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ABSTRACT

Current deep learning architectures that make use of the 3D convolution (3DConv)
achieve state-of-the-art results on action recognition benchmarks. However, the
3DConv does not easily lend itself to explainable model decisions. To this end we
introduce a novel and intrinsic approach, whereby all the aspects of the 3DConv
are rendered explainable. Our approach proposes the temporally factorized 3D
convolution (3TConv) as an interpretable alternative to the regular 3DConv. In a
3TConv the 3D convolutional filter is obtained by learning a 2D filter and a set
of temporal transformation parameters, resulting in a sparse filter requiring less
parameters. We demonstrate that 3TConv learns temporal transformations that
afford a direct interpretation by analyzing the transformation parameter statistics
on a model level. Our experiments show that in the low-data regime the 3TConv
outperforms 3DConv and R(2+1)D while containing up to 77% less parameters.

1 INTRODUCTION

Understanding the inner workings of ConvNets is important when they are used to make actionable
decisions or when humans have to make actionable decisions based on lower-level decisions from
decision support systems. Three-dimensional convolutional networks (3DConvNets) (Baccouche
et al., 2011) are a natural extension of 2DConvNets and have been investigated for the processing of
spatio-temporal data, e.g., action recognition in video (Ji et al., 2012; Tran et al., 2015; Varol et al.,
2017; Carreira & Zisserman, 2017). While some of these models achieve state-of-the-art results in
video action recognition benchmarks, the temporal aspect of their inner workings remains difficult to
interpret. Given that a 3DConv filter is simply the 3D extension of the 2DConv filter, one could apply
visualization methods that are suitable for 2DConvNets to the individual slices along the temporal
axis of a 3DConv filter (Carreira & Zisserman, 2017; Anders et al., 2019; Yang et al., 2018). This
approach is effective to the degree that we can gain insight into what the model learns in terms of
spatial features. However, these methods do not provide a meaningful insight into the temporal
dynamics that the model takes into consideration.

Activation-maximization (Erhan et al., 2009; Simonyan et al., 2013; Olah et al., 2017) visualizes
important features in an arbitrary layer of a DNN by optimizing a randomly initialized input such that
the activation of the chosen neuron in a layer is maximized. One big obstacle to this approach is that
the resulting visualizations can be difficult to recognize and are subject to interpretation. Applying
such methods on 3DConvs will likely exacerbate these problems given that the search space for
optimization is at least one order of magnitude larger (depending on the number of frames in the
video). Saliency extraction methods reveal which input region causes high activations in specific
network components (Simonyan et al., 2013; Montavon et al., 2017; Zhou et al., 2016; Selvaraju
et al., 2017). Applying this method to a 3DConv results in a saliency sequence that can be applied to
the input video to reveal spatial components that cause a channel to have a high output. Concrete
examples can be seen in Anders et al. (2019), where saliency extraction analysis (Simonyan et al.,
2013) and deep Taylor decomposition and layerwise relevance propagation (Montavon et al., 2017)
are used on a 3DConvNet to analyze model predictions. Yang et al. (Yang et al., 2018) explain model
predictions by adapting CAM (Zhou et al., 2016) and Grad-CAM (Selvaraju et al., 2017) for their
3DConvNet. However, the results of the CAM methods completely depend on resolution of the
activation maps in the last convolutional layer. This is in turn dependent on the specific network
architecture. While saliency extraction methods return less subjective spatial representations in the
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input space, compared to activation-maximization, their application to the temporal domain leaves
much to be desired.

