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ABSTRACT

State-of-the-art neural network verifiers are fundamentally based on one of two
paradigms: either encoding the whole verification problem via tight multi-neuron
convex relaxations or applying a Branch-and-Bound (BaB) procedure leveraging
imprecise but fast bounding methods on a large number of easier subproblems.
The former can capture complex multi-neuron dependencies but sacrifices com-
pleteness due to the inherent limitations of convex relaxations. The latter en-
ables complete verification but becomes increasingly ineffective on larger and
more challenging networks. In this work, we present a novel complete verifier
which combines the strengths of both paradigms: it leverages multi-neuron re-
laxations to drastically reduce the number of subproblems generated during the
BaB process and an efficient GPU-based dual optimizer to solve the remaining
ones. An extensive evaluation demonstrates that our verifier achieves a new state-
of-the-art on both established benchmarks as well as networks with significantly
higher accuracy than previously considered. The latter result (up to 28% certi-
fication gains) indicates meaningful progress towards creating verifiers that can
handle practically relevant networks.

1 INTRODUCTION

Recent years have witnessed substantial interest in methods for certifying properties of neural net-
works, ranging from stochastic approaches (Cohen et al., 2019) which construct a robust model from
an underlying base classifier to deterministic ones (Gehr et al., 2018; Katz et al., 2017; Xu et al.,
2020) that analyze a given network as is (the focus of our work).

Key Challenge: Scalable and Precise Non-Linearity Handling Deterministic verification meth-
ods can be categorized as complete or incomplete. Recent incomplete verification methods based
on propagating and refining a single convex region (Müller et al., 2022; Dathathri et al., 2020; Tjan-
draatmadja et al., 2020) are limited in precision due to fundamental constraints imposed by convex
relaxations. Traditional complete verification approaches based on SMT solvers (Ehlers, 2017) or
a single mixed-integer linear programming encoding of a property (Tjeng et al., 2019; Katz et al.,
2017) suffer from worst-case exponential complexity and are often unable to compute sound bounds
in reasonable time-frames. To address this issue, a Branch-and-Bound approach (Bunel et al., 2020)
has been popularized recently: anytime-valid bounds are computed by recursively splitting the prob-
lem domain into easier subproblems and deriving bounds on each of these via cheap and less precise
methods (Xu et al., 2021; Wang et al., 2021; Palma et al., 2021; Henriksen & Lomuscio, 2021).
This approach has proven effective on (smaller) networks where there are relatively few unstable
activations and splitting a problem simplifies it substantially. However, for larger networks or those
not regularized to be amenable to certification this strategy becomes increasingly ineffective as the
larger number of unstable activations makes individual splits less effective, which is exacerbated by
the relatively loose underlying bounding methods.

This Work: Branch-and-Bound guided by Multi-Neuron Constraints In this work, we propose
a novel certification method and verifier, called Multi-Neuron Constraint Guided BaB (MN-BAB),
which aims to combine the best of both worlds: it leverages the tight multi-neuron constraints pro-
posed by Müller et al. (2022) within a BaB framework to yield an efficient GPU-based dual method.
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The key insight is that the significantly increased precision of the underlying bounding method
substantially reduces the number of domain splits (carrying exponential cost) required to certify a
property. This improvement is especially pronounced for larger and less regularized networks where
additional splits of the problem domain yield diminishing returns. We release all code and scripts to
reproduce our experiments at https://github.com/eth-sri/mn-bab.

Main Contributions:

• We present a novel verification framework, MN-BAB, which leverages tight multi-neuron
constraints and a GPU-based dual solver in a BaB approach.

• We develop a novel branching heuristic, ACS, based on information obtained from analyz-
ing our multi-neuron constraints.

• We propose a new class of branching heuristics, CAB, applicable to all BaB-based veri-
fiers, that correct the expected bound improvement of a branching decision for the incurred
computational cost.

