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Abstract

In black-box function optimization, we need to
consider not only controllable design variables
but also uncontrollable stochastic environment
variables. In such cases, it is necessary to solve
the optimization problem by taking into account
the uncertainty of the environmental variables.
Chance-constrained (CC) problem, the problem
of maximizing the expected value under a certain
level of constraint satisfaction probability, is one
of the practically important problems in the pres-
ence of environmental variables. In this study,
we consider distributionally robust CC (DRCC)
problem and propose a novel DRCC Bayesian
optimization method for the case where the distri-
bution of the environmental variables cannot be
precisely specified. We show that the proposed
method can find an arbitrary accurate solution
with high probability in a finite number of tri-
als, and confirm the usefulness of the proposed
method through numerical experiments.

1. Introduction
In this study, we consider a black-box function optimization
problem with two types of variables called design variables
which are fully controllable and environmental variables
which change randomly depending on the uncertainty of
the environment. Under the presence of these two types
of variables, the goal is to identify the design variables
that optimize the black-box function by taking into account
the uncertainty of environmental variables. In the past few
years, Bayesian Optimization (BO) framework that takes
the uncertain environmental variables into considerations
have been studied in various setups (see §1.1). In this paper,
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we study one of such problems called distributionally robust
chance-constrained (DRCC) problem. The DRCC problem
is an instance of constrained optimization problems in an
uncertain environment, which is important in a variety of
practical problems in science and engineering.

The goal of a CC problem is to identify the design variables
that maximize the expectation of the objective function un-
der the constraint that the probability of the constraint func-
tion exceeding a given threshold is greater than a certain
level. Let f(x,w) and g(x,w) be the unknown objective
and constraint functions, respectively, both of which depend
on the design variables x ∈ X and the environmental vari-
ables w ∈ Ω. For a given threshold h ∈ R and a level
α ∈ (0, 1), the CC problem is formulated as

argmax
x∈X

∫
Ω

f(x,w)p†(w)dw (1a)

subject to
∫

Ω

1l[g(x,w) > h]p†(w)dw > α, (1b)

where 1l[·] is the indicator function and p†(w) is the prob-
ability density function of the environmental variables w.
When p†(w) is known, there is a method to solve the CC
problem (see §1.1).

In this study, we consider the case where p†(w) is unknown
as is commonly encountered in practice. Here, we formulate
the uncertainty of p†(w) using a measure called distribu-
tionally robustness. Let A be the user-specified candidate
distribution family of w. Then, the DRCC problem is de-
fined as

argmax
x∈X

F (x) subject to G(x) > α, (2)

where F (x) and G(x) are defined as

F (x) = inf
p(w)∈A

∫
Ω

f(x,w)p(w)dw, (3a)

G(x) = inf
p(w)∈A

∫
Ω

1l[g(x,w) > h]p(w)dw. (3b)

Many real-world engineering problems can be formulated
as DRCC problems, including controlling the position of
a robot, controlling the switching of wind turbines, and
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optimizing an infectious disease simulator. The solution of
this problem is robust with respect to the misspecification
of the distributions because F (x) and G(x) are defined by
considering the worst case scenario among the candidate
distribution families.

For the surrogate models for unknown objective function
f(x,w) and the constraint function g(x,w), we employ
Gaussian Process (GP) models and study the above DRCC
problem in the context of BO framework. The main techni-
cal challenges in this problem is in the characterization of
the posterior distributions of F (x) and G(x). In this study,
we derive credible intervals of F (x) andG(x) which can be
effectively used for solving the DRCC problem in BO frame-
work. We call the proposed method Distributionally Robust
Chance Constrained Bayesian Optimization (DRCC-BO)
method.

1.1. Related Work

Black-box function optimization problems using a GP sur-
rogate model (Williams & Rasmussen, 2006) have been
extensively studied in the context of BO (see, e.g., (Set-
tles, 2009; Shahriari et al., 2016)). The constraint in the
form of (2) is closely related with level set estimation (LSE)
problem in which a GP surrogate model is often employed
(Bryan et al., 2006; Gotovos et al., 2013; Zanette et al., 2018;
Inatsu et al., 2020a; Sui et al., 2015; Turchetta et al., 2016;
Sui et al., 2018; Wachi et al., 2018). The problem (2) is
also closely related to constrained BO, which has also been
studied extensively in the literature (Gardner et al., 2014;
Hernández-Lobato et al., 2016). In the past few years, vari-
ous problem settings concerning uncertain environmental
variables have been considered in BO and LSE problems.
The most standard approach to deal with the uncertainty in
environmental variables is to consider the expected value
of f(x,w) or/and g(x,w). Fortunately, when the GP is
employed as the surrogate model for f(x,w) and g(x,w),
its expected value is also represented as a GP, so the acquisi-
tion functions (AFs) of BO and LSE problems can be easily
constructed.

On the other hand, in many practical problems, the expected
value is often not enough, and other risk measures that can
no longer be expressed as GPs, such as variance and tail
probability, need to be considered. The objective function
F (x) and the constraint function G(x) of the DRCC prob-
lem (2) are also difficult to handle because they are also
not represented as GPs even when f(x,w) and g(x,w) are
GPs. In the past few years, there have been several studies
that consider various risk measures of the uncertainty in
the environmental variablesw and robustness with respect
to p†(w) (Iwazaki et al., 2020; 2021a; Inatsu et al., 2020b;
Bogunovic et al., 2018; Nguyen et al., 2021b;a; Iwazaki
et al., 2021b; Inatsu et al., 2021). In particular, (Amri et al.,

2021) proposed a BO method for the CC problem, but they
assumed that the distribution p†(w) is known.

Distributionally robust optimization (DRO) problems have
long been studied in robust optimization community for
ordinary optimization problems in which the objective func-
tion and the constraint functions are explicitly formulated
(in contrast to expensive black-box functions as we consider
in this study) (Scarf, 1958; Rahimian & Mehrotra, 2019).
DRCC problem with explicitly formulated objective and
constraint functions were also studied in (Xie, 2021; Ho-
Nguyen et al., 2021), and they were applied to practical
problems called power flow optimization (Xie & Ahmed,
2017; Fang et al., 2019). On the other hand, the study of
DRO problems for black-box functions with high evaluation
cost has only recently started. In (Kirschner et al., 2020;
Nguyen et al., 2020), BO methods to find the design variable
that maximizes F (x) in (3a) was studied in DR setting. Fur-
thermore, in (Inatsu et al., 2021), a BO method to efficiently
identify the design variables which satisfy G(x) > α for
G(x) in (3b) was studied in DR setting. However, to the
best of our knowledge, there is no existing studies that can
be used directly in the DRCC-BO problem.

1.2. Contribution

The contributions of this paper are as follows:

• A BO method for DRCC problem called DRCC-BO
method is proposed. Specifically, we propose a novel
AF for DRCC problem based on the credible inter-
vals of F (x) in (3a) and G(x) in (3b) when GPs are
employed as the surrogate models for f(x,w) and
g(x,w).

• Under mild conditions, we showed that the proposed
method can find an arbitrarily accurate solution to the
DRCC problem with high probability in a finite number
of trials.

• We also showed that by designing the DRCC problem
with an appropriate choice of candidate distribution
families, without knowing the true distribution p†(w)
the proposed method can find an arbitrary accurate
solution even for the CC problem (Theorem 4.6).

• The performance of the proposed method is confirmed
through numerical experiments with synthetic as well
as simulator-based functions.

2. Preliminary
Let f : X × Ω→ R and g : X × Ω→ R be the expensive-
to-evaluate black-box functions. We assume that X and Ω
are finite sets. For each (x,w) ∈ X × Ω, the values of
f(x,w) and g(x,w) are observed as y(f) = f(x,w) + εf
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and y(g) = g(x,w) + εg , where εf and εg are independent
Gaussian distributions following εf ∼ N (0, σ2

f,noise), εg ∼
N (0, σ2

g,noise). In this study, we consider the following two
cases for the observation of w:

Uncontrollable: For each trial t, w cannot be controlled,
and its realization is generated from the unknown dis-
tribution P †.

Simulator: For each trial t, w can be chosen arbitrarily.

