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ABSTRACT

Artificial Neural Networks (ANNs) are becoming increasingly important but face
the challenge of the large scale and high energy consumption. Dynamic Sparse
Training (DST) aims to reduce the memory and energy consumption of ANNs
by learning sparse network topologies, which ultimately results in structural con-
nection sparsity. Meanwhile, Spiking Neural Networks (SNNs) have attracted
increasing attention due to their biological plausibility and event-driven nature,
which ultimately results in temporal sparsity. To bypass the difficulty of directly
training SNNs, converting pre-trained ANNs to SNNs (ANN2SNN) is becoming
a popular approach to obtain high-performance SNNs. Here for the first time,
we investigated the advantage of dynamically spare trained ANNs for conversion
into sparse SNNs. By adopting Cannistraci-Hebb Training (CHT), a state-of-the-
art brain-inspired DST family that resembles synaptic turnover during neuronal
connectivity learning in brain circuits, we examined the extent to which connec-
tivity sparsity impacts the accuracy and energy efficiency of SNNs across different
conversion approaches. The results show that sparse SNNs can achieve accuracy
comparable to or even surpassing that of dense SNNs. Moreover, sparse SNNs can
reduce energy consumption by up to 99% compared with dense SNNs. Further-
more, driven by the interest in understanding the physical dynamic interactions
between firing rate and accuracy in SNNs, we systematically analyzed the tempo-
ral relationship between the saturation of firing rate and accuracy in SNNs. Our
results reveal a significant time lag where firing rate saturation precedes accuracy
saturation. We also demonstrate that the magnitude of this time lag is significantly
different between sparse and dense networks, where the average time lag of sparse
SNNs is higher than that of dense SNNs. By combining the structural sparsity of
DST and temporal sparsity of SNNs, we make a step forward to the brain-like
computational network architecture with high performance and energy efficiency.

1 INTRODUCTION

Artificial neural networks (ANNs) have become central to various scientific, industrial, and eco-
nomical applications. However, the high memory and energy costs of fully-connected ANNs create
an urgent need for network architectures that consume much lower energy but still deliver compa-
rable performance. One promising direction to reduce energy consumption is to sparsify a neural
network(Blalock et al., 2020). Dynamic sparse training (DST), where both weights and topology
evolve during training, has shown promises to discover sparse topology with close-to-dense per-
formance and fewer links in ANNs(Mocanu et al., 2018; Jayakumar et al., 2020; Evci et al., 2020;
Yuan et al., 2021; Zhang et al., 2024b). On hardwares that support sparse computation(Mishra et al.,
2021; Dai et al., 2024), sparse networks require less computation, which translates the structural
connection sparsity into energy savings(Tmamna et al., 2024).

Spiking Neural Networks (SNNs) are networks consisting of brain-inspired spiking neurons. Un-
like neurons in ANNs, spiking neurons process information in time series with event-driven
spikes(Eshraghian et al., 2023). Because of the event-driven nature of SNNs(Modaresi et al., 2023)
and temporal sparsity of activations, SNNs thus hold promises to be far more energy-efficient
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than conventional ANNs on neuromorphic hardware(Davies et al., 2018; Merolla et al., 2014; De-
Bole et al., 2019; Song et al., 2022; Huo et al., 2023; Zhang et al., 2024a). In practice, however,
training high-performance SNNs directly remains challenging due to the non-differentiablity of spik-
ing neurons(Li et al., 2024), which has motivated alternative strategies for obtaining performant
SNNs. One popular option is ANN2SNN conversion: train a high-performance ANN with conven-
tional methods and convert it to SNN. Conversion bypasses difficulties of direct training by utilizing
well-established ANN training method. SNN conversion often yields near-ANN accuracy at low
latency(Li et al., 2021; Bu et al., 2023; Huang et al., 2024; Wang et al., 2025), while being much
more energy-efficient thanks to its event-driven nature.

However, to the best of our knowledge, prior ANN2SNN conversion works have focused most ex-
clusively on dense networks(Li et al., 2021; Bu et al., 2023; Huang et al., 2024; Wang et al., 2025;
Song et al., 2022; Han et al., 2020; Jiang et al., 2023), while conversion on dynamically sparse
trained networks has never been studied. This gap is important because introducing structural con-
nection sparsity into SNN conversion could combine benefits from both sides: the event-driven
nature of SNNs reduces computation at temporal level, and introducing sparsity into structural con-
nection can further reduce computation at structural level. Thus here, we extensively explored this
intersection.