• Our extensive empirical evaluation demonstrates that we improve on the state of the art in
terms of certified accuracy by as much as 28% on challenging networks.

2 BACKGROUND

In this section, we review the necessary background for our method (discussed next).

2.1 NEURAL NETWORK VERIFICATION

The neural network verification problem can be defined as follows: given a network f : X → Y , an
input region D ⊆ X , and a linear property P ⊆ Y over the output neurons y ∈ Y , prove f(x) ∈ P,
∀x ∈ D. We instantiate this problem with the challenging `∞-norm bounded perturbations and set
D to the `∞ ball around an input point x0 of radius ε: Dε(x0) = {x ∈ X | ||x− x0||∞ ≤ ε}.
For ease of presentation, we consider neural networks of L fully-connected layers with ReLU acti-
vation functions (we note that MN-BAB can handle a wide range of layers including convolutional,
residual, batch-normalization, and average-pooling layers). We focus on ReLU networks as the BaB
framework only yields complete verifiers for piecewise linear activation functions but remark that
our approach is applicable to a wide class of activations including ReLU, Sigmoid, Tanh, MaxPool,
and others. We denote the number of neurons in the ith layer as di and the corresponding weights and
biases asW (i) ∈ Rdi×di−1 and b(i) ∈ Rdi for i ∈ {1, ..., L}. Further, the neural network is defined
as f(x) := ẑ(L)(x) where ẑ(i)(x) :=W (i)z(i−1)(x) + b(i) and z(i)(x) := max(0, ẑ(i)(x)). For
readability, we omit the dependency of intermediate activations on x.

Since we can encode any linear property over output neurons into an additional affine layer, we can
simplify the general formulation f(x) ∈ P to f(x) > 0. The property can now be verified by
proving that a lower bound to the following optimization problem is greater 0:

min
x∈Dε(x0)

f(x) = ẑ(L)

s.t. ẑ(i) =W (i)z(i−1) + b(i)

z(i) = max(0, ẑ(i))

(1)

A method is called sound if every property it proves actually holds (no false positives). A method is
called complete if it can prove every property that actually holds (no false negatives).

2.2 BRANCH-AND-BOUND FOR VERIFICATION

Bunel et al. (2020) successfully applied the Branch-and-Bound (BaB) approach (lan, 1960) to neural
network verification. It consists of a bounding method that computes sound upper and lower bounds
on the optimization objective of Eq. (1) and a branching method that recursively splits the problem
into subproblems with added constraints, allowing for increasingly tighter bounds. If an upper bound
(primal solution) < 0 is found, this represents a counterexample and allows to terminate the proce-
dure. If a lower bound > 0 is obtained, the property is verified on the corresponding (sub-)domain.
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If a lower bound > 0 is derived on all subdomains, the property is verified. An ideal splitting pro-
cedure minimizes the total time required for bounding, which is often well approximated by the
number of considered subproblems. A simple approach is to split the input domain, however, this is
inefficient for high-dimensional input spaces. Splitting a ReLU activation node into its positive and
negative phases has been shown to be far more efficient (Bunel et al., 2020) and ultimately yields a
complete verifier (Wang et al., 2021). Hence, we focus solely on ReLU branching strategies.

2.3 LINEAR CONSTRAINTS
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ux−lx (x− lx)

y ≥ αx

y = max(0, x)

Figure 1: Illustration of the DEEP-
POLY relaxation of a ReLU activation
y = max(x, 0) given the neuron-wise
bounds x ∈ [lx, ux] and parametrized
by α ∈ [0, 1].

The key challenge in neural network verification Eq. (1)
is handling the non-linear activations. Stable ReLUs, i.e.,
those which we can show to be always active (ẑ ≥ 0) or in-
active (ẑ ≤ 0), can be replaced by linear functions. Unsta-
ble ReLUs, i.e., those that can be either active or inactive
depending on the exact x ∈ D, have to be approximated
using a convex relaxation of their input-output set. We
build on the convex relaxation introduced in DEEPPOLY
(Singh et al., 2019b) and shown in Fig. 1. Its key property
is the single linear upper and lower bound, which allows
for efficient bound computation.

