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Abstract
While reasoning capabilities typically emerge001
in large language models (LLMs) with tens002
of billions of parameters, recent research fo-003
cuses on improving smaller open-source mod-004
els through knowledge distillation (KD) from005
commercial LLMs. However, many of these006
studies rely solely on responses from a single007
LLM as the gold rationale, unlike the natural008
human learning process, which involves un-009
derstanding both the correct answers and the010
reasons behind mistakes. In this paper, we in-011
troduce a novel Fault-Aware DistIllation via012
Peer-Review (FAIR) approach: 1) Instead of013
merely obtaining rationales from teachers, our014
method asks teachers to identify and explain015
the student’s mistakes, providing customized016
instruction learning data. 2) We design a sim-017
ulated peer-review process between teacher018
LLMs, which selects only the generated ratio-019
nales above the acceptance threshold. This re-020
duces the chance of teachers guessing correctly021
with flawed rationale, improving instructional022
data quality. Comprehensive experiments and023
analysis on mathematical, commonsense, and024
logical reasoning tasks demonstrate the effec-025
tiveness of our method.026

1 Introduction027

Large Language Models (LLMs) have proven to be028

highly effective in addressing a wide range of com-029

plex tasks (Ni et al., 2024; Fan and Tao, 2024), in-030

cluding mathematical reasoning (Lewkowycz et al.,031

2022; Imani et al., 2023), commonsense reason-032

ing (Zhao et al., 2024; Achiam et al., 2023), and033

logical reasoning (Liu et al., 2023; Xu et al., 2023b).034

However, these emergent reasoning abilities tend035

to manifest only in LLMs with more than 100 bil-036

lion parameters, while smaller models struggle to037

exhibit such capabilities (Wei et al., 2022a). De-038

spite this, related research (Touvron et al., 2023;039

Zeng et al., 2022) has shown that smaller language040

models, particularly those with fewer than 10 bil-041

lion parameters, can perform similarly to larger042
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Figure 1: Student LM learns from multiple teacher
LLMs via Peer-Review distillation.

models in terms of following human instructions. 043

However, it is challenging to prompt smaller Lan- 044

guage Models (LMs) to generate reasoning steps 045

by Chain-of-Thought (CoT) prompts (Wang et al., 046

2023). Moreover, most existing reasoning datasets 047

lack high-quality rationale (Gurrapu et al., 2023) 048

due to the high cost of manual annotations. 049

To address these challenges, distilling the capa- 050

bilities of LLMs emerges as a resource-friendly and 051

effective strategy. DeepSeek-R1 (Guo et al., 2025) 052

demonstrates that distilling reasoning patterns from 053

larger models outperform RL-derived patterns on 054

smaller models. Through collecting rationales gen- 055

erated by LLMs for instruction tuning, previous 056

studies have been able to distill the private LLMs’ 057

reasoning abilities into smaller models (Wang et al., 058

2022; Ho et al., 2023; Magister et al., 2022; Fu 059

et al., 2023). However, most of these efforts fall 060

within the scope of Labeling Knowledge Distilla- 061

tion (Xu et al., 2024b), where LLMs are primarily 062

used to annotate data for training smaller models, 063

without utilizing smaller model’s output as feed- 064

back to generate customized instruction data to im- 065

prove the LM in return. As a result, LLMs remain 066

unaware of the limitations of smaller models. 067

Furthermore, prior research typically employs 068

only one LLM as the teacher, which can introduce 069

more biased training data compared to using mul- 070

tiple teacher LLMs during distillation. Therefore, 071

we propose using multiple LLMs from different 072

organizations as teachers to provide more impartial 073
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and diverse training data. Additionally, we design074