In this article we adopt established ANN2SNN algorithms(Yang et al., 2025; Wang et al., 2022;
Chen et al., 2024) to investigate the extent to which introducing structural sparsity into these meth-
ods could influence the accuracy and energy consumption. Cannistraci-Hebb Training(CHT) as a
brain-inspired, network-science-driven dynamic sparse training family, could learn not only weight
but also topology of the networks, achieving close or even superior performance compared to the
dense counterparts in ANNs(Zhang et al., 2024b; 2025; Hanming et al., 2025). Here we employ
2 sparse ANN structures, MLP(Rumelhart et al., 1986) and VGG-16(Yu et al., 2021), trained with
CHT for ANN2SNN conversion through three representative conversion approaches that operate on
different principles: CS-QCFS(Yang et al., 2025), SNM(Wang et al., 2022), and AEC(Chen et al.,
2024). Our results show that, across all 3 conversion methods and 2 ANN structures, sparse SNNs
can achieve close or even superior accuracy compared with their dense counterparts. More impor-
tantly, regardless of the SNN conversion method, sparse SNNs can achieve a remarkable energy
reduction(as large as 99%).

Driven by the interest in investigating the underlying mechanism of how SNNs achieve high-
performance while consuming less energy compared with ANNs, we quantitatively studied the tem-
poral relationship in the aspect of saturation between SNNs’ accuracy and firing rate where firing
rate directly influences the energy consumption. The saturation of dense SNNs’s accuracy is com-
monly observed(Song et al., 2022; Han et al., 2020; Jiang et al., 2023; Bu et al., 2022; You et al.,
2024). However, the quantitative relationship between saturation time of accuracy and firing rate
has never been studied in current literature. Our results show that there exists a significant phe-
nomenon that in SNNs firing rate saturate before accuracy. What is more interesting is that there
also exists a significant difference in positive time lag between sparse and dense networks, which
could be a potential cause of the energy and performance advantage of sparse SNNs over their dense
counterparts.

By combining the sparsity in temporal activation domain and structural connection domain, this
work makes a step forward to brain-like, low-power consumption neural network.

2 METHODS

In this section we first introduce methods related to sparse ANN training and sparse SNN conversion.
Please see Appendix A for details of 3 conversion methods. Secondly, the energy measurement for
SNNs and the principle of energy-saving by sparsity is explained. Thirdly, we demonstrate how to
judge the saturation point. Finally, we present our experiment setup.
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Figure 1: Overview of employed methods. (a) Illustration of CHT. (b) experiment pipeline for sparse
models

2.1 SPARSE ANN TRAINING & SPARSE SNN CONVERSION

2.1.1 CANNISTRACI-HEBB TRAINING

A sparse neural network is one neural network in which the number of connections between two
layers is less than in a fully connected network of the same architecture. Cannistraci-Hebb Training
(CHT) (Zhang et al., 2024b; Hanming et al., 2025; Zhang et al., 2025) is a network-driven and brain-
inspired dynamic sparse training (DST) family that aims to learn the connectivity in networks. Here,
sparsity level denotes the fraction of removed links compared with fully connected layer. During
topology evolution a fraction of individual connections are canceled and new connections(generally,
but not necessary, in the same amount of canceled) are grown.

Figure 1(a) presents the mechanism of CHT. First, a sparse network topology and weights are ini-
tialized. For each topology evolution iteration during training, the procedure is:

(i) remove links according to their absolute weights.

(ii) remove inactive neuron and incomplete path (network percolation).

(iii) predict and grow new links using CHT network link prediction.

In this study, CHT soft rule (CHTs)(Zhang et al., 2025) is used on MLP with sparsity level of 99 %,
and CHT-Conv(Hanming et al., 2025) is used on VGG-16 with sparsity level of 50%.

2.1.2 SPARSE SNN CONVERSION METHODS ADAPTION

To adapt existing SNN conversion methods which are originally designed for dense SNN into sparse
SNN, we do following adaption (see Figure 1(b)): First a sparse ANN is trained using CHT, then we
record its topology and then convert the pre-trained sparse ANN to SNN. Topology of sparse SNN
is frozen during the conversion.