2.4 MULTI-NEURON CONSTRAINTS
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Figure 2: Comparison of multi-
neuron and single-neuron constraints
projected into y2-x1-x2-space. Repro-
duced from Müller et al. (2022).

All convex relaxations that consider ReLU neurons in-
dividually are fundamentally limited in their precision
by the so-called (single-neuron) convex relaxation barrier
(Salman et al., 2019). It can be overcome by considering
multiple neurons jointly (Singh et al., 2019a; Tjandraat-
madja et al., 2020; Müller et al., 2022; Palma et al., 2021),
thereby capturing interactions between these neurons and
obtaining tighter bounds, illustrated in Fig. 2. We leverage
the multi-neuron constraints from Müller et al. (2022), ex-
pressed as a conjunction of linear constraints over the joint
input and output space of a ReLU layer.

2.5 CONSTRAINED OPTIMIZATION VIA LAGRANGE MULTIPLIERS

To express constraints as part of the optimization problem, we use the technique of Lagrange mul-
tipliers. Given a constrained minimization problem minx f(x), s.t. g(x) ≤ 0, we can bound the
objective function with:

min
x
f(x) ≥ min

x
max
λ≥0

f(x) + λg(x)

If a constraint is satisfied, i.e., g(x)j ≤ 0, λj = 0 maximizes the (inner) objective, else, i.e.,
g(x)j > 0, increasing λj allows the objective to grow unboundedly, shifting the minimum over x
until the constraint is satisfied. Hence, if λj > 0 after optimization, the constraint is active, i.e., it is
actively enforced and currently satisfied with equality.

3 A MULTI-NEURON RELAXATION BASED BAB FRAMEWORK

In this section, we describe the two key components of MN-BAB: (i) an efficient bounding method
leveraging multi-neuron constraints, as well as constrained optimization via lagrange multipliers
(§3.1), and (ii) a branching method tailored to it (§3.2).

3.1 EFFICIENT MULTI-NEURON BOUNDING

We build on the approach of Singh et al. (2019b), extended by Wang et al. (2021) of deriving a
lower bound f as a function of the network inputs and a set of optimizable parameters. Crucially,
we tighten these relatively loose bounds significantly by enforcing precise multi-neuron constraints
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via Lagrange multipliers. To enable this, we develop a method capable of integrating any linear
constraint over arbitrary neurons anywhere in the network into the optimization objective. At a high
level, we derive linear upper and lower bounds of the form z(i) ≶−az(i−1) + c for every layer’s out-
put in terms of its inputs z(i−1). Then, starting with a linear expression in the last layer’s outputs
z(L) which we aim to bound, we use the linear bounds derived above, to replace z(L) with symbolic
bounds depending only on the previous layer’s values z(L−1). We proceed in this manner recur-
sively until we obtain an expression only in terms of the networks inputs. Below, we describe this
backsubstitution process for ReLU and affine layers.

Affine Layer Assume any affine layer ẑ(i) = W(i)z(i−1)+b(i) and a lower bound f = â(i)ẑ(i)+

ĉ(i) with respect to its outputs. We then substitute the affine expression for ẑ(i) to obtain:

f = â(i)W(i)︸ ︷︷ ︸
a(i−1)

z(i−1) + â(i)b(i) + ĉ(i)︸ ︷︷ ︸
c(i−1)

= a(i−1)z(i−1) + c(i−1) (2)

ReLU Layer Let f = a(i)z(i) + c(i) be a lower bound with respect to the output of a ReLU
layer z(i) = max(0, ẑ(i)) and l(i) and u(i) bounds on its input s.t. l(i) ≤ ẑ(i) ≤ u(i), obtained by
recursively applying this bounding procedure or using a cheaper but less precise bounding method
(Singh et al., 2018; Gowal et al., 2018). The backsubstitution through a ReLU layer now consists
of three distinct steps: 1) enforcing multi-neuron constraints, 2) enforcing single-neuron constraints
to replace the dependence on z(i) by ẑ(i), and 3) enforcing split constraints, which we describe in
detail below.

