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Abstract

Comparison-based learning addresses the problem of learning when, instead of explicit fea-
tures or pairwise similarities, one only has access to comparisons of the form: Object A is
more similar to B than to C. Recently, it has been shown that, in Hierarchical Clustering,
single and complete linkage can be directly implemented using only such comparisons while
several algorithms have been proposed to emulate the behaviour of average linkage. Hence,
finding hierarchies (or dendrograms) using only comparisons is a well understood problem.
However, evaluating their meaningfulness when no ground-truth nor explicit similarities are
available remains an open question.

In this paper, we bridge this gap by proposing a new revenue function that allows one to
measure the goodness of dendrograms using only comparisons. We show that this function
is closely related to Dasgupta’s cost for hierarchical clustering that uses pairwise similarities.
On the theoretical side, we use the proposed revenue function to resolve the open problem
of whether one can approximately recover a latent hierarchy using few triplet comparisons.
On the practical side, we present principled algorithms for comparison-based hierarchical
clustering based on the maximisation of the revenue and we empirically compare them with
existing methods.

1 Introduction

In the past decade, there has been an exponential growth in the scope of data science and machine learning
in domains such as psycho-physics (Shepard, 1962; Stewart et al., 2005; Haghiri et al., 2020) or cultural
psychology (Berenhaut et al., 2022), evolutionary biology (Foulds et al., 1979; Semple and Steel, 2003;
Catanzaro, 2009), or crowd-sourcing (Heikinheimo and Ukkonen, 2013; Ukkonen, 2017) among others. A
type of data that has recently gained some traction in these contexts is comparisons (Stewart et al., 2005;
Agarwal et al., 2007), particularly in the form of:

Triplet comparison: Binary response to the query—is object i more similar to object j than to object k?

Quadruplet comparison: Binary response to the query —are objects i and j more similar to each other
than objects k and l?

Comparisons have been used in the psycho-physics literature for more than 50 years since it is known that
humans can provide relative measurements better than absolute ones (Shepard, 1962; Stewart et al., 2005).
It led to a surge of popularity of comparisons in the context of crowdsourced data about objects that cannot
be represented by Euclidean features, such as food (Wilber et al., 2014) or musical artists (Ellis et al., 2002),
or objects for which humans cannot robustly estimate a pairwise similarity, for instance cars (Kleindessner
and von Luxburg, 2017) or natural scenes (Heikinheimo and Ukkonen, 2013). The purpose of collecting
comparisons is often to learn patterns in the objects, such as latent clusters, or use them for prediction, as
in classification. Hence, there has been significant development of algorithms for comparison-based learning
(Agarwal et al., 2007; Heikinheimo and Ukkonen, 2013; Haghiri et al., 2017; Kazemi et al., 2018; Perrot and
von Luxburg, 2019).
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The present paper focuses on comparison-based hierarchical clustering. Clustering refers to partitioning a
dataset into groups of similar objects, while hierarchical clustering is the problem of finding partitions of
the data at different levels of granularity. It is natural to wonder how one can group similar objects or find
a hierarchy of groups when neither features nor pairwise similarities are available, and one only has access
to triplet or quadruplet comparisons. For instance, the objects in the food dataset (Wilber et al., 2014) can
be broadly categorised into ‘sweets or desserts’ and ‘main or savoury dishes’, but the latter can be further
sub-divided into meat dishes, soups and others. Surprisingly, interest in comparison-based (hierarchical)
clustering stemmed in 1970s when single linkage clustering gained popularity, and researchers realised that
the method uses only ordinal informal instead of absolute values of pairwise similarities (Janowitz, 1971;
Sibson, 1972; Janowitz, 1979). Around the same time, works also started on the consensus tree problem,
that is, constructing trees (hierarchies) from given sub-trees or ordinal relations (Adams III, 1972; Aho
et al., 1981). The problem has since evolved as an important topic in both computational biology and
computer science, most notably addressing the question of phylogenetic tree reconstruction under triplet
or other ordinal constraints Semple and Steel (2003); Wu (2004); Snir and Yuster (2011). More recently,
Ghoshdastidar et al. (2019) re-discovered that single and complete linkage can be computed using only few
actively chosen quadruplet comparisons. There are, however, limited practical settings where the learning
algorithm can actively decide which comparisons should be queried, and the most relevant case is that
of learning from a set of passively collected comparisons. This is certainly true in the known practical
applications of comparison-based hierarchical clustering, such as (hierarchical) clustering of objects from
crowd-sourced comparisons (Ukkonen, 2017; Kleindessner and von Luxburg, 2017), finding communities in
languages or in cultural psychology (Berenhaut et al., 2022), and constructing relational database queries
Aho et al. (1981) or phylogenetic trees (Semple and Steel, 2003).

One of the fundamental problems in hierarchical clustering is to evaluate the goodness of a hierarchy. This
issue is obviously inherent to identifying better hierarchical clustering algorithms. In the phylogenetics
literature, the optimal hierarchy problem typically corresponds to the minimum evolution problem, where,
given a set of species and a pairwise distance matrix (representing evolutionary distance between species), the
goal is to find a weighted tree with minimal total edge weights that preserve the evolutionary distances (Foulds
et al., 1979; Catanzaro, 2009). A similar philosophy exists in the early works on hierarchical clustering,
where an algorithm is judged to better if the ultrametric induced by the output tree is closer to the specified
pairwise dissimilarities among the given objects (Janowitz, 1979). More recently, there has been efforts to
mathematically quantify the goodness of a hierarchy in terms of certain cost or revenue functions (Dasgupta,
2016; Moseley and Wang, 2017; Wang and Wang, 2020). Such formulations have led to a plethora of new
methods for hierarchical clustering that also come with worst-case approximation guarantees (Cohen-Addad
et al., 2019; Charikar et al., 2019; Chatziafratis et al., 2021).

Motivation for this work and our contributions. The main motivation for this work stems from the
lack of cost or revenue functions that can be used in the comparison-based framework. Available goodness
measures for trees can only be defined using pairwise (dis)similarities (Dasgupta, 2016; Moseley and Wang,
2017; Wang and Wang, 2020). Hence, existing works on comparison-based hierarchical clustering either
demonstrate the meaningfulness of the computed hierarchies visually or in artificial settings, where compar-
isons are derived from pairwise similarities (Kleindessner and von Luxburg, 2017; Ghoshdastidar et al., 2019).
Neither solution is useful in practice, where one only has access to comparisons. In this paper, we propose
new revenue functions for dendrograms that are only based on triplet or quadruplet comparisons (Section
4). We show that the proposed comparison-based revenues are equivalent to Dasgupta’s cost or revenue
(Dasgupta, 2016; Moseley and Wang, 2017) applied to particular pairwise similarities that can be computed
from comparisons. Interestingly, the pairwise similarities that arise from this equivalence are known in the
comparison-based clustering literature (Perrot et al., 2020).

Section 5 demonstrates that the proposed revenue function meaningfully captures the goodness of a hier-
archical tree. For this purpose, we consider the problem of reconstructing a latent hierarchy (for example,
a phylogeny tree) from ordinal constraints (Emamjomeh-Zadeh and Kempe, 2018). In particular, we show
that, when all possible triplets among the objects are available, the dendrogram corresponding to the latent
hierarchy maximises the proposed revenue function. This, in turn, implies that one can mathematically
formulate the triplet-based hierarchical clustering problem as a maximum triplet comparison revenue prob-
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lem. We further address the question of whether one can approximately recover the latent hierarchy using
fewer than Ω(n3) triplets. This problem has not been directly addressed in previous works (see Section 2).
We show that only O(n2 logn/ε2) passive triplets suffice to obtain a (1 − ε)-approximation of the optimal
revenue.

Finally, Sections 6–7 use the connection of the proposed revenue functions to the additive similarities in
Perrot et al. (2020) to present two variants of average linkage hierarchical clustering based on passive triplet
or quadruplet comparisons. The performance of these approaches is empirically compared with state of the
art baselines using synthetic and real datasets.

2 Related Work

In this section, we briefly review the algorithmic developments of comparison-based hierarchical clustering,
as well as existing theoretical results related to this problem. As noted earlier, interest in comparison-
based hierarchical clustering stemmed from different applications. The current literature consists of two
lines of research—works related to reconstruction of phylogenetic trees (Wu, 2004; Snir and Yuster, 2011;
Chatziafratis et al., 2021) and those focusing on ordinal data analysis from crowd-sourced data (Kleindessner
and von Luxburg, 2017; Ghoshdastidar et al., 2019).