To bridge this gap, we propose a novel approach through which the model learns temporal parameters
that afford direct interpretation. Temporal parameterization provides a novel way of visualizing
and understanding the temporal dynamics learned by a 3TConvNet. These temporal parameters are
multi-functional:
• Intrinsic interpretability: The 3DConv filter is factorized into a 2D spatial filter and corresponding
temporal parameters that transform the 2D filter into a 3D filter. The 3TConvNet learns explicit
temporal affine transformations whose values can be plotted in an interpretable graph.
• Complement existing 2D methods: Increase interpretation ability when used in combination with
existing 2D methods.
• Increased performance: When learning from smaller datasets, 3TConvNet outperforms alternatives
such as 3DConvNet and R(2+1)D.
• Fewer parameters: The approach reduces the number of parameters in the model up to 77%.
• Transfer learning: Additionally, the parameterization provides an intuitive way to reuse weights
from pretrained 2DConvNets.

2 RELATED WORK

Factorization. Previously, Tran et al. (2018) have factorized the individual 3D convolutional filters
into separate spatial and temporal components called R(2+1)D blocks. This creates two specific
learning phases: a spatial feature learning phase and a temporal feature learning phase guided by
one weight per temporal dimension. Sun et al. (2015) proposes factorized spatio-temporal ConvNets
which factorizes a 3DConvNet at the layer level, resulting in a network where the lower layers
are 2DConv layers and the higher layers are 1DConv layers. Similarly, Qiu et al. (2017) develop
the Pseudo-3D Residual Net approach which factorizes 3DConvs by first constructing a 2DConv
component and then a 1DConv component in a bottleneck fashion. What these approaches have
in common is that the input is first processed by 2DConvs followed by 1DConvs. Our method is
distinctive in the sense that there are no two separate stages of processing the input. The 3DConv
operation remains intact. The novelty we propose lies in the procedure used to obtain the weights for
the kernel. In other words, the factorization is performed on the 3D kernel values themselves rather
than on the operation. From this point of view, R(2+1)D, and the other decomposition methods, are
quite different compared to our method.
Symmetry transformations. In our work we wish to exploit symmetries that occur through time
by learning the optimal affine transformations to generate 3D kernels. Several previous works have
introduced a conceptually similar idea, however, applied only to the spatial dimensions. Jaderberg et al.
(2015) apply affine transformations to features extracted from 2D filters. Our method differs in the
sense that it is used to obtain sequentially build a 3D filter, while in Jaderberg et al. (2015) the affine
transformations are used to obtain spatially robust feature representations in 2DConvNets. Group
equivariant convolutions (Cohen & Welling, 2016) make use of symmetry groups containing reflection
and rotation to extend translational spatial symmetry. The goal is to learn less redundant convolutional
filters in the spatial domain. Unlike these methods, our 3TConv uses affine transformations to model
symmetries in the kernel values themselves, rather than in the input.

3 METHODS

One of the main sources of temporal variability in video streams is the optical flow due to the motion
of the camera and of the background. In addition, important objects in the foreground can also exhibit
temporal motion patterns that can be captured by affine transformations. These movements induce
a constant optical flow that can be modeled as a global affine transformation of the frames. This
suggests an affine parameterization of the transformation function in terms of translations, rotations
and scaling parameters.

To clearly demonstrate the procedure we will build our way up to a consistent notation starting from
the 2DConv.
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2DConv1

The input is an image X ∈ Rh×w, where h and w denote the height and width of the input.
Convolutional kernel K ∈ Rn×m : n ≤ h,m ≤ w, where n and m denote the height and width
dimensions of the kernel. Output Y ∈ Rh′×w′

, where h′ = h−n+2p
s + 1, w′ = w−m+2p

s + 1. s
and p denote the stride and padding. In the rest of the examples we fix s = 1 and p = 0, hence,
h′ = h − n + 1 and w′ = w −m + 1. The result of Y = X ∗K, ∗ indicating the convolution
operation, where for each element Yα,β ∈ Y , the calculations can be written as:

Yα,β =

n∑
i=1

m∑
j=1

Ki,jXi+α−1,j+β−1 (1)

3DConv
We now introduce the temporal dimension into our calculations. The input is an image sequence
X ∈ Rh×w×d, where d denotes the time. d corresponds with the number of frames in the image
sequence. Convolutional kernel K ∈ Rn×m×l : l ≤ d, where l denotes the temporal dimension of
the kernel. Output Y ∈ Rh′×w′×d′ , where d′ = d− l + 1. Similar to the 2D case, we can write the
per-element result Y = X ∗ K as:

Yα,β,γ =

n∑
i=1

m∑
j=1

l∑
b=1

Ki,j,bXi+α−1,j+β−1,b+γ−1 (2)

3TConv
For the 3TConv we introduce a transformation function f(K:,:,1,Θ) where kernel K:,:,1 ∈ Rn×m×1
and Θ ∈ Rn×m×(l−1). Each slice Θ:,:,b corresponds to an affine transformation matrix that is derived
from the affine transformation parameters scale s, rotation r and translation tx, ty

2. Using function f
we obtain sparse kernel K where each consecutive slice is a matrix multiplication of the previous
slice with the corresponding transformation matrix:

K:,:,2 = f(K:,:,1,Θ:,:,1) = K:,:,1Θ:,:,1

K:,:,3 = f(K:,:,2,Θ:,:,2) = K:,:,1Θ:,:,1Θ:,:,2

...
K:,:,l = f(K:,:,l−1,Θ:,:,l−1) = K:,:,1Θ:,:,1Θ:,:,2...Θ:,:,l−1

(3)

This results in K = {K:,:,1,K:,:,2, ...,K:,:,l}. Notice that the depth of Θ is l − 1 and not l. In order
to get l number of slices in the final kernel given that we start with K:,:,1, we need l − 1 number of
transformations to derive until K:,:,l.

We can summarize the 3TConv as:

f(K:,:,1,Θ) =

( l−1∏
b=1

Θ:,:,b

)
K:,:,1 (4)

Substituting the 3TConv into Equation 2, the full 3TConv calculation is written as:

Yα,β,γ =

n∑
i=1

m∑
j=1

l∑
b=1

( b∏
z=1

Θi,j,z

)
Ki,j,1Xi+α−1,j+β−1,b+γ−1 (5)

3.1 OPTIMIZATION PROCEDURE

When a 3TConvNet is first initialized, the temporal parameters are initialized as the identity mapping:
s = 1, r = 0, x = 0 and y = 0. The initial kernel slice K:,:,1 is implemented as a 2D matrix,

1For the sake of clarity in this definition and those that follow, we will assume that the channels in the input
are equal to one.

2Due to space limitations the derivation is given in the Appendix A
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initialized according to a normal distribution. Thus in the initial kernel all slices are equal: K:,:,1 =
K:,:,2 = ... = K:,:,l. In each 3TConv layer, a layer containing k number of kernels, each kernel
is comprised of the 2D slice K:,:,1 and a unique set of temporal parameters {s, r, tx, ty}. During
training the set of temporal parameters is updated for each kernel along with the the 2D matrix
implementation of kernel slice K:,:,1. Compared to the 3DConv, the 3TConv requires a much lower
learning rate due to the sensitivity of the temporal parameters. As a result the training procedure is
three to four times slower than the 3DConv. Theoretically it should be possible to achieve a more
efficient implementation of the 3TConv and we reserve the investigation of this matter for future
work.

3.2 EXPLAINING TEMPORAL DYNAMICS WITH 3TCONV

As mentioned before, the affine transformation matrix slices Θ:,:,b is derived from the set of parame-
ters {s, r, tx, ty}. These parameters can be extracted as-is from a trained 3TConvNet, see Appendix A.
The s parameter is the scaling factor relative to 1. The larger s, the bigger the resulting transformation.
Applied on an image this has the effect of zooming in or out. The r parameter is the rotation measured
in degrees where a positive value of r indicates a counter-clockwise rotation. In the resulting plots we
multiply −1× r such that a positive value indicate a clockwise rotation. The translation parameters
in their raw form indicate what percentage of the image has translated. To obtain the amount of
translation in pixel units we need to multiply by the width W and height H of the image: pxx = txW
and pxy = tyH .