a simulated peer-review process between teacher075

LLMs, where the rationale generated by one LLM076

is reviewed by other LLMs. Only the rationales077

that pass this peer-review process are included in078

the training dataset. This method reduces the like-079

lihood of flawed rationales, even when a correct080

answer is provided, thereby improving the overall081

quality of the training data for instruction tuning.082

To this end, we propose a Fault-Aware Distilla-083

tion via Peer-Review (FAIR) knowledge distillation084

method from multiple LLMs, as briefly shown in085

Figure 1. Inspired by the natural human learning086

process (Konold et al., 2004), we argue that stu-087

dents should not only know what is the correct088

answer but also learn why they made mistakes.089

Therefore, in addition to providing the correct ra-090

tionale generated by the teacher LLMs, we also091

present the student model’s mistakes to the teacher092

LLMs and return the mistake-specific feedback.093

Furthermore, inspired by the multi-agent evalua-094

tion framework of Nan et al. (2023), we employ095

multiple LLMs as teachers and ask them the same096

question. Each teacher LLM’s answer is reviewed097

by the other teachers, and only the responses that098

pass this peer-review process are included in the099

instruction training dataset. We believe this peer-100

review mechanism between teacher LLMs can sig-101

nificantly reduce biased or flawed rationales, lead-102

ing to improved distillation performance. In sum-103

mary, the contributions of our work are as follows:104

105

1. The Fault-Aware DistIllation via Peer-Review106

(FAIR) approach is introduced to help stu-107

dent LM learn not only from the correct ratio-108

nale but also from feedback on their own mis-109

takes provided by teacher LLMs, which builds110

a comprehensive instruction tuning method111

aimed at enhancing the student LM’s general112

reasoning abilities.113

2. We design a simulated Peer-Review mech-114

anism between teacher LLMs to filter out115

flawed rationales and improve the confidence116

of instruction tuning data.117

3. Our work provides a comprehensive bench-118

mark on the mathematical, commonsense, and119

logical reasoning tasks. Experiments and com-120

parisons with other concurrent works demon-121

strate the effectiveness of our method in dis-122

tilling the reasoning ability of teacher LLMs.123

2 Related Work 124

LLM Reasoning Recent studies focus on provok- 125

ing the thought processes of LLMs, validating their 126

effectiveness in reasoning tasks (Wei et al., 2022b; 127

Imani et al., 2023; Fu et al., 2023). Various tech- 128

niques have been developed to enhance LLM rea- 129

soning abilities (Chu et al., 2023; Xu et al., 2024a; 130

Chen et al., 2023). Chain-of-Thought (CoT) (Wei 131

et al., 2022b) improves reasoning by prompting 132

LLMs to generate intermediate natural language 133

thought processes. Huang et al. (2022) demon- 134

strates that LLMs can self-improve through self- 135

training on majority voting data. Chung et al. 136

(2024) showed that smaller LMs can acquire CoT 137

skills by training on rationales. The work s1 (Muen- 138

nighoff et al., 2025) proves the significance of high- 139

quality CoT data on the reasoning test performance. 140

In this paper, we further show that the CoT perfor- 141

mance of smaller LMs can be improved through 142

integrated instruction learning using CoT data se- 143

lected by majority voting from LLMs. 144

Knowledge Distillation from LLMs Distilling 145

knowledge from LLMs by fine-tuning smaller lan- 146

guage models using high-quality data collected 147

from LLMs has become a prominent research di- 148

rection (Xu et al., 2023a; Li et al., 2024; Guo et al., 149

2025). This approach serves as an effective method 150

for transferring the emergent abilities of black-box 151

LLMs to smaller open-source models. However, 152

while recent works (Ho et al., 2023; Shridhar et al., 153

2022; Guo et al., 2024) use LLM-generated rea- 154

soning rationales as supervisory signals, they often 155

overlook providing student models with feedback 156

on their mistakes when their answers are incorrect. 157

To address this, we collect both the correct ratio- 158

nale and mistake-specific feedback (Jiang et al., 159

2023) for student models’ wrong answers from 160

LLMs, integrating them into instruction tuning to 161

enhance the overall reasoning capabilities of the 162

student models. Moreover, unlike previous studies 163

that depend on a single teacher LLM (Chenglin 164

et al., 2023; Zhu et al., 2024) or intermediate roles 165

such as mentors (Lee et al., 2024) and teaching as- 166

sistant (TA) (Zhou and Ai, 2024), we employ mul- 167

tiple LLMs (Tian et al., 2024; Sun et al., 2023) as 168

teachers to increase the diversity of generated data. 169

Finally, compared to peer-review methods in LLMs 170

for evaluation (Ning et al., 2024; Chu et al., 2024), 171

we design a simulated peer-review process to en- 172

sure high-quality instruction training data, thereby 173

improving the distillation performance. 174

2



Score: 0

Score: 4

Exam 

Problem: Weng earns $12 an 
hour for babysitting. Yesterday, 
she just did 50 minutes of 
babysitting. How much did she 
earn?

Student LM
Wrong Rationale: Weng earns $12 
per hour for babysitting. Since she 
did 50 minutes of babysitting, she 
earned $12 x 0.75 = $9 per 50 
minutes. So, she earned $9 x 2 = $18.

Peer-review process

The mistakes in student’s rationale: 
The error is in multiplying the hourly rate by 0.75 to get 
the amount earned in 50 minutes. Instead, the correct 
approach would be to calculate the rate per minute by 
dividing the hourly rate by 60, and then multiplying that 
rate by the number of minutes worked. The correct 
answer is $10, not $18.

Correct rationale: 
To calculate Weng's earnings, first, calculate the rate 
per minute by dividing by 60: $12 / 60 minutes = $0.2/
minute. Now multiply the time by Weng's minutely rate: 
50 minutes x $0.2/minute = $10. So, Weng earned $10 
for 50 minutes of babysitting.

Learn from gold rationale 

Learn from own mistakes

Teacher LLMs

Answer 

Answer: $10

Explanation: … Score: 5

Answer: $20

Explanation: …

Score: 1

…

…

Peer-review process

Figure 2: Overview of our Fault-Aware DistIllation via Peer-Review (FAIR) method. The specific structure of the
peer-review process is explained in the left-bottom sub-figure.

3 Method175

As illustrated in Figure 2, we introduce a Fault-176

Aware DistIllation via Peer-Review (FAIR) knowl-177

edge distillation method that empowers the student178

model to improve by learning from its own mis-179

takes and the correct answers generated by multi-180

ple teacher models. Specifically, our instruction181

learning procedure involves four major steps: (1)182

The student LM takes an “exam“ on the training set183

to identify mistakes that are incorrectly generated184

rationales. (2) We then craft various prompts that185

incorporate the question and the student’s wrong ra-186

tionale to prompt the teacher LLMs to generate cor-187

rect answers and provide feedback on the student’s188

errors respectively. (3) A simulated peer-review189

process is conducted among the teacher LLMs to190

produce highly confident instructional data. (4) Fi-191

nally, the student model learns to reason through192

instruction learning based on the peer-reviewed193

correct answers and tailored corrections on its mis-194

takes provided by the teacher LLMs.195

3.1 Collecting Mistaks on Student Model196

We aim to gather samples from reasoning bench-197

marks where the student model incorrectly answers198

questions. These samples will be used to create cus-199

tomized instructional data from the teacher models.200

To achieve this, the student model undergoes an201

“exam” on the training set Dtrain to assess its rea-202

soning ability and collect the mistake set Dmistake,203

which are the samples containing incorrect ratio-204

nales and answers. Specifically, given a dataset205

D = {x, y}, where x is the question and y is206

the gold answer, we propose to input the question 207

x into the student model to generate the output 208

f(x) = [r′, y′]. Here, the square brackets denote 209

the concatenation of the student model’s rationale 210

r′ and answer y′, with the answer typically at the 211

end of the output. Since the correct rationale r is 212

often not provided in Dtrain, we follow Wang et al. 213

(2023)’s work by considering r′ as the wrong ratio- 214

nale if y′ ̸= y. Finally, the mistake set Dmistake is 215

collected as follows: 216

Dmistake = {(x, r′, y′) | (x, y) ∈ Dtrain, y
′ ̸= y} (1) 217

where x is the question, r′ is the wrong rationale, 218

y and y′ are correct and wrong final answer. 219

The collected mistake set Dmistake highlights 220

the student’s reasoning weaknesses and will be 221

utilized for the following purposes: 222

1) Providing the incorrectly answered questions 223

for the teacher LLMs to generate correct ratio- 224

nales. 225

2) Using the student’s incorrect rationales to 226

prompt the teacher LLMs to identify errors 227

and create customized mistakes feedback. 228

3.2 Inquiring Teacher LLMs with Student’s 229

Mistakes 230

We expect the teacher LLM to function as a rea- 231

soning instructor who can identify student’s mis- 232

takes and provide tailored feedback, rather than 233

merely an answer provider. Therefore, we query 234

the teacher LLMs with the student’s incorrectly 235

answered questions, aiming for them to generate 236
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Question: Weng earns $12…How much 
did she earn? Let’s think step by step.


Teacher’s rationale: …


Imagine you are a teacher, I will give you 
one student's incorrect answer to a 
question. You should point out the 
mistakes in the student's answer.

Question: Weng earns $12…How much 
did she earn? Let’s think step by step.

Student's Answer: … So, she earned 
$9 x 2 = $18.

Hint: The correct answer should be 10.

Teacher’s feedback: …

Imagine you are a reviewer, I will give 
you one submission about the rationale 
for a question. You should simulate the 
peer-review process by evaluating the 
rationale based on its correctness and 
soundness. Let's think step by step, but 
your final answer should only be one 
number, ranging from 1-5 (the higher the 
score is, the more possible you think the 
rationale is correct).

Question: Weng earns $12…How much 
did she earn? Let’s think step by step.

Rationale: To calculate Weng’s earnings…


Hint: The correct answer should be 10.