In ordinal data analysis literature, the most widely used principle is that of ordinal embedding, where the
underlying idea is to retrieve Euclidean representations of the objects that respect the available comparisons
as well as possible (see the review in Vankadara et al. (2019) for more details). The embedded data can
be subsequently used for (hierarchical) clustering. While this principle provides flexibility in the choice of
clustering methods, the Euclidean restriction of the underlying data often leads to inaccurate representa-
tions, and hence, poor performance in the context of hierarchical clustering (Ghoshdastidar et al., 2019).
The restrictive assumption of Euclidean embedding is avoided by computing pairwise similarities from avail-
able comparisons (Kleindessner and von Luxburg, 2017; Ghoshdastidar et al., 2019). Standard hierarchical
clustering algorithms, such as average linkage, can then be applied using the pairwise similarities.

An alternative approach for comparison-based (hierarchical) clustering is to define an appropriate cost or
objective based on comparison and directly optimise it. Ukkonen (2017) employs such a technique for clus-
tering using crowd-sourced data, while this principle underlies most techniques in consensus tree problems or
phylogenetic tree reconstruction. In the latter context, two well-studied optimisation problems are maximum
rooted triplet consistency (Wu, 2004; Byrka et al., 2010)—finding a hierarchy that satisfies most, if not all,
given triplets—and maximum quartet consistency (Snir and Yuster, 2011; Jiang et al., 2000)—where one has
access to quartets (sub-trees with four leaves indicating which pairs should be merged first) and the problem
is to find a tree that satisfies most given quartets.1 Other related optimisation problems as well as various
constraints other than triplets or quartets have been studied (Snir and Rao, 2010; Chatziafratis et al., 2021).
Since the focus of the present paper is to define a revenue for trees (see Section 4), our work naturally
belongs to this broad class of hierarchical clustering algorithms based on revenue maximisation. However,
in Theorem 1, we relate the proposed revenues to pairwise similarities computed from comparisons. Hence,
the present paper connects the optimisation principle to the aforementioned approach of defining pairwise
similarities from comparisons.

Prior works on comparison-based hierarchical clustering provide a range of computational and statistical
results. On the computational side, it is known that both the problems of maximum rooted triplet consis-
tency and maximum quartet consistency are NP-hard (Byrka et al., 2010; Snir and Yuster, 2011). However,
polynomial-time constant factor approximation algorithms are known in both cases, assuming that a uni-
formly random subset of triplets/quartets is available. For triplets, Wu (2004) provides a 1

3 -approximation
algorithm—a fraction at least 1

3 of the given triplets are satisfied—which is slightly improved in Byrka et al.
(2010). For quartets, polynomial-time algorithms that satisfy at least a (1− ε)-fraction of the given quartets
are known (Jiang et al., 2000; Snir and Yuster, 2011). While the above results focus on finding hierarchies

1Note that quartets are different from quadruplets though both are defined on four objects. More precisely, a quartet
on i, j, k, l corresponds to information that i, j and k, l should be merged in the tree before all four are merged. Using the
notation from Section 3, a quadruplet (i, j, k, l) only implies sij > skl whereas a quartet on i, j, k, l implies min{sij , skl} >
max{sik, sil, sjk, sjl}.
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that only match the given triplets/quartets, Emamjomeh-Zadeh and Kempe (2018) show that the true (la-
tent) hierarchy can be recovered only if Ω(n3) passive (uniformly sampled) triplets are available. In contrast,
only O(n logn) triplets suffice if they are actively queried. In Section 5, we show that only O(n2 logn/ε2)
uniformly sampled triplets suffice to obtain a (1− ε)-approximation of the optimal triplet revenue.

A different latent model is considered in Ghoshdastidar et al. (2019) and Perrot et al. (2020), where the
objects have latent (noisy) pairwise similarities that have a (hierarchical) cluster structure. Noisy triplet-
s/quadruplets are uniformly sampled following the noisy latent similarities. While Ghoshdastidar et al. (2019)
focus on quadruplet-based hierarchical clustering and show that O(n3.5 logn) suffice to recover the latent
hierarchy, Perrot et al. (2020) show that flat latent clusters can be exactly recovered using only O(n2 logn)
uniformly sampled triplets/quadruplets. Although our model is different from Perrot et al. (2020), we obtain
a similar O(n2 logn) upper bound on sample complexity—even when the triplets are noisy.

3 Preliminaries

We consider the problem of hierarchical clustering of a set of n objects, denoted by [n] = {1, 2, . . . , n}. In
this paper, we assume that a hierarchy or dendrogram on [n] is a binary tree H whose root node is the set
[n], each leaf node is a singleton containing one of the n objects, and each internal node represents a set
C ⊆ [n] with its two children, C1 and C2, denoting a partition of C, that is min(|C1|, |C2|) > 0, C = C1∪C2,
and C1 ∩ C2 = ∅. In the following, we use binary tree or tree to designate a hierarchy. For node C, we
use H(C) to denote the subtree rooted at C and |H(C)| represents the number of leaves in the subtree, or
equivalently, the number of objects in the set C. For objects i, j ∈ [n], let i ∨ j denote the smallest node
in the tree containing both i and j, and H(i ∨ j) denote the smallest subtree containing both i and j. The
goal of hierarchical clustering is to find a dendrogram H that is optimal, or at least good, in some sense.
In the next subsections, we recall Dasgupta’s cost for hierarchical clustering that allows one to measure the
goodness of a dendrogram given full access to pairwise similarities, and then describe the comparison-based
learning framework, where only triplet or quadruplet comparisons are available. In the paper, we use the
standard Landau notations O(·), Ω(·), o(·), where the asymptotics are defined with respect to n.

3.1 Dasgupta’s Cost for Hierarchical Clustering

Suppose one has access to a function s : [n]× [n]→ R, symmetric, such that sij = s(i, j) denotes the pairwise
similarity between objects i, j ∈ [n]. Dasgupta’s cost function (Dasgupta, 2016) for a dendrogram H on [n],
with respect to the pairwise similarity s, is defined as

Dcost(H, s) =
∑

i,j∈[n], i<j

sij · |H(i ∨ j)| . (1)

An equivalent definition of the above cost can be found in Wang and Wang (2020), where the cost is expressed
in terms of triplets of objects instead of pairs. To find a good dendrogram, Dasgupta (2016) proposed to
minimize this cost over all trees. While it is NP-hard to find the optimal solution, several relaxations
are known to have constant factor approximation guarantees for Dasgupta’s cost or related quantities. In
particular, Moseley and Wang (2017) defined Dasgupta’s revenue function,

Drev(H, s) = n
∑

i,j∈[n], i<j

sij −Dcost(H, s). (2)

Note that since
∑
sij is fixed, maximising Drev(H, s) over all binary trees is equivalent to minimising

Dcost(H, s). It can then be shown that the revenue of the tree H obtained from average linkage achieves a
revenue Drev(H, s) that is at least 1

3 of the revenue of the optimal tree that would achieve the best revenue,
provided that the similarity function s is non-negative.
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3.2 Comparison-based Learning

In the present paper, we assume that the pairwise similarities {sij}i,j∈[n] are not available. Instead the
algorithm has access to either a set of triplets T , which is a subset of

Tall = {(i, j, k) ∈ [n]3 : sij > sik, i, j, k distinct},

or a set of quadruplets Q ⊆ Qall, where

Qall = {(i, j, k, l) ∈ [n]4 : sij > skl, i < j, k < l, (i, j) 6= (k, l)}.

Since the pairwise similarities are assumed symmetric, we set i < j and k < l to avoid considering the same
comparison multiple times. We note that the number of possible comparisons is high—|Qall| = O(n4) and
|Tall| = O(n3)—but, in practice, the observed comparisons, T or Q may be fewer than that, about O(n2)
comparisons, as can be seen from Table 3. Note that whenever a triple (i, j, k) is considered, T contains
either (i, j, k) or (i, k, j), depending on whether sij ≶ sik. The same holds for quadruplets. We further
assume that the observed set of comparisons T , or Q, is passively collected, that is the algorithm cannot
decide which comparisons should be present in it—as opposed to the active setting where the algorithm can
choose which comparisons should be observed (Ghoshdastidar et al., 2019).

4 Comparison-based Revenue

We present two comparison-based revenue functions for hierarchical clustering, one in the triplets framework
and the other for quadruplet comparisons.

Triplet comparisons. We first consider the case of triplets and assume that the algorithm has access to a
passively collected set of triplets T . We define the triplet comparison revenue of a binary tree (dendrogram)
H on [n], using triplets T , as

Trev(H, T ) =
∑

(i,j,k)∈T

(
|H(i ∨ k)| − |H(i ∨ j)|

)
. (3)

For every (i, j, k) ∈ T , we know that i is more similar to j than to k, and hence, we prefer to merge i, j before
merging i and k. It means the ideal tree should have |H(i∨ k)| > |H(i∨ j)| for every (i, j, k) ∈ T . Hence, it
is desirable to maximise |H(i ∨ k)| − |H(i ∨ j)| for every observed triplet (i, j, k) ∈ T . We then propose to
formulate triplets comparison-based hierarchical clustering as the problem of maximizing Trev(H, T ) over
all binary trees.
Remark 1. We note that the proposed triplet revenue is significantly different from the triplet based cost
presented in Wang and Wang (2020). The most important distinction is that the triplet cost in Wang and
Wang (2020) is a reformulation of Dasgupta’s cost, and requires knowledge of pairwise similarities. In
contrast, the revenue in equation 3 is computed only from triplet comparisons without access to pairwise
similarities.