4 EXPERIMENTS

In the following experiments we will show several examples demonstrating how 3TConvs can be
used for explainability. We urge the reader to consider that the uses of 3TConvs are not limited to
these examples and that our novel parameterization approach affords concrete and objective values
previously unavailable.

Modified versions of ResNet18 (He et al., 2016) and GoogLeNet (Szegedy et al., 2015) are used.
In both architectures the 2DConv filters are replaced by 3DConv and 3TConv filters. The networks
are trained on the Jester dataset (Materzynska et al., 2019) to classify 27 different hand-gestures
and the UCF101 dataset (Soomro et al., 2012) to classify 101 human activities in various scenarios.
Implementation was done in PyTorch (Paszke et al., 2019) and for the experiments using transfer
learning, model weights are obtained from pretrained GoogLeNet and ResNet18 models from the
torchvision model zoo. Details about data pre-processing and model training can be found in
Appendix C.

4.1 BASELINE: APPLYING 2D VISUALIZATION METHODS TO 3D- AND 3TCONV

Next, we applied the saliency extraction method from Simonyan et al. (2013) and activation-
maximization method from Olah et al. (2017). The goal is to demonstrate how 2DConv visualization
methods translate to the 3DConv and 3TConv domain as a baseline for comparing the interpretation
when temporal parameters are available. We also made a 3D implementation of Grad-CAM (Selvaraju
et al., 2017), however, we soon discovered that this method was not suitable to our architectures due
to insufficient temporal resolution in the resulting activation maps.

Figure 1 depicts the visualizations. In the saliency extraction results we can see high-activation
responses for specific channels. The results indicate that sometimes the models are picking up spatial
components that are both recognizable to humans and that are relevant to classification, such as areas
of the hands. However, for both 3D and 3T models there are also instances where it is not clear why
the highlighted spatial components are relevant to the target class, i.e., when the model is looking at
the background.

As mentioned in Section 2, the application of activation-maximization can lead to visual patterns
that are difficult to interpret. Figure 1 indeed shows that it is difficult to relate the patterns observed
in the images to visual aspects of objects that are present in the frames. However, to some extent,
the patterns in Figure 1B correspond better to the saliency region that is indicated by the saliency
extraction results. For example, channel 121 is extracting features from the hand and the maximized
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Figure 1: (A+B) 2D visualization methods, saliency extraction method (left) and activation-
maximization (right), are applied to a 3DConv and a 3TConv. The 2D results are somewhat subjective
to interpretation, especially the activation-maximization. For saliency extraction it is not always
clear why the network is finding that particular part of the image salient. In (B) we extract the
temporal parameters and use them to enrich the interpretation of the 2D results. For each channel a
combined explanation is generated: the saliency extraction method (left), the activation-maximization
(right) and the set of temporal parameters are plotted (bottom). In the right-most plot indicating the
translation parameters, blue denotes the starting position and red denotes the ending position. For
the chosen video where the target class is "Pushing Hand Away" we can see that the high-activation
channels contain translation parameters that correspond with what is happening in the original video.
We also notice a trend where temporal parameters in the higher layers have larger values and are
easier to interpret. It is likely that if a 3TConv layer is used as the output layer, that the temporal
parameters would directly correspond with the main actions in the target class.
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patterns resembles skin cells when looked at from up close. While the interpretation of these patterns
is subjective, in any case, no insight can be achieved about the temporal qualities that the model may
extract from the data. Additional visualizations are linked in Appendix C.

4.2 COMBINING TEMPORAL TRANSFORMATIONS WITH 2D VISUALIZATIONS

Results are shown in Figure 1B. In each channel that we investigate, the temporal parameters are
applicable to features extracted using that particular channel, similar to how a channel with a 2DConv
extracts a specific pattern from the input. When we apply saliency extraction method, we can see
which channel was most activated by features in the input.

Since we are operating in a 2D medium (paper) and we are trying to explain a 3D phenomenon, it is
difficult to accurately describe the movements in the original video, the reader can view the input
video here. The video has been slowed down, truncated to 15 frames and annotated with the frame
numbers for the purposes of viewing.