Enforcing Multi-Neuron Constraints We compute multi-neuron constraints as described in Müller
et al. (2022), although our approach is applicable to any linear constraints in the input-output space
of ReLU activations, written as: [

P (i) P̂ (i) −p(i)
] z(i)ẑ(i)

1

 ≤ 0. (3)

where ẑ(i) are the pre- and z(i) the post-activation values and P (i), P̂ (i), and −p(i) the constraint
parameters. We enforce these constraints using Lagrange multipliers (see §2.5), yielding sound
lower bounds for all γ(i) ∈ (R≥0)

ei , where ei denotes the number of multi-neuron constraints in
layer i.

a(i)z(i) + c(i) ≥ max
γ(i)≥0

a(i)z(i) + c(i) + γ(i)>(P (i)z(i) + P̂ (i)ẑ(i) − p(i))

= max
γ(i)≥0

(a(i) + γ(i)>P (i))︸ ︷︷ ︸
a′(i)

z(i) + γ(i)>P̂ (i)ẑ(i) + γ(i)>(−p(i)) + c(i)︸ ︷︷ ︸
c′(i)

Note that this approach can be easily extended to linear constraints over any activations in arbitrary
layers if applied in the last affine layer at the very beginning of the backsubstitution process.

Enforcing Single-Neuron Constraints We now apply the single-neuron DEEPPOLY relaxation with
parametrized slopes α collected inD (see below):

max
γ(i)≥0

a′(i)z(i) + c′(i) ≥ max
0≤α(i)≤1
γ(i)≥0

a′(i)(D(i)ẑ(i) + b(i)) + c′(i)

= max
0≤α(i)≤1
γ(i)≥0

a′(i)D(i)︸ ︷︷ ︸
a′′(i)

ẑ(i) + a′(i)b(i) + c′(i)︸ ︷︷ ︸
c′′(i)

The intercept vector b and the diagonal slope matrixD are defined as:

Dj,j =


1 if lj ≥ 0 or node j is positively split
0 if uj ≤ 0 or node j is negatively split
αj if lj < 0 < uj and aj ≥ 0
uj

uj−lj if lj < 0 < uj and aj < 0
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bj =

{
− uj lj
uj−lj if lj < 0 < uj and aj < 0

0 otherwise

Where we drop the layer index i for readability and αj is the lower bound slope parameter illustrated
in Fig. 1. Note how, depending on whether the sensitivity a(i)j of f w.r.t. z(i)j has positive or negative

sign, we substitute z(i)j for its lower or upper bound, respectively.

Enforcing Split Constraints We encode split constraints of the form ẑ
(i)
j ≥ 0 or ẑ(i)j ≤ 0 using the

diagonal split matrix S as follows, again dropping the layer index i:

Sj,j =


−1 positive split: ẑj ≥ 0

1 negative split: ẑj < 0

0 no split

S(i)ẑ(i) ≤ 0

We again enforce these constraints using Lagrange multipliers:

max
0≤α(i)≤1
γ(i)≥0

a′′(i)ẑ(i) + c′′(i) ≥ max
0≤α(i)≤1
β(i)≥0
γ(i)≥0

(a′′(i) + β(i)>S(i))︸ ︷︷ ︸
a′′′(i)

ẑ(i) + c′′(i)︸︷︷︸
c′′′(i)

