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Abstract

This paper studies how to tune the stepping sched-
ule in diffusion models, which is mostly fixed in
current practice, lacking theoretical foundations
and assurance of optimal performance at the cho-
sen discretization points. In this paper, we advo-
cate the use of adaptive time-stepping schedules
and design two algorithms with an optimized sam-
pling error bound EB: (1) for continuous diffu-
sion, we treat EB as the loss function to dis-
cretization points and run gradient descent to adjust
them; and (2) for discrete diffusion, we propose a
greedy algorithm that adjusts only one discretiza-
tion point to its best position in each iteration. We
conducted extensive experiments that show (1) im-
proved generation ability in well-trained models,
and (2) premature though usable generation ability
in under-trained models. The code is available at
https://github.com/cyzkrau/AdaptiveSchedules.

1 INTRODUCTION

Generative modeling stands as a pivotal task in machine
learning, with its objective being to acquire knowledge of
a probability distribution from available data and produce
data samples derived from this acquired distribution. As
a subset of generative models, diffusion models excel in
achieving state-of-the-art performance for data generation.
To date, diffusion models have been applied to a wide vari-
ety of generative modeling tasks, such as image generation
[Sohl-Dickstein et al., 2015, Ho et al., 2020, Song and Er-
mon, 2019, Song et al., 2020b, Dhariwal and Nichol, 2021,
Nichol and Dhariwal, 2021], text generation [Li et al., 2022,
Hoogeboom et al., 2021], text to speech synthesis [Jeong
et al., 2021, Kong et al., 2020, Rouard and Hadjeres, 2021]
and graph generation [Niu et al., 2020, Huang et al., 2022].

Diffusion models generate data by smoothly transition-

ing from a real-world distribution to noise and back again
through forward and reverse processes. Generating samples
needs to accurately reconstruct the original data from noise,
which is tackled by using neural networks to learn score
function and discretization points to simulate the reverse
process. Critical to this reconstruction is the time-stepping
schedule, which sets the position of each discretization point.
This schedule plays a crucial role in determining the quality
of the generated data, making it a vital component in the
model’s performance Chen [2023].

Traditionally, this schedule has been fixed, following a pre-
determined sequence of steps. However, it does not adapt to
the embedding to time or complexity of distributions alone
the forward process. This rigidity can lead to inefficiencies,
as the model may not utilize the most effective discretiza-
tion points for a given task, potentially compromising the
quality of the generated outputs. Furthermore, these tradi-
tional schedules lack theoretical support, which can make it
challenging to ensure optimal performance. While methods
like Song et al. [2020a], Zhang et al. [2023b] enhance effi-
ciency and quality by selecting a few discretization points at
the generating stage, their points accelerate the generating
process, rather than selecting effective points and dropping
weak points. Besides, their methods of selecting discretiza-
tion points are still fixed, which means the rigidity still
exists, and only decreasing the number of steps should not
improve the generating process theoretically.

On the theoretical side, some works provide polynomial
bounds of diffusion models’ sampling error and provide
results about how much discretization points ensure conver-
gence [Chen et al., 2022, Lee et al., 2022, Li et al., 2023,
Benton et al., 2023, Lee et al., 2023, Chen et al., 2023].
Their convergence bounds can commonly be separated into
two main parts: score estimation error and time discretiza-
tion error. Score estimation error refers to the difference
between score functions and learned score functions, while
time discretization error refers to the approximation error
of the time-discrete SDE runner. These studies, despite con-
sidering various stepping schedules in their assumptions,
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often fall short of offering concrete guidance on setting
discretization points effectively.

In this paper, we focus on the time-stepping schedule that
adapts to the generating process by minimizing a series of
convergence bounds. Our contributions are listed as follows.

1. We propose to treat a series of convergence bounds
EB as the loss function for optimizing the position of
discretization points. It is derived through Girsanov’s
theorem, and minor terms are treated as hyperparam-
eters. EB contains one term punishing weak score
estimator being selected and another term avoiding
stepping size from being too high, which means EB
considers the balance between score estimator error
and time discretization error.

2. We propose to minimize EB for continuous-time dif-
fusion by gradient-descent adjusting (GA) discretiza-
tion points. It works because the score estimator is
available at all times within the range t ∈ [0, T ]. This
technique treats EB as the loss function which not
only theoretically narrows EB but also empirically
enhances generation quality.

3. We propose to minimize EB for discrete-time diffu-
sion by greedily choosing (GC) discretization points. It
works because time is embedded only at a finite set of
discretization points in discrete-time diffusion, and the
score estimator is only available at these points. This
approach aims to greedily select every discretization
point to its best position, methodically adjusting a sin-
gle point to its optimal position while freezing others
during each choosing iteration.

Empirically, we conduct a Gaussian-target task with a shak-
ing score matching error and show the weakness of fixed
time-stepping schedules. After a few iterations of GA, the
sampling error decreases and the above weakness is solved,
which demonstrates that optimizing EB achieves the pur-
pose of minimizing the sampling error. Furthermore, we
tested GC on three popular datasets: MNIST, CIFAR-10,
and CELEBA. The results show that GC enhances the im-
age generation quality of diffusion models, regardless of
whether they are fully trained or not.

2 RELATED WORK

In this section, we provide an overview of the existing lit-
erature and research related to our study, including works
on stepping schedules, convergence bounds, and training
guarantees for diffusion models.

Stepping schedule At the beginning of stage diffusion
models, linear schedule Ho et al. [2020] and cosine schedule
Nichol and Dhariwal [2021] are proposed. To improve the
generating speed of diffusion models, DDIM is designed

by Song et al. [2020a], where seldom discretization points
are selected for generating. As follows, other innovative
methods have been introduced to further refine sampling for
diffusion models, such as reverse SDEs Song et al. [2020c]
with unique coefficients, skip-step sampling Wang and Li
[2024], probability flow ODEs Liu et al. [2022a]. On another
line of research, some papers focus on the performance of
stepping schedules. Lin et al. [2023] suggests the last step
should be started and have zero signal-to-noise ratio to avoid
being flawed, while Chen [2023] studies the importance of
stepping schedule.