Teacher’s score: …

Figure 3: The prompt template Prt (first) and Pfb (sec-
ond) for asking teacher LLMs to generate rationale and
mistakes feedback. The part colored in yellow is the
teacher’s output.

the correct rationale and identify specific errors237

in the student’s mistakes. We believe that cus-238

tomized training data, which includes both “what”239

the correct answer is and “why” the mistakes were240

made, can effectively address the student’s weak-241

nesses. For prompt Pfb to gather feedback on242

the student’s mistakes, we follow Zelikman et al.243

(2022) by adding a hint that explicitly provides the244

correct answer to the question, ensuring more ac-245

curate responses. The detailed prompt templates246

are shown in Figure 3. In detail, for each sam-247

ple (x, r′, y′) ∈ Dmistake, we request each teacher248

Mk
T from the total of N teacher LLMs to generate249

its own feedback fk, which will be collected as the250

mistakes feedback set Dfeedback:251

fk = Mk
T (Pfd(x, r

′, y))

Dfeedback = {(x, r′, fk) | (x, r′, y′) ∈ Dmistake, 1 ≤ k ≤ N}
(2)252

where Mk
T (x) represents the k-th teacher LLM’s253

output when given x as the input. Pfb(x) denotes254

the prompt template filled in with x to generate255

mistakes feedback.256

3.3 Simulating Peer-Review Between Teacher257

Models258

During our experiments, we observe that the ra-259

tionales provided by teacher LLMs are not always260

accurate, even when the final answer matches the261

gold answer. This discrepancy is rare in mathemat-262

ical tasks, where there is often a strict correlation263

between the correctness of the rationale and the264

final answer number due to the inherent nature of265

mathematics. However, for multiple-choice ques-266

tions, such as those in the commonsense Strate-267

gyQA (Geva et al., 2021) (True or False) and logic268

Question: Weng earns $12…How much 
did she earn? Let’s think step by step.


Teacher’s rationale: …


Imagine you are a teacher, I will give you 
one student's incorrect answer to a 
question. You should point out the 
mistakes in the student's answer.

Question: Weng earns $12…How much 
did she earn? Let’s think step by step.

Student's Answer: … So, she earned 
$9 x 2 = $18.

Hint: The correct answer should be 10.

Teacher’s feedback: …

Imagine you are a reviewer, I will give 
you one submission about the rationale 
for a question. You should simulate the 
peer-review process by evaluating the 
rationale based on its correctness and 
soundness. Let's think step by step, but 
your final answer should only be one 
number, ranging from 1-5 (the higher the 
score is, the more possible you think the 
rationale is correct).

Question: Weng earns $12…How much 
did she earn? Let’s think step by step.

Rationale: To calculate Weng’s earnings…


Hint: The correct answer should be 10.

Teacher’s score: …

Figure 4: The prompt template Ppr for asking teacher
LLMs to perform peer-review process. The part colored
in yellow is the teacher’s output.

LogiQA (Liu et al., 2020) (A, B, C, D) benchmarks, 269

there are instances where a correct rationale may 270

lead to an incorrect final choice, or a wrong ra- 271

tionale might result in a correct final choice. See 272

Appendix B for more peer-review examples on dif- 273

ferent benchmarks. 274

To address this issue and avoid having teacher 275

LLMs “guess” the correct answer without well- 276

grounded reasoning steps, we propose a simulated 277

peer-review process among teacher LLMs. Since 278

most relevant datasets do not provide gold ratio- 279

nales, we assume that each LLM’s rationale should 280

be reviewed and scored by peer LLMs, which is 281

inspired by the multi-agent evaluation framework 282

of Nan et al. (2023). Only those rationales that pass 283

this peer-review process with high confidence will 284

be included in the final instructional tuning dataset. 285

Figure 2 has explained the peer-review process. For 286

the rationale generated by each teacher LLM, we 287

incorporate it into the designed peer-review prompt 288

Ppr shown in Figure 4 and request all other LLMs 289

to score it. Specifically, assume we have N dif- 290

ferent teacher LLMs M1
T ,M2

T , ...,MN
T . For the 291

k-th teacher LLM Mk
T , we obtain its generated 292

rationale rk by: 293

rk = Mk
T (Prt(x)) (3) 294

where Mk
T (x) represents the k-th teacher LLM’s 295

output when given x as the input. Prt(x) denotes 296

the rationale prompt template filled in with x. 297

Subsequently, we ask each teacher except Mk
T 298

to peer-review this rationale rk and score it. The 299

scores are collected to form the score set Score(rk) 300

for rationale rk. Only the rationale rk with an av- 301

erage score Avg(Score(rk)) exceeding the accep- 302
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tance threshold Th will be included in the rationale303