Putting everything together, the backsubstitution operation through a ReLU layer is:

min
x∈D

a(i)z(i) + c(i) ≥ min
x∈D

max
0≤α(i)≤1
β(i)≥0
γ(i)≥0

((a(i) + γ(i)>P (i))D(i) + β(i)>S(i) + γ(i)>P̂ (i))︸ ︷︷ ︸
â(i)

ẑ(i)

+ (a(i) + γ(i)>P (i))′b(i) + γ(i)>(−p(i)) + c(i)︸ ︷︷ ︸
ĉ(i)

(4)

Full backsubstitution through all layers leads to an optimizable lower bound on f :

min
x∈D

f(x) ≥ min
x∈D

max
0≤α≤1
0≤β
0≤γ

a(0)x+ c(0) ≥ max
0≤α≤1
0≤β
0≤γ

min
x∈D

a(0)x+ c(0)

where the second inequality holds due to weak duality. We denote all α(i)
j from every layer of the

backsubstitution process with α and define β and γ analogously. The inner minimization over x
has a closed form solution if D is an lp-ball of radius ε around x0, given by Hölder’s inequality:

max
0≤α≤1
0≤β
0≤γ

min
x∈D

a(0)x+ c(0) ≥ max
0≤α≤1
0≤β
0≤γ

a(0)x0 − ||a(0)>||q ε+ c(0) (5)

where q is defined s.t. 1
p +

1
q = 1. Since these bounds are sound for any 0 ≤ α ≤ 1, and β,γ ≥ 0,

we tighten them by using (projected) gradient ascent to optimize these parameters.

We compute all intermediate bounds using the same bounding procedure, leading to two full param-
eter sets for every neuron in the network. To reduce memory requirements, we share parameter sets
between all neurons in the same layer, but keep separate sets for upper and lower bounds.

Upper Bounding the Minimum Objective Showing an upper bound on the minimum optimiza-
tion objective precluding verification (f < 0) allows us to terminate the BaB process early. Prop-
agating any input x ∈ D through the network yields a valid upper bound, hence, we use the input
that minimizes Eq. (5):

xi =

{
(x0)i + ε if a(0)i < 0

(x0)i − ε if a(0)i ≥ 0
.
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3.2 MULTI-NEURON CONSTRAINT GUIDED BRANCHING

Generally, the BaB approach is based on recursively splitting an optimization problem into easier
subproblems to derive increasingly tighter bounds. However, the benefit of different splits can vary
widely, making an effective branching heuristic which chooses splits that minimize the total number
of required subproblems a key component of any BaB framework (Bunel et al., 2020). Typically, a
score is assigned based on the expected bound improvement and the most promising split is chosen.
Consequently, the better this score captures the actual bound improvement, the better the resulting
decision. Both the commonly used BABSR (Bunel et al., 2020) and the more recent FSB (De Palma
et al., 2021) approximate improvements under a DEEPPOLY style backsubstitution procedure. As
neither considers the impact of multi-neuron constraints, the scores they compute might not be
suitable proxies for the bound improvements obtained with our method. To overcome this issue,
we propose a novel branching heuristic, Active Constraint Score Branching (ACS), considering
multi-neuron constraints. Further, we introduce a branching heuristic framework which corrects the
expected bound improvement with the potentially significantly varying expected computational cost.

Active Constraint Score Branching The value of a Lagrange parameter γ provides valuable in-
formation about the constraint it enforces. Concretely, γ > 0 indicates that a constraint is active,
i.e., the optimal solution fulfills it with equality. Further, for a constraint g(x) ≤ 0, a larger ∂xγg(x)
indicates a larger sensitivity of the final bound to violations of this constraint. We compute this
sensitivity for our multi-neuron constraints with respect to both ReLU outputs and inputs as γ>P
and γ>P̂ , respectively, where P and P̂ are the multi-neuron constraint parameters. We then define
our branching score for a neuron j in layer i as the sum over all sensitivities with respect to its input
or output:

si,j = |γ(i)>P (i)|j + |γ(i)>P̂ (i)|j , (6)

Intuitively, splitting the node with the highest cumulative sensitivity makes its encoding exact and
effectively tightens all of these high sensitivity constraints. We can efficiently compute those scores
without an additional backsubstitution pass.