We also note that there are current works focused on finding
better stepping schedules for diffusion models. Liu et al.
[2023] propose to use a predictor to predict the generation
quality from a given stepping schedule, which is trained
by the performance of known stepping schedules. This ap-
proach works because target distributions and models are
similar between situations in training predictors and their
usage. Zhang et al. [2023a] propose to maximize a reward
function in the generating process to select discretization
points. This reward function requires another model to eval-
uate the quality of generated samples. Different from them,
our methods do not rely on the similarity of target distribu-
tion or other evaluation models and are theory-supported.

Convergence bounds Initial theoretical research into dif-
fusion models lacked precision or faced issues with high-
dimensional data, as highlighted by references De Bortoli
et al. [2021], Liu et al. [2022b], Pidstrigach [2022] and is-
sues like exponential dependencies in convergence Block
et al. [2020], De Bortoli [2022]. Lee et al. [2022], Chen
et al. [2022], Lee et al. [2023] improved upon this and of-
fers polynomial convergence guarantees for samplers with
L2-accurate score estimates. It is worth mentioning that our
considered series of convergence bound EB is inspired by
Chen et al. [2022] where a framework of Girsanov’s the-
orem is provided. Following this framework, convergence
bounds can be separated into score estimation error and time
discretization error. As follows, Chen et al. [2023] provided
bounds without Lipschitz score setting and replaced it by a
reasonable early stopping setting.

Training guarantees To evaluate the approximation error
of score estimators, there are some works providing train-
ing guarantees for diffusion models. In the paper of Block
et al. [2020], DAE loss (used as loss function in the training
stage) is proved to be an upper bound of L2 score match-
ing loss, which is crucial to this paper. They also provided
O(σ−4

t ) guarantees on score matching loss. As follows, Oko
et al. [2023], Gupta et al. [2023] consider the case of neural
network with ReLU activation, and provide an O(σ−2

t ) guar-
antee for score matching loss, which is another foundation
of this work.



3 NOTIONS AND PRELIMINARIES

In this section, we give an overview of the notions and
preliminaries. Through this paper, we study the denoising
diffusion probabilistic models (DDPMs) [Ho et al., 2020]
where the target distribution P = P0 (with density function
p0(x)) is on Rd.

Forward process The forward process is an Ornstein-
Uhlenbeck process which adds noise to samples from P and
is defined by the following equation Santos and Lin [2023].

dXt = −Xtdt+
√
2dBt, X0 ∼ P0, 0 ≤ t ≤ T.

Here, {Bt}t∈[0,T ] denotes the d-dimensional Brownian mo-
tion. For the process {Xt}t∈[0,T ] alone the forward SDE,
we denote Pt the distribution of Xt and denote pt(x) as its
density function. According to the properties of the Ornstein-
Uhlenbeck process, pt has the following analytical form:

pt = p(e−t) ∗ g(√1−e−2t),

where p(e−t) refers to the density function of e−tX0, X0 ∼
P0 and g(

√
1−e−2t) denotes the density function of

N (Od, (1 − e−2t)Id). Besides, Pt converges to N (O, I)
exponentially fast t when t → ∞ in the KL divergence,
total variation metric and 2-Wasserstein metric [Bakry et al.,
2014, Villani, 2021].

Backward process To reverse the forward process, it has
been proved in [Anderson, 1982] that for Y0 ∼ pT and 0 ≤
t ≤ T , running the following backward process generates
{Yt}Tt=0 satisfies Yt ∼ pT−t.

dYt = [Yt + 2∇ ln pT−t(Yt)] dt+
√
2dB̃t. (1)

Here, {B̃t} is another d-dimensional Brownian motion that
is independent to {Bt}. Running the backward process
needs an unknown term ∇ ln pt, which is defined as the
score function and is always approximated by networks st
in applications.

Score matching To let st become a better approximation
of the score function, a common method is to train a network
with denoising auto-encoder (DAE) loss. For x sampled
from P and z sampled from N (Od, Id), DAE loss is defined
by:

DAE(st, P, t) = E
x∼P,z∼G

∥∥∥∥st (√αtx+ σtz
)
− −z

σt

∥∥∥∥2 ,
(2)

where
√
αt = e−t, σt =

√
1− e−2t and G = N (Od, Id).

To measure whether st is well-trained, a common metric
is the L2(pt) score matching loss, which is widely used in
theoretical analysis of SGMs and is defined by the following
equation.

DSM (st, pt) = Ex∼pt
∥st(x)−∇ ln pt(x)∥2. (3)

It is proved in [Block et al., 2020] that the difference be-
tween DAE and DSM is constant to st, thus optimizing the
denoising auto-encoder loss is equivalent to optimizing the
score matching loss.

Time discretization Except for the approximation of the
score function, running the backward process also needs
a simulation for backward SDE. A widely used method
is taking many time steps and freezing the value of the
coefficient in the SDE at each time step. In details, let ini-
tiation be Z0 ∼ Q0 = N (O, I) instead of PT , and let
0 = t0 < t1 < · · · < tN = T − δ be the discretization
points (δ = 0 for general setting and δ > 0 for early stop-
ping setting) and denote hk = tk − tk−1 as the stepping
size. For every k and t ∈ [tk, tk+1], replace ∇ ln pT−t(Zt)
as sT−tk(Ztk) then Zt satisfies

Ztk+1
= Ztk + hk+1 [Ztk + 2sT−tk(Ztk)] +

√
2hk+1Bk,

(4)

where {Bk} are i.i.d sampled from N (Od, Id). These ap-
proximations form a simulation of the backward SDE, so the
distribution of Zt is close to the distribution of Yt. Denote
Qt as the distribution of Zt thus Qt ≈ PT−t and QT ≈ P0.
However, due to the existence of approximation error, there
is a difference between Qt and PT−t.