set Drationale:304

Score(rk) = {Mi
T (Ppr(x, rk, y)) | 1 ≤ i ≤ N and i ̸= k}

Drationale = {(x, rk) | if Avg(Score(rk)) ≥ Th, 1 ≤ k ≤ N}
(4)305

where Mi
T (x) represents the i-th teacher LLM’s306

output with input x. Ppr(x) denotes the peer-review307

prompt template filled in with x to generate score.308

3.4 Instruction Tuning for Student Models309

The reasoning ability of the student LM can be310

enhanced through instruction tuning (Wei et al.,311

2021), which incorporates both verified rationales312

and customized mistake corrections provided by313

the teacher models. See Appendix C for explicit in-314

struction tuning templates on different benchmarks.315

Learning from Teacher’s Rationales The ratio-316

nales generated by the teacher LLMs are specifi-317

cally tailored to address the student’s weaknesses,318

identified through the student’s previous exam. Ac-319

cording to Equation 4, these collected rationales320

are combined into the set Drationale as the correct321

rationales, which are then used to fine-tune the stu-322

dent LM. For the instruction tuning process, we323

aim for the student model, when given the ques-324

tion x as the instruction, to produce an answer that325

closely aligns with the corresponding rationale r in326

Drationale. The loss function for learning from the327

teacher’s rationale is defined as follows:328

Lrationale = CE(MS(x), r), for r ∈ Drationale
(5)329

where CE denotes the Cross-Entropy function, and330

MS(x) represents the student LM’s output when331

given x as the input.332

Learning from Student’s Mistakes In addition333

to learning from correct rationales, we propose that334

the student model should also learn from its own335

mistakes, simulating the typical human learning336

process. This approach helps the student not only337

grasp the correct answers but also understand the338

reasons behind the errors. To facilitate this, we339

constructed the feedback set Dfeedback, based on340

Equation 2, which provides feedback on the stu-341

dent’s mistakes. Through this process, we expect342

the student LM to learn the teacher’s reasoning ca-343

pabilities and generate outputs that closely align344

with the teacher’s feedback f when given instruc-345

tions to identify its own mistakes. Finally, the loss346

function for learning from mistakes feedback is347

defined as follows:348

Lfeedback = CE (MS(x⊕ r′), f) , for f ∈ Dfeedback (6)349

where CE denotes the Cross-Entropy function, and 350

⊕ represent the string concatenation. MS(x⊕ r′) 351

represents the student LM’s output when given 352

x⊕ r′ as the input. 353

Joint Learning The final optimization process in- 354

tegrates learning from both correct answers and the 355

teachers’ customized mistakes feedback. There- 356

fore, the instruction learning losses from Equa- 357

tion 5 and Equation 6 are combined as follows: 358

L = α · Lfeedback + (1− α) · Lrationale (7) 359

where α controls the impact of learning from mis- 360

takes, balancing the two learning objectives. 361

4 Experiments 362

4.1 Datasets 363

We focus on evaluating reasoning abilities with 364

various datasets, including mathematical reasoning 365

with GSM8K (Cobbe et al., 2021) and SVAMP (Pa- 366

tel et al., 2021), commonsense reasoning with Strat- 367

egyQA (Geva et al., 2021), and logical reason- 368

ing with LogiQA (Liu et al., 2020). All datasets 369

were downloaded from Huggingface, utilizing the 370

standard train/test set split. Datasets statistics are 371

shown in Appendix A.1. 372

4.2 Baselines 373

To demonstrate the effectiveness of our method, 374

we include the following baselines: (1) the teacher 375

LLMs and student LMs without fine-tuning, to 376

highlight the impact of distilling reasoning abil- 377

ities from the teachers; (2) sophisticated distilla- 378

tion methods applied to smaller models: CodeT5- 379

Large (Zhu et al., 2024), Qwen2-1.5B (Adarsh 380

et al., 2025), and GPT-J (Wang et al., 2023); (3) re- 381

lated works that utilize Llama-series: Llama-7B (Li 382

et al., 2024), Llama2-7B (Guo et al., 2024; Mi- 383

tra et al., 2023), and Llama3.1-8B (Hicham Badri, 384

2025); and (4) distillation approach on the larger 385

model T5-XXL (Magister et al., 2022). 386

4.3 Implementation Details 387

Models We selected GPT-3.5-Turbo1, Gemini-1.0- 388

Pro (Team et al., 2023), and Mixtral-8x7B-Instruct- 389

v0.1 (Jiang et al., 2024) as the teacher LLMs. The 390

selection motivations include the considerations 391

of the expense and accessibility of the LLMs and 392

their proved powerful NLP capabilities. Among 393

1https://platform.openai.com/docs/models/
gpt-3-5-turbo
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Method # Params Distillation Teachers Mathematical Commonsense Logical
GSM8K SVAMP StrategyQA LogiQA

Teacher LLMs
GPT-3.5-Turbo 175B - 78.01* 82.30* 70.92* 40.55*
Gemini-1.0-Pro - - 76.42* 81.10* 67.03* 39.94
Mixtral-8x7B-Instruct-v0.1 46.7B - 74.40* 81.60* 72.83* 34.19*
Student LM Baselines
CodeT5-Large+PaD (Zhu et al., 2024) 770M GPT-3.5-Turbo 44.90* 51.00* - -
Qwen2-1.5B+SIKeD (Adarsh et al., 2025) 1.5B Llama3-70B 64.97* 75.40* - -
GPT-J+Self-Reflection (Wang et al., 2023) 6B ChatGPT 33.10* 55.00* 65.90* -
Llama-7B+NCE (Li et al., 2024) 7B GPT-3.5-Turbo, GPT-4 41.93* 51.50* - -
Llama2-7B+ReversalMath (Guo et al., 2024) 7B GPT-4 52.10* 59.20* - -
ORCA2-7B (Mitra et al., 2023) 7B ChatGPT, GPT-4 47.23* - - 35.02*
Llama3.1-8B+ReDistill (Hicham Badri, 2025) 8B DeepSeek-R1 75.66* 82.00 - -
T5-XXL+CoT (Magister et al., 2022) 11B PaLM, GPT-3 21.99* - 63.77* -
Peer-Reviewed Distillation (Ours)
Llama2-7B-chat (Touvron et al., 2023) 7B - 15.62 39.67 47.02 18.74

+Teacher-Mixtral 7B Mixtral-8x7B-Instruct 22.67 47.33 62.70 32.10
+Teacher-Gemini 7B Gemini-1.0-Pro 26.84 49.33 57.93 32.72
+Teacher-GPT 7B GPT-3.5-Turbo 30.71 51.67 60.12 31.04
+Teacher-Multiple, w/o Peer-Review 7B Multiple 29.65 52.67 56.62 29.65
+Teacher-Multiple 7B Multiple 36.24 59.50 67.69 36.25

Qwen2.5-1.5B-Instruct (Yang et al., 2024) 1.5B - 64.44 77.00 53.86 19.97
+Teacher-Mixtral 1.5B Mixtral-8x7B-Instruct 65.81 77.67 63.32 32.10
+Teacher-Gemini 1.5B Gemini-1.0-Pro 66.26 78.67 60.41 33.95
+Teacher-GPT 1.5B GPT-3.5-Turbo 68.01 79.33 62.45 34.25
+Teacher-Multiple, w/o Peer-Review 1.5B Multiple 67.48 77.67 61.43 33.03
+Teacher-Multiple 1.5B Multiple 72.48 81.00 68.12 38.71

Llama3.1-8B-Instruct (Dubey et al., 2024) 8B - 74.00 81.67 63.03 36.56
+Teacher-Mixtral 8B Mixtral-8x7B-Instruct 74.83 82.00 71.62 37.02
+Teacher-Gemini 8B Gemini-1.0-Pro 76.42 82.33 66.96 39.94
+Teacher-GPT 8B GPT-3.5-Turbo 77.94 83.00 70.16 40.86
+Teacher-Multiple, w/o Peer-Review 8B Multiple 76.57 82.67 70.89 38.40
+Teacher-Multiple 8B Multiple 79.30 84.33 73.07 43.16

Table 1: Accuracy (%) across various reasoning tasks with different distillation methods. * denotes the results are
from the original paper or official document. “Teacher-x” indicates the specific teacher LLM used in the distillation
experiment. The best performance among different student LMs in each benchmark is marked in bold.