Cost Adjusted Branching Any complete method will decide every property eventually. Hence,
its runtime is a key performance metric. Existing branching heuristics ignore this aspect and only
consider the expected improvement in bound-tightness, but not the sometimes considerable differ-
ences in computational cost. We propose Cost Adjusted Branching (CAB), scaling the expected
bound improvement (approximated with the branching score) with the inverse of the cost expected
for the split, and then picking the branching decision yielding the highest expected bound improve-
ment per cost. The true cost of a split consists of the direct cost of the next branching step and the
change of cumulative cost for all consecutive steps. We find a local approximation considering just
the former component, similar to only considering the one-step bound improvement, to be a good
proxy. We approximate this direct cost by the number of floating-point operations required to com-
pute the new bounds, refer to App. B for a more detailed description. Note that any approximation
of the expected cost can be used to instantiate CAB.

Enforcing Splits Once the ReLU node to split on has been determined, two subproblems are
generated. One where a non-negative ẑ ≥ 0 and one where non-positive ẑ ≤ 0 pre-activation value
has to be enforced. This is accomplished by setting the corresponding entries in the split matrix
S, used during the bounding process, to −1 and 1, respectively. As the intermediate bounds for all
layers up to and including the one that was split remain unchanged, we do not recompute them.

3.3 SOUNDNESS AND COMPLETENESS

The soundness of the BaB approach follows directly from the soundness of the underlying bounding
method discussed in Section 3.1. To show completeness, it is sufficient to consider the limit case
where all ReLU nodes are split and the network becomes linear, making DEEPPOLY relaxations
exact. To also obtain exact bounds, all split constraints have to be enforced. This can be done by
computing optimal β for the now convex optimization problem (Wang et al., 2021). It follows that
a property holds if and only if the exact bounds thus obtained are positive on all subproblems. We
conclude that MN-BAB is a complete verifier.
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Table 1: Natural accuracy [%] (Acc.), verified accuracy [%] (Ver.) and its empirical upper bound
[%] and average runtime [s] of the first 1000 images of the test set.

Dataset Model Acc. ε
ERAN OVAL β-CROWN

MN-BAB (ours)
BABSR +CAB

MN-BAB (ours)
ACS +CAB Upper

Bound
Ver. Time Ver. Time Ver. Time Ver. Time Ver. Time

MNIST ConvSmall 98.0 0.12 73.2 38.4 69.8 26.2 71.6† 46 71.0 21.3 70.3 26.2 73.2
ConvBig 92.9 0.30 78.6 6.0 − − 77.7† 78 78.3 20.8 77.2 46.2 78.6
ConvSuper 97.7 0.18 0.5 142.0 − − − − 19.2 86.2 17.6 90.9 37.3

CIFAR10 ConvSmall 63.0 2/255 47.2 54.4 46.2 17.7 46.3† 18 46.1 16.4 45.8 18.0 48.1
ConvBig 63.1 2/255 48.2 128.1 50.6 42.0 50.3† 55 49.4 49.5 51.5 37.0 55.0
ResNet6-A ‡ 84.0 1/255 45.0 114.6 • • 52.0 263.4 48.0 202.7 55.0 170.7 75.0
ResNet6-B ‡ 79.0 1/255 66.0 48.6 • • 67.0 105.7 65.0 51.1 67.0 37.8 71.0
ResNet8-A ‡ 83.0 1/255 11.0 362.5 • • 18.0 497.3 19.0 390.7 23.0 371.0 70.0

†We report numbers from Wang et al. (2021). − Errors prevent reporting reliable numbers. ‡ Due to long runtimes, we evaluated only on the
first 100 samples of the test set. • OVAL does not support ResNet architectures.