Training In practice, to both model time t and input√
αtx + σtz, a common way is training to embed time

and input the embedding and noised data into the network.
However, in image-generating tasks, this time embedding
is always only available at finite points { ˆtm}Mm=1. We note
that these embedding available points include discretization
points {tn}Nn=1 but they are not the same, because not ev-
ery embedding available points participate in the generating
process (eg. DDIMs).

4 CONVERGENCE BOUNDS

In this section, we discuss a series of convergence bounds
and summarize them into a parameterized form EB from
a theoretical view. Different from papers that focus on how
many discretization points ensure convergence, we focus
more on how the structure of stepping schedules affects the
generating performance. Thus for the following convergence
bounds, we ignore the detailed constant terms and terms
with a higher order of time stepping size. To begin with, we
give some basic assumptions on score matching loss and
constraints on target distributions, which are also widely
used in existing works Chen et al. [2023, 2022].

Assumption 4.1 (Bounded score matching loss). For the
score estimator st, there exist a function ϵ(t) that satisfies
for all t ∈ (δ, T ], DSM (st, pt) ≤ ϵ(T − t) < ∞.

This assumption ensures that given noised input data and
time, the network functions as an effective score estimator,



maintaining a reasonable L2 score matching loss. Unlike
assumptions in [Lee et al., 2022] and [Chen et al., 2022]
where the bound of DSM loss is bounded uniformly, or
assumptions in [Lee et al., 2023] where the relationship
between bound of DSM loss and the t is constrained, or
unlike assumptions in [Chen et al., 2023] where the bound of
DSM loss needs to fit a time-stepping schedule, we consider
the relationship between bound of DSM loss and time and
treat it an unchangable value then reversely fit it by selecting
discretization points.

For the target data distribution P0, we make the following
assumptions to ensure that the forward SDE converges to
Gaussian distribution Vempala and Wibisono [2019].

Assumption 4.2 (Bounded second moment). We assume
Ex∼P0

[∥x∥2] < ∞.

This assumption is required for most existing convergence
works of diffusion models Lee et al. [2022], Chen et al.
[2023], Lee et al. [2023] and holds for almost all distribu-
tions that are worth sampling.

To convert KL divergence or TV distance between Pδ and
QT−δ , a widely used approach is Girsanov’s theorem, which
is brought to diffusion models in Chen et al. [2022]. With
a constrained starting discretization point, the part that the
time-stepping schedule affects is:

N−1∑
k=0

E
all Yt∼Qt

∫ tk+1

tk

∥sT−tk(Ytk)−∇ ln pT−t(Yt)∥2dt.

Common methods Chen et al. [2023, 2022] ex-
pand it through approximation line: sT−tk(Ytk) →
∇ ln pT−tk(Ytk) → ∇ ln pT−tk(Yt) → ∇ ln pT−t(Yt) and
deal with every term to obtain final upper bounds. It is worth
mentioning upon addressing the first approximation step via
Assumption 4.1, the remaining terms demonstrate a depen-
dence on the step size with an O(h2) order. These terms are
associated with smoothness properties of the target distri-
bution and are not related to the score estimator. Due to the
same framework in the proof of bounds, their results have
similiar forms, which can be expressed as EB in this paper.
Specifically, EB is defined as follows:

EB = CS

N∑
k=1

hkϵ(tk) + CL

N∑
k=1

h2
kL(tk). (5)

Here, hk denotes the k-th step size, ϵ represents the function
associated with the bounds of score matching, L(tk) is a
coefficient that describes the h2 dependency in the conver-
gence bounds, and CS , CL are constants that are indepen-
dent of the time-stepping schedule.

Bringing EB into adaptive time-stepping schedule remains
some unknown terms CS , CL, ϵ, L. Now, we fix them one
by one. CS and CL are constants for t and time-stepping

schedule, thus can be treated as a hyperparameter when EB
is used for adjusting discretization points. We note that they
merge to one parameter by considering EB/CS and treat
C = CL/CS as a ratio.

To obtain the exact value of ϵ(t), one approach is the equiva-
lence DAE loss by subtracting a network-constant term. As
a bound of score matching loss, DAE is tight for high t but
slack for small t. Besides, there exist theoretical guarantees,
for example, ϵ(t) = Cσ−2

t = C(1 − e−2t)−1 is provided
by Oko et al. [2023], Gupta et al. [2023] for the case when
P is bounded with smooth p.d.f and polynomial samples
are provided for training.

When it comes to L, a common approach is putting assump-
tions on the smoothness property. One line research Chen
et al. [2022], Lee et al. [2023] makes an assumption on
the Lipschitz property of the score function. This assump-
tion also holds for many situations, such as when the target
distribution is Gaussian. In this Lipschitz setting, follow-
ing the convergence bound provided by Chen et al. [2022],
and concentrating on components that are contingent on the
time-stepping schedule, we have the following lemma.

Lemma 4.3 (Lipschitz setting). Suppose Assumption 4.1
and 4.2 hold, and there exist a Lipschitz score L that satisfies
∇ ln pt is L-Lipschitz for all t. Then running simulation 4
to end (δ = 0) with discretization points {tk}, distribution
QT = law(ZT ) satisfies

TV (P0, QT )
2

≤ CS

N−1∑
k=0

hk+1ϵ(tk) + CL

N−1∑
k=0

L2h2
k + o(h2) + C,

where o(h2) owns higher order of hk and C,CS , CL are
not related to time-stepping.

This lemma tells that L(t) can be chosen through the Lip-
schitz constant. Due to a lack of knowledge of the target
distribution, this constant is always unknown. It can also
be treated as a hyperparameter in the Lipschitz setting and
can also be merged into CL when EB is used for adjusting
discretization points.