2.2 ENERGY MEASUREMENT AND REDUCTION

2.2.1 ENERGY MEASUREMENT FOR SNN

On event-driven neuromorphic hardware, one spiking layer’s forward computation is triggered
only when spikes are emitted, which is the source of energy consumption(Eshraghian et al., 2023;
Modaresi et al., 2023). Thus, the energy consumption of SNN is highly related with the number of
spikes.
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Model Average Spike Firing Rate(MASFR) is the firing rate averaged over all neurons in the model:

MASFR(T ) =

∑
neuron∈model

∑T
t=1 spike

l
neuron(t)

T ·Nmodel
(1)

where Nmodel is the number of neurons in the model.

Correspondingly, Layer Average Spike Firing Rate (LASFR)(Yao et al., 2023) measures the average
spike frequency of all neurons in the layer during inference time T :

LASFRl(T ) =

∑
neuron∈l

∑T
t=1 spike

l
neuron(t)

T ·Nl
(2)

where Nl is the number of neurons in layer l.

Because of the event-driven property, the required number of FLOPs to forward layer l’s spikes in
time T is(Yao et al., 2023) FLl

SNN (T ) = T · LASFRl(T ) · FLl
ANN , where FLl

ANN denotes the
FLOPs of ANN layer l which is determined by the structure of this layer (e.g. linear or convolution).

Additionally, spikes in SNNs are binary. Thus the computation needed to forward spikes to next
layer is only AC(Accumulation), which is much cheaper than MAC(Multiply-and-Accumulate) used
in traditional ANNs(Yao et al., 2023). Note that, for the input layer we follow prior works and use
Direct Input Encoding (DIE)(Rathi & Roy, 2021): the static image is fed to the SNN for T times,
hence the first layer’s operation still can be deemed as MAC.

So, the total energy consumption of the whole model is(Yao et al., 2023):

E(T ) = EMAC · FL1
SNNConv(T ) + EAC ·

(
N∑

n=2

FLn
SNNConv(T ) +

M∑
m=1

FLm
SNNFC(T )

)
(3)

where N is number of total convolution layers, M is number of total fully-connected layer. FLn

is the required number of FLOPs for nth layer. We follow the reference and set EMAC = 4.6 pJ,
EAC = 0.9 pJ for the energy consumption of single MAC and AC operation(Yao et al., 2023).

2.2.2 ENERGY SAVING FROM STRUCTURAL CONNECTION SPARSITY

In sparse layers, the number of links is reduced to (1 − sparsity) compared with that of fully-
connected. On hardware which supports sparse computation(Mishra et al., 2021; Dai et al., 2024),
ideally the number of FLOPs needed for inference will be reduced to (1− sparsity) of that needed
by dense layer.

FLANN (sparse) = (1− sparsity) · FLANN (dense) (4)
For instance, a fully-connected linear layer requires nin ·nout FLOPs to forward once where nin, nout

is the input and output dimension of the linear layer. However, a sparse linear layer only requires
(1 − sparsity) · nin · nout FLOPs on hardware supporting sparse computation. For an MLP with
sparsity level of 0.99, this corresponds to a large reduction in the number of FLOPs (99%).

2.3 SATURATION TIME ANALYSIS

With inference time steps T increasing, SNN properties such as accuracy(Song et al., 2022; Han
et al., 2020; Jiang et al., 2023; Bu et al., 2022; You et al., 2024) and MASFR tend to saturate.
Saturation means when T is larger than a certain point, increasing T doesn’t bring significant im-
provement but instead converges to a stable value with some noise.

In this study, we used following method, which has shared concept with early stop, to determine the
saturation time: If the relative improvement between time steps is continuously no greater than 1%
over 10 time steps, then the current time is determined as saturation point.

2.4 EXPERIMENT SETUP

In this experiment, we adopt MLP and VGG-16 (keep only one fully-connected layer to adapt for
datasets not as challenging as ImageNet, see Yu et al. (2021)) network structures to train on pop-
ular image classification datasets CIFAR-10 and CIFAR-100. During sparse ANN training and
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ANN2SNN conversion, the best hyper-parameters are determined by grid search. The grid search
space is shown in Table1. Every pair of sparse/dense models shown in Results 3 use the same set of
hyper-parameters.

Table 1: Hyper-parameters and grid search space of three methods.