Quadruplet comparisons. The above formulation can be similarly stated in the quadruplets setting.
Assuming that the algorithm has access to a passively collected set of quadrupletsQ, we define the quadruplet
comparison revenue of a binary tree H on [n] as

Qrev(H,Q) =
∑

(i,j,k,l)∈Q

(
|H(k ∨ l)| − |H(i ∨ j)|

)
. (4)

Similar to the triplet setting, every (i, j, k, l) ∈ Q indicates that i, j should be merged earlier than k, l in
H, and we prefer trees such that |H(k ∨ l)| ≥ |H(i ∨ j)|. We propose to achieve this by finding a tree that
maximises Qrev(H,Q).
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Connection with Dasgupta’s cost. While one may try to directly maximise the above comparison-
based revenue functions, the following equivalence to Dasgupta’s cost and revenue allows us to employ
existing methods for hierarchical clustering that require pairwise similarities. In the following, let IE denote
the indicator of event E, that is, IE = 1 if E happens, and 0 otherwise.
Theorem 1. For any given set of triplets T and any dendrogram H on [n],

Trev(H, T ) = −Dcost(H, sAddS3) = Drev(H, sAddS3),

where sAddS3 refers to the additive similarity from triplets (AddS3) defined by Perrot et al. (2020)

sAddS3
ij =

∑
k 6=i,j

(
I(i,j,k)∈T − I(i,k,j)∈T + I(j,i,k)∈T − I(j,k,i)∈T

)
Similarly, for any set of quadruplets Q and dendrogram H,

Qrev(H,Q) = −Dcost(H, sAddS4) = Drev(H, sAddS4),

where sAddS4 is the additive similarity from quadruplets (AddS4) defined by Perrot et al. (2020)

sAddS4
ij =

∑
k 6=l, (k,l)6=(i,j)

(
I(i,j,k,l)∈Q − I(k,l,i,j)∈Q

)
.

Proof sketch (details in appendix). Proving Trev(H, T ) = −Dcost(H, sAddS3) involves a rearrangement of
terms, with the observation that, for every i, j, the term |H(i∨j)| appears in the summation in equation 3 with
coefficient −1 when (i, j, k) ∈ T or (j, i, k) ∈ T and with coefficient +1 when (i, k, j) ∈ T or (j, k, i) ∈ T .
Adding these coefficients for all k 6= i, j gives us −sAddS3

ij , and proves the equality. The second equality
−Dcost(H, sAddS3) = Drev(H, sAddS3) simply follows from the observation that

∑
i<j s

AddS3
ij = 0. The

proof for quadruplets is similar.

5 Recovering a Latent Hierarchy by Triplet Revenue Maximisation

In this section, we consider the problem of recovering a latent hierarchy from triplet comparisons, earlier
studied in Emamjomeh-Zadeh and Kempe (2018). Let H0 be a hierarchy on [n], from which we derive a set
of triplets2

T0 = {(i, j, k), (j, i, k) : |H0(i ∨ j)| < min(|H0(i ∨ k)|, |H0(j ∨ k)|)}.

One can show that any rooted tree H ′ that satisfies all triplets in T0 is equivalent to H0, up to isomorphic
transformations, and hence, one can exactly recover H0 given T0. Emamjomeh-Zadeh and Kempe (2018)
further show one cannot exactly recover H0 from any passively obtained T ⊆ T0 if |T | = o(n3). This raises
the question—can one approximately recover H0 from a smaller set of triplets T ?

We use the proposed triplets-based revenue to answer this question in the affirmative. Before providing an
approximation guarantee, we first show the significance of our formulation in this context by proving that
one can recover H0 from T0 by maximising Trev.
Proposition 2. Consider the aforementioned setting, where H0 is a hierarchy on [n] objects, and T0 is the
corresponding set of triplets as defined above. Then

H0 = arg max
H

Trev(H, T0),

where the maximisation is over all binary trees H on [n].
2Emamjomeh-Zadeh and Kempe (2018) consider triples of the form {i, j, k} that imply i, j are closer to each other than k,

with respect to H0. Each such triple {i, j, k} correspond to two triplets (i, j, k) and (j, i, k) in our setting.
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Proof sketch (details in appendix). The proof is in two steps. First, we show that T0 is the unique optimal
set of triplets to maximize the revenue for the tree H0, that is T0 = arg maxT Trev(H0, T ). Then, we show
that, given two trees H0 and H1 such that T0 and T1 are the corresponding sets of triplets then we have that
Trev(H0, T1) = Trev(H1, T0). Combining these two results, we obtain that Trev(H0, T0) > Trev(H0, T1) =
Trev(H1, T0) for any tree H1 and corresponding set of triplets T1. This directly implies Proposition 2.

Emamjomeh-Zadeh and Kempe (2018) prove the uniqueness of the hierarchy that satisfies all the triplets in
T0, that is, H0 maximises the function

f(H, T0) =
∑

(i,j,k)∈T0

I|H(i∨k)|>|H(i∨j)|.

While maximising Trev(H, T0) seems to be a relaxation of maximising f(H, T0) in this context, Proposition
2 shows that both problems have the same optimal solution H0.

5.1 Approximate Recovery of H0 Using Passive Triplets

We consider the setting, where T0 is not completely available but one has access to a uniformly sampled
subset T ⊆ T0. We show that |T | = O(n2 logn/ε2) triplets suffice to obtain a tree Ĥ such that Trev(Ĥ, T0) ≥
(1−ε) ·Trev(H0, T0), that is, we get a good approximation of H0 with much fewer than n3 samples, although
we may not exactly recover H0.

We consider the following uniform sampling to obtain T . Let pn ∈ (0, 1] denote a sampling probability,
depending on n. For every pair of triplets (i, j, k), (j, i, k) ∈ T0, we add the pair to T with probability pn.
One can use standard concentration inequalities to show that when pn is sufficiently large then |T | = O(pnn3)
with high probability. We state the following approximation guarantee for trees derived using T .
Theorem 3. Let pn ∈ (0, 1] that depends on n, and T be as defined above. Consider the hierarchy

Ĥ = arg max
H

Trev(H, T ).

For any ε ∈ (0, 1), there exist constants n0, c, c
′ > 0 (depending on ε) such that for n > n0 and pn >

c logn/nε2,
Trev(Ĥ, T0) ≥ (1− ε) · Trev(H0, T0) (5)

with probability at least 1 − n−c′ . The condition on pn implies that |T | = Θ(n2 logn/ε2) triplets suffice to
achieve equation 5.

Proof sketch (details in appendix). Using concentration results, we show that with probability 1 − n−c
′ ,∣∣Trev(H, T ) − pnTrev(H, T0)

∣∣ = O
(
n3√pnn logn

)
for every tree H. Using this concentration for both H0

and Ĥ, and noting that Trev(Ĥ, T ) ≥ Trev(H0, T ), we have

Trev(Ĥ, T0) ≥ Trev(H0, T0)−O
(√

n7 logn
pn

)
.

Finally, we show that Trev(H0, T0) = Ω(n4) to arrive at the (1−ε)-approximation for pn = Ω(logn/nε2).

The result in Emamjomeh-Zadeh and Kempe (2018, Proposition 2.2)—that Ω(n3) triplets are necessary to
exactly recover H0—hinges on the fact that it is impossible to correctly guess the hierarchy at the lowest level
of the tree H0 using fewer comparisons. Since errors in the lowest level do not significantly affect Trev, we
can achieve the (1−ε)-approximation in Theorem 3. However, note that Ĥ may not be efficiently computable
as it requires exhaustive search over all trees. We discuss practical algorithms in the next section.

Theorem 3 holds only in the noiseless setting, where it is assumed that every observed triplet in T is correct.
It is natural to ask if Theorem 3 still holds under a noise setting, where some triplets may be flipped with
some probability. To formalise this, let T ⊆ T0 be a set of triplets obtained from the sampling procedure
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in Theorem 3. Let T ′ be constructed such that, for every (i, j, k) ∈ T , T ′ contains (i, j, k) with probability
1 − α, or (i, k, j) with probability α. The random flipping of labels is independent for all (i, j, k) ∈ T . We
obtain the following corollary from a minor modification of the above proof (details in appendix).