Another line of research Chen et al. [2023] drops the Lip-
schitz assumption. Instead, they let backward simulation
not continue to δ = 0 because δ > 0 also constrains the
smoothness of the score function at t = δ in another way
and then constrains smoothness for all t. In this early stop-
ping setting, sampling error has the following bound, which
tells that L(t) can be chosen to σ−4

T−tk
.

Lemma 4.4 (Early stopping setting, Theorem 2 in Chen et al.
[2023]). Suppose Assumption 4.1 and 4.2 hold, running
simulation 4 to δ > 0 with time discretization points {tk},



distribution QT−δ = law(ZT−δ) satisfies

KL(Pδ∥QT−δ)

≤ CS

N−1∑
k=0

hk+1ϵ(tk) + CL

N−1∑
k=0

h2
k+1

σ4
T−tk

+ o(h2) + C,

where o(h2) owns higher order of hk and C,CS , CL is not
related to time-stepping.

In the following passage, we treat EB not only as a series of
convergence bounds but also as the loss function to each dis-
cretization point. Except for the reason of its theory support-
ing, as a loss function, EB considers the balance between
different performances of score estimators and stepping size.
In details, term CS

∑N
k=1 hkϵ(tk) give punishment for se-

lecting weak score estimators while term CL

∑N
k=1 h

2
kL(tk)

avoids stepping size to be too high. For convenience, de-
note E(t, s) as CSϵ(t)(s− t) + CLL(t)(t− s)2, then EB

becomes EB =
∑N

k=1 E(tk−1, tk) and the only term that
related to tk is E(tk−1, tk)+E(tk, tk+1). Though there is a
gap between minimizing convergence bounds and minimiz-
ing sampling error, we empirically show their consistency
in Figure 2, 3 and Section 6.

5 TIME-STEPPING SCHEDULES

In this section, we discuss how the structure of time-stepping
schedules affects convergence bounds and generating results.
We note that to discuss the structure of the time-stepping
schedule, the number of time discretization points and end-
ing time T need to be constrained.

Firstly in subsection 5.1, we provide evidence that normal
time-stepping schedules fail to converge well both theoreti-
cally and empirically even in simple tasks. Next in subsec-
tion 5.2, we provide our adaptive time-stepping schedules
and show their advances in the above situations.

5.1 WEAKNESS OF FIXED STEPPING
SCHEDULES

Fixed time-stepping schedules mean time discretization
points {tk} do not change even with knowledge of score
matching loss. Existing stepping schedules include linear
schedule (βtk is linear to k and used in Ho et al. [2020]),
cosine schedule (αt = f(t)/f(0) and used in Nichol and
Dhariwal [2021]) and uniform discretization points (tk is
linear to k and used in theoretical analysis). Due to the ran-
dom variance in the training process, the score estimator at
every discretization point has a variety of performances, in-
dicating treating them with the same importance may cause
weak generating performance.

We consider a simple case: generating samples from Gaus-
sian target distribution P = N (µ, σ2) with µ = 10, σ2 =

Figure 1: Weakness of fixed stepping schedules. Left: αt

throughout diffusion in 3 fixed stepping schedules. Right:
p.d.f of generated results for 3 fixed stepping schedules with
1000 discretization points.

0.16 and score estimator with shaking score matching loss
st(x) = −x−e−tµ

σ2 +10 cos(10πt). In this situation, we run
the three fixed time-stepping schedules with 1000 steps to
the generated results and get results shown in Figure 1. For
generating tasks, it is likely to consider how many generated
samples show a high probability of target distribution. In
this view, all three fixed stepping schedules fail to generate
ideal samples.

However, with the given score estimators, it is not impos-
sible to generate good samples. If discretization points are
selected at tn = (2n − 1)/10, (n > 0, N = 5) (only 10
points), the generated samples follow N (9.56, 0.32), which
is much near to target distribution and good samples can be
generated, thus only 10 discretization points can generate
well. The reason why 1000 points in the given time-stepping
schedule can not generate well is many weak score estima-
tors participate in the generating process in fixed stepping
schedules, which causes Qt to deviate from PT−t. This
weakness can not be avoided unless discretization points are
selected to adapt score matching losses.

Though this constructed situation of extremely shaking
score error is specific and hardly exists in real-world sit-
uations, small shaking exists due to the independence be-
tween different time embedding. If all discretization points
are fixed, it is likely to let weak score estimators partici-
pate in the generating process which decreases generating
performance, especially for under-trained diffusion models.

5.2 ADAPTIVE TIME-STEPPING SCHEDULES

To solve the weakness of fixed time-stepping schedules, we
propose to adjust them with the knowledge of score match-
ing loss and minimize convergence bounds mentioned in
section 4. In the practice of diffusion models, there are two
settings for embedding time: continuous-time diffusion (all
times are embedding available points) and discrete-time
diffusion (finite embedding available points). For each set-
ting, we give methods to achieve adaptive time-stepping
schedules.



Continuous-time diffusion In the realm of continuous-
time diffusion, we delve into a framework where time is
embedded at every point within the interval [0, T ]. This char-
acteristic makes it possible for us to use a score estimator
at each moment in time for generating. Within this setting,
our purpose is to find the exact locations for each step-
ping point, thereby enhancing the generative performance
of the diffusion models. In this work, we improve the gen-
erating performance by minimizing the above convergence
bounds. With knowledge of score matching bounds and
smoothness variance, the only unknown terms that matter in
EB are CS and CL, which can turn to one hyperparameter
C = CS/CL by equivalently minimizing EB/CS . Fortu-
nately, due to the form of EB, the only tk related term is
E(tk−1, tk) + E(tk, tk+1) which makes its gradient can
be calculated easily. Following the above observation, we
propose a gradient-based adjusting stepping schedule (GA,
Algorithm 1) to run gradient descent for discretization points
with loss function EB.