4 EXPERIMENTAL EVALUATION

We now present an extensive evaluation of our method. First, and perhaps surprisingly, we find that
existing MILP-based verification tools (Singh et al., 2019c; Müller et al., 2022) are more effective in
verifying robustness on many established benchmark networks than what is considered state-of-the-
art. This highlights that next-generation verifiers should focus on and be benchmarked using less
regularized and more accurate networks. We take a step in this direction by proposing and comparing
on such networks, before analyzing the effectiveness of the different components of MN-BAB in an
extensive ablation study.

Experimental Setup We implement a GPU-based version of MN-BAB in PyTorch (Paszke et al.,
2019) and evaluate all benchmarks using a single NVIDIA RTX 2080Ti, 64 GB of memory, and
16 CPU cores. We attempt to falsify every property with an adversarial attack, before beginning
certification. For every subproblem, we first lower-bound the objective using DEEPPOLY and then
compute refined bounds using the method described in §3.

Benchmarks We benchmark MN-BAB on a wide range of networks (see Table 3 in App. A) on
the MNIST (Deng, 2012) and CIFAR10 datasets (Krizhevsky et al., 2009). We also consider three
new residual networks, ResNet6-A, ResNet6-B, and ResNet8-A. ResNet6-A and ResNet6-B have the
same architecture but differ in regularization strength while ResNet8-A has an additional residual
block. All three were trained with adversarial training (Madry et al., 2018) using PGD, the GAMA
loss (Sriramanan et al., 2020) and MixUp data augmentation (Zhang et al., 2021). ResNet6-A and
ResNet8-A were trained using 8-steps and ε = 4/255, whereas 20-steps and ε = 8/255 were used
for ResNet6-B.We compare against β-CROWN (Wang et al., 2021), a BaB-based state-of-the-art
complete verifier, OVAL (Palma et al., 2021; De Palma et al., 2021; Bunel et al., 2020), a BaB frame-
work based on a different class of multi-neuron constraints, and ERAN Singh et al. (2019c); Müller
et al. (2022) combining the incomplete verifier PRIMA, whose tight multi-neuron constraints we
leverage in our method, and a (partial) MILP encoding.

Comparison to State-of-the-Art Methods In Table 1, we compare the verified accuracy and run-
time of MN-BAB with that of state-of-the-art tools ERAN, β-CROWN, and OVAL. Perhaps sur-
prisingly, we find that both MNIST and the smallest CIFAR10 benchmark network established over
the last years (Singh et al., 2019b) can be verified completely or almost completely in less than 50s
per sample using ERAN, making them less relevant as benchmarks for new verification tools. On
these networks, all three BaB methods (including ours) are outperformed to a similar degree, with
the reservation that we could not evaluate OVAL on MNIST ConvBig due to runtime errors. On
the remaining unsolved networks where complete verification via a MILP encoding does not scale,
MN-BAB consistently obtains the highest certified accuracy and for all but one also the lowest run-
time. On ConvSuper we were not able to find configurations for OVAL and β-CROWN that did not
run out of memory. Comparing the BaB methods, we observe an overall trend that more precise
but also expensive underlying bounding methods are most effective on larger networks, where addi-
tional splits are less efficient, and complex inter-neuron interactions can be captured by the precise
multi-neuron constraints. On these networks, the more complex interactions also lead to more active
Multi-Neuron Constraints (MNCs) and hence more informative ACS scores.
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without and with MNCs.
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Figure 5: Effect of Cost Ad-
justed Branching on mean
verification time with ACS.

Table 2: Verified accuracy [%] (Ver.) and avg. runtime
[s] on the first 100 images of the test set for ε = 1/255).