the three student models, we choose Llama2-7B-394

chat (Touvron et al., 2023) as the backbone for its395

active community to compare performance, and396

Qwen2.5-1.5B-Instruct (Yang et al., 2024) as well397

as Llama3.1-8B Instruct (Dubey et al., 2024) to test398

the generalizability of FAIR method. The threshold399

in Equation 4 was set to Th = 4 for high confi-400

dent rationales. The parameter α in Equation 7 was401

set to α = 0.5 to balance the impact of learning402

from mistakes. For data inference from teacher403

LLMs, we collect samples that have at least one404

peer-reviewed rationale and one feedback. During405

the training, we randomly select one feedback and406

one rationale for each sample. All evaluation re-407

sults are based on the zero-shot test set. Primary408

experiments were conducted on four Nvidia A100-409

80GB GPUs. More implementation details are in410

Appendix A.411

4.4 Main Results412

Main results are shown in Table 1.413

Advantage of Distillation The inference results414

of student LM Llama2-7B show significant im- 415

provement after applying knowledge distillation. 416

Although it still has a noticeable gap between the 417

distilled Llama2-7B and teacher LLMs in mathe- 418

matical reasoning after distillation, the fine-tuned 419

Llama2-7B outperforms the weakest teacher LLM 420

in commonsense and logical tasks. As more up- 421

dated and powerful student LMs, Qwen2.5-1.5B 422

and Llama3.1-8B show steady improvements af- 423

ter distillation. Notably, the multiple-teacher dis- 424

tillation results on Llama3.1-8B even surpass all 425

teacher LLMs. Considering that we only use the 426

failed cases set as shown in Table 2, it demonstrates 427

that FAIR method effectively integrates LLMs to 428

enhance the reasoning abilities of student models. 429

Comparison with Baselines Compared to distil- 430

lation methods on smaller models such as CodeT5, 431

Qwen2-1.5B , and GPT-J, FAIR on Qwen2.5-1.5B 432

consistently achieves superior performance on the 433

available mathematical and commonsense tasks. 434

Compared with other works based on Llama-series 435
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#Wrong / #Train
Model GSM8K SVAMP StrategyQA LogiQA

Qwen2.5-1.5B 1705/7473 136/700 671/1603 5450/7376
Llama2-7B 6236/7473 387/700 825/1603 6159/7376
Llama3.1-8B 1422/7473 132/700 554/1603 4433/7376

Table 2: Exam results on original student models. The
wrongly answered samples will be collected for gener-
ating the teacher responses and distillation training set.

models, on the GSM8K benchmark, our perfor-436

mance on Llama2-7B (36.24%) lags behind Llama-437

7B+NCE (41.93%) and ReversalMath (52.10%),438

likely because these models were exclusively fine-439

tuned on mathematical tasks, with GSM8K being440

a key and difficult benchmark in this domain. The441

other trained mathematical datasets may improve442

student LM’s overall mathematical reasoning capa-443

bility. In addition, we utilize only the failed cases444

set, which is significantly smaller compared to the445

training data in other studies. Nevertheless, our ap-446

proach still yields better performance compared to447

ReversalMath on another easier and smaller math-448

ematical benchmark, SVAMP (59.50%>59.20%).449

Additionally, our results on LogiQA (36.25%) also450

exceed the ORCA2-7B (35.02%). Finally, dis-451

tillation results on Llama3.1-8B-Instruct surpass452

the same Llama3.1-8B-Instruct+ReDistill and the453

larger T5-XXL+CoT on mathematical and com-454

monsense tasks.455

5 Analysis456

5.1 Analysis about Peer-Review Process457

To assess the importance of the peer-review pro-458

cess further, we compared the evaluation results459

with and without peer-review, as shown in Table 1.460

When peer-review is absent, the average test ac-461

curacy across all benchmarks decreases by 7.84%,462

5.18%, and 2.83% for Llama2-7B, Qwen2.5-1.5B,463

and Llama3.1-8B, respectively. This reinforces464

that noisy answers generated by multiple teach-465

ers, which could potentially confuse the student466

model during instruction tuning, can be effectively467

filtered through peer review, ultimately enhanc-468

ing the student model’s performance. In addi-469

tion, for our backbone Llama2-7B, the experiments470

without peer-review even fall behind the best sin-471

gle teacher-GPT distillation outcomes on GSM8K472

(29.65%<30.71%). This pattern is particularly pro-473

nounced in commonsense and logical reasoning474

tasks. These findings align with our assumption475

that peer-review may have a smaller impact on476

mathematical reasoning tasks, where the rationale477

and final result are highly correlated, but signifi- 478

cantly improves the quality of instruction data in 479

commonsense and logical reasoning tasks. More 480

results based on peer-review between only two 481

teacher LLMs are displayed in Appendix D. 482

5.2 Quality of Automated Peer-Review 483

To further evaluate the reliability of our automated 484

peer-review process, we conducted a manual anal- 485

ysis to assess whether the teachers’ reasoning pro- 486

cess genuinely supports their answers. This is 487

important because an answer may sometimes be 488

correct by chance despite flawed reasoning. First, 489

we randomly selected 100 samples from Dmistake 490

of the LogiQA dataset and collected the original 491

“correct” responses, whenever a teacher model’s 492

predicted final answers matched the gold multiple- 493

choice answers. We then manually examined these 494

responses and removed those “guessed” correct 495

answers with flawed rationales. Finally, we com- 496

pared our gold-standard, human-annotated reason- 497

ing with those produced by the automated peer- 498

review process. Table 3 revealed that the peer- 499

review process achieved an average accuracy of 500

90.35% when compared to human annotations, 501

demonstrating its high reliability. 502

Model Original PR Human

GPT-3.5-Turbo 40 38 34
Gemini-1.0-Pro 38 34 30
Mixtral-8x7B-Instruct 35 30 28

Table 3: Comparison of the number of responses verified
by original model predictions, peer-review (PR), and
human annotations for random 100 LogiQA samples.

5.3 Abalation of Learning from Mistakes 503

As a key component of our FAIR method, we ini- 504

tially set the proportion of learning from mistakes 505

to 0.5 in previous experiments for simplicity. To 506

explore the influence of balancing learning from 507

rationales and learning from mistakes, we adjust 508

the value of α in Equation 7. Specifically, α was 509

varied from [0, 0.25, 0.5, 0.75, 1], and experiments 510

were conducted on all benchmarks for 5 epochs on 511

Llama2-7B-chat, while keeping other parameters 512

constant. Figure 5 visualizes how learning from 513

mistakes affects instruction-tuning. Our findings 514

support the hypothesis that learning from mistakes 515

positively impacts instruction tuning. However, the 516

relationship is not uniformly positive across all α 517

values on the four benchmarks. 518
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For GSM8K and LogiQA, the benefits of learn-519

ing from mistakes increase when α < 0.25, but520

start to decrease when α exceeds 0.25. Conversely,521

for StrategyQA and SVAMP, the advantages of522

learning from mistakes consistently grow and reach523

their peak when α = 0.75. These results suggest524

that placing too much emphasis on learning from525

mistakes (i.e., a higher α value) can lead to insta-526

bility. Consequently, it is important to evaluate and527

optimize α value for different tasks to effectively528

balance the learning of “what” (correct answers)529

and “why” (own mistakes) during training.