Algorithm 1 Gradient-based Adjusting stepping schedule

Input: initial discretization points {tk}, score matching
bound ϵ(t), smoothness variance L(t), ratio C, learning
rate η.
repeat

for k in [N − 1] do
Calculate gk = −ϵ(tk+1) + 2(tk − tk+1)L(tk+1) +
1

2∆t [E(tk−1, tk +∆t)− E(tk−1, tk −∆t)] .
end for
for k in [N − 1] do

Update tk = tk − ηgk.
end for

until convergence

In the implementation of GA, the initial plan is flexible and
can be chosen as existing fixed stepping schedules. The
selection of the score matching bound ϵ(t) is equally versa-
tile and can be grounded in either theoretical guarantees or
specific measurement methods tailored to the task at hand,
such as when the target distribution is known. Additionally,
the DAE error, suitably normalized by a constant, stands
out as a viable choice, serving as an upper bound for the
score matching loss. The determination of the smoothness
variance L(t) depends on theoretical settings. If the prior
information sheds light on the Lipschitz properties of score
functions, for instance, when the target distribution follows
a Gaussian pattern, the Lipschitz setting becomes a pertinent
choice. Also, the setting of early stopping is global and the
corresponding smoothness variance is known. The ratio C,
which refers to CL/CS , acts as a positive hyperparameter in
Algorithm 1. This is due to the unknown inner structure of
convergence bounds. We note that the real value of this ratio
in theoretical bounds even exhibits variability with slight
changes in algebraic considerations.

GA introduces an approach for selecting better discretiza-

Figure 2: Two examples for running GA (Algorithm 1)
for 20/100 iterations on the Gaussian target, with heav-
ily/slightly shaking score error and 10 discretization points
in [0, 3]. Left figures: selected discretization points after
running GA for iterations and origin normal selected points.
Right figures: EB and KL decreasing with increasing iter-
ations (0 iterations for fixed schedule).

tion points for continuous-time diffusion models. Due to
the limited t0 and tN , term CS

∑N
k=1 hkϵ(tk) in EB makes

GA tends to select points with lower score matching bounds.
For the shaking score error mentioned in 5.1, the adjusted
stepping schedule adjusted by GA and its generating perfor-
mance is shown on the top two graphs of Figure 2, where
the adjusted discretization points are all points with small
score error (except constrained points). In this situation,
KL(P0, QT ) decreases from 26.87 to 1.13 only within 20
iterations. However, GA does not always select points with
low score matching loss, it also considers the size of step-
ping in term CL

∑N
k=1 h

2
kL(tk). This is shown in the below

two graphs of Figure 2, where some points with not that low
score error are selected to maintain the stepping size to stay
low.

Discrete-time diffusion In the realm of discrete-time dif-
fusion, time is only embedded at finite embedding available
points { ˆtm}Mm=1. This limits us to use only finite choices
of discretization points for generating and score matching
losses are also discrete. Within this setting, our purpose is to
choose N discretization points among them for generating,
thereby enhancing the generative performance of the diffu-
sion models. Similarly, we also focus on minimizing above
convergence bounds and propose to achieve it by iteration
greedy optimization. Different from the continuous-time
setting, we select the best position (with the lowest EB)
among candidate points discretely in each iteration, rather
than continuously adjusting tk to find a better position. This
allows us to indeed get a discretization schedule with lower
EB in each iteration. The core idea is that the best stepping



Figure 3: An example for running Algorithm 2 for 5 itera-
tions on the constructed Gaussian target, random score error,
and discretization points from uniform 51 points in [0, 1]
select 17. Left figure: selected discretization points after run-
ning GC for 5 iterations vs. origin normal selected points.
Right figure: EB alone with KL divergence decreasing with
increasing iterations

schedule cannot be adjusted. Even though the converged
result may be just local optima but not global minima, it
is still better than the initial schedule. This approach also
satisfies that EB is minimized in each iteration, thus the
optimized schedule is always better than the initial schedule
on EB. Utilizing notions E(t, s) defined in section 4, GC
can be stated as Algorithm 2.

Algorithm 2 Greedy Choosing time-stepping points

Input: embedding available points { ˆtm}, initial dis-
cretization points {tk}, score matching bound ϵ(t) (only
available at t = ˆtm), smoothness variance L(t), ratio C
repeat

for k in [N − 1] do
Find all candidates A = (tk−1, tk+1) ∩ { ˆtm}
Set tk = argmint∈A E(tk−1, t) + E(t, tk+1)

end for
until convergence

In the implementation of GC, the initial plan is flexible and
can follow the selecting methods in Song et al. [2020a] to
be leading. The choice of smoothness variance depends on
the Lipschitz setting or early stopping setting, while ratio C
acts as a positive hyperparameter, which is the same as im-
plementation in GA. Different from GA, in the discrete-time
setting, the target distribution is always unknown, indicating
score matching bound needs to be calculated by DAE loss.
Fortunately, DAE loss is always an upper bound for score
matching loss and is tight when t is high. For small t, GC
tends to not choose discretization points because DAE loss
is high, but this is caused by a high gap between DAE loss
and score error. To solve this issue, we limit the candidates
to not changing a lot from the initial plan in practice.

GC improves generating performance for well-trained diffu-
sion models by intelligently selecting discretization points
to expedite the generation process. Unlike fixed schedules
that might overlook the intricate dynamics between model
decisions and the target distribution, GC fits them by min-

imizing convergence bounds. It strategically picks points
that do not decrease much output quality while accelerating
generating, adeptly avoiding the common pitfalls of rigid
scheduling. This approach ensures that GC-driven generat-
ing processes are not just fast but also finely attuned to the
desired outcomes, delivering swift and high-quality results
in a streamlined and efficient manner.