For example, in the robot position control and wind turbine
switching problems described in §1, these settings can be
formulated as the uncontrollable setting if actual values of
random environment w (and f and g) can be obtained se-
quentially while actually performing the work. On the other
hand, if the simulation can be performed while arbitrarily
changing the value of a random environmental variablew
(e.g., recovery rate), as in the simulation of an infectious
disease, it can be interpreted as the simulator setting. More-
over, we consider the following At as a family of candidate
distributions for P †:

At = {probability function p(w) | d(p(w), p∗t (w)) ≤ εt},

where p∗t (w) is a user-specified reference distribution, d(·, ·)
is a given distance function between distributions, and
εt > 0. Then, under a given threshold h, the DR expec-
tation function Ft(x) and DR probability function Gt(x)
are defined for each x ∈ X and t ≥ 1 as

Ft(x) = inf
p(w)∈At

∑
w∈Ω

f(x,w)p(w),

Gt(x) = inf
p(w)∈At

∑
w∈Ω

1l[g(x,w) > h]p(w).

The objective of this study is to efficiently find the optimal
design variable x∗t that maximizes Ft(x) such that Gt(x)
exceeds a given level α ∈ (0, 1). In other words, x∗t satisfies
that

x∗t = argmax
x∈X

Ft(x) subject to Gt(x) > α.

If the optimal solution x∗t does not exist, it is formally
defined as F (x∗t ) = minx∈X Ft(x).

2.1. Gaussian Process

In this study, we use GPs as the surrogate model
for the black-box functions f and g. First, we as-
sume that the GPs, GP(0, k(f)((x,w), (x′,w′))), and
GP(0, k(g)((x,w), (x′,w′))) are prior distributions of f
and g, respectively. Here, k(f)((x,w), (x′,w′)), and
k(g)((x,w), (x′,w′)) are positive-definite kernels. Then,
under the given dataset {(xi,wi, y(f)

i )}ti=1, the posterior

distribution of f also follows the GP, and its posterior mean
µ

(f)
t (x,w) and posterior variance σ(f)2

t (x,w) are given by

µ
(f)
t (x,w) = k

(f)
t (x,w)>(K

(f)
t + σ2

f,noiseIt)
−1y

(f)
t ,

σ
(f)2
t (x,w) = k(f)((x,w), (x,w))

− k(f)
t (x,w)>(K

(f)
t + σ2

f,noiseIt)
−1k

(f)
t (x,w),

(4)

where k(f)
t (x,w) is a t-dimensional vector with ith ele-

ment k(f)((x,w), (xi,wi)), y(f)
t = (y

(f)
1 , . . . , y

(f)
t )>, It,

being the t × t identity matrix, and K(f)
t is the t × t ma-

trix with (j, k) element k(f)((xj ,wj), (xk,wk)). As in
the case of f , under the dataset {(xi,wi, y(g)

i )}ti=1, the
posterior distribution of g is also a GP, and its posterior
mean µ(g)

t (x,w) and posterior variance σ(g)2
t (x,w) can be

obtained by using the same formula as (4).

3. Proposed Method
In this section, we propose a BO method for efficiently solv-
ing the DRCC problem. In our setting, because f(x,w) and
g(x,w) are random functions, Ft(x) and Gt(x) are also
random functions. Thus, one of the natural BO methods
is to use credible intervals of Ft(x) and Gt(x). Unfortu-
nately, although f(x,w) and g(x,w) follow GPs, Ft(x)
and Gt(x) do not follow GP. Hence, credible intervals of
Ft(x) and Gt(x) cannot be constructed based on the prop-
erty of Normal distribution. In the next section, we describe
how to construct credible intervals based on (Kirschner et al.,
2020) and (Inatsu et al., 2021).

3.1. Credible Interval

For each input (x,w) ∈ X × Ω and trial t, we de-
fine a credible interval of f(x,w) as Q

(f)
t (x,w) =

[l
(f)
t (x,w), u

(f)
t (x,w)]. Here, the lower bound l(f)

t (x,w)

and upper bound u(f)
t (x,w) are given by

l
(f)
t (x,w) = µ

(f)
t (x,w)− β1/2

f,t σ
(f)
t (x,w),

u
(f)
t (x,w) = µ

(f)
t (x,w) + β

1/2
f,t σ

(f)
t (x,w),

where β
1/2
f,t ≥ 0. Similar to the same definition of

Q
(f)
t (x,w), we define a credible interval of g(x,w) as

Q
(g)
t (x,w) = [l

(g)
t (x,w), u

(g)
t (x,w)]. Furthermore, we

construct a credible interval of 1l[g(x,w) > h] by using
Q

(g)
t (x,w). Let η > 0 be a user-specified overestima-

tion parameter.1 Then, we define the credible interval of

1The parameter η is necessary to theoretical guarantees. Details
are given in Section 4.
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1l[g(x,x) > h] as

Q
(1l)
t (x,w; η) ≡ [l

(1l)
t (x,w; η), u

(1l)
t (x,w; η)]

=


[1, 1] if l(g)t (x,w) > h− η,
[0, 1] if l(g)t (x,w) ≤ h− η and u(g)

t (x,w) > h,

[0, 0] if l(g)t (x,w) ≤ h− η and u(g)
t (x,w) ≤ h.

Next, using Q(f)
t (x,w), we define a credible interval of

Ft(x) as Q(Ft)
t (x) ≡ [l

(Ft)
t (x), u

(Ft)
t (x)], where l(Ft)

t (x)

and u(Ft)
t (x) are calculated as

l
(Ft)
t (x) = inf

p(w)∈At

∑
w∈Ω

l
(f)
t (x,w)p(w),

u
(Ft)
t (x) = inf

p(w)∈At

∑
w∈Ω

u
(f)
t (x,w)p(w).

(5)

Note that if the distance function d(·, ·) is the L1 (or
L2)-norm, (5) can be formulated as a linear (or second-
order cone) programming problem. In both cases, opti-
mization solvers exist to easily calculate (5). Similarly,
we define a credible interval of Gt(x) as Q(Gt)

t (x; η) ≡
[l

(Gt)
t (x; η), u

(Gt)
t (x; η)], and its lower and upper bounds

are given by

l
(Gt)
t (x; η) = inf

p(w)∈At

∑
w∈Ω

l
(1l)
t (x,w; η)p(w),

u
(Gt)
t (x; η) = inf

p(w)∈At

∑
w∈Ω

u
(1l)
t (x,w; η)p(w).

(6)

Moreover, using Q(Gt)
t (x; η), we define an estimated upper

(resp. lower) set Ht (resp. Lt) and a potential upper set Mt.
Let ξ > 0 be a user-specified accuracy parameter. Then, we
define Ht, Lt and Mt as

Ht = {x ∈ X | l(Gt)
t (x; η) > α− ξ},

Lt = {x ∈ X | l(Gt)
t (x; η) ≤ α− ξ and u(Gt)

t (x; η) ≤ α},

Mt = {x ∈ X | l(Gt)
t (x; η) ≤ α− ξ and u(Gt)

t (x; η) > α}.

3.2. Acquisition Function

We propose an AF to determine the next evaluation point.
Our proposed AF is based on the following utility function:

E[max{Ft(x)− c(best)
t , 0}]× P[Gt(x) > α]. (7)

The first term is the expected improvement for Ft(x), and
the second term is the probability that the DR probability
function Gt(x) is greater than α. In the context of con-
strained BOs without environmental variables, this utility
is known as the expected constrained improvement (ECI)
(Gardner et al., 2014). Similarly, in the CCBO framework,

(Amri et al., 2021) proposed the expected feasible improve-
ment (EFI) AF using the same utility. Unfortunately, in
the DRCC setup, both the first and second terms cannot
be calculated analytically because Ft(x) and Gt(x) do not
follow GPs. Moreover, numerical approximation is also
expensive because it requires a re-optimization calculation
(inf operation) for all generated samples. For this reason,
instead of (7), we consider a CI-based utility function which
mimics (7).

First, we define the current best point c(best)
t at trial t as

c(best)
t =


maxx∈Ht

l
(Ft)
t (x) if Ht 6= ∅

minx∈Mt
l
(Ft)
t (x) if Ht = ∅ andMt 6= ∅

minx∈X l
(Ft)
t (x) if Ht = ∅ andMt = ∅

.

