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Abstract

Automatic high-quality segmentations have become ubiquitous in numerous downstream
tasks of medical image analysis, i.e. shape-based pathology classification or semantically
guided image registration. Public frameworks for 3D U-Nets provide numerous pre-trained
models for nearly all anatomies in CT scans. Yet, the great generalisation comes at the cost
of very heavy networks with millions of parameter and trillions of floating point operations
for every single model in even larger ensembles. We present a novel combination of two
orthogonal approaches to lower the computational (and environmental) burden of U-Nets:
namely partial convolution and structural re-parameterization that tackle the intertwined
challenges while keeping real world latency small.

Keywords: 3D semantic segmentation, model distillation, efficient convolutions

1. Introduction

When designing convolutional network architectures, the recent trend has moved away from
the classic VGG style (Simonyan and Zisserman, 2014) that uses few plain 3 x 3 spatial
convolutions with large channel sizes and carries a large parameter count. Instead, depth-
separable or group convolutions are frequently seen (Sandler et al., 2018; Ma et al., 2018)
in an effort to balance model size, multiply-add operations (MADs) and accuracy. In fact,
the recent ConvNeXt architecture (Liu et al., 2022) could demonstrate that replacing VGG-
style or ResNet-like convolutional blocks can outperform vision transformers with a very
low MADs count. They achieve this by using a clever design of the convolutional block with
a large kernel depth-separable convolution followed by an inverted bottleneck with 1 x 1
pointwise convolutions together with micro-design improvements.

Unfortunately, as shown in (Chen et al., 2023; Vasu et al., 2022) the number of raw
operations is poorly correlated with latency (runtime) due to the much lower efficiency
of modern parallel processors that are optimised for dense 3 x 3 convolutions with large
channel sizes to reach impressive theoretical FLOPS (floating points per second)! of more
than 10 trillion (10 TFLOPS). Our experimental validation confirms, that in an effort to
lower the MADs the GPU utilisation (and hence efficiency) also massively drops leading
to diminishing returns or in the worst case even longer runtimes for smaller models. A
default configuration of the nnUNet (Isensee et al., 2021) typically requires >30 million
parameters and >1 trillion MADs to segment a single 3D patch. Nevertheless, the training
and inference algorithms are considered to be relatively efficient, due to the aforementioned
high GPU utilisation of modern Nvidia GPUs.

1. Note that we purposefully use MADs and FLOPS to differentiate between computational work load and
the hardware GPU capabilities at 100% utilisation.
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Figure 1: Concept of proposed FasterFusion block and measured inference runtimes of var-
ious choices for (grouped) spatial and pointwise convolution operators. Our con-
cept yields a high GPU utilisation ~54% close to 3 x 3 x 3 convolutions, whereas
ConvNeXt fails to convert a lower operations into inference speed.

Contribution: In this work, we present a novel combination of two orthogonal ap-
proaches that tackle the computational burden and make nnUNets small again. Our model
employs a new variant of T-shaped spatial convolutions that act only on a part of the chan-
nels individually together with full-depth pointwise convolutions. Different to (Chen et al.,
2023) we also incorporate a novel version of re-parameterisation as popularised by RepVGG
(Ding et al., 2021) that enables the fusion of the inverted bottleneck FasterFusion. Com-
bined these contributions lead to 3-4x smaller model sizes and 2x faster inference times,
while matching the accuracy and stable training convergence of full-sized models.

2. Methods

Building upon T-shaped spatial convolution (Chen et al., 2023) that perform the spatial
3x3x3 kernels only on a part (in our work a quarter) of channels and use pointwise operators
for the remaining one, we aim to find a good balance between reducing parameters, keeping
a reasonable number of computations for training and a method that yields the fastest
speed at inference. Our approach uses an inverted bottleneck with an intermediate doubled
channel size to limit peak memory when using the same number of input and output channels
as the blocks within the nnUNet (Isensee et al., 2021). In contrast to (Chen et al., 2023), we
place a BatchNorm and no non-linearity between first and second convolution in our block.
This enables us to apply re-parameterisation after training and completely fuse all three
consecutive layers at inference and reduce the parameters by 2.9x. Our method can be
used as drop-in replacement in any 2D or 3D convolutional network, yet in this first proof-
of-concept we restrict ourselves to the popular 3D semantic segmentation architecture of
the nnUNet.

Fig. 1 demonstrates the disproportionated efficiency of plain 3 x 3 x 3 spatial convo-
lutions with large channel size in comparison to depth-separable, groupwise and pointwise
convolutions (when comparing nnUNet with ConvNeXt). Details on the implementation
of training and fusion, which only requires us to perform a number of matrix multipli-
cations on the respective weights once after training, are found in our open source code:



MAKE NNUNETS SMALL AGAIN

https://github.com/mattiaspaul/makennunetsmallagain. Intuitively, a larger number
of trainable parameters and floating point operations will ease training whereas the fusion
of blocks - re-parameterisation - increases efficiency for inference and substantially reduces
the size of models to be stored.
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Figure 2: Left: Validation Dice over epochs shows more robust training of our method com-
pared to other low-parameter models. Middle: Quantitative results demonstrate
improved quality and 81% reduced parameters (at inference). Right: Visual seg-
mentation examples show that using an nnUNet with halved channel sizes yields
some inaccurate vertebrae.

3. Experimental results and Conclusion

We evaluate all method variants for the VerSel9 vertebrae multi-label segmentation task
within the nnUNet framework, by re-orienting all patients into a prone pose with heads
up and without mirror augmentation but otherwise default parameters. All models where
trained on a single RTX-A4000 with 16 GB for 150 epochs on 180 training scans and
evaluated on 22 test cases showing on average 10 out of 25 vertebrae. Note, that we replaced
the default nnUNet layers only with our FasterFusion blocks when the channel size was 160
or above, since we found for small kernels the model size and runtime improvements were
negligible. Fig. 2 highlights the fact that while using 5x fewer parameters our approach
matches the quality of full-sized nnUNets. Our model excels with the highest average Dice of
90.5% and does not suffer from slow or unstable training progress as the half-sized nnUNet
and ConvNeXt variants respectively.

Conclusion: Our work and its experimental findings indicate that applying T-shaped
convolutions — in which 3 x 3 x 3 kernels only act partially on the input channel width —
together with pointwise operators within an specifically designed inverted bottleneck and
re-parameterisation offers an exciting new strategy for better balancing model sizes, training
effort and computational burden of the inference of deep segmentation networks in medical
imaging and beyond.
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