Starting from the inception3b branch2.1, we can see that the model is focusing on relatively small
regions, as indicated by the results of the saliency extraction method. Channel 121 is detecting a
salient feature that overlaps with the person’s wrist on frame 7. Taking the temporal parameters
into account we see that this part of the hand specifically corresponds the action of moving slightly
downwards. In the input video we can see that this is in line with what that part of the body is
doing; as the hand gets closer to the camera, the palm of the hand tends towards a downwards motion.
Looking at inception4c branch2.1: In channel 134, frame 3, the fist opens a little and moves a little
bit downward towards the left. In this case the scaling and translation parameters correspond to the
action in the video. In channel 55, frame 7, the hand is moving a little bit downward according to
the translation parameter. This parameter also corresponds with the action in the video. The rotation
parameter does not seem to be utilized much and the translation parameter is being utilized the most.
We had expected that scaling would have larger values, especially for this class, where the hand
if sequentially increasing in size. However, it can be the case that the translation parameters are
compensating for the scaling, which also explains why they appear more developed.

Overall we get the picture that on low and mid layers, the temporal parameter values are comparatively
smaller than those in the higher layer. This is expected since larger actions are made up of smaller
actions. The parameter that gave the most consistent interpretation was the translation parameter,
especially in channels 121, 134 and 88 we can see a clear downward-right moving trend that
corresponds with the action taken in the actual video. Given these results we conclude that the higher
layer parameters will be most interpretable and will correspond to the target class. If a 3TConv is used
as the final layer in a ConvNet, the temporal parameters will correspond directly with the classes.

4.3 ANALYSIS OF TEMPORAL PARAMETERS ACROSS MODELS AND DATASETS

In the previous section, the temporal parameters were analyzed on a per-channel level. The temporal
parameters can also be used to understand the global decision-making process of the model in
interpretable and quantifiable model statistics. In Figure 2, the distributions of the learned temporal
parameters of 3TConv-ResNet18 and 3TConv-GoogLeNet trained on the Jester and UCF101 datasets
are visualized. This overview allows us to compare different models trained on different datasets. We
immediately attain a high-level view of what each network considers important for classification for
the specific datasets.

Even though the results of 3TConv suggest that temporal dynamics are more important for Jester
than UCF101, it does not outperform the ’less interpretable’ 3DConv on the Jester dataset. Noting
that the Jester dataset differs significantly from UCF101 in terms of samples per class, fewer number
of classes and less variety in dataset, this result is in line with our general empirical observations that
3TConv typically outperforms 3DConv in the low-data regime. This is likely due to 3DConv being a
more complex and flexible model and better at exploiting the availability of more data.

4.4 PERFORMANCE COMPARISON

The performance comparison is shown in Table 1. On UCF101, pretrained 3TConvNets can out-
perform pretrained 3DConvNets using up to 77% fewer parameters. However on the Jester dataset
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Figure 2: Distributions of the temporal parameters of pretrained 3TConv versions of GoogLeNet and
ResNet18. Each network has been trained on the Jester dataset for gesture recognition and on the
UCF101 dataset for action recognition. Each separate panel represents the distributions of all the
learned temporal parameters across a single model after training on the indicated dataset. In each
separate panel, three distributions are displayed: (i) the distribution for the scale parameter, (ii) the
distribution for the rotation parameters, and (iii) the joint distribution for the translation parameters.
Note that the axis scales are equal for each panel so that a direct comparison can be made, between
models and well as between datasets.

3DConvNets outperform 3TConvNets. This discrepancy is explained by the fact that models with
more parameters can learn from bigger datasets better than smaller or more restricted models. In
preliminary experiments we have seen evidence that 3TConv consistently outperforms 3DConv in the
low data regime, see Appendix B.