Corollary 4. For a fixed flipping probability α ∈ (0, 1
2 ), the statement of Theorem 3 holds for the maximizer

of Trev(H, T ′), that is, with probability 1− n−c′ , max
H

Trev(H, T ′) ≥ (1− ε) · Trev(H0, T0).

6 Comparison-based Algorithms for Hierarchical Clustering

The equivalence between comparison-based revenues and Dasgupta’s revenue, stated in Theorem 1, implies
that one may simply employ standard hierarchical clustering algorithms using the pairwise similarities AddS3
or AddS4, depending on whether one has access to triplets or quadruplets. This makes it possible to use
the well-established literature on hierarchical clustering with pairwise similarities. In fact, as mentioned
before, previous works on passive comparison-based hierarchical clustering also follow this philosophy using
other kind of pairwise similarities obtained from the comparisons (Kleindessner and von Luxburg, 2017;
Ghoshdastidar et al., 2019). Unlike previous works, our use of AddS3 or AddS4 stems from a revenue
maximisation formulation that allows us to consider an approach based on the average linkage (AL) clustering
algorithm, that is, the following procedure:

AddS3-AL (or AddS4-AL)
Given. A set of triplets T (or quadruplets Q) on [n]
Step 1. Compute the pairwise similarity function sAddS3 (or sAddS4) for every pair of objects
Step 2. Run average linkage algorithm with sAddS3 (or sAddS4)
Output. The tree or dendrogram H on the n objects

Remark on approximation guarantee. Average linkage enjoys strong theoretical guarantees under the
assumption that the similarities are always positive. In particular, Moseley and Wang (2017) show that
average linkage achieves a worst-case 1

3 -approximation for revenue maximisation. Unfortunately, this result
does not readily extend to AddS3-AL and AddS4-AL, as these similarities may be negative in some cases. A
possible approach could be to add a positive constant to all the similarities to ensure that they are positive.
Although this does not change the optimal tree or the one obtained from average linkage, a 1

3 -approximation
for the modified revenues (considering revised similarities) does not imply a 1

3 -approximation for the original
revenues.

Based on the proof of Moseley and Wang (2017), one can show that AddS3-AL (or AddS4-AL) returns a
tree with non-negative triplet (or quadruplet) comparison revenue. Whether approximation guarantees may
also be derived for AddS3-AL and AddS4-AL remains open.

7 Experiments

In this section, we propose two sets of experiments to demonstrate the practical relevance of our new revenue
function and the corresponding algorithm. In our first set of experiments, our goal is to show the usefulness
of revenue maximisation as a solution to find hierarchies that are closer to the ground truth. To this end,
we consider a planted model and demonstrate the alignment between AARI scores, a supervised metric of
goodness for clustering, and our proposed revenue function. In our second set of experiments, we aim to show
that the heuristic proposed in Section 6 to maximize the revenue performs well in practice. Thus, on several
real datasets, we compare our approach to two different state of the art approaches in comparison-based
hierarchical clustering.

8
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7.1 Planted Model

In this first set of experiments, we study the behaviour of the proposed revenues in a controlled setting.
Hence, we generate data using a planted model for comparison-based hierarchical clustering (Ghoshdastidar
et al., 2019) and we use 3 triplets-based and 2 quadruplets-based methods to learn dendrograms.

Data. To generate the data in this first set of experiments, we use a standard planted model in comparison-
based hierarchical clustering (Balakrishnan et al., 2011; Ghoshdastidar et al., 2019). More precisely, given n
objects, we create a real similarity matrix S = (sij)1≤i,j≤n such that sij ∼ N (µij , σ2) is normally distributed
and corresponds to the similarity between objects i and j. The choice of µij defines a planted hierarchy, a
complete binary tree of height L, built on top of 2L ground clusters, that is sets of n0 objects denoted as
C1, C2, ..., C2L . The total number of points (leaves) in the complete hierarchy is thus n = n02L. For every
pair of objects i and j that belong to the same ground cluster, µij = µ—a constant. On the other hand, for
objects i, j from two distinct clusters, if H(i∨j) is rooted at level `, we define µij = µ− (L−`)δ. We observe
that the tree is rooted at level-0 and the constants—separation δ and noise level σ—control the hardness
of the problem. In particular, smaller values of δ make the similarities between examples that belong to
the same cluster more difficult to distinguish from similarities between examples that belong to different
clusters. The signal-to-noise ratio is thus δ

σ . In all the experiments, we set µ = 0.8, σ = 0.1, n0 = 30, L = 3
and we vary δ ∈ {0.02, 0.04, ..., 0.2}. Since we are in a comparison-based setting, we do not directly use the
similarities of the planted model to learn dendrograms but instead generate comparisons. Given Tall and
Qall the sets containing all possible triplets and quadruplets (see preliminaries), we obtain T ⊆ Tall and
Q ⊆ Qall by uniformly sampling kn2 comparisons with k > 0.

Evaluation Function. To measure the closeness between the dendrograms obtained by the different ap-
proaches and the ground truth trees, we use the Averaged Adjusted Rand Index (Ghoshdastidar et al., 2019).
The AARI is an extension to hierarchies of a well-known measure in standard clustering called Adjusted
Rand Index (ARI; see Hubert and Arabie, 1985). The underlying idea is to average the ARI obtained over
the top L levels of the tree. This measure takes values in [0, 1] with higher values for more similar hierarchies,
an AARI of 1 implying identical trees. Our goal is to empirically verify that the hierarchies with higher
revenues are the ones closest to the ground truths as indicated by a higher AARI. Indeed, this would show
that our revenue function is appropriate to evaluate the goodness of a dendrogram and that maximizing the
revenue is indeed a good unsupervised way to select hierarchies. The results reported are averaged over 10
independent trials.3 We defer the standard deviations to the appendix for the sake of readability.

Methods. We compare AddS3-AL and AddS4-AL, the two methods proposed in this work, to various
comparison-based algorithms for learning dendrograms, such as 4K-AL (Ghoshdastidar et al., 2019), a
quadruplets-based method, along with two triplets-based approaches MulK3-AL (Kleindessner and von
Luxburg, 2017; Perrot et al., 2020) and tSTE-AL (Van Der Maaten and Weinberger, 2012). The former
two are similarity-based approaches where the idea is use the comparisons to learn a similarity. The latter
is an ordinal embedding approach where the idea is to recover a representation of the data that respects
the comparisons as well as possible, and then use the cosine similarity sij = 〈xi, xj〉

||xi||2||xj ||2
to compare the

examples. To learn the dendrograms we then apply standard average linkage to the various similarities.

Results. In Figure 1, we present the AARI and Revenue of different triplet-based methods for several signal
to noise ratios using n2 comparisons.4 We observe that, given a set signal to noise ratio, the ordering between
the methods remains the same for the revenue and the AARI, that is the method with the highest revenue
is also the one with the highest AARI. In other words, a higher revenue indicates that the corresponding
dendrogram is better. In Table 1, we verify that this remains true for a constant signal to noise ratio of 1.5
and various number of observed comparisons. In particular, we notice that when the revenue of AddS3-AL

3The randomness stems from three sources: the noise in the similarities (we use the time + 42 as the seed), the triplets
selection (we use the time as the seed), and the optimization procedure (initialization, batch selection) in tSTE (we use the
time as the seed).

4Note that we also considered other amounts of comparisons. However, the trends were similar to the ones observed here
and thus we chose to defer these results to the appendix.
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Table 1: Revenue and AARI of various methods for a fixed signal to noise ratio δ
σ = 1.5 and varying number

of triplets (decreased by factor of 2). The planted setting consists of a total of n = 240 objects. In each line
the highest revenue and AARI are underlined, taking into account standard deviation (see appendix). This
shows that the two measures are well aligned.

Number of
triplets

AddS3-AL tSTE-AL MulK3-AL
Revenue AARI Revenue AARI Revenue AARI

16n2 7.336× 107 0.937 7.286× 107 0.849 7.304× 107 0.863
8n2 3.667× 107 0.901 3.648× 107 0.867 3.631× 106 0.854
4n2 1.820× 107 0.855 1.817× 107 0.852 1.784× 107 0.821
2n2 8.927× 106 0.778 9.094× 106 0.856 8.357× 106 0.660
n2 4.333× 106 0.699 4.559× 106 0.856 3.754× 106 0.539
n2/2 2.097× 106 0.614 2.289× 106 0.849 1.255× 106 0.353
n2/4 9.363× 105 0.501 1.138× 106 0.847 1.680× 105 0.086
n2/8 4.310× 105 0.404 5.710× 105 0.841 7.938× 104 0.010
n2/16 2.128× 104 0.323 2.853× 105 0.667 5.156× 103 0.003
n2/32 1.048× 104 0.151 1.438× 104 0.543 1.314× 103 0.000
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Figure 1: Revenue and AARI (higher is better) of several triplets-based methods using n2 comparisons.
Given various signal to noise ratios, a higher revenue implies higher AARI values (better dendrograms).

becomes higher than the revenue of tSTE-AL, that is using more than 4n2 triplets, the AARI also follows
the same trend, thus confirming that selecting the dendrogram with the highest revenue is indeed a good
way to select meaningful hierarchies. In the appendix, we show that the same behaviour can be observed
for various signal to noise ratios as well as in the quadruplet case.