Using this, we define the CI-based improvement a(Ft)
t (x)

for Ft as

a
(Ft)
t (x) = max{u(Ft)

t (x)− c(best)
t , 0}.

Similarly, we define the CI-based probability a(Gt)
t (x) for

Gt > α as

a
(Gt)
t (x) =


1 if x ∈ Ht

u
(Gt)
t (x;η)−(α−ξ)

u
(Gt)
t (x;η)−l(Gt)

t (x;η)
if x ∈Mt

0 if x ∈ Lt

.

By combining these, we propose the following AF at(x):

at(x) = a
(Ft)
t (x)× a(Gt)

t (x).

Then, the next selected point is evaluated as follows:

Definition 3.1. The next design variable xt+1 to evaluate
is selected by

xt+1 = argmax
x∈Ht∪Mt

at(x).

On the other hand, unlike the uncontrollable setting, we also
need to select wt+1 in the simulator setting. One of the
reasonable approaches is to focus on large posterior vari-
ances at the selected xt+1. Thus, we propose the following
selection rule to evaluate w:

Definition 3.2. The next environmental variable wt+1 to
evaluate is selected by

wt+1 = argmax
w∈Ω

{σ(f)2
t (xt+1,w) + σ

(g)2
t (xt+1,w)}.

3.3. Stopping Conditions and DRCC-BO

We formulate the stopping condition of the proposed algo-
rithm. If it is identified that the constraint Gt(x) > α is not
satisfied with high confidence for all the design variables x,
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Algorithm 1 DRCC-BO: BO for DRCC problem

Require: GP priors GP(0, k(f)), GP(0, k(g)), threshold
h ∈ R, level α ∈ (0, 1), overestimation parameter η > 0,
{βf,t}t≥1, {βg,t}t≥1, accuracy parameter ξ > 0, At
H0 ← ∅, L0 ← ∅, M0 ← X , t← 1
while Both (S1) and (S2) are not satisfied do

Compute Q(Ft)
t (x) and Q(Gt)

t (x; η) for any x ∈ X
Select the next evaluation point xt
if Uncontrollable setting then

Generate the next evaluation point wt ∼ P †
else

Select the next evaluation point wt
end if
Observe y

(f)
t = f(xt,wt) + εf,t and y

(g)
t =

g(xt,wt) + εg,t
Update the GPs by adding observations, and compute
Ht, Lt,Mt

t← t+ 1
end while

Ensure: No solution exists if (S1) is satisfied, and other-
wise x̂t = argmaxx∈Ht−1

l
(Ft)
t−1 (x)

then the algorithm should be stopped because there is no so-
lution. Alternatively, the algorithm should also be stopped if
the difference between the conservative maximum for Ft(x)
in the points that satisfy the constraint and the optimistic
maximum for Ft(x) in the points that may satisfy the con-
straint is sufficiently small. Based on these ideas, we define
the following two stopping conditions:

(S1) Lt = X .

(S2) Ht 6= ∅ and maxx∈Ht∪Mt
u

(Ft)
t (x) −

maxx∈Ht
l
(Ft)
t (x) < ξ.

The pseudocode of the proposed method in uncontrollable
and simulator settings are given in Algorithm 1.

4. Theoretical Analysis
In this section, we show the theoretical guarantee on
the accuracy and convergence in our proposed algo-
rithm. First, we assume that the true black-box func-
tions f and g follow GPs GP(0, k(f)((x,w), (x′,w′))),
and GP(0, k(g)((x,w), (x′,w′))), respectively. More-
over, as a technical condition, we assume that the pos-
terior variances k(f)((x,w), (x,w)) ≡ σ

(f)2
0 (x,w) and

k(g)((x,w), (x,w)) ≡ σ(g)2
0 (x,w) satisfy

max
(x,w)∈X×Ω

σ
(f)2
0 (x,w) ≤ 1, max

(x,w)∈X×Ω
σ

(g)2
0 (x,w) ≤ 1,

0 < σ
(g)2
0,min ≡ min

(x,w)∈X×Ω
σ

(g)2
0 (x,w).

Here, let κ(f)
T , κ

(g)
T be the maximum information gain of

f and g at trial T , respectively. Note that the maximum
information gain is a commonly used complexity measure
in the context of the GP-based BO method (see, e.g., (Srini-
vas et al., 2010)). The value κ(f)

T can be expressed as
κ

(f)
T = maxS⊂X×Ω I(y

(f)
S ; f), where I(y(f); f) is the mu-

tual information between y(f) and f . Similarly, κ(g)
T can be

expressed by using I(y(g); g). Next, we define the goodness
of the estimated x̂t as follows:

Definition 4.1. For a given positive constant C, we define
the estimated solution x̂t as the C-accurate solution if x̂t
satisfies the following inequalities:

Ft(x
∗
t )− Ft(x̂t) < C, Gt(x̂t) > α− C.

Then, the following theorem holds:

Theorem 4.2. Let h ∈ R, α ∈ (0, 1), t ≥ 1, δ ∈ (0, 1),
and define βf,t = βg,t = 2 log(2|X × Ω|π2t2/(3δ)) ≡ βt.
For a user-specified accuracy parameter ξ > 0, define an
overestimation parameter η > 0 as

η = min

{
ξσ

(g)
0,min

2
,
ξ2δσ

(g)
0,min

8|X × Ω|

}
.

Then, when Algorithm 1 is performed, with a probability of
at least 1− δ, the following holds for any t and At:

• If (S1) is satisfied, then Gt(x) ≤ α for all x ∈ X , that
is, the DRCC problem has no solution.

• If (S2) is satisfied, then x̂t is the 2ξ-accurate solution.

Moreover, these results do not depend on whether the simu-
lator or uncontrollable setting is used.

We would like to note that although Theorem 4.2 guaran-
tees the returned solution by Algorithm 1 is good, but does
not state whether the stopping conditions are satisfied or
not. The sufficient conditions for stopping conditions to be
satisfied need to be considered for the simulator and uncon-
trollable settings, separately. First, we give the sufficient
conditions in the simulator setting.

Theorem 4.3. Under the same condition as in Theorem 4.2,
let T be the smallest positive integer satisfying the following
inequalities:

βT 2(C1,fκ
(f)
T + C1,gκ

(g)
T )

T
< min

{
ξ4

4
,
η2

4

}
, (8)

where C1,f = 2/ log(1 + σ−2
f,noise) and C1,g = 2/ log(1 +

σ−2
g,noise). Then, under the simulator setting, Algorithm 1

terminates after at most T 2 trials.
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Next, we give the sufficient conditions in the uncontrollable
setting. In the simulator setting, we can choose any w and
thus the uncertainty of f and g can be reduced sufficiently.
In contrast, in the uncontrollable setting, we cannot choose
w, freely. For this reason, it is desirable to be able to make
the uncertainty of all points small in probability. However, if
p†(w) = 0 for somew, the uncertainty at points including
this point is not reduced sufficiently. To avoid this prob-
lem, in the uncontrollable setting, we assume that the true
distribution satisfies

min
w∈Ω

p†(w) ≡ pmin > 0.

Then, the following theorem holds:

Theorem 4.4. Under the same condition as in Theorem 4.2,
assume that pmin > 0. Let T be the smallest positive integer
satisfying the following inequalities:

βT 2(C2,fκ
(f)
T + C2,gκ

(g)
T + C3)

T
< min

{
ξ4

4
,
η2

4

}
, (9)

where C2,f = (4p−1
min)/ log(1 + σ−2

f,noise), C2,g =

(4p−1
min)/ log(1 + σ−2

g,noise) and C3 = 16p−1
min log(5/δ). Then,

under the uncontrollable setting, with a probability of at
least 1− δ, Algorithm 1 terminates after at most T 2 trials.