Table 1: Classification accuracy vs. number of model parameters
Jester val acc % # params UCF101 val acc % # params

scratch 3T-GoogLeNet 74.1 7419121 33.4 7646671
pret. 3T-GoogLeNet 84.9 7419121 63.7 7646671
pret. 3D-GoogLeNet 89.9 14078833 58.7 14306383

scratch. 3T-ResNet18 44.4 11222619 31.0 11260581
pret. 3T-ResNet18 74.5 11222619 61.1 11260581
pret. 3D-ResNet18 81.6 33217755 56.1 33255717

scratch R(2+1)D 91.8 31313976 31.4 31351938

Comparison with R(2+1)D. In order to compare our method with current state-of-the-art methods
we compare it with R(2+1)D model trained from scratch on the Jester and UCF101. The results can
be seen in Table 1. We can only compare the model trained from scratch due to time limitations
involving the download of the Kinetics dataset for a full comparison and we reserve this for future
work. From the comparison with the tabula rasa models, R(2+1)D performs exceptionally well on the
Jester dataset, however, on the UCF101 dataset it is outperformed by our 3TConv using 75% fewer
parameters. This is in line with our previous observations where 3TConv outperforms 3DConv in the
low data regime.

4.5 RESULTS FOR TABULA RASA MODELS

Table 1 also compares the classification accuracies for 3TConvNets that were either pretrained or
trained from scratch. Pretrained models massively outperform tabula rasa models, showing that
transfer learning has a significant impact on 3TConv performance. In the final row a comparison can
be made with R(2+1)D method trained from scratch.

Figure 3 show the parameters estimated for tabula rasa models that were trained from scratch. A
comparison between these results and those of the previous section shows that the difference in results
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Figure 3: Distributions of the temporal parameters for the 3TConv versions of GoogLeNet and
ResNet18 that were trained from scratch. Each network has been trained on the Jester dataset for
gesture recognition and on the UCF101 dataset for action recognition. Each separate panel represents
the distributions of all the learned temporal parameters across a single model after training on the
indicated dataset. In each separate panel, three distributions are displayed: (i) the distribution for the
scale parameter, (ii) the distribution for the rotation parameters, and (iii) the joint distribution for the
translation parameters. Note that the axis scales are equal for each panel so that a direct comparison
can be made, between models and well as between datasets.

for the Jester and UCF101 datasets becomes more pronounced for tabula rasa models. This is to be
expected since models trained from scratch are not endowed with good visual features and likely
develop a larger repertoire of temporal parameters to compensate for this. It seems that, on the Jester
dataset, the model needs to develop a larger variety of temporal parameters to do classification. This
suggests that classification on the Jester dataset is more dependent on affine motion transformations
than classification on the UCF101 dataset. This is not surprising since many of the classes in UCF101
are not dependent on unique motion patterns at all. For example, the SkyDiving, Skiing, and Skijet
classes can be classified based on spatial features alone. In contrast, the classes in the Jester dataset
are strongly dependent on what kind of motion the person performs with their hand.

The comparison with pretrained models further reveals that the dependency of the models on the
temporal parameters decreases strongly across models and datasets when initialization with pretrained
weights is provided. This implies that when the model can extract good spatial features, the depen-
dency on learning a broad range of temporal parameters decreases. This interesting phenomenon
warrants further investigation.

5 DISCUSSION

While using the affine parameterization might incur additional complexity during optimization, we
have empirically observed in our initial experiments that affine parameterizations performs on par with
free parameterizations, that is, when the transformations are not restricted to affine transformations.
It is an open question to what extent parameterization limits the expressiveness of the 3TConv and
which kind of parameterization can lead to more interpretable parameters. An idea that we have also
not explored is whether temporal parameters can be extracted from trained 3DConvs and if insight
about the model can be achieved by analyzing the extracted parameters. An in depth analysis of the
interpretability of the temporal parameters at various layers and how the values change from lower to
higher layers should most definitely be conducted given that in this paper we have observed trends
that support the hypothesis that last layer parameters should correspond better to class actions. One
approach for achieving this is to analyze the final layer featuremaps in a conceptually similar manner
as Grad-CAM, however, a solution for the lack of temporal resolution needs to be found.
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A DERIVATION AFFINE TRANSFORMATION MATRIX FROM PARAMETERS

In Equation 4 we had: f(K:,:,1,Θ) =
(∏l−1

b=1 Θ:,:,b

)
K:,:,1.