(a) Method 1

lr (0.05, 0.01, 0.005,
0.001, 0.0005)

bs (32, 64, 128)

L (2, 4, 8, 16, 32)

(b) Method 2

bs (32, 64, 128)

(c) Method 3

lr (0.001, 0.0001, 0.00001)

bs (32, 64, 128)

3 RESULTS

3.1 SNN ACCURACY ANALYSIS

SNN accuracy is related to its inference time steps T where as T increases, more spikes are emitted
which stabilize inference and make inference accuracy gradually converge . Figure 2 plots how SNN
accuracy changes with T . Note that for method 1&2(Yang et al., 2025; Wang et al., 2022), spiking
neurons operate integration and firing at every time step, therefore we have inference time steps in
ts = [1, 2, 3, ..., 64] for Method 1&2. However, for method 3(Chen et al., 2024) the integration and
firing operation is done in two separate time windows instead of at every time step. So on method
3 we treat T as time window size which is a hyper-parameter. We display results with different
T ∈ ts = [2, 4, 8, 16, 32, 64] .

For each experiment dense and sparse models share the same hyper-parameter configuration, which
yields the best sparse models in grid search space.

The first and second row in Figure 2 present results of CIFAR10 and CIFAR100 trained on MLP.
As can be seen here, on both datasets, sparse ANNs can achieve much higher accuracy than dense
ANNs, showing the superiority of CHT training on ANNs. Also, comparing the accuracy between
sparse and dense SNNs across 3 conversion methods, it could be observed that this accuracy advan-
tage can be well preserved in sparse SNNs, which means on SNNs sparse networks can consistently
achieve higher accuracy than the dense ones.

Third and Fourth row in Figure 2 present experiments using VGG-16 on CIFAR10 and CIFAR100.
For VGG-16, on both datasets, sparse ANNs trained by CHT have similar accuracies with dense
ANNs. After conversion, sparse SNNs can achieve close or even superior performance compared to
its dense counterparts.

Moreover, it could be observed that in method 1&2, there is no clear difference between the satura-
tion time of sparse and dense networks. This means although with less links in the network, sparse
SNNs can have similar information-processing efficiency compared with dense SNNs.

Considering the impact of connectivity, the above results show that: sparse ANNs trained by CHT
can match or even exceed dense ANNs. And after ANN2SNN conversion, sparse SNNs well pre-
serve this advantage with similar inference latency compared with dense ANNs.

3.2 SNN ENERGY CONSUMPTION ANALYSIS

For method 1&2, we assign time T as the saturation time of SNN accuracy (see Section 2.3), while
for method 3 T denotes the time steps where SNN reaches maximum accuracy. Reason (for method
3) is that its neurons’ integration and firing operations are done in two separate time windows instead
of every time step . Using T as reference time point, we calculate its energy according to Equation 3.
The reason for assigning saturation time (for method 1&2) is, if we assign T smaller than saturation
time, SNN’s performance is not fully exploited. However, if we assign T larger than saturation
time, it will cause waste of energy because further energy consumption does not bring significant
improvement in accuracy.
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Figure 2: SNN accuracy(%) vs inference time steps. The accuracy curves in black are for dense
models and red curves are for sparse models. While the solid lines represent how SNN model(after
conversion) accuracy change with time, dashed horizontal lines represent ANN(before conversion)
accuracy. The point marked on curve indicates the time: when SNN accuracy saturates(method
1&2) / when SNN accuracy reaches maximum(method 3). Each row correspond to a combination of
network architectures (MLP and VGG-16) and datasets, while the columns correspond to different
ANN2SNN conversion methods. The black/red numbers near the left y-axis report the dense/sparse
ANN accuracy; the black/red numbers at the right report the maximum dense/sparse SNN accuracy
shown in the figure.

Results are summarized in Table 2. For connectivity, ’fc’ denotes fully-connected and represent
dense model. ’s(sparsity)’ is sparse model with sparsity level in the bracket. Energy (E) refers to
SNN theoretical energy consumption to classify a single image. The extent of energy reduction
brought by sparsity is calculated with reduction =

Edense−Esparse

Esparse
× 100%.