Furthermore, we give a theorem that it is possible to link
the DRCC problem to the CC problem by choosing At
appropriately. Specifically, it ensures that the solution to the
DRCC problem is also a good solution to the CC problem.
Here, we consider the following CC problem

F̃ (x) =
∑
w∈Ω

f(x,w)p†(w),

G̃(x) =
∑
w∈Ω

1l[g(x,w) > h]p†(w),

x̃∗ = argmax
x∈X

F̃ (x) subject to G̃(x) > α,

where if the optimal solution x̃∗ does not exist, it is formally
defined as F̃ (x̃∗) = minx∈X F̃ (x). As with the DRCC
problem, we define the goodness of the solution to the CC
problem as follows:

Definition 4.5. For a given positive constant C, we define
the solution x̂t as theC-accurate solution to the CC problem
if x̂t satisfies the following inequalities:

F̃ (x̃∗)− F̃ (x̂t) < C, G̃(x̂t) > α− C.

Then, the following theorem holds:

Theorem 4.6. Under the uncontrollable setting, let h ∈ R,
α ∈ (0, 1), t ≥ 1, δ ∈ (0, 1), and define βf,t = βg,t =

2 log(2|X ×Ω|π2t2/(3δ)) ≡ βt. For a user-specified accu-
racy parameter ξ > 0, define α′ = α − ξ and an overesti-
mation parameter η > 0 as

η = min

{
ξσ

(g)
0,min

2
,
ξ2δσ

(g)
0,min

8|X × Ω|

}
.

Furthermore, let p∗t (w) be an empirical distribution of w,
and let

εt = |Ω|

√
1

2t
log

(
|Ω|π2t2

3δ

)
,

d(p1(w), p2(w)) =
∑
w∈Ω

|p1(w)− p2(w)|.

Then, when Algorithm 1 is performed by using α′, with a
probability of at least 1 − 2δ, the following holds for any
t ≥ T :

• If (S1) is satisfied, then G(x) ≤ α for all x ∈ X , that
is, the CC problem has no solution,

• If (S2) is satisfied, then x̂t is the 3ξ-accurate solution
for the CC problem,

where T is the smallest positive integer satisfying

∀n ≥ T, 2(1 + β
1/2
f,1 )εn < ξ.

Finally, the results of the theorems obtained in this section
are summarized in Table 1.

Note that the order of maximum information gains κ(f)
T

and κ(g)
T is known to be sublinear under mild conditions

(Srinivas et al., 2010). Therefore, noting that the order of
βf,T = βg,T is O(log T ), the positive integer T satisfying
(8) and (9) exists.

5. Numerical Experiments
In this section, we confirm the performance of the proposed
method in simulator and uncontrollable settings using syn-
thetic functions and real-world simulations. In this exper-
iment, both design and environment variables were set to
one dimension, and the following Gaussian kernels were
used as the kernel functions:

k(f)((x,w), (x′, w′)) = σ2
f,ker exp(−‖θ − θ′‖22/Lf ),

k(g)((x,w), (x′, w′)) = σ2
g,ker exp(−‖θ − θ′‖22/Lg),

where θ = (x,w). We used the L1-norm as the distance be-
tween distributions, and set εt = 0.15. Here, for simplicity,
we set the overestimation parameter η to 0 and the accuracy
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Table 1. Probabilities of accuracy and algorithm termination in each setting

Simulator Uncontrollable Uncontrollable using Theorem 4.6 setting
2ξ-accuracy for DRCC 1− δ 1− δ 1− δ

3ξ-accuracy for CC NA NA 1− 2δ
Algorithm termination 1 1− δ 1− δ

2ξ-accuracy for DRCC and termination 1− δ 1− 2δ 1− 2δ
3ξ-accuracy for CC and termination NA NA 1− 3δ

parameter to ξ = 10−12. In all experiments, we evalu-
ated the performance of each algorithm using the following
utility gap UGt:

UGt

=

{
Ft(x

∗
t )− Ft(x̂t) if Ht 6= ∅ and Gt(x̂t) > α

Ft(x
∗
t )−minx∈X Ft(x) otherwise,

where x̂t is given by x̂t = argmaxx∈Ht
l
(Ft)
t (x). The de-

tails of the experimental setting, which are not included in
the main body, are described in Appendix B.

5.1. Synthetic Function

We evaluate the performance of the proposed method using
a synthetic function. We used the input space X ×Ω as a set
of grid points divided by [−10, 10]× [−10, 10] into 50×50
equally spaced. Moreover, we used the following black-box
functions f and g:

f(x,w) = exp(−x2/4) + 0.6 exp(−(x− 8)2/3)

+ 0.3 exp(−(x+ 9)2/5) + exp(−w2/4)

+ 0.6 exp(−(w − 8)2/3) + 0.3 exp(−(w + 9)2/5),

g(x,w) = 0.26(x2 + w2)− 0.48xw.

In this experiment, we performed a total of three different
experiments, one with the simulator setting and two with
the uncontrollable setting:

Simulator: Under the simulator setting, p∗t (w) = 1/50
was used as the reference distribution.

Fixed: Under the uncontrollable setting, the mixture nor-
mal distribution 0.5N (−5, 10) + 0.5N (5, 10) dis-
cretized on Ω was used as the true distribution p†(w).
The reference distribution was set to p∗t (w) = 1/50.

Data-driven: Under the uncontrollable setting, for the true
distribution p†(w) we used the same as Fixed, and
for the reference distribution we used the empirical
distribution function of w.

We compared the following seven methods:

Random: Select (xt+1, wt+1) randomly.

US: Select (xt+1, wt+1) by maximizing the maximum pos-
terior variance of f and g, i.e., (xt+1, wt+1) is given
by

(xt+1, wt+1) = argmax
(x,w)∈X×Ω

USt(x,w),

where USt(x,w) = max{σ(f)2
t (x,w), σ

(g)2
t (x,w)}.

DRBO: Use the DRBO method proposed by (Kirschner
et al., 2020), i.e., xt+1 and wt+1 are selected
by xt+1 = argmaxx∈X u

(Ft)
t (x) and wt+1 =

argmaxw∈Ω σ
(f)2
t (xt+1, w).

DRPTR: Use the DRPTR method proposed by (Inatsu
et al., 2021), i.e., (xt+1, wt+1) is selected by
(xt+1, wt+1) = argmax(x,w)∈X×Ω a

(2)
t (x,w), where

a
(2)
t (x,w) is given by Definition 3.2 of (Inatsu et al.,

2021).

CCBO: Use the CCBO method proposed by (Amri
et al., 2021), i.e., xt+1 and wt+1 are selected
by xt+1 = argmaxx∈X EFI(x) and wt+1 =
argmaxw∈Ω S(xt+1, w), where EFI(x) and S(x,w)
are given by (7) and (13) of (Amri et al., 2021).

MVA: Use a modified version of the MVA-BO method pro-
posed by (Iwazaki et al., 2021b), i.e., xt+1 is selected
by

xt+1 = argmax
x∈Pt

√
length(Ft)

t (x)2 + length(Gt)
t (x; η)2,

Pt = (Ht ∪Mt) ∩ {x ∈ X | u(Ft)
t (x) > max

x∈Ht

l
(Ft)
t (x)},

length(Ft)
t (x) = u

(Ft)
t (x)− l(Ft)

t (x),

length(Gt)
t (x) = u

(Gt)
t (x; η)− l(Gt)

t (x; η)

and wt+1 is selected by Definition 3.2.

Proposed: Use Definition 3.1-3.2.

In the case of uncontrollable setting, we selected only xt+1.
On the other hand, because US and DRPTR select x and
w simultaneously, we modified them in the uncontrollable
setting as follows:
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US: xt+1 = argmaxx∈X Ew[USt(x,w)].

DRPTR: xt+1 = argmaxx∈X Ew[a
(2)
t (x,w)].

Here, the expectation is taken with respect to the empir-
ical distribution of w. We would like to emphasize that
DRBO focuses only on the maximization of Ft(x), and
does not consider whether the constraints are satisfied or
not. In contrast, DRPTR focuses only on the identifica-
tion of variables that satisfy the constraints and does not
consider the maximization of Ft(x). As for CCBO, it is
the BO method for the CC problem (1a)–(1b), and does not
consider the distributionally robustness. Similarly, MVA fo-
cuses on only one black-box function f(x,w) and deals the
constraint optimization problem between the mean and vari-
ance of f(x,w) with respect to w. Therefore, MVA does
not consider the (distributionally robust) chance-constraint
problem.

With this setup, we took one initial point at random and ran
the algorithms until the number of iterations reached 300.
The simulation was repeated 100 times and the average
value of the utility gap at each iteration was calculated.
From Figure1, it can be confirmed that the proposed method
shows high performance.

