
Medical Imaging with Deep Learning 2023

Make nnUNets Small Again

Mattias P. Heinrich heinrich@imi.uni-luebeck.de
Institute of Medical Informatics, University of Luebeck, Germany

Jannis Hagenah jannis.hagenah@eng.ox.ac.uk

Department of Engineering Science, University of Oxford, UK

Abstract

Automatic high-quality segmentations have become ubiquitous in numerous downstream
tasks of medical image analysis, i.e. shape-based pathology classification or semantically
guided image registration. Public frameworks for 3D U-Nets provide numerous pre-trained
models for nearly all anatomies in CT scans. Yet, the great generalisation comes at the cost
of very heavy networks with millions of parameter and trillions of floating point operations
for every single model in even larger ensembles. We present a novel combination of two
orthogonal approaches to lower the computational (and environmental) burden of U-Nets:
namely partial convolution and structural re-parameterization that tackle the intertwined
challenges while keeping real world latency small.

Keywords: 3D semantic segmentation, model distillation, efficient convolutions

1. Introduction

When designing convolutional network architectures, the recent trend has moved away from
the classic VGG style (Simonyan and Zisserman, 2014) that uses few plain 3 × 3 spatial
convolutions with large channel sizes and carries a large parameter count. Instead, depth-
separable or group convolutions are frequently seen (Sandler et al., 2018; Ma et al., 2018)
in an effort to balance model size, multiply-add operations (MADs) and accuracy. In fact,
the recent ConvNeXt architecture (Liu et al., 2022) could demonstrate that replacing VGG-
style or ResNet-like convolutional blocks can outperform vision transformers with a very
low MADs count. They achieve this by using a clever design of the convolutional block with
a large kernel depth-separable convolution followed by an inverted bottleneck with 1 × 1
pointwise convolutions together with micro-design improvements.

Unfortunately, as shown in (Chen et al., 2023; Vasu et al., 2022) the number of raw
operations is poorly correlated with latency (runtime) due to the much lower efficiency
of modern parallel processors that are optimised for dense 3 × 3 convolutions with large
channel sizes to reach impressive theoretical FLOPS (floating points per second)1 of more
than 10 trillion (10 TFLOPS). Our experimental validation confirms, that in an effort to
lower the MADs the GPU utilisation (and hence efficiency) also massively drops leading
to diminishing returns or in the worst case even longer runtimes for smaller models. A
default configuration of the nnUNet (Isensee et al., 2021) typically requires >30 million
parameters and >1 trillion MADs to segment a single 3D patch. Nevertheless, the training
and inference algorithms are considered to be relatively efficient, due to the aforementioned
high GPU utilisation of modern Nvidia GPUs.

1. Note that we purposefully use MADs and FLOPS to differentiate between computational work load and
the hardware GPU capabilities at 100% utilisation.

© 2023 CC-BY 4.0, M.P. Heinrich & J. Hagenah.

https://creativecommons.org/licenses/by/4.0/

Heinrich Hagenah

inherent in natural images, a common stem cell will aggres-
sively downsample the input images to an appropriate feature
map size in both standard ConvNets and vision Transformers.
The stem cell in standard ResNet contains a 7⇥7 convolution
layer with stride 2, followed by a max pool, which results
in a 4⇥ downsampling of the input images. In vision Trans-
formers, a more aggressive “patchify” strategy is used as
the stem cell, which corresponds to a large kernel size (e.g.
kernel size = 14 or 16) and non-overlapping convolution.
Swin Transformer uses a similar “patchify” layer, but with
a smaller patch size of 4 to accommodate the architecture’s
multi-stage design. We replace the ResNet-style stem cell
with a patchify layer implemented using a 4⇥4, stride 4 con-
volutional layer. The accuracy has changed from 79.4% to
79.5%. This suggests that the stem cell in a ResNet may be
substituted with a simpler “patchify” layer à la ViT which
will result in similar performance.

We will use the “patchify stem” (4⇥4 non-overlapping
convolution) in the network.

2.3. ResNeXt-ify
In this part, we attempt to adopt the idea of ResNeXt [87],

which has a better FLOPs/accuracy trade-off than a vanilla
ResNet. The core component is grouped convolution, where
the convolutional filters are separated into different groups.
At a high level, ResNeXt’s guiding principle is to “use more
groups, expand width”. More precisely, ResNeXt employs
grouped convolution for the 3⇥3 conv layer in a bottleneck
block. As this significantly reduces the FLOPs, the network
width is expanded to compensate for the capacity loss.

In our case we use depthwise convolution, a special case
of grouped convolution where the number of groups equals
the number of channels. Depthwise conv has been popular-
ized by MobileNet [34] and Xception [11]. We note that
depthwise convolution is similar to the weighted sum op-
eration in self-attention, which operates on a per-channel
basis, i.e., only mixing information in the spatial dimension.
The combination of depthwise conv and 1 ⇥ 1 convs leads
to a separation of spatial and channel mixing, a property
shared by vision Transformers, where each operation either
mixes information across spatial or channel dimension, but
not both. The use of depthwise convolution effectively re-
duces the network FLOPs and, as expected, the accuracy.
Following the strategy proposed in ResNeXt, we increase the
network width to the same number of channels as Swin-T’s
(from 64 to 96). This brings the network performance to
80.5% with increased FLOPs (5.3G).