0.60 
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Figure 5: The effect of α of the tuning performance on
Llama2-7B-chat. α=0 indicates the absence of learning
from mistakes.530

5.4 Effectiveness of Multiple Teachers531

As shown in Table 1, our multiple-teacher distilla-532

tion with peer-review method on Llama2-7B im-533

proves the average accuracy by 5.48% across four534

benchmarks compared to the single teacher dis-535

tillation method with the highest accuracy. Al-536

though the performance gains on Qwen2.5-1.5B537

and Llama3.1-8B are slightly reduced, this is likely538

due to the strong baseline capabilities of the origi-539

nal student models, which are already competitive540

against teacher LLMs, and the limited size of the541

generated training set.542

To ensure that all teacher LLMs contribute mean-543

ingfully to the final performance and prevent free-544

riding, Table 4 reports the number of responses545

utilized in the final multiple-teacher training tasks.546

They are generated by different LLMs and veri-547

fied through the peer-review process. This com-548

parison correlates with the distinct capabilities of549

each teacher model and underscores their collec-550

tive contribution to enhancing the student model’s551

performance after fine-tuning. Detailed compar-552

isons of the student LM’s output before and after553

distillation are provided in Appendix E.554

Dataset Qwen2.5-1.5B Llama2-7B Llama3.1-8B

GSM8K 595:486:589 2110:1801:2256 472:420:506
SVAMP 34:28:63 161:87:117 31:27:64
StrategyQA 333:143:123 396:192:160 293:106:78
LogiQA 1731:1884:1545 1706:2085:2049 1478:1403:1286

Table 4: The number of responses from various teacher
LLMs used in the final multiple-teacher distillation pro-
cess. The values represent the number of data points
from Mixtral/Gemini/GPT respectively. This demon-
strates that all teacher LLMs contribute significantly.

5.5 Assessment of Computational Overhead 555

To address concerns about the additional computa- 556

tional overhead introduced by FAIR, we evaluate 557

the resources consumed during our experiments. 558

Table 5 provides a comparison of the average num- 559

ber of tokens consumed for each sample with and 560

without the peer-review. The selected teacher mod- 561

els are all entry-level LLMs that do not require 562

subscriptions or high costs, ensuring accessibility 563

for researchers with limited resources. Given the 564

substantial improvement in the student model’s per- 565

formance and the fact that distillation is a one-time 566

investment, the additional cost is highly justified. 567

Moreover, the distilled model can even outperform 568

certain teacher LLMs on specific benchmarks while 569

maintaining significantly lower inference costs. 570

LLMs Standard PR ∆Cost ↑

GPT-3.5-Turbo 100.32 200.18 $0.00005
Gemini-1.0-Pro 60.94 220.82 $0.00008
Mixtral-8x7B-Instruct 131.12 214.45 $0.00002

Table 5: The average number of tokens consumed for
each sample with and without the peer-review (PR).

6 Conclusion 571

In this work, we introduce the Fault-Aware Dis- 572

tillation via Peer-Review (FAIR) approach. We 573

implement a simulated peer-review process be- 574

tween multiple teacher LLMs to gather reliable 575

outputs, which refines the quality of instruction tun- 576

ing dataset. Additionally, we develop an integrated 577

instruction tuning method that allows the student 578

LM to learn from both the correct rationale and 579

mistakes feedback. Comprehensive results on di- 580

verse reasoning tasks validate our efficient method 581

for unlocking the reasoning potential of smaller 582

open-source LMs through distillation, even with 583

black-box LLMs and without dataset-provided ra- 584

tionales. We hope that our findings will encourage 585

further investigations into reasoning distillation. 586
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Limitations587

Although our method demonstrates effectiveness in588

the reasoning ability distillation from teacher mod-589

els to the student model, this technique has several590

limitations. First, our experiments primarily rely591

on GPT-3.5-Turbo, Gemini-1.0-Pro, and Mixtral-592

8x7B-Instruct-v0.1 as teacher LLMs due to con-593

siderations of availability and cost. The results in594

Table 1 suggest that as student models improve, the595

bottleneck in performance may shift to the capabil-596

ities of the teacher LLMs, highlighting the need for597

more advanced teacher models to further enhance598

student performance. Future research could benefit599

from using more powerful models like DeepSeek-600

R1, OpenAI-o3, and Claude-3 Opus. Secondly,601

future work could include more challenging bench-602

marks across different reasoning fields, such as603

FrontierMath (Glazer et al., 2024) and Humanity’s604

Last Exam (Phan et al., 2025). Thirdly, due to605

time and cost constraints, our method does not606

collect the student LM’s incorrect rationales and607

updates the instruction dataset after each epoch.608

The potential benefits of continuously incorporat-609

ing fresh data throughout online training remain610

unexplored. Moreover, further research can regard611

teacher LLMs as agents, incorporating more sophis-612

ticated pipelines such as negotiation and decision-613

making during the peer-review process to enhance614

reliability. Lastly, we employ the default cross-615

entropy loss function for instruction tuning. It616

would be worthwhile to explore more sophisticated617

methods, such as the Group Relative Policy Opti-618

mization (GRPO) Reinforcement Learning method619

used in DeepSeek-R1, and to integrate additional620

techniques into the joint learning approach.621

Ethics Statement622

The study offers a novel structure for knowledge623

distillation of the reasoning ability from LLMs to624

smaller LM, which could contribute to increased625

transparency and availability in AI systems. It un-626

derscores the fact that proprietary LLMs dominate627

reasoning tasks and weaken smaller open-source628

LMs. However, parts of the annotated data in this629

paper are collected from close-source GPT pro-630

vided by OpenAI, and Gemini supplied by Google.631

The explainability and transparency of close-source632

models may raise risks for annotated data and de-633

crease the trustworthiness.634
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A Experimental Setup Details 916

A.1 Datasets Statistics 917

We download datasets GSM8K, SVAMP, Strat- 918

egyQA, and LogiQA from Huggingface. All 919

datasets are split according to the official original 920

split ratio. Table 6 shows the dataset statistics.

Dataset Type #Train #Test

GSM8K Mathematical 7473 1319
SVAMP Mathematical 700 300
StrategyQA Commonsense 1603 687
LogiQA Logical 7376 651

Table 6: Dataset statistics.

921

A.2 Teacher LLMs Parameters 922

Table 7 shows the unified parameters setting 923

for GPT-3.5-Turbo, Gemini-1.0-Pro, and Mixtral- 924

8x7B-Instruct-v0.1 LLMs to generate answers 925

for the student LM. GPT-3.5-Turbo and Gemini- 926

1.0-Pro are required by their official APIs. 927

Mixtral-8x7B-Instruct-v0.1 is required by the API 928

hosted on Deepinfra: https://deepinfra.com/ 929

mistralai/Mixtral-8x7B-Instruct-v0.1.

Parameter Value

Temperature 0.8
Max tokens 512
Top p 1
Presence penalty 0
Frequency penalty 0

Table 7: Teacher LLMs parameter settings.

930

A.3 Student LM Parameters 931

Experiments are performed with the Huggingface 932

Trainer framework and Flash Attention (Dao et al., 933

2022). We use four Nvidia A100-80GB GPUs with 934

FP16 for training and evaluation. The inference 935

parameter settings across all datasets are shown 936

in Table 8. The training hyperparameter settings 937

across all datasets are shown in Table 9. 938
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Parameter Value

Temperature 0.3
Max new tokens 512
Top p 0.9
Top k 50
Do sample True

Table 8: Student LM inference parameter settings.