GC also works for under-trained diffusion models, where
score matching losses vary at different times. This hap-
pens because the time embeddings are independent of each
other. When choosing discretization points with a fixed
schedule, both the weaker and the stronger score estimators
get involved in creating the output. It’s like having a team
with both new and experienced players contributing equally,
which results in average performance overall. Acting as a
coach, GC picks the discretization points carefully so that
stronger score estimators participate in generating, while
weaker estimators do not. By doing so, GC ensures that
the overall performance of the diffusion model is enhanced
(shown in Figure 3), much like a team would perform bet-
ter if guided by a strategic coach who knows when to play
each member. This approach makes diffusion models able
to generate high quality at an earlier stage of training.

6 EXPERIMENTS

In this section, we provide more empirical evidence that GC
improves the generating quality for fixed stepping sched-
ules with the same number of steps and the same starting
time. For well-trained models, we first test GC on the CI-
FAR10 dataset for the well-trained model provided on hug-
ging face google/ddpm-cifar10-32 and provide FID scores.
Then, we test GC on the CELEBA dataset for the model
provided on google/ddpm-celebahq-256 and provide gener-
ated examples in 10 generating steps, comparing with the
DDIM fixed schedule. For under-trained models, to make
advances more intuitive, we train a DDIM model at the
MNIST dataset and show generated results in 5 generating
steps in the three time-stepping schedule. On the hardware
front, both datasets were trained on one NVIDIA A30 GPU.
Model performance was evaluated based on the FID score of
50,000 generated images against real-world images Heusel
et al. [2017], Jolicoeur-Martineau et al. [2020]. The code is
available at https://github.com/cyzkrau/AdaptiveSchedules.

We first test the performance boost GC provides to a well-
trained model. To avoid the influence caused by a gap be-
tween DAE and DSM, we set constraints for selected dis-
cretization points from changing too much in each iteration.
Following this, in Table 1, we evaluate the FID scores of
samples generated by the same model provided in hugging
face, with the stepping schedule provided in DDIM and the
GC-adjusted one. We test GC for 0−5 iterations (0 iterations
for DDIM fixed schedule) in both the Lipschitz score setting
(CL = 1) and the early stopping setting (CL(T−t) = σ−4

t ).

https://github.com/cyzkrau/AdaptiveSchedules


Table 1: For given DDIM model google/ddpm-cifar10-32, FID scores for stepping schedule after 1-5 iteration of Algorithm
2 against stepping schedule in DDIM on CIFAR10(32x32). In Algorithm 2, we set the bound of score matching loss ϵ to
be calculated by DAE loss. L is tested under Lipschitz setting bounds (constant) and early stopping setting bounds (the
reciprocal of the noise variance).

Stepping schedule \ # discretization points 5 10 20 50 100

DDIMs (Cosine schedule) 110.49 47.06 22.52 11.91 9.06
GC - Lipschitz - 1 iteration 97.63 44.10 21.68 11.76 9.06
GC - Lipschitz - 2 iterations 91.13 42.85 21.44 11.81 9.02
GC - Lipschitz - 3 iterations 91.54 42.39 21.30 11.70 9.16
GC - Lipschitz - 4 iterations 93.88 42.24 21.47 11.91 9.16
GC - Lipschitz - 5 iterations 94.54 42.73 21.56 11.95 9.14
DDIMs (Cosine schedule) 110.49 47.06 22.52 11.91 9.06
GC - stopping - 1 iteration 98.37 43.98 21.62 11.69 9.06
GC - stopping - 2 iterations 90.90 42.54 21.55 11.73 8.90
GC - stopping - 3 iterations 87.59 41.43 21.23 11.85 9.08
GC - stopping - 4 iterations 87.06 42.13 21.52 12.07 9.14
GC - stopping - 5 iterations 86.93 42.76 21.58 11.94 9.23

Figure 4: For given DDIM model google/ddpm-celebahq-256, 9 generated images under 10 steps for stepping schedule in
DDIM fixed schedule (left) and 5 iterations GC schedule in Lipschitz setting (middle) and early stopping setting (right). In
Algorithm 2, we set the bound of score matching loss ϵ to be calculated by DAE loss. L is tested under Lipschitz setting
bounds (constant) and early stopping setting bounds.

We observe that the GC produces higher quality samples
than the original stepping schedule with the same sampling
steps and the final tN . We also observe that GC shows much
improvement for smaller steps (especially 5 steps) in the
generating process, this may be because every discretiza-
tion point becomes more important with decreasing steps.
This demonstrates that the well-trained diffusion model en-
hanced by our adaptive stepping schedule contributes to the
improvement of sample quality, especially in cases when a
few steps are used.

We also test GC in the CELEBA dataset to show how it
enhances the image generation performance. As shown in
Figure 4, the images generated with a fixed schedule ex-
hibit more noticeable flaws in facial edge details compared
to those generated with GC-adjusted schedules. Following
empirical observations by Wang et al. [2024], who suggest

that for the backward process of diffusion models, initial
steps are crucial in establishing the overall structure while
later steps work on refining details, this difference could be
attributed to GC’s ability to balance the selection of small
and large time steps in a few choices, thereby handling the
trade-off between local details and overall structure under
constraints, resulting in higher-quality outputs.

We then give generated samples to show GC’s improve-
ment for an under-trained model. In Figure 5, we show the
quality of samples generated in 5 steps by the same under-
trained model which is trained for 100 epochs on the MNIST
dataset, along with the time-stepping schedule provided in
DDIM and GC adjusted discretization points. We show the
generated results from GC converged discretization points
and compare them with the DDIM fixed schedule. As ex-
pected, enhanced by GC, the model generates more reason-



Figure 5: For DDIM model trained for 100 epochs on MNIST, 49 generated samples for stepping schedule in DDIM fixed
schedule (left) and 5 iterations GC schedule in Lipschitz setting (middle) and early stopping setting (right). In Algorithm 2,
we set the bound of score matching loss ϵ to be calculated by DAE loss. L is tested under Lipschitz setting bounds (constant)
and early stopping setting bounds.

able and denoised samples, which proves the improvement
GC brings to under-trained models.