We further investigate the dependence between AARI and the triplet revenue in Figure 2, where we plot the
AARI and the corresponding triplet revenue (in log scale) for different runs and number of triplets, considered
in Table 1. Although the variation of the revenue for increasing AARI seems to depend on the method under
consideration, all plots show a monotonic trend. To validate this we use two measures of rank correlation—
Kendall’s-τ and Spearman’s-ρ—that capture how well the dependence is captured as monotonic function.
For both AddS3-AL and MulK3-AL, the rank correlations are greater than 0.9, indicating a highly monotonic
trend. Although the rank correlations are smaller for tSTE-AL, but still large enough and corresponding
p-value is about 10−14, indicating rank correlation.

7.2 Real Data

The previous experiments establish that our revenue functions are good at identifying meaningful dendro-
grams in an unsupervised way. In the following experiments, we investigate the behaviour of the proposed

10
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Table 2: Experiments on real datasets. For the triplets-based methods, AddS3-AL tends to obtain the
dendrograms with the best revenues. For the quadruplets-based approaches, AddS4-AL and 4K-AL obtain
comparable results. Using the original Cosine similarities only yields slightly better hierarchies than the
comparison-based methods. For first 3 datasets, multiple runs are used and standard deviation (see appendix)
is considered for highlighting the best method(s).

Dataset Triplet Quadruplet
AddS3-AL tSTE-AL MulK3-AL Cosine-AL AddS4-AL 4K-AL Cosine-AL

Zoo 2.759×105 2.180×105 2.029×105 2.815×105 2.859×105 2.865×105 2.962×105

Glass 2.182×106 1.993×106 1.479×106 2.115×106 2.427×106 2.447×106 2.493×106

MNIST 1.876×109 2.028×109 1.749×109 2.027×109 1.935×109 1.910×109 2.062×109

Car 1.521×105 1.562×105 1.264×105 - 1.521×105 1.125×105 -
Food 6.137×106 5.993×106 6.096×106 - 6.137×106 6.137×106 -
Vogue 2.722×104 2.104×104 3.022×103 - 2.722×104 2.549×104 -
Nature 2.650×105 2.056×105 1.231×105 - 2.650×105 2.228×105 -
Imagenet 7.179×107 6.571×107 3.440×107 - 7.179×107 6.994×107 -
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Figure 2: Scatter plots for the AARI and triplet revenue from different runs and varying number of triplets
in the setting of Table 4. The three methods (AddS3, tSTE and MulK3) show different trends. However, in
each case, the triplet revenue and AARI have high Kendall-τ and Spearman-ρ correlation.

approaches on real data. In particular, we show that they are competitive with standard comparison-based
hierarchical clustering approaches on various datasets.

Table 3: Description of datasets used in the experiments.

Dataset Query #Objects #Triplets
Zoo Cosine Similarity 100 100000
Glass Cosine Similarity 214 45796
MNIST Cosine Similarity 2000 4000000
Car Most Central Triplet 60 14194
Food Standard Triplet 100 190376
Vogue Odd-out Triplet 60 2214
Nature Odd-out Triplet 120 6710
Imagenet Rank 2 from 8 1000 328549

Data. We consider 8 different datasets.
On the one hand, we consider 3 stan-
dard clustering datasets: Zoo, Glass, and
MNIST (Heller and Ghahramani, 2005; Le-
Cun et al., 2010; Vikram and Dasgupta,
2016). The Zoo dataset originally consisted
of 101 animals each with 16 features. But we
choose to remove the entry with class "girl"
since we do not feel it belongs to the zoo
dataset. The Glass dataset has 9 features
for 214 examples. For the MNIST dataset
we consider two subsets of the MNIST test
dataset that originally contains 10000 exam-
ples distributed among the ten digits. A 2-
dimensional embedding of the entire MNIST
test data was constructed with t-SNE (van der Maaten, 2014). From this we randomly sampled 200 exam-
ples for each digit to form a dataset of 2000 entries and normalized the embeddings so that each example
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lies in [−1, 1]. Since we are in a comparison-based setting, we generate n2 comparisons using the cosine
similarity. To model mistakes from human annotators, we randomly and uniformly flip 5% of the compar-
isons (Emamjomeh-Zadeh and Kempe, 2018), where by flipping (i, j, k) we mean replacing it with (i, k, j).
On the other hand, we consider 5 comparison-based datasets, Car, Food, Vogue Cover, Nature Scene and
ImageNet Images v0.1, from the cblearn repository.5 The number of objects and the kind of query used to
obtain comparisons are summarized in Table 3. The comparisons are transformed into triplets (final number
of triplets noted in Table 3), which are also used in the quadruplet setting. In Table 3, a central triplet is
a query of the form—which of the three objects (i,j,k) is most central. Provided that the answer is i, this
implies object i is more similar to both j and k than they are to each other. Two standard triplets (j,i,k)
and (k,i,j) are thus obtained. An Odd-out triplet is a query of the form—which of the three objects (i,j,k) is
the odd one out. If i is picked as the odd one, it gives two standard triplets of the form (j,k,i) and (k,j,i). A
rank 2 from 8 query is of the form—among 8 objects (i0, . . . , i7), rank the 2 that appear to be most similar
to the reference object i0. If i1 and i2 are ranked as the most similar to i0 in this order, then 11 standard
triplets of the form (i0, i1, ik)7

k=2 and (i0, i2, ik)7
k=3 are obtained.

Evaluation Function. Since the datasets considered here do not come with a ground truth hierarchy, we
cannot compute the AARI. Hence, we only report the revenue. The results reported are averaged over 10
independent trials6 and defer the standard deviations to the appendix.

Methods. Besides the methods already used in the planted setting, we also consider the Cosine baseline
where it is assumed that the pairwise cosine similarities are available, and we apply average linkage directly
on the similarities used to generate the comparisons. This baseline is not applicable to the comparison-based
datasets where we only have access to the comparisons and not to the similarities.

Results. The results are reported in Table 2. We can notice that AddS3-AL tends to be better than
tSTE-AL and MulK3-AL while AddS4-AL and 4K-AL are comparable. As is expected, the Cosine baseline
based on the original similarities obtains the best performances in most cases, but it only seems to yield
slightly better hierarchies than the comparison-based methods. This would tend to confirm that hierarchical
clustering with average linkage is indeed a problem that can be solved using only a limited number of
comparisons, instead of using all similarities.

8 Conclusion

In this paper, we proposed novel revenue functions that allow us to measure the goodness of a dendrogram
in an unsupervised way using only triplet or quadruplet comparisons. This suggest natural algorithms for
hierarchical clustering based on the maximization of such revenues. Drawing theoretical connections with
existing work on cost and revenue functions in standard hierarchical clustering, we propose two algorithms
based on average linkage for hierarchical clustering using only comparisons. We empirically show that our
revenue functions successfully identify the dendrograms that are closest to the ground truth. We also show
that the proposed approaches to learn hierarchies perform well on real datasets and are competitive with
state of the art methods.

We further used the proposed revenue function to resolve an open theoretical problem of recovering a latent
hierarchy using fewer than Ω(n3) passive triplets. We showed that O(n2 logn/ε2) passive triplets suffice to
obtain a (1−ε)-approximation of the optimal triplet revenue. We conclude with the following open questions:
(i) Are Ω(n2 logn) passive triplets necessary for a (1− ε)-approximation?
(ii) At this point, we are unable to obtain a polynomial-time approximation scheme (PTAS) for the revenue
maximisation problem, but we believe this should be possible. It may also be possible to obtain more efficient
algorithms that are linear in time with respect to the number of triplets. A linear-time method exists for
maximum quartet consistency (Snir and Yuster, 2011).

5https://github.com/dekuenstle/cblearn
6The randomness stems from two main sources: the triplets generation in the Zoo, Glass, and MNIST dataset (we use the

time as the seed for the triplets selection and the time + 42 as the seed for the random flips) and the optimization procedure
(initialization, batch selection) in tSTE (we use the time as the seed). For all the other datasets and methods, every step is
deterministic and, thus, we only need to report the results of a single run.
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A Proof of Theorem 1

Recall the formulation of Trev for a tree H and a set of triplets T :

Trev(H, T )

=
∑
i,j,k

I(i,j,k)∈T

(
|H(i ∨ k)| − |H(i ∨ j)|

)
(sum over all distinct i, j, k.)