5.2. Infection Simulation

We then applied the proposed method to the decision-
making problem for simulation-based infectious diseases
in the real world. Here, we used the SIR model (Kermack
& McKendrick, 1927), which is a commonly used model
to describe the behavior of infection. The SIR model uses
the contact rate β ∈ [0, 1] and the isolation rate γ ∈ [0, 1]
to model the behavior of infection over time. In this experi-
ment, we considered the grid points that divide the interval
[0.01, 0.5] into 50 equal parts as β and γ, and used them as
input. Based on the SIR model, we defined the following
two risk functions:

R1(β, γ) = ninfected(β, γ)− 450β + 800γ − C1,

R2(β, γ) = ninfected(β, γ)− C2,

where ninfected(β, γ), which is calculated by using the SIR
model with (β, γ), is the maximum number of infected
within a given period. In addition, C1 (resp. C2) is a shift
constant to match the absolute values of the maximum and
minimum of R1(β, γ) (resp. R2(β, γ)). While R2(β, γ),
which represents the number of infected people, is an intu-
itive risk function, R1(β, γ) can be interpreted as an eco-
nomic risk function. In fact, as the number of infected
people increases, the economic risk increases. In addition,
if the contact rate is large, that is, if freedom of action is
not restricted, economic activity will not stagnate and the
risk will be small. On the other hand, if the isolation rate is

large, economic activity will stagnate and the risk will in-
crease. Although these risk functions should be minimized,
we multiplied them by minus one in our experiments in
order to match the setting of this paper. Also, R1(β, γ) can
be interpreted as both an objective function and a constraint
function, and the same is true for R2(β, γ). Similarly, the
contact rate β can be interpreted as both a design variable
and an environmental variable, and the same is true for γ.
For these reasons, we performed the following experiments:

Case1: Design variable x: β, environmental variable w: γ,
f(x,w) = −R1(x,w), g(x,w) = −R2(x,w).

Case2: Design variable x: β, environmental variable w: γ,
f(x,w) = −R2(x,w), g(x,w) = −R1(x,w).

Case3: Design variable x: γ, environmental variable w: β,
f(x,w) = −R1(x,w), g(x,w) = −R2(x,w).

Case4: Design variable x: γ, environmental variable w: β,
f(x,w) = −R2(x,w), g(x,w) = −R1(x,w).

In all experiments, the simulator setting was considered, and
p∗t (w) = 1/50 was used as the reference distribution.

With this setup, we took one initial point at random and
ran the algorithms until the number of iterations reached
100. The simulation was repeated 100 times and the average
value of the utility gap at each iteration was calculated.
From Figure 2, it can be confirmed that the proposed method
performs as well as or better than the comparison methods.

5.3. Hyperparameter Sensitivity

We evaluate the sensitivity of β1/2
f,t and β1/2

g,t . We used the

same setting as in §5.1 except for β1/2
f,t and β1/2

g,t , and eval-
uated only the proposed method. We considered the 16
cases of β1/2

f,t = β
1/2
f ∈ {0, 1, 2, 3} and β1/2

g,t = β
1/2
g ∈

{0, 1, 2, 3}. From Figure 3, it can be confirmed that utility
gaps do not become zero when β1/2

f or β1/2
g is zero. On

the other hand, when β1/2
f and β1/2

g are non-zero, the best

performance is achieved when β1/2
f = 2 and β1/2

g = 1 in
both settings. Thus, it can be confirmed that good perfor-
mance can actually be achieved without the large β1/2

f,t and

β
1/2
g,t values for theoretical guarantees given in §4. Experi-

mental results of the uncontrollable setting are described in
Appendix.

6. Conclusion
In this paper, we proposed the BO method for efficiently
finding the optimal solution to the DRCC problem for the
simulator and uncontrollable settings. We showed that the
proposed method can return an arbitrary accurate solution
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Figure 1. Average utility gap for each method in simulator and uncontrollable settings.
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Figure 2. Average utility gap for SIR simulation experiments in the simulator setting.
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Figure 3. Hyperparameter sensitivity for the proposed method in simulator and fixed settings.

with high probability in a finite number of trials. Further-
more, through numerical experiments, we confirmed that
the performance of the proposed method is superior to other
comparison methods.
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A. Proofs
A.1. Proof of Theorem 4.2

From the proof of Theorem 4.1 in (Inatsu et al., 2021), with a probability of at least 1− 3δ/4 the following holds for any
x ∈ X and t ≥ 12:

Gt(x) ≤ u(Gt)
t (x; η), Gt(x) ≥ l(Gt)

t (x; η)− ξ.

Here, if the stopping condition (S1) holds, then u(Gt)
t (x; η) ≤ α for any x. By combining this and Gt(x) ≤ u(Gt)

t (x; η),
we have Gt(x) ≤ α. This implies that the DRCC problem has no solution. On the other hand, if the stopping condition (S2)
holds, x̂t satisfies that

l
(Gt)
t (x; η) > α− ξ.

By using this and Gt(x) ≥ l
(Gt)
t (x; η)− ξ, we obtain Gt(x̂t) ≥ α− 2ξ. Here, if the optimal solution x∗t does not exist,

from the definition it follows that Ft(x∗t ) − Ft(x̂t) ≤ 0 < ξ < 2ξ. Therefore, x∗t is a 2ξ-accurate solution. Next, we
consider the case where the optimal solution x∗t exists. From Lemma 5.1 in (Srinivas et al., 2010), under the assumption on
Theorem 4.2, with a probability of at least 1− δ/4 the following inequality holds for any (x,w) ∈ X × Ω and t ≥ 1:

f(x,w) ∈ Q(f)
t (x,w).

Hence, it follows that Ft(x) ∈ Q(Ft)
t (x). Moreover, because x∗t satisfies Gt(x∗t ) > α, then Gt(x∗t ) ≤ u

(Gt)
t (x∗t ; η) with a

probability of at least 1− 3δ/4. Thus, we get x∗t ∈ Ht ∪Mt. Hence, the following holds:

Ft(x
∗
t ) ≤ u

(Ft)
t (x∗t ) ≤ max

x∈Ht∪Mt

u
(Ft)
t (x).

Similarly, noting that Ft(x̂t) ≥ l(Ft)
t (x̂t) = maxx∈Ht

l
(Ft)
t (x), from the stopping condition (S2) it follows that

2ξ > ξ > max
x∈Ht∪Mt

u
(Ft)
t (x)− max

x∈Ht

l
(Ft)
t (x) ≥ Ft(x∗t )− Ft(x̂t).

Therefore, x̂t is a 2ξ-accurate solution.

A.2. Proof of Theorem 4.3

Let T be the smallest positive integer satisfying (8). Also let (x1,w1), . . . , (xT 2 ,wT 2) be points selected by the algorithm.
Here, one of the following holds for T 2:

Case1 There exists a positive integer t ≤ T 2 such that Lt = X .

Case2 For any positive integer t ≤ T 2, Lt 6= X .

If Case1 holds, then from the stopping condition (S1) the algorithm terminates. Next, we consider Case2. Let

T1 = argmin
1≤t≤T

{σ(f)2
t−1 (xt,wt) + σ

(g)2
t−1 (xt,wt)}.

Then, the following inequality holds:

T{σ(f)2
T1−1(xT1

,wT1
) + σ

(g)2
T1−1(xT1

,wT1
)} ≤

T∑
t=1

σ
(f)2
t−1 (xt,wt) +

T∑
t=1

σ
(g)2
t−1 (xt,wt)

≤ C1,fκ
(f)
T + C1,gκ

(g)
T ,

where the last inequality can be derived from Lemma 5.3 and 5.4 in (Srinivas et al., 2010). Thus, it follows that

σ
(f)2
T1−1(xT1 ,wT1) + σ

(g)2
T1−1(xT1 ,wT1) ≤

C1,fκ
(f)
T + C1,gκ

(g)
T

T
.