We will now employ the ResNeXt design.

2.4. Inverted Bottleneck
One important design in every Transformer block is that it

creates an inverted bottleneck, i.e., the hidden dimension of
the MLP block is four times wider than the input dimension

(a)

d3×3, 96➝96

1×1, 384➝96

1×1, 96➝384

d3×3, 384➝384

1×1, 96➝384

1×1, 384➝96

1×1, 96➝384

d3×3, 96➝96

1×1, 384➝96
(b) (c)

Figure 3. Block modifications and resulted specifications. (a) is
a ResNeXt block; in (b) we create an inverted bottleneck block and
in (c) the position of the spatial depthwise conv layer is moved up.

(see Figure 4). Interestingly, this Transformer design is con-
nected to the inverted bottleneck design with an expansion
ratio of 4 used in ConvNets. The idea was popularized by
MobileNetV2 [61], and has subsequently gained traction in
several advanced ConvNet architectures [70, 71].

Here we explore the inverted bottleneck design. Figure 3
(a) to (b) illustrate the configurations. Despite the increased
FLOPs for the depthwise convolution layer, this change
reduces the whole network FLOPs to 4.6G, due to the signif-
icant FLOPs reduction in the downsampling residual blocks’
shortcut 1⇥1 conv layer. Interestingly, this results in slightly
improved performance (80.5% to 80.6%). In the ResNet-200
/ Swin-B regime, this step brings even more gain (81.9% to
82.6%) also with reduced FLOPs.

We will now use inverted bottlenecks.

2.5. Large Kernel Sizes
In this part of the exploration, we focus on the behav-

ior of large convolutional kernels. One of the most distin-
guishing aspects of vision Transformers is their non-local
self-attention, which enables each layer to have a global
receptive field. While large kernel sizes have been used in
the past with ConvNets [40, 68], the gold standard (popular-
ized by VGGNet [65]) is to stack small kernel-sized (3⇥3)
conv layers, which have efficient hardware implementations
on modern GPUs [41]. Although Swin Transformers rein-
troduced the local window to the self-attention block, the
window size is at least 7⇥7, significantly larger than the
ResNe(X)t kernel size of 3⇥3. Here we revisit the use of
large kernel-sized convolutions for ConvNets.

Moving up depthwise conv layer. To explore large kernels,
one prerequisite is to move up the position of the depthwise
conv layer (Figure 3 (b) to (c)). That is a design decision
also evident in Transformers: the MSA block is placed prior
to the MLP layers. As we have an inverted bottleneck block,
this is a natural design choice — the complex/inefficient
modules (MSA, large-kernel conv) will have fewer channels,
while the efficient, dense 1⇥1 layers will do the heavy lifting.
This intermediate step reduces the FLOPs to 4.1G, resulting
in a temporary performance degradation to 79.9%.

Increasing the kernel size. With all of these preparations,
the benefit of adopting larger kernel-sized convolutions is sig-

11979

d3x3x3 160➞160

1x1x1 160➞640

1x1x1 640➞160

3x3x3 320➞320

ConvNeXt nnUNet

nnUNet-half

3x3x3 160➞160

3x3x3 80➞160 1x1x1 240➞480

1x1x1 160➞80

ours (train)

InstanceNorm

GELU

InstanceNorm + ℓReLU

BatchNorm + ℓReLU

BatchNorm

1x1x1 480➞240

ℓReLU

ours fused (inference)

3x3x3 80➞80 1x1x1 240➞240

ℓReLU

#param 379k 4k + 2x100k

#MADs 453G 0.02+2x0.27 T

runtime 631ms efficiency 3.5%

#param 668k

#MADs 1747G

runtime 257ms

efficiency 33%

#param 231

#MADs 605G

runtime 179ms

efficiency* 54%

#param 2765k

#MADs 7249G

runtime 412ms efficiency 85%

#param 691k

#MADs 1812G

runtime 110ms efficiency 79%

#
m

u
lt

ip
ly

-a
d

d
 o

p
er

at
io

n
s

0G

2000G

4000G

6000G

8000G

runtime (smaller better)

0ms 250ms 500ms 750ms

231k

668k

379k

691k

2'765k

bubble size = #parameter
 (smaller better)

ours fused

half nnUNet ours train

nnUNet

ConvNeXt

Experiments for 5 layers with input
size 2 x 320* x 64 x 64 x 64 (*or 160)

Figure 1: Concept of proposed FasterFusion block and measured inference runtimes of var-
ious choices for (grouped) spatial and pointwise convolution operators. Our con-
cept yields a high GPU utilisation ≈54% close to 3× 3× 3 convolutions, whereas
ConvNeXt fails to convert a lower operations into inference speed.