Hyperparameter Value

Epoch 10
Batch size 8
Learning rate 1e-5
Warmup ratio 0.03
Max seq length 512
Optimizer AdamW
Gradient accumulation steps 2
Max grad norm 0.3

Table 9: Student LM training hyperparameter settings.

B Peer-Review Examples939

Table 12 provides detailed examples of the peer-940

review process on GSM8K and StrategyQA. It941

highlights instances where the causality between942

the teacher LLM’s rationale and the final answer943

may be insufficient, and demonstrates how our peer-944

review mechanism effectively identifies the most945

confident rationales.946

C Instruction Tuning Templates947

• Instruction tuning templates for learning from948

mistakes.949

– For all benchmarks:950

“### Instruction: Imagine you are a951

teacher, I will give you one student’s952

incorrect answer to a question. You953

should point out the mistakes in the954

student’s answer.955

### Input: {}956

### Response: {}”957

958
• Instruction tuning templates for learning from959

rationale.960

– For benchmarks GSM8K and SVAMP:961

“### Instruction: Answer the following962

question. Let’s think step by step.963

### Input: {} 964

### Response: {}” 965

966

– For benchmark strategyQA: 967

“### Instruction: Answer the following 968

question. Let’s think step by step. First, 969

you should answer “true” or “false”. 970

Then, you should explain how you draw 971

this conclusion. 972

### Input: {} 973

### Response: {}” 974

975

– For benchmark logiQA: 976

“### Instruction: Answer the following 977

question based on the given context, 978

query, and options. Let’s think step by 979

step. 980

### Input: {} 981

### Response: {}” 982

983

D The Performance of Peer-Review 984

between Two Teacher LLMs 985

To explore the cooperation between teacher LLMs 986

further, we conduct experiments on the same stu- 987

dent model Llama2-7B-chat based on combinations 988

of two different teacher LLMs. The results are 989

shown in Table 10. It is found that the performance 990

improvement still correlates to the teacher LLMs’ 991

abilities on benchmarks. However, the perfor- 992

mance of combinations for two teacher LLMs lags 993

behind the three-teacher distillation, which proves 994

the necessity of choosing three teacher LLMs as 995

reviewers.

Mathematical Commonsense Logical
Student LMs GSM8K SVAMP StrategyQA LogiQA

Llama2-7B-chat 15.62 39.67 47.02 18.74
+Mixtral, Gemini 27.37 49.67 63.32 34.56
+Mixtral, GPT 29.11 52.67 64.92 33.95
+Gemini, GPT 32.37 55.00 62.01 34.25
+Multiple 36.24 59.50 67.69 36.25

Table 10: Results of peer-review between two teacher
LLMs. 996

E Case Study of Distillation Impact on 997

Student LM’s Output 998

Table 13 provides the comparisons of student LM’s 999

behavior difference before and after the instruction 1000

tuning across four benchmarks. 1001
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F The Performance of1002

Out-of-Distribution (OOD) Scenarios1003

To evaluate the generalization abilities of different1004

methods on out-of-distribution (OOD) data, we1005

conducted experiments using one mathematical1006

reasoning dataset as the training set and another1007

dataset as the test set. Table 11 highlights the per-1008

formance of the FAIR method on Llama2-7B-chat1009

in OOD scenarios.1010

The results indicate a decrease in perfor-1011

mance improvement compared to the original in-1012

distribution scenarios in Table 1. Specifically, the1013

accuracy gains on GSM8K were smaller than those1014

on SVAMP, likely due to the greater complexity of1015

GSM8K. Despite this, our multiple-teacher distilla-1016

tion approach consistently outperforms all single-1017

teacher methods under OOD conditions, demon-1018

strating its robustness and generalizability.1019

Mathematical
Student LMs GSM8K SVAMP

Llama2-7B-chat+Mixtral 8.72 36.67
Llama2-7B-chat+Gemini 10.54 46.00
Llama2-7B-chat+GPT 12.36 47.67
Llama2-7B-chat+Multiple 13.43 55.00

Table 11: The performance of FAIR on Llama2-7B-chat
in out-of-distribution (OOD) scenarios. Specifically,
we conducted experiments by training on SVAMP and
testing on GSM8K, as well as training on GSM8K and
testing on SVAMP.
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GSM8K Example
Question “Josh is saving up for a box of cookies. To raise the money, he is going to make bracelets and sell them.

It costs $1 for supplies for each bracelet and he sells each one for $1.5. If he makes 12 bracelets and
after buying the cookies still has $3, how much did the box of cookies cost?”

Gold answer “He makes $.5 profit on each bracelet because 1.5 - 1 = .5 He earns $6 because 12 x .5 = 6 The cookies
cost $3 because 6 - 3 = 3 #### 3”

GPT’s answer “Let’s first calculate Josh’s profit per bracelet: Profit per bracelet = Selling price - Cost price Profit per
bracelet = $1.5 - $1 Profit per bracelet = $0.5 Now, let’s calculate Josh’s total profit from making and
selling 12 bracelets: Total profit = Profit per bracelet * Number of bracelets Total profit = $0.5 * 12 Total
profit = $6 We know that after buying the cookies, Josh still has $3 left. This means he spent $6 - $3 =
$3 on the box of cookies. Therefore, the box of cookies cost $3.”
Gemini’s score: 5, Mixtral’s score: 5

Gemini’s answer “15”
GPT’s score: 1, Mixtral’s score: 2

Mixtral’s answer “The box of cookies cost $13. Here’s the reasoning: 1. Josh spends $1 on supplies for each bracelet, and
he makes 12 bracelets. So, the total cost of supplies is 12 × $1 = $12. 2. He sells each bracelet for $1.5,
and he makes 12 bracelets. So, the total revenue from selling the bracelets is 12 × $1.5 = $18. 3. After
buying the cookies, he still has $3 left. This means that his total revenue ($18) minus the cost of the
cookies ($X) equals the amount of money he has left ($3). In other words, $18 - $X = $3. 4. Solving for
the cost of the cookies ($X), we get $X = $18 - $3 = $15. However, the problem states that after buying
the cookies and still having $3, the cost of the cookies should be $13, not $15. This might be a mistake
in the question itself.”
GPT’s score: 2, Gemini’s score: 2

Peer-reviewed answers GPT’s answer

StrategyQA Example
Question “Would 2020 Toyota Supra lag behind at a Nascar rally?”

Gold answer “True. The 2020 Toyota Supra has a top speed of 155 MPH. Nascar stock cars routinely exceed 200
MPH.”