2They only consider the fixed candidate family A, but the same argument also holds in the case of At 6= At′ .
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In addition, from Definition 3.2, the following holds for any w ∈ Ω:

σ
(g)2
T1−1(xT1

,w) ≤ max
w∈Ω

(σ
(f)2
T1−1(xT1

,w)+σ
(g)2
T1−1(xT1

,w)) = σ
(f)2
T1−1(xT1

,wT1
)+σ

(g)2
T1−1(xT1

,wT1
) ≤

C1,fκ
(f)
T + C1,gκ

(g)
T

T
.

Hence, we have

βg,T1
σ

(g)2
T1−1(xT1

,w) ≤
βg,T1

(C1,fκ
(f)
T + C1,gκ

(g)
T )

T
≤
βg,T 2(C1,fκ

(f)
T + C1,gκ

(g)
T )

T
.

Here, from the theorem’s assumption, it holds that

βg,T 2(C1,fκ
(f)
T + C1,gκ

(g)
T )

T
< η2/4.

Therefore, we have β1/2
g,T1

σ
(g)
T1−1(xT1

,w) < η/2. Furthermore, by combining this and Lemma A.3 in (Inatsu et al.,

2021), we get u(GT1
)

T1−1 (xT1 ; η) = l
(GT1

)

T1−1 (xT1 ; η). Using this and the definition of Mt, it holds that xT1 /∈ MT1 . More-
over, from Definition 3.1, it follows that xT1 ∈ HT1 ∪ MT1 . Thus, we have xT1 ∈ HT1 . Similarly, we consider
(xT+1,wT+1), . . . , (x2T ,w2T ). As with T1, let

T2 = argmin
T+1≤t≤2T

{σ(f)2
t−1 (xt,wt) + σ

(g)2
t−1 (xt,wt)}.

Then, the following inequality holds:

T{σ(f)2
T2−1(xT2 ,wT2) + σ

(g)2
T2−1(xT2 ,wT2)} ≤

2T∑
t=T+1

σ
(f)2
t−1 (xt,wt) +

2T∑
t=T+1

σ
(g)2
t−1 (xt,wt).

Furthermore, let σ(f)2
0 (x,w|xm:n,wm:n) be a posterior variance of f(x,w) after adding (xm,wm), . . . , (xn,wn). Then,

it holds that

2T∑
t=T+1

σ
(f)2
t−1 (xt,wt) ≤ σ(f)2

0 (xT+1,wT+1) +

T∑
t=2

σ
(f)2
0 (xT+t,wT+t|x(T+1):(T+t−1),w(T+1):(T+t−1)) ≤ C1,fκ

(f)
T .

As with σ(f)2
t−1 (xt,wt), the following holds for σ(g)2

t−1 (xt,wt):

2T∑
t=T+1

σ
(g)2
t−1 (xt,wt) ≤ C1,gκ

(g)
T .

Thus, the following inequality holds for T2:

T{σ(f)2
T2−1(xT2

,wT2
) + σ

(g)2
T2−1(xT2

,wT2
)} ≤ C1,fκ

(f)
T + C1,gκ

(g)
T .

Hence, from the same argument as before, we obtain xT2
∈ HT2

. By repeating this procedure up to T 2, we get the sequence
xT1 ,xT2 , . . . ,xTT

satisfying xTi ∈ HTi .

Next, from xTi ∈ HTi , it follows that a
(GTi−1)

Ti−1 (xTi) = 1 and a
(FTi−1)

Ti−1 (xTi) ≤ u
(FTi−1)

Ti−1 (xTi)− l
(FTi−1)

Ti−1 (xTi). Therefore,
it holds that

aTi−1(xTi) ≤ u
(FTi−1)

Ti−1 (xTi)− l
(FTi−1)

Ti−1 (xTi).

Here, let p̃(w) ∈ ATi−1 be a probability function satisfying

l
(FTi−1)

Ti−1 (xTi) =
∑
w∈Ω

l
(f)
Ti−1(xTi ,w)p̃(w).
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Then, from the definition of u
(FTi−1)

Ti−1 (xTi), the following holds:

u
(FTi−1)

Ti−1 (xTi
) ≤

∑
w∈Ω

u
(f)
Ti−1(xTi

,w)p̃(w).

Thus, we get

u
(FTi−1)

Ti−1 (xTi
)− l(FTi−1)

Ti−1 (xTi
) ≤

∑
w∈Ω

2β
1/2
f,Ti

σ
(f)
Ti−1(xTi

,w)p̃(w) ≤ 2β
1/2
f,Ti

max
w∈Ω

σ
(f)
Ti−1(xTi

,w).

Hence, from Definition 3.2 it follows that

a2
Ti−1(xTi) ≤ 4βf,Ti(max

w∈Ω
σ

(f)
Ti−1(xTi ,w))2 ≤ 4βf,T 2 max

w∈Ω
σ

(f)2
Ti−1(xTi ,w) ≤ 4βf,T 2(σ

(f)2
Ti−1(xTi

,wTi
)+σ

(g)2
Ti−1(xTi

,wTi
)).

Furthermore, let
T̃ = argmin

T∈{T1,...,TT }
a2
T−1(xT ).

Then, the following inequality holds:

Ta2
T̃−1

(xT̃ ) ≤ 4βf,T 2

T∑
i=1

(σ
(f)2
Ti−1(xTi ,wTi) + σ

(g)2
Ti−1(xTi ,wTi)) ≤ 4βf,T 2(C1,fκ

(f)
T + C1,gκ

(g)
T ).

This implies that

a2
T̃−1

(xT̃ ) ≤
4βf,T 2(C1,fκ

(f)
T + C1,gκ

(g)
T )

T
.

On the other hand, for any x ∈ HT̃−1 ∪MT̃−1, from the definition of a
(GT̃−1)

T̃−1
(x) it follows that a

(GT̃−1)

T̃−1
(x) ≥ ξ. Hence,

aT̃−1(x) can be bounded as

(u
(FT̃−1)

T̃−1
(x)− max

x∈HT̃−1

l
(FT̃−1)

T̃−1
(x))ξ = (u

(FT̃−1)

T̃−1
(x)− c(best)

T̃−1
)ξ ≤ aT̃−1(x).

Therefore, by using the theorem’s assumption, we obtain

(u
(FT̃−1)

T̃−1
(x)− max

x∈HT̃−1

l
(FT̃−1)

T̃−1
(x))2 ≤

4βf,T 2(C1,fκ
(f)
T + C1,gκ

(g)
T )

T
ξ−2 < ξ2.

Hence, xT̃−1 ∈ HT̃−1 and u
(FT̃−1)

T̃−1
(x) −maxx∈HT̃−1

l
(FT̃−1)

T̃−1
(x) < ξ for any x ∈ HT̃−1 ∪MT̃−1. Thus, the stopping

condition (S2) holds.

A.3. Proof of Theorem 4.4

The proof is almost the same as the proof of Theorem 4.3. Assume that there exists a positive integer t ≤ T 2 such that
Lt = X . Then, the stopping condition (S1) holds.

Next, we consider the case where Lt 6= X for any t ≤ T 2. For each i ∈ {1, . . . , T}, let

Ti = argmin
(i−1)T+1≤t≤iT

{Ew[σ
(f)2
t−1 (xt,w)] + Ew[σ

(g)2
t−1 (xt,w)]}.

Then, T1 satisfies that

T{Ew[σ
(f)2
T1−1(xT1

,w)] + Ew[σ
(g)2
T1−1(xT1

,w)]} ≤
T∑
t=1

Ew[σ
(f)2
t−1 (xt,w)] +

T∑
t=1

Ew[σ
(g)2
t−1 (xt,w)].
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Furthermore, from Lemma 3 in (Kirschner & Krause, 2018), the following uniform bound holds with a probability of at
least 1− δ:

T∑
t=1

Ew[σ
(f)2
t−1 (xt,w)] +

T∑
t=1

Ew[σ
(g)2
t−1 (xt,w)] ≤ 2

T∑
t=1

σ
(f)2
t−1 (xt,wt) + 2

T∑
t=1

σ
(g)2
t−1 (xt,wt) + 16 log(5/δ)

≤ 2C1,fκ
(f)
T + 2C1,gκ

(g)
T + 16 log(5/δ).

By combining these, we have

Ew[σ
(f)2
T1−1(xT1

,w)] + Ew[σ
(g)2
T1−1(xT1

,w)] ≤
2C1,fκ

(f)
T + 2C1,gκ

(g)
T + 16 log(5/δ)

T
.