=
∑
i,j,k

I(i,j,k)∈T |H(i ∨ k)| −
∑
i,j,k

I(i,j,k)∈T |H(i ∨ j)|

=
∑
i,j,k

I(i,k,j)∈T |H(i ∨ j)| −
∑
i,j,k

I(i,j,k)∈T |H(i ∨ j)|

(by change of variable between j and k in the first term.)

=
∑
i 6=j

( ∑
k 6=i,j

I(i,k,j)∈T − I(i,j,k)∈T

)
|H(i ∨ j)|

=
∑
i<j

|H(i ∨ j)|×( ∑
k 6=i,j

I(i,k,j)∈T − I(i,j,k)∈T + I(j,k,i)∈T − I(j,i,k)∈T

)
(by change of variable between i and j when i > j.)

=
∑
i<j

−sAddS3
ij |H(i ∨ j)|

by definition of sAddS3. This concludes the proof for the triplets-based revenue.
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Using a similar approach, recall the formulation of Qrev for a tree H and quadruplet set Q:

Qrev(H,Q)

=
∑
i,j,k,l

I(i,j,k,l)∈Q

(
|H(k ∨ l)| − |H(i ∨ j)|

)
=
∑
i,j,k,l

I(i,j,k,l)∈Q|H(k ∨ l)| −
∑
i,j,k,l

I(i,j,k,l)∈Q|H(i ∨ j)| (sum over all i < j, k < l, (i, j) 6= (k, l).)

=
∑
i,j,k,l

I(k,l,i,j)∈Q|H(i ∨ j)| −
∑
i,j,k,l

I(i,j,k,l)∈Q|H(i ∨ j)|

(by swapping the role of i, j and k, l in the first term.)

=
∑
i<j

( ∑
k<l

(k,l)6=(i,j)

I(k,l,i,j)∈Q − I(i,j,k,l)∈Q

)
|H(i ∨ j)|

=
∑
i<j

−sAddS4
ij |H(i ∨ j)|

by definition of sAddS4. This concludes the proof for the quadruplets-based revenue.

B Proof of Proposition 2

The proposition follows immediately from the following two lemmas.
Lemma 5. Let H0 be a binary tree on [n] and T0 be the set of triplets induced by H0. Then

T0 = arg max
T

Trev(H0, T ), (6)

where the maximum is unique over all triplet sets that are induced by some binary tree on [n].
Lemma 6. Let H0, H1 be two binary trees on [n] and T0, T1 be the set of triplets induced by H0 and H1,
respectively. Then Trev(H0, T1) = Trev(H1, T0).

Combining the above two lemmas, we obtain that

Trev(H0, T0) > Trev(H0, T1) = Trev(H1, T0)

for any tree H1 and corresponding set of triplets T1. This directly implies the Proposition 2. We now
complete the proof by proving Lemmas 5 and 6.

Proof of Lemma 5. Recall that

Trev(H0, T0) =
∑

(i,j,k)∈T0

(
|H0(i ∨ k)| − |H0(i ∨ j)|

)
︸ ︷︷ ︸

=:D0(i,j,k)

is a sum of positive terms. For convenience, we denote each difference by D0(i, j, k) > 0.

Let T1 be the set of triplets generated by another tree H1. Note that at least one pair of triplets in T1 has
to be different from T0, otherwise H1 and H0 would be isomorphic transformations of one another. Without
loss of generality, assume that the pair (i, j, k), (j, i, k) has been replaced by the pair (i, k, j), (k, i, j), that is,
i, k are merged in H1 before they are merged to j. Observe that we can write

Trev(H0, T0)− Trev(H0, T1)

=
∑

(i,j,k),
(i,k,j)
∈T0\T1

D0(i, j, k) +D0(j, i, k)−D0(i, k, j)−D0(k, i, j)
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where each term in the summation can be computed as

D0(i, j, k) +D0(j, i, k)−D0(i, k, j)−D0(k, i, j)
= |H0(i ∨ k)|+ |H0(j ∨ k)| − 2|H0(i ∨ j)|

−
(
|H0(i ∨ j)|+ |H0(k ∨ j)| − 2|H0(i ∨ k)|

)
= 3D0(i, j, k),

which is strictly positive for every (i, j, k) ∈ T0. Summing over all (i, j, k), (j, i, k) ∈ T0\T1, we have that
Trev(H0, T0) > Trev(H0, T1) for any T1 generated by another tree H1.

Proof of Lemma 6. Let {s0ij}i,j be the pairwise AddS3 similarity induced by T0, and {s1ij}i,j be the AddS3
similarity from T1. Due to the definition of T0, we note that, for any k 6= i, j, the term (I(i,j,k)∈T0−I(i,k,j)∈T0 +
I(j,i,k)∈T0 − I(j,k,i)∈T0) either takes the value 2 if k /∈ (i ∨ j)— that is, i, j is merged in H0 before k—or the
value −1 if k is merged to either i or j before (i ∨ j). Summing over all k 6= i, j gives

s0ij = 2(n− |H0(i ∨ j)|)− (|H0(i ∨ j)| − 2)
= 2n+ 2− 3|H0(i ∨ j)|

for every i, j. Using the same arguments s1ij can be expressed as s1ij = 2n+ 2− 3|H1(i ∨ j)|. We can now
use the equivalence in Theorem 1 to write

Trev(H0, T1)− Trev(H1, T0)

= −
∑
i<j

(s1ij |H0(i ∨ j)| − s0ij |H1(i ∨ j)|)

= −
∑
i<j

(
(2n+ 2− 3|H1(i ∨ j)|)|H0(i ∨ j)|

− (2n+ 2− 3|H0(i ∨ j)|)|H1(i ∨ j)|
)

= −(2n+ 2)
∑
i<j

(
|H0(i ∨ j)| − |H1(i ∨ j)|

)
= 0

since
∑
i<j

|H0(i ∨ j)| =
∑
i<j

|H1(i ∨ j)| = 1
3 (n3 − n) is Dasgupta’s cost for any tree on [n] when all pairwise

similarities are 1 (Dasgupta, 2016, Theorem 3). Hence, the claim.

C Proof of Theorem 3 and Corollary 4

We first state and prove two lemmas that are essential for the proof of Theorem 3. The first lemma shows
that Trev(H0, T0) = Ω(n4). The second lemma derives concentration inequalities for the AddS3 similarities
sij , which is then used in the proof of Theorem 3 to derive bound on |Trev(H, T )− Trev(H, T0)| for all H,
and subsequently arrive at the claim.
Lemma 7. For every ε ∈ (0, 1), there exists n0 > 0 such that the following holds for all n > n0. If H0 is a
hierarchy on [n] and T0 is the set of triplets induced by H0,

Trev(H0, T0) ≥ (1− ε)n4

12 .

Proof. We start with the equivalence in Theorem 1 to write the revenue as Trev(H0, T0) = −
∑
i<j s0ij |H0(i∨

j)|, where s0ij is the pairwise AddS3 similarity induced by T0. Due to the definition of T0, we note that, for
any k 6= i, j, the term (I(i,j,k)∈T0 − I(i,k,j)∈T0 + I(j,i,k)∈T0 − I(j,k,i)∈T0) either takes the value 2 if k /∈ (i∨ j)—
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that is, i, j is merged in H0 before k—or the value −1 if k is merged to either i or j before (i∨ j). Summing
over all k 6= i, j gives

s0ij = 2(n− |H0(i ∨ j)|)− (|H0(i ∨ j)| − 2)
= 2n+ 2− 3|H0(i ∨ j)|

for every i, j. Let N = (i∨ j) denote the least common ancestor of i, j in H0, and N1, N2 be the two children
of N . Note that |N1| · |N2| pairs of i, j are merged at N . Hence, we can rewrite the revenue as

Trev(H0, T0)

= −
∑
i<j

s0ij |H0(i ∨ j)|

=
∑
i<j

|H0(i ∨ j)|
(
3|H0(i ∨ j)| − 2n− 2

)
=
∑
N∈H0

|N1| · |N2| · |N | ·
(
3|N | − 2n− 2

)
= 3

∑
N∈H0

|N1||N2||N |2 − (2n+ 2)
∑
N∈H0

|N1||N2||N |

where the summations are over all internal nodes N in the tree H0, with N1, N2 deenoting the two children
of N . The second summation is Dasgupta’s cost for any tree on [n] with all pairwise similarities as 1, and
evaluates to n3−n

3 (Dasgupta, 2016, Theorem 3). On the other hand, we claim that the first sum has lower
bound

∑
N∈H0

|N1||N2||N |2 ≥ n4

4 .