Results show regardless of architectures, datasets or conversion methods, sparse SNNs are always
more energy-efficient than dense SNNs theoretically. That is because sparse SNNs benefit from
structure connection sparsity that reduces active links compared with dense ANNs.
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Table 2: Energy consumption comparison.

dataset model method connectivity T energy(µJ) reduction(%)

CIFAR10

MLP

QCFS
fc 14 622.13

98.94
s(0.99) 15 6.59

SNM
fc 18 810.99

98.76
s(0.99) 20 10.02

AEC
fc 64 2797.42

99.00
s(0.99) 64 28.00

VGG-16

QCFS
fc 19 394.02

48.25
s(0.5) 17 203.91

SNM
fc 26 912.14

42.65
s(0.5) 28 523.11

AEC
fc 32 434.22

19.00
s(0.5) 64 351.73

CIFAR100

MLP

QCFS
fc 14 625.76

98.58
s(0.99) 20 8.86

SNM
fc 22 986.16

98.04
s(0.99) 34 19.34

AEC
fc 32 1409.70

99.00
s(0.99) 32 14.09

VGG-16

QCFS
fc 23 629.51

41.80
s(0.5) 25 366.37

SNM
fc 38 1104.36

49.16
s(0.5) 36 561.45

AEC
fc 32 715.55

49.30
s(0.5) 64 362.79

Therefore, regardless of conversion method, for MLP with sparsity level of 99%, sparse SNNs
save up to 99% of energy; the smallest observed reduction 98.04% is still incredible. For CNN
with sparsity level of 50%, sparse SNNs achieve energy reduction usually higher than 40%. One
exception is method 3 on MLP for VGG-16, where reduction is 19.00% because the time with
highest accuracy for sparse SNN is twice as that of dense SNN.

3.3 TIME LAG BETWEEN SATURATION OF FIRING RATE AND ACCURACY

For a deeper investigation of the underlying mechanism of how spikes firing rate affects model per-
formance in SNNs, we here systematically studied the relationship between saturation time of accu-
racy and Model Average Spike Firing Rate (MASFR) in SNNs, where saturation time is calculated
using the same algorithm described in Section 2.3. Our analysis utilizes data from all grid search
experiments involving method 1&2 across four architecture-dataset combinations, as in method 1&2
the integration and firing operations and accuracy updates happen at every time step. By incorporat-
ing a wide range of methods, architectures, datasets, and hyper-parameter configurations, we aim to
understand the general dynamics of SNNs obtained through ANN2SNN conversion.

7
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Figure 3(a) presents a scatter plot of MASFR saturation time versus accuracy saturation time for
dense (left panel) and sparse (right panel) SNNs. Time lag is defined as

time lag = accuracy saturation time − MASFR saturation time (5)

(a) Saturation time comparison (b)time lag distribution

Figure 3: Time lag analysis. (a)Points located in the green-shaded region above the y=x line indicate
that firing rate saturate earlier than accuracy. The colors of the points corresponds to the number of
overlapping data points. (b)The distribution of positive sparse time lag and positive dense time lag.
The vertical lines represent the mean value. Sparse curves are in red and dense curves are in black.

To statistically evaluate the significance of this phenomenon, a one-sided Wilcoxon signed-rank
test was conducted between the saturation time of accuracy and MASFR. The results are: for dense
SNNs p_value = 1.613×10−26, sparse SNNs p_value = 3.444×10−35, and all SNNs p_value =
6.119 × 10−62. These results provide strong statistical evidence that MASFR saturation precedes
accuracy saturation. Given the diversity of the experimental settings, this conclusion suggests that
the observed time lag is a general characteristic of SNNs.

This phenomenon can be qualitatively understood from the perspective of rate decoding(used in
method 1&2). The sufficient condition for accuracy saturation is the stabilization of firing rates
in the output layer neurons. Since MASFR is an average across all neurons in the network, it takes
additional time for firing rate of neurons in the last layer to stabilize after MASFR’s saturation. Thus
there is a time lag between saturation of accuracy and MASFR.

After recognizing that positive time lag is significantly dominant, we further focused on studying
the difference between positive time lag of sparse SNNs and positive time lag of dense SNNs. The
distribution of time lag of two connectivity are plot using Kernel Density Estimation in Figure 3(b).
A two-sided Mann-Whitny U test between time lag of sparse SNNs and time lag of dense SNNs
shows p_value = 1.266 × 10−8, which gives solid evidence to the difference in time lag between
sparse SNNs and dense SNNs. Moreover, the mean value of time lag of sparse SNNs are higher
than that of dense SNNs. This phenomenon is very interesting because it shows how structural
connectivity impacts the SNN mechanism.

To summarize, this study uncovers a phenomenon of converted SNN using rate coding: the time lag
between accuracy and MASFR. Moreover, the time lag of sparse SNNs are significantly different
from the time lag of dense SNNs, while the average time lag of sparse SNNs are higher than dense
SNNs. This may be a potential cause of the accuracy and energy advantage of sparse SNNs over
dense SNNs.