First the matrix M is obtained from {s, r, tx, ty}:

M =

[
s cos r −s sin r txs cos r − tys sin r
s sin r s cos r txs sin r + tys cos r

]
(6)

Next, sampling grid G ∈ Rn×m×2 is created, where for each index Gi,j,b the value is computed as:[
Gi,j,0

Gi,j,1

]
= M

[
i
j
1

]
(7)

where i ∈ {1, ..., n} and j ∈ {1, ...,m}. The sampling grid is then used to transform the values from
K:,:,1 to K:,:,2:

Ki,j,2 = Ki,j,1Θi,j,1 (8)

Where
Θi,j,b = max(0, 1− |Gi,j,0 − i|) max(0, 1− |Gi,j,0 − j|) (9)

In this case we use bilinear interpolation for the transformation.

Compared to a regular 3D kernel which has nml parameters, the 3T kernel only has nm + 4(l − 1)
parameters.

B PERFORMANCE IN THE LOW DATA REGIME

In a preliminary experiment we created a toy dataset and performed an experiment in which we
compared the performance of the models based on how many samples per class the models had access
to during training. The results can be seen in Figure 5 and an example from the toy dataset can be
seen in Figure . We can see that 3TConv significantly outperforms 3DConv on the low data regime.

C TRAINING DETAILS

Link additional visualizations:

• Additional visualizations

C.1 DATA PRE-PROCESSING

Table 2: Overview of metadata after the data has been processed. UCF101 split 1 was used for train
and test.
dataset classes height × width frames vids in train vids in validation vids in test
Jester 27 150 × 224 30 118562 7393 7394

UCF101 101 168 × 224 30 9537 N/A 3783

The models that we used are pre-trained on the ImageNet dataset and were acquired from the
torchvision model zoo. In order to make transfer learning possible, resizing and normalization of the
data was needed.

The Jester dataset is available for download here: https://20bn.com/datasets/jester.
The UCF101 dataset is available here: https://www.crcv.ucf.edu/data/UCF101.php.

For the UCF101 dataset we used split number 1 for the training split and the test split. The test split
was then partitioned in half such that the first half of the test split can be used as a validation data
split.
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Figure 4: Comparison LeNet-5-3D and LeNet-5-3T on the video-MNIST dataset, while varying the
number of samples per class that the models had access to during training.

Resize. In the Jester dataset each frame of a video was resized to a width of 224 pixel and a height
of 150 pixels. For the UCF101 dataset split 1, each frame of a video was resized to a width of 224
pixels and a height of 168 pixels.

Frames. For both datasets the number of frames for each video is set to 30 frames. When the length
of the original video is greater than 30 frames, frames were dropped such that the interval between
dropped frames is equal. If the original lenth was less than 30 frames, only the first and last frames
are duplicated.

Normalization. The videos are originally encoded as RGB values tuples between 0 and 255. After
loading as such, we scale the values for each value down between 0 and 1 by dividing by 255. Then,
for each channel, we subtract and divide by the ImageNet means and standard deviations respectively.

C.2 MODEL INITIALIZATION AND TRAINING

Replacing 2DConvs. In our models, the 2DConv is replaced with 3DConvs and 3TConvs. For both
3DConvs as well as 3TConvs, the temporal depth of the filter is equal to the height and width, i.e, we
use unilateral 3D filters. Let us take a look at an example where we replace a 5× 5 2DConv filter.
For the 3DConv case we replace it with a 5× 5× 5 filter. For the 3TConv case we replace it with a
3TConv filter consisting of a 5× 5 weight K:,:,1 and a set of 4× {s, r, tx, ty} temporal parameters.
Note that it is 4 and not 5 because we only need to perform 4 transformations to yield the 5× 5× 5
3D filter from the initial set of weights K:,:,1. However, for both 3DConvNet and 3TConvNet, a 1× 1
Conv is always replaced by a 1× 1× 1 3DConv.