We prove this claim through induction on n. The claim is easy to verify for n = 2, 3. For n ≥ 4, we assume
that claim holds for any H0 with k leaves, when k < n (equivalently, H0 on [k]). Consider the tree H0 on
[n] such that the root node is split into two nodes of size n1, n2 < n (note n1 + n2 = n). From our inductive
hypothesis, ∑

N∈H0

|N1||N2||N |2

≥ n1n2n
2 + n4

1
4 + n4

2
4

= 1
4
(
4n3

1n2 + 8n2
1n

2
2 + 4n1n

3
2 + n4

1 + n4
2
)

≥ 1
4(n1 + n2)4 = n4

4
which proves the claim for any n. Combining all terms, we have

Trev(H0, T0) ≥ 3n4

4 − (2n+ 2)(n3 − n)
3

= n4

12 −
2
3(n3 − n2 − n).

Given ε ∈ (0, 1), we can choose n0 such that for every n > n0, the negative term is smaller that εn4

12 , which
proves the statement of the lemma.

We now state and prove the concentration results for the AddS3 similarity computed from the sampled triplet
set T . We first recall the sampling and introduce some notations. For any n, with probability pn ∈ (0, 1),
a pair of triplets (i, j, k), (j, i, k) ∈ T0 is included in T , independent of other pairs. To formalise this, we
define the random variable χijk = χjik ∼ Bernoulli(pn) such that the collection {χijk : i < j, k 6= i, j} are
mutually independent. If sij denotes the pairwise AddS3 similarity, computed using T , then observe that

sij =
∑
k 6=i,j

χijk(I(i,j,k)∈T0 − I(i,k,j)∈T0 + I(j,i,k)∈T0 − I(j,k,i)∈T0) (7)
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Hence, for a fixed H0—and T0—the similaritiy sij is a weighted sum of independent Bernoullis, with weights
either 2 or −1 (cf. proof of Lemma 7). As a consequence, E[sij ] = pns0ij , where the expectation is with
respect to sampling, and furthermore we can state the following concentration for all pairwise similarities.
Lemma 8. Assume pn > c logn/n for some constant c > 0. Let T denote a random subset of T0 (obtained
from the aforementioned sampling), and {sij}i<j , {s0ij}i<j denote the pairwise AddS3 similarities computed
using triplets in T and T0, respectively. There is an absolute constant c′ > 0 such that with probability
1− n−c′ ,

|T | = Θ(pnn3) and max
i<j
|sij − pns0ij | = O

(√
pnn logn

)
.

Proof. We first derive the bound on max
i<j
|sij−pns0ij |. From the expression of sij , mentioned above, we note

that sij − pns0ij is a sum of (n− 2) independent mean zero random variables, with each term in [−2, 2] and
variance bounded by 4pn. By Bernstein’s inequality,

P
(
|sij − pns0ij | > δ) ≤ 2 exp

(
− δ2

8pn(n− 2) + 4
3δ

)
.

Assuming pn > c logn/n and setting δ = c′′
√
pnn logn for c, c′′ > 0, we have |sij − pns0ij | > c′′

√
pnn logn

with probability ≤ n−c
′′′ for a constant that depends on c′′. Using union bound over all

(
n
2
)
i, j pairs, we

have max
i<j
|sij − pns0ij | > c′′

√
pnn logn with probability at most n−(c′′′−2), where c′′′ > 2 assuming c, c′ is

chosen large enough. This proves the second claim of the lemma.

The claim |T | = Θ(pnn3) is proven as follows. From definition of T0, every internal node N ∈ H0 contributes
|N1||N2|(|N | − 2) triplets to T0 since merger of every i, j contributes to |N | − 2 triplets, one for each k
that is either merged with i or j at a lower level. Hence, |T0| =

∑
N∈H0

|N1||N2|(|N | − 2), which can be

bounded from below by n3/9, using induction on n. Finally, note that E[|T |] = pn|T0| and a Bernstein-type
concentration inequality shows that |T | = (1− o(1))pn|T0| with probability 1− n−c′′′ for some constant c′′′′
for pn > c logn/n.

Below, we prove Theorem 3 using Lemmas 7–8.

Proof of Theorem 3. We first derive bounds on the deviation of the revenue Trev of any tree H due to
sampling. The concentration of {sij}i<j ensures that we can state a deviation bound that uniformly holds
for all H, as shown below. From the equivalence in Theorem 1, we write for any H,

|Trev(H, T )− pnTrev(H, T0)| =

∣∣∣∣∣∣
∑
i<j

(sij − pns0ij)|H(i ∨ j)|

∣∣∣∣∣∣
≤
∑
i<j

|sij − pns0ij | · |H(i ∨ j)|

≤ c′
√
pnn logn

∑
i<j

|H(i ∨ j)|,

where the last bound holds with probability 1−n−c′ due to Lemma 8. Note that
∑
i<j

|H(i∨ j)| is Dasgupta’s

cost of tree H on [n] if all pairwise similarities are 1, and hence the summation is n3−n
3 (Dasgupta, 2016).

We conclude that, with probability 1− n−c′ ,

max
H
|Trev(H, T )− pnTrev(H, T0)| = O

(√
pnn7 logn

)
.

19



Under review as submission to TMLR

We now write

Trev(Ĥ, T0) ≥ 1
pn
Trev(Ĥ, T )−O

(√
n7 logn
pn

)

≥ 1
pn
Trev(H0, T )−O

(√
n7 logn
pn

)

≥ Trev(H0, T0)−O
(√

n7 logn
pn

)
,

where the first and third inequalities follow from the deviation bound stated above, and the second inequality
holds since Ĥ maximises Trev(H, T ). For pn > c logn/nε2, the second term is O(εn4/

√
c). Choosing c large

enough, the second term can be made smaller than ε(1− ε)n4/12 ≤ ε Trev(H0, T0), where the last bound is
due to Lemma 7. Hence the claim.

Proof of Corollary 4. In the noisy setting, the random flipping can be modelled through the independent
variables {ζijk : i, j < k} where ζijk ∼ Bernoulli(α) is the indicator for triplet (i, j, k) to be flipped with
triplet (i, k, j). Using the notation of equation 7, the variable ξijkζijk indicates (i, k, j) ∈ T ′ (noisy triplet)
whereas ξijk(1− ζijk) indicates correct triplet (i, j, k) ∈ T ′. Hence,

sij =
∑
k 6=i,j

χijk(1− 2ζijk)(I(i,j,k)∈T0 − I(i,k,j)∈T0) + χijk(1− 2ζjik)(I(j,i,k)∈T0 − I(j,k,i)∈T0), (8)

and E[sij ] = (1 − 2α)pns0ij . Following the arguments of Lemma 8, we can similarly state that, with
probability 1− n−c′ ,

max
i<j
|sij − (1− α)pns0ij | = O

(√
pnn logn

)
where the deviation bound is same as in Lemma 8 since the same variance bound holds for the independent
random terms in the summation in equation 8. Subsequently, following the proof of Theorem 3, we have
with probability 1− n−c′ ,

max
H
|Trev(H, T )− (1− 2α)pnTrev(H, T0)| = O

(√
pnn7 logn

)
.

and so

Trev(Ĥ, T0) ≥ 1
(1− 2α)pn

Trev(Ĥ, T )−O
(√

n7 logn
pn

)
≥ 1

(1− 2α)pn
Trev(H0, T )−O

(√
n7 logn
pn

)

≥ Trev(H0, T0)−O
(√

n7 logn
pn

)
,

which leads to the same claim as Theorem 3.

D Additional Results on the Planted Model

In this section, we provide additional results on the Planted Model presented in Section 7.1 of the main
paper.

In Figure 3, we present the results obtained n2/2, n2 and 2n2 triplet comparisons respectively. Similarly,
Figure 4 displays the results obtained using n2/2, n2 and 2n2 quadruplet comparisons respectively. In all
these figures, we notice that, given a set signal to noise ratio, the ordering between the methods remains the
same for the revenue and the AARI, that is the method with the highest revenue also has the highest AARI.
In other words, a higher revenue indicates a better dendrogram.
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(e) Revenue (2n2)
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Figure 3: Revenue and AARI (higher is better) of several triplets-based methods using respectively n2/2
comparisons (a-b), n2 comparisons (c-d), and 2n2 comparisons (e-f). Given various signal to noise ratios, a
higher revenue implies higher AARI values, that is better dendrograms.

In Table 4 we verify that this remains true for constant signal to noise ratios of 1.5, and halving number
of comparisons. The highest revenue and AARI are underlined. We can notice that, when the revenue
of AddS3-AL becomes higher than the revenue of tSTE-AL, the AARI also follows the same trend, thus
confirming that selecting the dendrogram with the highest revenue is indeed a good way to select meaningful
hierarchies. In Table 5 we provide repeatable results with seed varying from 0 to 9 across the 10 runs of each
algorithm. This follows the same trend as seen in Table 4, thus demonstrating no dependence on seeding.
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(e) Revenue (2n2)
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Figure 4: Revenue and AARI (higher is better) of several quadruplets-based methods using respectively n2/2
comparisons (a-b), n2 comparisons (c-d), and 2n2 comparisons (e-f). Given various signal to noise ratios, a
higher revenue implies higher AARI values, that is better dendrograms.
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E Results on the Planted Model with Noisy Comparisons

In the main paper, we only used the planted model to generate comparisons with no noise. In this section,
we show that our findings remain true even when some of the comparisons are noisy, that is randomly flipped
with a probability of 5%.