4 DISCUSSION

Here for the first time, we perform the investigation on the sparse SNNs converted with dynamically
sparse trained ANNs. We show that sparse SNNs can achieve close-and in some cases superioraccu-
racy compared to their dense counterparts while being substantially more energy-efficient, making
an energy reduction up to 99%. By transferring the sparse advantage of both structural connections
and activations in brain networks into artificial neural networks, this work makes a step forward to

8
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brain-like network architecture. Additionally, this study quantitatively shows the significant time
lag in saturation between accuracy and firing rate, unveiling the underlying physical mechanism of
how spiking neural networks process spikes and turn spiking information into model performance.
Also, the results show that the positive(which is dominant) time lag is significantly different between
sparse and dense networks, which might be a potential cause for the performance and energy gap
between networks with different sparsity level.

Despite its significance, this work has certain limitations. Limited by available hardware, we an-
alyze theoretical energy consumption rather than measuring real energy consumption. Our energy
calculation is based on future hardware with the support of both sparse and event-driven computa-
tion.

Looking ahead, there are several promising directions that could extend the results of this work.
The first direction is to study how to use CHT to directly train SNNs so as to further evaluate the
effectiveness of DST methods(such as CHT) on SNNs. What’s more, future study can extend time
lag phenomenon study to various architectures, datasets and methods to fully understand the SNN
model and time dynamics. Last but not least, we suggest the development of sparse neuromorphic
hardware, as it is promising to implement energy-efficient architectures in reality.

REPRODUCIBILITY

Code of this research is sumbmitted as supplementary material. Please read README.md for more
information.
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A APPENDIX: ANN2SNN CONVERSION METHODS

To thoroughly examine how sparsity affects SNN, we choose three conversion methods with distinct
principles: CS-QCFS, SNM and AEC.

A.1 METHOD1: CS-QCFS

CS-QCFS converts ANNs to SNNs by first replacing ReLU with a Softplus Quantization Clip-Floor-
Shift (S-QCFS) activation function on pre-trained ANNs for further training to learn learn layer-wise
thresholds. Then, S-QCFS function is replaced with channel-wise S-QCFS(CS-QCFS) function
to finetune channel-wise thresholds in convolution layers, which aims to capture heterogeneous
activation distribution across channels. Finally, the ANN weights are directly transferred to SNN.
Channel-wise thresholds of CS-QCFS are used as SNN spiking threshold, after applying a soft-plus
function to ensure positivity of SNN’s threshold.

A.2 METHOD2: SNM

Signed Neuron with Memory (SNM) allows both positive and negative spikes. If membrane po-
tential exceeds positive threshold, neuron will emit a positive spike (+1). Despite this classical
Integrate-Fire(IF) neuron behavior, for SNM neuron if membrane potential is lower than negative
threshold, neuron will emit a spike (−1). SNM also includes a memory mechanism to make sure
the number of positive spike is no less than number of negative spike, which ensures non-negative
firing rate. Neuron-wise normalization is applied to determine the spiking threshold, in which for
each neuron in a pre-trained ANN the maximum activation is set as the neuron’s spiking threshold.

A.3 METHOD3: AEC

AEC (At-Most-Two-Spike Exponential Coding) splits each layer’s inference window into a decod-
ing phase and an encoding phase. During decoding phase neurons only accumulate inputs from
previous layer and stay silent. During encoding phase each neuron can emit up to two spikes: pri-
mary and compensate; A primary spike occurs once membrane potential (accumulated in decoding
phase) exceeds primary threshold. A reset-by-subtraction is done after primary spike. Then a com-
pensate spike occurs if the membrane potential after reset exceeds compensate threshold. Both
primary and compensate threshold decays exponentially with time. The output of the layer is the
product of thresholds(at spike time) and spikes. After replacing ANN neurons by AEC neurons
with fixed initialization, a further training on SNN is applied to only finetune the threshold param-
eters and BatchNorm parameters. Finally in inference BatchNorm layers are folded into preceding
convolution layer to yield output SNN.

B APPENDIX: LLMS USAGE

We used LLMs to polish the language of the article while the principle, main logic, and the inno-
vations of the article are by the authors. We also used LLMs to search literature, but they are all
verified and read by authors.
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