Weight transfer. For 3DConv we perform transfer learning from 2D to 3D in the same way as
in Carreira & Zisserman (2017). That is, stack the 2D filter weights weights along the temporal

12
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Figure 5: An example of the toy dataset that we created called Video-MNIST. Ten classes in total,
each has a different appearance and dynamic behavior. Each sequence contains 30 frames showing
an affine transformation on a single original digit moving in a 28× 28 pixel frame. The class-specific
affine transformations are restricted to scale, rotation and x, y translations.

axis and then divide the values by the length of the temporal axis, e.g., divide by 5 according to the
example in the previous paragraph. For the 3TConv the 2D set of weights are simply copied over to
K1 without any modifications. The temporal parameters are initialized with the identity, i.e., s = 1,
r = 0, tx = 0, ty = 0, such that the resulting 3D filter is equal to stacking the 2D weights along the
temporal axis. We performed experiments where K:,:,1 is divided by the length of the temporal axis,
just like in Carreira & Zisserman (2017), however we found that initializing with unmodified copied
2D weights led to better classification performance on both datasets.

Training. For the Jester dataset, the classes are heavily skewed towards the "Doing other things"
class. To correct for this class imbalance we implemented a weighted loss. For both datasts, the
models were trained using ADAM and cross-entropy loss. The learning rate for the 3DConvNets was
5e− 6 and the learning rate for the 3TConvNets was 5e− 5. These learning rates were determined
experimentally. Models were trained using varying batchsizes of between 10 and 30 samples per
batch depending on the availability of memory on our GPUs. We trained each model on a single
GPU which took on average 3 days to train on the Jester dataset and 1 day to train on the UCF101
dataset. We used Nvidia GeForce RTX 2080 Ti GPUs. The networks train until the early stopping
condition is satisfied, that is, when the validation accuracy starts decreases and the validation loss.
This condition is checked for every 5 epochs. Finally, the model that performed best on the validation
dataset across the epochs is saved and used in our analyses later. Given that we investigate single
models we only train each model once.

Hyper-parameters. Learning rate is informed by the empirical process of trying different learning
rates and observing which one gives best results. The range tried for each network was from 0.1 to 5e-
7. Batch sizes were chosen such that a good balance was achieved between GPU memory allocation
and running times. Batch sizes vary between 16 and 32. Number of epochs are decided by early
stopping which is described above. Other parameters such as the number of hidden layers, channels
per layer and activation functions adopted from the original model configuration as implemented by
the torch model zoo.
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Table 3: Training details for all models and datasets.

method architecture dataset pre-trained learning
rate

batch
size

epochs
trained

training
acc %

validation
acc %

3TConv ResNet18 Jester yes 5e-5 32 24 98.7 74.5
3TConv ResNet18 UCF101 yes 5e-5 30 46 100 61.1
3TConv GoogLeNet Jester yes 5e-5 20 29 99.4 84.9
3TConv GoogLeNet UCF101 yes 5e-5 25 13 100 63.7

3TConv ResNet18 Jester no 5e-5 32 28 71.6 44.4
3TConv ResNet18 UCF101 no 5e-5 16 37 91.3 31.0
3TConv GoogLeNet Jester no 5e-5 20 34 98.5 74.1
3TConv GoogLeNet UCF101 no 5e-5 18 29 100 33.4

3DConv ResNet18 Jester yes 5e-6 32 46 99.8 81.6
3DConv ResNet18 UCF101 yes 5e-6 30 41 100 56.1
3DConv GoogLeNet Jester yes 5e-6 19 26 99.9 89.9
3DConv GoogLeNet UCF101 yes 5e-6 20 55 100 58.7
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