GPT’s answer “False. Explanation: 1. The 2020 Toyota Supra is not a car typically used in NASCAR racing. NASCAR
races primarily feature specially designed stock cars that meet specific performance and safety regulations.
2. The 2020 Toyota Supra is a production sports car designed for road use, not for NASCAR track racing.
While it may have impressive performance capabilities on the road, it is not optimized for NASCAR
oval track racing conditions. 3. NASCAR races involve high speeds, close competition, and specific
handling characteristics that are different from what the 2020 Toyota Supra is designed for. The Supra
would likely struggle to keep up with dedicated NASCAR race cars in a NASCAR rally due to these
differences in design and performance characteristics.”
Gemini’s score: 4, Mixtral’s score: 2

Gemini’s answer “True. The 2020 Toyota Supra is a sports car, while NASCAR vehicles are purpose-built race cars. The
Supra would not be competitive in a NASCAR race because it is not designed for that type of racing.
NASCAR vehicles are much more powerful and have a much better suspension system than the Supra.
The Supra would also be at a disadvantage because it is not as aerodynamic as a NASCAR vehicle.”
GPT’s score: 4, Mixtral’s score: 5

Mixtral’s answer “True. NASCAR race cars are designed for high-speed oval track racing, with powerful V8 engines,
aerodynamic bodies, and specialized suspension systems. The Supra, on the other hand, is a street-legal
sports car, with a turbocharged inline-six engine and a more versatile suspension setup. If the Supra
rebuilds the engine and improve other systems, it is likely suited for the unique demands of NASCAR
racing and keep up with NASCAR vehicles.”
GPT’s score: 2, Gemini’s score: 3

Peer-reviewed answers Gemini’s answer

Table 12: Detailed examples of peer-review process on different benchmarks
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GSM8K Example
Question Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How

much did she earn? Gold answer: $10
Student’s output before tuning Answer: $18. Explanation:Weng earns $12 per hour for babysitting. Since she did 50 minutes of

babysitting, she earned $12 x 0.75 = $9 per 50 minutes. So, she earned $9 x 2 = $18.
Teachers’ correct rationale Weng earned $10 for 50 minutes of babysitting. Here’s the logic behind this: 1. We know that

Weng earns $12 per hour. 2. To find out how much she earns in 50 minutes, we first need to
convert the time into hours. 3. We know that 1 hour equals 60 minutes, so 50 minutes is equal to
50/60 hours, which simplifies to 0.833 hours. 4. Now, we can calculate how much Weng earns
for 0.833 hours by multiplying her hourly rate by the number of hours: $12 x 0.833 = $10. So,
Weng earned $10 for 50 minutes of babysitting.

Teachers’ mistakes feedback The student’s answer contains a mistake in calculating how much Weng earned for 50 minutes
of babysitting. The error is in multiplying the hourly rate by 0.75 to get the amount earned in 50
minutes. Instead, the correct approach would be to calculate the rate per minute by dividing the
hourly rate by 60, and then multiplying that rate by the number of minutes worked. The correct
answer is $10, not $18.

Student’s output after tuning Weng earns $12 per hour, so she earns $12 / 60 = $0.20 per minute. Since she did 50 minutes of
babysitting, she earned $0.20 x 50 = $10.

SVAMP Example
Question Paul got a box of 110 crayons for his birthday. During the school year he gave 90 crayons to his

friends while he lost 412 crayons. How many more crayons did he lose than those he gave to his
friends? Gold answer: 322

Student’s output before tuning Answer: 392. Explanation: Paul gave 90 crayons to his friends, so he had 110 - 90 = 20 crayons
left. So he lost 412 - 20 = 392.

Teachers’ correct rationale Paul lost 412 crayons and gave away 90 crayons. To find out how many more crayons he lost
than those he gave to his friends, we can subtract the number of crayons he gave away from the
number of crayons he lost: 412 - 90 = 322 Therefore, Paul lost 322 more crayons than those he
gave to his friends.

Teachers’ mistakes feedback The mistakes in the student’s answer are as follows: The student calculated the number of
crayons Paul lost by subtracting the remaining crayons (20) from the total number of crayons he
lost (412), which is incorrect. The correct calculation should be 412 - 90 = 322. Therefore, the
correct answer should be 412 - 90 = 322, indicating that Paul lost 322 more crayons than he gave
to his friends.

Student’s output after tuning Paul lost 412 crayons - 90 crayons = 322 crayons more than those he gave to his friends.
StrategyQA Example

Question Would someone in Mumbai refer to Solanum melongena as an eggplant? Gold answer: False
Student’s output before tuning True: In Mumbai, Solanum melongena is commonly referred to as an eggplant.
Teachers’ correct rationale False. In Mumbai, people would more commonly refer to “Solanum melongena” as “brinjal” or

“baingan” rather than “eggplant.” While “eggplant” is widely used in American English, in India,
especially in regions like Mumbai, the term “brinjal” is more common. “Baingan” is a Hindi
word used across many parts of India.

Teachers’ mistakes feedback The student’s answer contains a mistake in the explanation provided. The correct answer to the
question is False, but the student mistakenly provided a hint that supports the correct answer.
The correct information should be that in Mumbai, Solanum melongena is commonly referred to
as a brinjal, not an eggplant.

Student’s output after tuning Answer: False. Solanum melongena is not referred to as “eggplant” in Mumbai. The term
“eggplant” is specifically used in American English and Solanum melongena is known as “brinjal”
in Mumbai. So, the answer is false.

LogiQA Example
Question Some Cantonese don’t like chili, so some southerners don’t like chili. Which of the following

can guarantee the above argument? Options: [“Some Cantonese love chili.”, “Some people who
like peppers are southerners.”, “All Cantonese are southerners.”, “Some Cantonese like neither
peppers nor sweets.”]. Gold answer: “All Cantonese are southerners.”

Student’s output before tuning Answer: [“Some Cantonese love chili.”] Rationale: The argument states that “Some Cantonese
don’t like chili,” which implies that not all Cantonese people dislike chili. Therefore, the
statement “Some Cantonese love chili” is the only option that can guarantee the argument.

Teachers’ correct rationale The correct option is: “All Cantonese are southerners.” Explanation: The argument states that
some Cantonese don’t like chili, and to conclude from this that some southerners don’t like chili,
we need to ensure that Cantonese are included within the broader category of southerners. If all
Cantonese are southerners, then the statement about “some Cantonese not liking chili” can be
applied to southerners as well, making the argument valid.

Teachers’ mistakes feedback The student’s answer is incorrect. The statement “Some Cantonese love chili” does not guarantee
the argument about “southerners” provided in the question. The correct answer should be “All
Cantonese are southerners.” This option directly connects the dislike for chili among some
Cantonese to the fact that some southerners don’t like chili, making it the most relevant choice to
support the argument.

Student’s output after tuning Answer: [“All Cantonese are southerners.”] Explanation: The argument states: “Some Cantonese
don’t like chili, so some southerners don’t like chili.” To guarantee this argument, we need to
establish that some southerners (specifically Cantonese) don’t like chili.

Table 13: Case study of distillation impact on student LM’s output
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