In Figure 5, we present the results obtained using n2/2, n2 and 2n2 noisy triplet comparisons respectively. In
Figure 6, we present the results obtained using n2/2, n2 and 2n2 noisy quadruplet comparisons respectively.
In all these figures, we notice that, given a set signal to noise ratio, the ordering between the methods remains
the same for the revenue and the AARI, that is the method with the highest revenue is also the one with
the highest AARI. In other words, a higher revenue indicates a better dendrogram.

F Standard Deviation on Real Data

In Table 6, we provide the standard deviations for the real data experiments that were omitted in the main
paper.
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Figure 5: Revenue and AARI (higher is better) of several triplets-based methods using respectively n2/2
comparisons (a-b), n2 comparisons (c-d), and 2n2 comparisons (e-f) with 5% noise. Given various signal to
noise ratios, a higher revenue implies higher AARI values, that is better dendrograms.
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(d) AARI (n2)
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(e) Revenue (2n2)
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(f) AARI (2n2)

Figure 6: Revenue and AARI (higher is better) of several quadruplets-based methods using respectively n2/2
comparisons (a-b), n2 comparisons (c-d), and 2n2 comparisons (e-f) with 5% noise. Given various signal to
noise ratios, a higher revenue implies higher AARI values, that is better dendrograms.
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Table 4: Revenue and AARI of various methods for a signal to noise ratio of 1.5 and halving of compar-
isons. In each line the highest revenue and the highest AARI are underlined (taking into account standard
deviation), showing that the two measures are well aligned.

Number of
triplets

AddS3-AL tSTE-AL
Revenue AARI Revenue AARI

16n2 7.336× 107 ± 3.9× 105 0.937± 0.030 7.286× 107 ± 8.9× 104 0.849± 0.009
8n2 3.667× 107 ± 7.9× 104 0.901± 0.025 3.647× 107 ± 4.9× 104 0.866± 0.010
4n2 1.820× 107 ± 1.4× 105 0.855± 0.054 1.816× 107 ± 5.3× 104 0.852± 0.011
2n2 8.927× 106 ± 1.4× 105 0.778± 0.046 9.093× 106 ± 1.9× 104 0.855± 0.009
n2 4.333× 106 ± 9.3× 104 0.699± 0.063 4.559× 106 ± 2.5× 104 0.856± 0.008
n2/2 2.097× 106 ± 6.6× 104 0.615± 0.043 2.289× 106 ± 1.8× 104 0.849± 0.014
n2/4 9.363× 105 ± 5.1× 104 0.501± 0.040 1.138× 106 ± 1.0× 104 0.847± 0.010
n2/8 4.310× 105 ± 2.4× 104 0.403± 0.036 5.710× 105 ± 8.3× 103 0.841± 0.011
n2/16 2.128× 105 ± 1.8× 104 0.323± 0.038 2.853× 105 ± 7.3× 103 0.667± 0.046
n2/32 1.048× 105 ± 5.8× 103 0.151± 0.031 1.438× 105 ± 5.7× 103 0.543± 0.015

Number of
triplets

MulK3-AL
Revenue AARI

16n2 7.304× 107 ± 8.4× 104 0.863± 0.007
8n2 3.631× 107 ± 4.8× 104 0.854± 0.003
4n2 1.784× 107 ± 7.9× 104 0.821± 0.008
2n2 8.357× 106 ± 7.7× 104 0.660± 0.020
n2 3.754× 106 ± 1.2× 105 0.539± 0.012
n2/2 1.254× 106 ± 1.7× 105 0.353± 0.049
n2/4 1.680× 105 ± 7.7× 104 0.085± 0.044
n2/8 7.938× 103 ± 1.4× 104 0.010± 0.011
n2/16 5.156× 102 ± 7.1× 103 −0.0002± 0.003
n2/32 1.314× 103 ± 3.271× 103 −0.0004± 0.0009
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Table 5: Revenue and AARI of various methods for a signal to noise ratio of 1.5 and halving of comparisons.
In each line the highest revenue and the highest AARI are underlined, showing that the two measures are
well aligned. Here the seed is varied from 0 to 9.

Number of
triplets

AddS3-AL tSTE-AL
Revenue AARI Revenue AARI

16n2 7.347× 107 ± 1.3× 105 0.937± 0.024 7.300× 107 ± 8.7× 104 0.877± 0.007
8n2 3.667× 107 ± 1.7× 105 0.905± 0.020 3.656× 107 ± 8.8× 104 0.877± 0.007
4n2 1.823× 107 ± 1.0× 105 0.862± 0.023 1.825× 107 ± 7.0× 104 0.874± 0.012
2n2 8.962× 106 ± 9.8× 104 0.782± 0.042 9.130× 106 ± 4.0× 104 0.867± 0.014
n2 4.315× 106 ± 9.7× 104 0.682± 0.047 4.559× 106 ± 2.0× 104 0.868± 0.012
n2/2 2.038× 106 ± 6.8× 104 0.593± 0.037 2.277× 106 ± 1.4× 104 0.860± 0.014
n2/4 9.268× 105 ± 4.2× 104 0.498± 0.035 1.137× 106 ± 1.0× 104 0.851± 0.065
n2/8 4.261× 105 ± 2.5× 104 0.396± 0.033 5.728× 105 ± 6.2× 103 0.840± 0.010
n2/16 2.015× 105 ± 1.2× 104 0.295± 0.041 2.858× 105 ± 3.3× 103 0.720± 0.057
n2/32 1.096× 105 ± 8.5× 103 0.192± 0.057 1.450× 105 ± 2.2× 103 0.549± 0.025

Number of
triplets

MulK3-AL
Revenue AARI

16n2 7.315× 107 ± 1.3× 105 0.861± 0.005
8n2 3.636× 107 ± 9.7× 104 0.855± 0.003
4n2 1.795× 107 ± 9.3× 104 0.830± 0.009
2n2 8.444× 106 ± 1.3× 105 0.677± 0.041
n2 3.728× 106 ± 1.4× 105 0.540± 0.016
n2/2 1.220× 106 ± 1.7× 105 0.347± 0.050
n2/4 1.531× 105 ± 8.9× 104 0.077± 0.047
n2/8 1.856× 104 ± 1.2× 104 0.011± 0.011
n2/16 4.026× 103 ± 8.0× 103 0.005± 0.004
n2/32 2.015× 103 ± 3.5× 103 0.0003± 0.001
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Table 6: Experiments on real datasets. For the triplets-based methods, AddS3-AL tends to obtain the
dendrograms with the best revenues. For the quadruplets-based approaches, AddS4-AL and 4K-AL ob-
tain comparable results. Using the original Cosine similarities only yields slightly better hierarchies than
comparison-based methods.

Dataset Triplet
AddS3-AL tSTE-AL MulK3-AL Cosine-AL

Zoo 2.76× 105 ± 5× 103 2.18× 105 ± 9× 103 2.02× 105 ± 2× 104 2.81× 105 ± 2× 103

Glass 2.18× 106 ± 4× 104 1.99× 106 ± 3× 104 1.48× 106 ± 8× 104 2.12× 106 ± 1× 104

MNIST 1.88× 109 ± 5× 107 2.03× 109 ± 5× 107 1.75× 109 ± 4× 107 2.03× 109 ± 5× 107

Car 1.52× 105 1.56× 105 ± 2× 103 1.26× 105 -
Food 6.13× 106 5.99× 106 ± 2× 104 6.09× 106 -
Vogue 2.72× 104 2.10× 104 ± 1× 103 3.02× 103 -
Nature 2.65× 105 2.06× 105 ± 8× 103 1.23× 105 -
Imagenet 7.18× 107 6.57× 107 ± 8× 105 3.44× 107 -

Dataset Quadruplet
AddS4-AL 4K-AL Cosine-AL

Zoo 2.86× 105 ± 7× 103 2.86× 105 ± 8× 103 2.96× 105 ± 2× 103

Glass 2.43× 106 ± 2× 104 2.45× 106 ± 2× 104 2.49× 106 ± 1× 104

MNIST 1.94× 109 ± 3× 107 1.91× 109 ± 3× 107 2.06× 109 ± 4× 107

Car 1.52× 105 1.12× 105 -
Food 6.13× 106 6.13× 106 -
Vogue 2.72× 104 2.55× 104 -
Nature 2.65× 105 2.23× 105 -
Imagenet 7.18× 107 6.99× 107 -
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