In addition, noting that pmin > 0, the following inequality holds for any w ∈ Ω:

σ
(g)2
T1−1(xT1

,w) ≤ max
w∈Ω

(σ
(f)2
T1−1(xT1

,w) + σ
(g)2
T1−1(xT1

,w))

≤ p−1
min(Ew[σ

(f)2
T1−1(xT1 ,w)] + Ew[σ

(g)2
T1−1(xT1

,w)]) ≤
C2,fκ

(f)
T + C2,gκ

(g)
T + C3

T
.

Hence, we get

βg,T1
σ

(g)2
T1−1(xT1

,w) ≤
βg,T 2(C2,fκ

(f)
T + C2,gκ

(g)
T + C3)

T
.

Moreover, from the theorem’s assumption, it follows that

βg,T 2(C2,fκ
(f)
T + C2,gκ

(g)
T + C3)

T
< η2/4.

Thus, by using the same argument as the proof of Theorem 4.3, we obtain xT1 ∈ HT1 . By repeating this procedure up to
T 2, we have the sequence xT1 ,xT2 , . . . ,xTT

satisfying xTi ∈ HTi . From xTi ∈ HTi , it follows that a
(GTi−1)

Ti−1 (xTi) = 1

and a
(FTi−1)

Ti−1 (xTi) ≤ u
(FTi−1)

Ti−1 (xTi)− l
(FTi−1)

Ti−1 (xTi). Therefore, from the definition of the proposed AF, aTi−1(xTi) can
be bounded as

aTi−1(xTi
) ≤ u(FTi−1)

Ti−1 (xTi
)− l(FTi−1)

Ti−1 (xTi
) ≤ 2β

1/2
f,Ti

max
w∈Ω

σ
(f)
Ti−1(xTi

,w).

In addition, noting that pmin > 0 we get

a2
Ti−1(xTi

) ≤ 4βf,Ti
(max
w∈Ω

σ
(f)
Ti−1(xTi

,w))2 ≤ 4βf,T 2 max
w∈Ω

σ
(f)2
Ti−1(xTi

,w)

≤ 4p−1
minβf,T 2(Ew[σ

(f)2
Ti−1(xTi ,w)] + Ew[σ

(g)2
Ti−1(xTi ,w)]).

Let T̃ be an positive integer satisfying
T̃ = argmin

T∈{T1,...,TT }
a2
T−1(xT ).

Then, it follows that

Ta2
T̃−1

(xT̃ ) ≤ 4p−1
minβf,T 2

T∑
i=1

(Ew[σ
(f)2
Ti−1(xTi ,w)] + Ew[σ

(g)2
Ti−1(xTi ,w)]) ≤ 4βf,T 2(C2,fκ

(f)
T + C2,gκ

(g)
T + C3).

This implies that

a2
T̃−1

(xT̃ ) ≤
4βf,T 2(C2,fκ

(f)
T + C2,gκ

(g)
T + C3)

T
.

Moreover, for any x ∈ HT̃−1 ∪MT̃−1, from the definition of a
(GT̃−1)

T̃−1
(x) it holds that a

(GT̃−1)

T̃−1
(x) ≥ ξ. Hence, the

following holds:
(u

(FT̃−1)

T̃−1
(x)− max

x∈HT̃−1

l
(FT̃−1)

T̃−1
(x))ξ = (u

(FT̃−1)

T̃−1
(x)− c(best)

T̃−1
)ξ ≤ aT̃−1(x).
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Thus, from the theorem’s assumption, it follows that

(u
(FT̃−1)

T̃−1
(x)− max

x∈HT̃−1

l
(FT̃−1)

T̃−1
(x))2 ≤

4βf,T 2(C2,fκ
(f)
T + C2,gκ

(g)
T + C3)

T
ξ−2 < ξ2.

Therefore, from xT̃−1 ∈ HT̃−1 and u
(FT̃−1)

T̃−1
(x)−maxx∈HT̃−1

l
(FT̃−1)

T̃−1
(x) < ξ for any x ∈ HT̃−1 ∪MT̃−1, the stopping

condition (S2) holds.

A.4. Proof of Theorem 4.6

Let p∗t (w) be an empirical distribution of w. Then, from the Hoeffding’s inequality, the following holds for any w ∈ Ω:

P(|p∗t (w)− p†(w)| ≥ λ) ≤ 2 exp(−2tλ2).

By letting

λ =

√
1

2t
log

(
|Ω|π2t2

3δ

)
,

with a probability of at least 1− δ, the following inequality holds for any t ≤ 1 and w ∈ Ω:

|p∗t (w)− p†(w)| ≤ λ.

Moreover, from the theorem’s assumption, the distance between distributions can be expressed as

d(p∗t (w), p†(w)) =
∑
w∈Ω

|p∗t (w)− p†(w)| ≤ |Ω|λ = εt.

Thus, it follows that p†(w) ∈ At. Here, if the stopping condition (S1) is satisfied, from Theorem 4.2, with a probability of
at least 1− δ the inequality Gt(x) ≤ α′ holds for any x ∈ X . Therefore, we get

G̃(x) = {G̃(x)−Gt(x)}+Gt(x) ≤ |G̃(x)−Gt(x)|+ α′.

Furthermore, let pt(w) be a probability function satisfying

Gt(x) =
∑
w∈Ω

1l[g(x,w) > h]pt(w).

Then, noting that pt(w), p†(w) ∈ At, |G̃(x)−Gt(x)| can be expressed as follows:

|G̃(x)−Gt(x)| =

∣∣∣∣∣∑
w∈Ω

1l[g(x,w) > h]{p†(w)− pt(w)}

∣∣∣∣∣
≤
∑
w∈Ω

|p†(w)− pt(w)|

=
∑
w∈Ω

|p†(w)− p∗t (w) + p∗t (w)− pt(w)|

≤
∑
w∈Ω

|p†(w)− p∗t (w)|+
∑
w∈Ω

|p∗t (w)− pt(w)|

= d(p†(w), p∗t (w)) + d(p∗t (w), pt(w)) ≤ 2εt ≤ 2(1 + β
1/2
f,1 )εt < ξ.

Hence, we have
G̃(x) ≤ |G̃(x)−Gt(x)|+ α′ < ξ + α′ = ξ + (α− ξ) = α.

Thus, it holds that G̃(x) < α with a probability of at least 1− 2δ. This implies that the CC problem has no solution.

Next, if the stopping condition (S2) is satisfied, x̂t satisfies the following inequality with a probability of at least 1− δ:

Gt(x̂t) ≥ α′ − 2ξ = α− 3ξ.
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Noting that p†(w) ∈ At, we obtain
G̃(x̂t) ≥ Gt(x̂t) ≥ α′ − 2ξ = α− 3ξ.

Here, if the CC problem has no solution, then from the definition the following holds:

F̃ (x̃∗)− F̃ (x̂t) ≤ 0 < 3ξ.

Hence, x̂t is a 3ξ-accurate solution for the CC problem. Similarly, if the optimal solution x̃∗ to the CC problem exists, we
get

F̃ (x̃∗)− F̃ (x̂t)

= F̃ (x̃∗)− Ft(x̃∗) + Ft(x̃
∗)− Ft(x̂t) + Ft(x̂t)− F̃ (x̂t). (10)

Because x̃∗ is the optimal solution to the CC problem, we have G̃(x̃∗) > α. Hence, by using this we obtain

Gt(x̃
∗) = G̃(x̃∗) + {Gt(x̃∗)− G̃(x̃∗)}
> α− |G̃(x)−Gt(x)| > α− ξ = α′.

Therefore, from the definition of x∗t , it follows that

Ft(x̃
∗) ≤ Ft(x∗t ). (11)

In addition, from p†(w) ∈ At and the definition of Ft(x) and F̃ (x), the following inequality holds:

Ft(x̂t)− F̃ (x̂t) ≤ 0. (12)

Moreover, let p̃t(w) ∈ At be a probability function satisfying

Ft(x̃
∗) =

∑
w∈Ω

f(x̃∗,w)p̃t(w).

Then, we get
|F̃ (x̃∗)− Ft(x̃∗)| ≤

∑
w∈Ω

|f(x̃∗,w)||p†(w)− p̃t(w)|.