7 CONCLUSION

We considered the problem of selecting discretization points
to adapt the score matching loss and the smoothness prop-
erty on the generating process of diffusion models. For
continuous-time diffusion, we propose GA for adjusting
and GC for choosing in discrete-time diffusion. GA avoids
the weakness of fixed schedules and can generate shaking
score errors. GC improves generating performance for both
well-trained and under-trained models, especially with a few
discretization points.

Our methods can be further improved in several directions:
(1) tighter convergence bounds: our methods aim to mini-
mize sampling error, but existing upper bounds include gaps
to the target, and their instruction on ratio C are highly dif-
ferent; and (2) adaptive training schedule: we only consider
the generating process and treat the model as an unchange-
able part, but the training process can also be adaptive.

Acknowledgements

This work was supported in part by NSFC No. 62222117.

References

Brian DO Anderson. Reverse-time diffusion equation mod-
els. Stochastic Processes and their Applications, 12(3):
313–326, 1982.

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analy-

sis and Geometry of Markov Diffusion Operators, volume
103. Springer, 2014.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and
George Deligiannidis. Linear convergence bounds for dif-
fusion models via stochastic localization. arXiv preprint
arXiv:2308.03686, 2023.

Adam Block, Youssef Mroueh, and Alexander Rakhlin.
Generative modeling with denoising auto-encoders and
langevin sampling. arXiv preprint arXiv:2002.00107,
2020.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved anal-
ysis of score-based generative modeling: User-friendly
bounds under minimal smoothness assumptions. In Inter-
national Conference on Machine Learning, pages 4735–
4763. PMLR, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim,
and Anru R Zhang. Sampling is as easy as learning
the score: theory for diffusion models with minimal data
assumptions. arXiv preprint arXiv:2209.11215, 2022.

Ting Chen. On the importance of noise scheduling for dif-
fusion models. arXiv preprint arXiv:2301.10972, 2023.

Valentin De Bortoli. Convergence of denoising diffusion
models under the manifold hypothesis. arXiv preprint
arXiv:2208.05314, 2022.

Valentin De Bortoli, James Thornton, Jeremy Heng, and
Arnaud Doucet. Diffusion schrödinger bridge with ap-
plications to score-based generative modeling. Advances
in Neural Information Processing Systems, 34:17695–
17709, 2021.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion
models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780–8794, 2021.



Shivam Gupta, Aditya Parulekar, Eric Price, and Zhiyang
Xun. Sample-efficient training for diffusion. arXiv
preprint arXiv:2311.13745, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash
equilibrium. Advances in neural information processing
systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick
Forré, and Max Welling. Argmax flows and multinomial
diffusion: Learning categorical distributions. In Advances
in Neural Information Processing Systems, volume 34,
2021.

Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng
Lv. Graphgdp: Generative diffusion processes for permu-
tation invariant graph generation. In 2022 IEEE Interna-
tional Conference on Data Mining, pages 201–210. IEEE,
2022.

Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, By-
oung Jin Choi, and Nam Soo Kim. Diff-tts: A denois-
ing diffusion model for text-to-speech. arXiv preprint
arXiv:2104.01409, 2021.

Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Rémi Ta-
chet des Combes, and Ioannis Mitliagkas. Adversarial
score matching and improved sampling for image genera-
tion. arXiv preprint arXiv:2009.05475, 2020.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. Diffwave: A versatile diffusion model
for audio synthesis. In International Conference on Learn-
ing Representations, 2020.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence
for score-based generative modeling with polynomial
complexity. Advances in Neural Information Processing
Systems, 35:22870–22882, 2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence
of score-based generative modeling for general data dis-
tributions. In International Conference on Algorithmic
Learning Theory, pages 946–985. PMLR, 2023.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards
faster non-asymptotic convergence for diffusion-based
generative models. arXiv preprint arXiv:2306.09251,
2023.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori Hashimoto. Diffusion-LM improves
controllable text generation. In Advances in Neural Infor-
mation Processing Systems, volume 35, 2022.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang.
Common diffusion noise schedules and sample steps are
flawed. arXiv preprint arXiv:2305.08891, 2023.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and
Yu Wang. Oms-dpm: Optimizing the model schedule for
diffusion probabilistic models. In International Confer-
ence on Machine Learning, pages 21915–21936. PMLR,
2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow
straight and fast: Learning to generate and transfer data
with rectified flow. arXiv preprint arXiv:2209.03003,
2022a.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let
us build bridges: Understanding and extending diffusion
generative models. arXiv preprint arXiv:2208.14699,
2022b.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In Interna-
tional conference on machine learning, pages 8162–8171.
PMLR, 2021.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao,
Aditya Grover, and Stefano Ermon. Permutation invariant
graph generation via score-based generative modeling. In
International Conference on Artificial Intelligence and
Statistics, pages 4474–4484. PMLR, 2020.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion
models are minimax optimal distribution estimators. In
International Conference on Machine Learning, pages
26517–26582. PMLR, 2023.

Jakiw Pidstrigach. Score-based generative models detect
manifolds. Advances in Neural Information Processing
Systems, 35:35852–35865, 2022.

Simon Rouard and Gaëtan Hadjeres. Crash: Raw au-
dio score-based generative modeling for controllable
high-resolution drum sound synthesis. arXiv preprint
arXiv:2106.07431, 2021.

Javier E Santos and Yen Ting Lin. Using ornstein-uhlenbeck
process to understand denoising diffusion probabilis-
tic model and its noise schedules. arXiv preprint
arXiv:2311.17673, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Con-
ference on Machine Learning, pages 2256–2265. PMLR,
2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Confer-
ence on Learning Representations, 2020a.



Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. Advances in
neural information processing systems, 32:11895–11907,
2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020b.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020c.

Santosh Vempala and Andre Wibisono. Rapid convergence
of the unadjusted langevin algorithm: Isoperimetry suf-
fices. Advances in neural information processing systems,
32, 2019.

Cédric Villani. Topics in optimal transportation, volume 58.
American Mathematical Soc., 2021.

Junyan Wang, Zhenhong Sun, Zhiyu Tan, Xuanbai Chen,
Weihua Chen, Hao Li, Cheng Zhang, and Yang Song. To-
wards effective usage of human-centric priors in diffusion
models for text-based human image generation. arXiv
preprint arXiv:2403.05239, 2024.

Yixuan Wang and Shuangyin Li. S2-dms: Skip-step diffu-
sion models. arXiv preprint arXiv:2401.01520, 2024.

Hui Zhang, Zuxuan Wu, Zhen Xing, Jie Shao, and Yu-Gang
Jiang. Adadiff: Adaptive step selection for fast diffusion.
arXiv preprint arXiv:2311.14768, 2023a.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim:
generalized denoising diffusion implicit models. In In-
ternational Conference on Learning Representations,
2023b.



A ADDITIONAL EXPERIMENT IMPLEMENTATION DETAILS

In this section, we include more details about experiments.

For all Gaussian target tasks, the target distribution are on N (10, 0.16) on R. Score error is selected to be constant with

1. Figure 1 and Figure 2 top: 10 + 10 cos(10πt);

2. Figure 2 below: 1
1.1+e−2t + cos(2πt) + 1;

3. Figure 3: 1
1+t + 1 plus [0, 1] random rv.

Score matching bounds ϵ (also shown as smb in codes) are settled to be the square of score error. Smoothness variance is
select in the Lipschitz setting, where the Lipschitz constant at t is σ−2

t . Ratio C is 1 for all GA tests and 10 for the GC test
in Figure 3. For evaluation, we use both optimized EB (of course decreasing) and KL(P0∥QT ) (as sampling error), and
they show consistency in all Gaussian target tasks. We also note that KL divergence is calculated by generated mean and
variance, rather than just sampling. In our setting of constant score error, all steps are linear because

Ztk+1
= Ztk + hk+1 [Ztk + 2sT−tk(Ztk)] +

√
2hk+1Bk (6)

= Ztk + hk+1

[
Ztk − 2Ztk − 2etk−Tµ

1− e2tk−2T
− 2

√
ϵ(tk)

]
+
√

2hk+1Bk. (7)

Thus every Qtk is also Gaussian. Denote Qtk as N (µk, σ
2
k) then µk and σ2

k satisfy:

µk+1 =

[
1− 1 + e2tk−2T

1− e2tk−2T
hk+1

]
µk +

2etk−T

1− e2tk−2T
hk+1µ− 2hk+1

√
ϵ(tk),

σ2
k+1 =

[
1− 1 + e2tk−2T

1− e2tk−2T
hk+1

]2
σ2
k + 2hk+1.

We use these equations to calculate the theoretical distribution of QT then derive KL(P0∥QT ).

For image-generating tasks, there is a difference in notions. At k-th step in forward process, it is tN−k and score estimator
sN−k in this paper, but noise variance αk and u-net ϵθ(·, k) in codes and some other papers Ho et al. [2020], Song et al.
[2020a], Nichol and Dhariwal [2021]. Their connection is tN−k = − ln

√
αk. For implementation of experiments in

image-generating tasks, score matching bounds are derived through DAE loss. We note that there is a difference between
DAE loss and the loss function for training diffusion models. In the notion of α, DAE loss should be calculated through

DAE(sk, P, k) = (1− αk)
−1Ex∼P,ϵ∼N (O,I)∥ϵθ(

√
αtx+

√
1− αtϵ)− ϵ∥2.

For smoothness variance L, we test in both Lipschitz score setting and early stopping setting. For the Lipschitz score setting,
we assume an inner Lipschitz constant L̃ for all score functions and set C to let CL̃ = 1, which is equivalent to setting
C = 1, L = 1 when running GC.

B PROOF FOR LEMMA 4.3

In this section, we provide the proof of Lemma 4.3. This lemma is derived through the framework of Chen et al. [2022],
where bound on the discretization error, i.e.

N−1∑
k=0

E
all Yt∼Qt

∫ tk+1

tk

∥sT−tk(Ytk)−∇ ln pT−t(Yt)∥2dt,

is the only part that relies on the time-stepping schedule. Considering each term without integration and expectation, we
have

∥sT−tk(Ytk)−∇ ln pT−t(Yt)∥2 ≤ 3∥sT−tk(Ytk)−∇ ln pT−tk(Ytk)∥2

+3∥∇ ln pT−t(Ytk)−∇ ln pT−tk(Ytk)∥2 + 3∥∇ ln pT−t(Ytk)−∇ ln pT−t(Yt)∥2

≤ 3ϵ(tk) + 3∥∇ ln
pT−t

pT−tk

(Ytk)∥2 + 3L2∥Yt − Ytk∥2.



Taking expection and considering |t− tk| < hk+1 for all t ∈ [tk, tk+1], following proofs for DDPM in Chen et al. [2022],
we obtain

E
all Yt∼Qt

∥sT−tk(Ytk)−∇ ln pT−t(Yt)∥2 ≤ CSϵ(tk) +
CL

2
L2hk+1 +O(h2

k+1).

Taking integration, the first term becomes CSϵ(tk)hk+1, the second term becomes CLL
2h2

k+1 and the third term becomes
o(h2

k+1). Summing them up and considering the difference between PT and Q0 term into C, we get Lemma 4.3.
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