Contribution: In this work, we present a novel combination of two orthogonal ap-
proaches that tackle the computational burden and make nnUNets small again. Our model
employs a new variant of T-shaped spatial convolutions that act only on a part of the chan-
nels individually together with full-depth pointwise convolutions. Different to (Chen et al.,
2023) we also incorporate a novel version of re-parameterisation as popularised by RepVGG
(Ding et al., 2021) that enables the fusion of the inverted bottleneck FasterFusion. Com-
bined these contributions lead to 3-4× smaller model sizes and 2× faster inference times,
while matching the accuracy and stable training convergence of full-sized models.

2. Methods

Building upon T-shaped spatial convolution (Chen et al., 2023) that perform the spatial
3×3×3 kernels only on a part (in our work a quarter) of channels and use pointwise operators
for the remaining one, we aim to find a good balance between reducing parameters, keeping
a reasonable number of computations for training and a method that yields the fastest
speed at inference. Our approach uses an inverted bottleneck with an intermediate doubled
channel size to limit peak memory when using the same number of input and output channels
as the blocks within the nnUNet (Isensee et al., 2021). In contrast to (Chen et al., 2023), we
place a BatchNorm and no non-linearity between first and second convolution in our block.
This enables us to apply re-parameterisation after training and completely fuse all three
consecutive layers at inference and reduce the parameters by 2.9×. Our method can be
used as drop-in replacement in any 2D or 3D convolutional network, yet in this first proof-
of-concept we restrict ourselves to the popular 3D semantic segmentation architecture of
the nnUNet.

Fig. 1 demonstrates the disproportionated efficiency of plain 3 × 3 × 3 spatial convo-
lutions with large channel size in comparison to depth-separable, groupwise and pointwise
convolutions (when comparing nnUNet with ConvNeXt). Details on the implementation
of training and fusion, which only requires us to perform a number of matrix multipli-
cations on the respective weights once after training, are found in our open source code:

2

Make nnUNets Small Again

https://github.com/mattiaspaul/makennunetsmallagain. Intuitively, a larger number
of trainable parameters and floating point operations will ease training whereas the fusion
of blocks - re-parameterisation - increases efficiency for inference and substantially reduces
the size of models to be stored.

Dice Avg
(Std)

Percentiles
25/50/75 Parameters

baseline
nnUNet

89.7 (16.8) 92/95/97 30’600k

half nnUNet 74.9 (26.0) 68/88/94 7’656k

ConvNeXt 88.2 (14.4) 88/93/95 4’084k

ours
FasterFusion 90.5 (15.6) 93/95/97 5’834k

half nnUNet

ours FasterFusion

training epochs

Figure 2: Left: Validation Dice over epochs shows more robust training of our method com-
pared to other low-parameter models. Middle: Quantitative results demonstrate
improved quality and 81% reduced parameters (at inference). Right: Visual seg-
mentation examples show that using an nnUNet with halved channel sizes yields
some inaccurate vertebrae.

3. Experimental results and Conclusion

We evaluate all method variants for the VerSe19 vertebrae multi-label segmentation task
within the nnUNet framework, by re-orienting all patients into a prone pose with heads
up and without mirror augmentation but otherwise default parameters. All models where
trained on a single RTX-A4000 with 16 GB for 150 epochs on 180 training scans and
evaluated on 22 test cases showing on average 10 out of 25 vertebrae. Note, that we replaced
the default nnUNet layers only with our FasterFusion blocks when the channel size was 160
or above, since we found for small kernels the model size and runtime improvements were
negligible. Fig. 2 highlights the fact that while using 5× fewer parameters our approach
matches the quality of full-sized nnUNets. Our model excels with the highest average Dice of
90.5% and does not suffer from slow or unstable training progress as the half-sized nnUNet
and ConvNeXt variants respectively.

Conclusion: Our work and its experimental findings indicate that applying T-shaped
convolutions – in which 3 × 3 × 3 kernels only act partially on the input channel width –
together with pointwise operators within an specifically designed inverted bottleneck and
re-parameterisation offers an exciting new strategy for better balancing model sizes, training
effort and computational burden of the inference of deep segmentation networks in medical
imaging and beyond.

Acknowledgments

I would like to thank Alex Bigalke for careful proof-reading.

3

https://github.com/mattiaspaul/makennunetsmallagain

Heinrich Hagenah

References

Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S-
H Gary Chan. Run, don’t walk: Chasing higher flops for faster neural networks. arXiv
preprint arXiv:2303.03667, 2023.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian
Sun. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 13733–13742, 2021.

Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein.
nnu-net: a self-configuring method for deep learning-based biomedical image segmenta-
tion. Nature methods, 18(2):203–211, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11976–11986, 2022.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical
guidelines for efficient cnn architecture design. In Proceedings of the European conference
on computer vision (ECCV), pages 116–131, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 4510–4520, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan.
An improved one millisecond mobile backbone. arXiv preprint arXiv:2206.04040, 2022.

4

	Introduction
	Methods
	Experimental results and Conclusion