From Lemma 5.1 in (Srinivas et al., 2010), the following holds with a probability of at least 1− δ:

|f(x̃∗,w)| ≤ β1/2
f,1 σ0(x̃∗,w) ≤ β1/2

f,1 .

By using this, we have

F̃ (x̃∗)− Ft(x̃∗) ≤|F̃ (x̃∗)− Ft(x̃∗)|

≤ β1/2
f,1 (d(p†(w), p∗t (w)) + d(p∗t (w), p̃t(w))) ≤ 2β

1/2
f,1 εt ≤ 2(1 + β

1/2
f,1 )εt < ξ. (13)

By substituting (11),(12) and (13) into (10), we obtain

F̃ (x̃∗)− F̃ (x̂t) < ξ + Ft(x
∗
t )− Ft(x̂t).

Finally, from Theorem 4.2, noting that the x∗t is a 2ξ-accurate solution for the DRCC problem, we get

Ft(x
∗
t )− Ft(x̂t) < 2ξ.

Therefore, we get F̃ (x̃∗)− F̃ (x̂t) < 3ξ.

B. Experimental Details
In this section, we give the details of the experiments conducted in Section 5.
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Table 2. Experimental parameters for each setting in the synthetic function
Parameter

Simulator
Fixed σ2

f,ker = 1, Lf = 3, σ2
f,noise = 10−8, β

1/2
f,t = 3, σ2

g,ker = 2500, Lg = 4, σ2
g,noise = 10−4, β

1/2
g,t = 2, h = 5, α = 0.53

Data-driven

Table 3. Experimental parameters for each setting in the SIR model simulation

Parameter
Case1 σ2

f,ker = 5000, Lf = 0.1, σ2
f,noise = 10−8, β

1/2
f,t = 3, σ2

g,ker = 105, Lg = 0.01, σ2
g,noise = 10−4, β

1/2
g,t = 2, h = 320, α = 0.85

Case2 σ2
f,ker = 5000, Lf = 0.1, σ2

f,noise = 10−8, β
1/2
f,t = 3, σ2

g,ker = 105, Lg = 0.01, σ2
g,noise = 10−4, β

1/2
g,t = 2, h = 320, α = 0.85

Case3 σ2
f,ker = 104, Lf = 0.1, σ2

f,noise = 10−3, β
1/2
f,t = 2, σ2

g,ker = 105, Lg = 0.1, σ2
g,noise = 10−3, β

1/2
g,t = 3, h = 100, α = 0.69

Case4 σ2
f,ker = 104, Lf = 0.1, σ2

f,noise = 10−3, β
1/2
f,t = 2, σ2

g,ker = 105, Lg = 0.1, σ2
g,noise = 10−3, β

1/2
g,t = 3, h = 100, α = 0.69

Experimental Parameter The experimental parameters used in each experiment are given in Table 2 and 3.

True Distribution of Environmental Variables We give the details of the true distribution p†(w) considered in the
uncontrollable setting in the synthetic function experiment. Let h(w;µ, σ2) be a probability density function of Normal
distribution with mean µ and variance σ2, and let h(w) = 0.5h(w;−5, 10) + 0.5h(w; 5, 10). Then, p†(w) is given by

p†(w) =
h(w)∑
w∈Ω h(w)

.

DRPTR The DRPTR AF is based on the expected classification improvement for Gt(x) after adding new data
(x∗,w∗, y(g)∗). Let l(Gt)

t (x; η|x∗,w∗, y(g)∗) be a lower of the credible interval of Gt(x) at x after adding (x∗,w∗, y(g)∗).
Then, the expected classification improvement is given by

at(x
∗,w∗) =

∑
x∈Mt

Ey(g)∗ [1l[l
(Gt)
t (x; η|x∗,w∗, y(g)∗) > α]]. (14)

In (Inatsu et al., 2021), they suggest combining (14) and RMILE AF proposed by (Zanette et al., 2018). The RMILE is
based on the expected classification improvement for g(x,w) after adding (x∗,w∗, y(g)∗). Let l(g)t (x,w|x∗,w∗, y(g)∗) be
a lower of the credible interval of g(x,w) at (x,w) after adding (x∗,w∗, y(g)∗). In our experiments, we used the following
modified RMILE function:

RMILEt(x
∗,w∗) =

∑
(x,w)∈Mt×Ω

Ey(g)∗ [1l[l
(g)
t (x,w|x∗,w∗, y(g)∗) > h]]. (15)

Then, the DRPTR AF is defined as

DRPTRt(x
∗,w∗) = max{at(x∗,w∗), γRMILEt(x

∗,w∗)}, (16)

where γ is a trade-off parameter. In all experiments, we set γ = 0.1. From GP properties, (15) can be calculated analytically
(Zanette et al., 2018). In contrast, (14) can be represented in an exact form (see, (Inatsu et al., 2021)), but its computational
cost is high. In Lemma 3.3 in (Inatsu et al., 2021), an arbitrary-accurate approximation method for calculating (14) is
proposed. For all experiments, we used its lemma with approximation parameter ζ = 0.005(|Ω|+ 1). This implies that the
calculation error between the true (14) and approximated one is at most ζ.

CCBO The CCBO AF is based on the expected feasible improvement for the following CC problem:

max
x∈X

Z(F )(x) s.t. Z(G)(x) > α,
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where Z(F )(x) and Z(G)(x) are given by

Z(F )(x) =
∑
w∈Ω

f(x,w)p†(w), Z(G)(x) =
∑
w∈Ω

1l[g(x,w) > h]p†(w).

In our experiments, to define Z(F )(x) and Z(G)(x), we used the reference distribution instead of p†(w). Let Z(F )
t (x) and

Z
(G)
t (x) be posterior distributions of Z(F )(x) and Z(G)(x), respectively. Here, the calculation of posterior distribution is

based on GP posteriors of f and g. Then, the CCBO AF is given by

CCBOt(x) = E[max{Z(F )
t (x)− c(feas)

t , 0}]× P(Z(G)(x) > α), (17)

where c(feas)
t is given by

c
(feas)
t =

{
maxx∈St

E[Z
(F )
t (x)] if St ≡ {x ∈ X | E[Z(G)(x)] > α} 6= ∅,

E[Z
(F )
t (x̃)], x̃ = argmaxx∈X E[Z(G)(x)] otherwise

.

We select xt+1 by maximizing CCBOt(x), that is,

xt+1 = argmax
x∈X

CCBOt(x).

In CCBO, the selection of w is based on the variance of CCBOt(xt+1) after adding (xt+1,w
∗, y(g)∗). Let

CCBOt(xt+1|xt+1,w
∗, y(g)∗) be a value of CCBOt(xt+1) after adding (xt+1,w

∗, y(g)∗). Then, we consider the variance
of CCBOt(xt+1|xt+1,w

∗, y(g)∗) with respect to y(g)∗ :

Vary(g)∗ [CCBOt(xt+1|xt+1,w
∗, y(g)∗)] ≡ vt(w∗). (18)

Using (18) we select wt+1 as
wt+1 = argmin

w∗∈Ω
vt(w

∗).

Note that a part of the calculation of (17) and (18) requires a Monte Carlo approximation, we took 1000 samples and
approximated them.

Hyperparameter Sensitivity of Uncontrollable Setting The experimental results of the hyperparameter sensitivity in
the uncontrollable setting are given in Figure 4.

SIR Model Simulation The SIR model is often used in infectious disease modeling and is given as the following
differential equation using the contact rate β and isolation rate γ:

dS
dT = −βISN ,
dI
dT = βIS

N − γI,
dR
dT = γI,

where N = S + I +R, and S, I and R are the number of susceptible, infected and removed people, respectively. In our
experiment, we considered simulations from time T = 0 to time T = 15, and initial S0, I0, and R0 were set to 990, 10,
and 0, respectively. By considering dT ≈ 0.005 and discrete approximation of the differential equation, we calculated
the number of IT for each T ∈ {0, 0.005, . . . , 15} ≡ T . Using this we defined the maximum number of infected people
ninfected (β, γ) as

ninfected (β, γ) = max
T∈T

IT .
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Figure 4. Hyperparameter sensitivity for the proposed method in the uncontrollable setting.


