clean images. The covering radius
r characterizes the “coverage capability” of the codebook over the clean feature space: the distance
from any clean feature to its nearest codebook element does not exceed r, and r is minimized through
the codebook loss of VQ-VAE.

Based on the above definition, if the perturbation magnitude in the latent space satisfies ∥∆z∥2 ≤ r,
it is statistically highly probable that both the clean feature zce and the adversarial feature zae map to
the same codebook element ek ∈ E . Notably, the training objective in DEFEAT encourages images
that are more similar at the pixel level to be closer in feature space. So the feature shift ∆z induced
by minor perturbations is typically much smaller than the codebook covering radius r, effectively
mitigating such adversarial attacks during the quantization process.

Empirical Verification. To validate this, we conduct a statistical analysis on the latent space using
the Caltech101 dataset (16-shot, ϵ = 4/255). We measure two key metrics across all image patches:

• The average magnitude of adversarial perturbation per patch: ∥∆z∥2 ≈ 126.0.
• The average distance between clean latent features and their assigned codebook vectors

(serving as a proxy for the safety radius): r ≈ 432.3.

The experimental results show that the covering radius is approximately 3.43 times larger than the
perturbation magnitude (432.3 vs. 126.0). This substantial margin implies that the vast majority
of adversarial perturbations are insufficient to push the latent features out of their original discrete
region defined by their assigned code. Consequently, the clean and adversarial patches are quantized
to the same discrete codes, confirming the effectiveness of our defense.

C.14 STABILITY ANALYSIS WITH MULTI-SEED EVALUATION

To ensure the reproducibility of our results and confirm that the reported performance is not an
artifact of a single run, we conduct a stability analysis by re-running our primary adversarial few-shot
classification experiments. Specifically, we evaluate the models under the 16-shot setting with PGD
attack (ϵ = 4/255) using three random seeds (0, 1, and 2).

Table A17 compares our originally reported results (derived from Table 1 and Table A6) with the
new averages calculated across three seeds. As observed, the multi-seed averages align closely with
our reported single-seed results. Crucially, the robustness advantage of DEFEAT remains consistent
and stable. For instance, the multi-seed average harmonic mean for DEFEAT is 41.66%, which still
substantially surpasses the strongest baselines, APT (28.90%) and FAP (28.07%). This consistency
confirms that our results are reproducible and statistically robust.

C.15 STABILITY ANALYSIS AGAINST PROMPT VARIATIONS

As shown in Table A19, DEFEAT exhibits remarkable stability. The robustness fluctuates only
slightly (between 31.09% and 32.33%) across different prompt variations.
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Table A17: Comparison between originally reported results and averages over 3 seeds

16shot, ϵ = 4/255 Average (reported) Average on 3 seeds
Method Acc. Rob. H Acc. Rob. H

TeCoA 33.67 10.79 16.34 33.67 10.78 16.33
APT 51.08 20.26 29.02 51.27 20.12 28.90
FAP 50.50 19.82 28.47 50.68 19.41 28.07

DEFEAT 50.98 36.05 42.24 50.85 35.28 41.66

Table A18: Complete results calculated by averaging three seeds across all datasets. (16shot,
ϵ = 4/255)

Method
ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

TeCoA 40.11 10.15 78.78 43.57 66.26 15.49 10.32 0.99 30.13 8.94 23.52 3.26 7.17 0.36 33.24 6.21 24.29 11.39 19.56 11.21 36.98 6.99
APT 40.98 12.22 86.38 56.79 68.25 19.82 33.08 7.74 76.24 37.18 30.19 7.87 19.50 6.04 45.32 11.28 44.09 20.06 65.34 25.87 54.55 16.50
FAP 40.53 12.10 80.36 55.50 69.27 25.59 40.91 6.60 66.11 30.96 45.18 8.30 19.00 4.97 43.75 11.33 43.31 17.71 58.14 22.64 50.87 17.82

DEFEAT 40.79 18.02 86.96 77.61 72.12 32.31 32.94 20.38 71.00 58.13 33.60 20.50 16.82 11.32 46.23 29.61 44.41 32.57 58.85 45.35 55.59 42.34

Crucially, the performance trends remain consistent across all variations. Even under the least optimal
prompt setting (“{} texture.”), DEFEAT (31.09% Rob.) significantly outperforms the strongest
baseline, APT (20.26% Rob.), by a margin of +10.83%. This confirms that our method’s superiority
is intrinsic to its design rather than an artifact of specific prompt engineering.

Table A19: Stability analysis of DEFEAT against different hand-crafted prompt templates on the
DTD dataset.

16shot, ϵ = 4/255 DTD

Method Acc. Rob. H

TeCoA 33.67 10.79 16.34
APT 51.08 20.26 29.02
FAP 50.50 19.82 28.47

DEFEAT with different hand-crafted prompts
“a photo of a {}, a type of texture.” 44.15 32.33 37.33
“{} texture.” 44.74 31.09 36.69
“a photo of {}.” 44.03 31.80 36.93

D USE OF LARGE LANGUAGE MODELS

The LLM served as an assistive tool for language editing and manuscript polishing. Its usage was
confined to improving grammar, refining phrasing for clarity, and ensuring idiomatic English.
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