Model Acc. Upper
Bound

Branching
Method MNCs

MN-BAB

Ver Time

ResNet6-A 84 75 No Branching no 30 0.4
No Branching yes 39 13.2
BABSR no 42 247.1
BABSR +CAB no 46 219.3
FSB yes 45 239.7
BABSR yes 47 212.8
BABSR +CAB yes 48 202.7
ACS yes 51 186.4
ACS +CAB yes 55 170.7

ResNet6-B 79 71 No Branching no 58 0.7
No Branching yes 61 4.1
BABSR no 61 78.3
BABSR +CAB no 63 64.9
FSB yes 64 67.0
BABSR yes 63 65.5
BABSR +CAB yes 65 51.1
ACS yes 65 52.0
ACS +CAB yes 67 37.8

Ablation Study To analyze the indi-
vidual components of MN-BaB, we con-
sider the weakly and heavily regular-
ized ResNet6-A and ResNet6-B, respec-
tively, with identical architecture. Con-
cretely, we show the effect different
bounding procedures and branching ap-
proaches have in the two settings in Ta-
ble 2. As verified accuracy and mean run-
time are very coarse performance metrics,
we also analyze the ratio of runtimes and
number of subproblems required for ver-
ification on a per-property level, filtering
out those where both methods verify be-
fore any branching occurred (Figs. 3–5).
Overall, we observe that the number of
visited subproblems required for certifica-
tion can be reduced by two to three orders
of magnitude by leveraging precise multi-
neuron constraints and then again by another one to two orders of magnitude by our novel branching
heuristic, ACS. Our cost-adjusted branching yields an additional speed up of around 50%.

0 150 300 450
Time [s] wo. MNC BaBSR

0

150

300

Time [s] MNC ACS+CAB

ResNet6-A

ResNet6-B

Figure 6: Per property verification
times using MN-BAB over those
without MNCs and using BABSR.

The trend of MN-BAB succeeding on more challenging net-
works is confirmed here. Leveraging MNCs enables us to ver-
ify 20% more samples while being around 22% faster (see Ta-
ble 2) on ResNet6-A while on the more heavily regularized
ResNet6-B we only verify 6% more samples. When analyzing
on a per-property level, shown in Fig. 6, the trend is even more
pronounced. For easy problems, leveraging MNCs and ACS
has little impact (points in the lower left-hand corner). How-
ever, it completely dominates on the harder properties where
only using single-neuron constraints and BABSR takes up to
33 times longer (points below the diagonal).

Effectiveness of Multi-Neuron Constraints In Fig. 3, we
show the ratio between the number of subproblems required to prove the same lower bound on the
final objective (either 0, if both methods certify, or the smaller of the two lower bounds at termina-
tion) with and without MNCs over the quantile of properties for ResNet6-A (blue) and ResNet6-B
(orange). We observe that using MNCs reduces the number of subproblems for both networks by
between two and three orders of magnitude. Despite the higher per bounding-step cost, this leads to
the use of MNCs increasing the number of verified samples by up to 12% while reducing average
certification times (see Table 2).

Effectiveness of ACS Branching In Fig. 4, we show the ratio between the number of subprob-
lems considered when using BABSR vs. ACS over the quantile of properties. We observe that
ACS yields significantly fewer subproblems on most (75%) or all properties on ResNet6-A and
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ResNet6-B, respectively, leading to an additional reduction by between one and two orders of mag-
nitude and showing the effectiveness of our novel ACS branching heuristic. Average verification
times are reduced by 12% and 21% on ResNet6-A and ResNet6-B, respectively. Note that the rel-
atively small improvements in timings are due to timeouts for both methods yielding equally high
runtimes which dominate the mean. FSB is consistently outperformed by ACS, certifying 12% less
samples on ResNet6-A.

Effectiveness of Cost Adjusted Branching In Fig. 5, we show the per property verification times
with ACS + CAB over those with ACS. Using CAB is faster (points below the dashed line) for all
properties, sometimes significantly so, leading to an average speedup of around 50%. Analyzing
the results in Table 2, we observe that CAB is particularly effective in combination with the ACS
scores and multi-neuron constraints, where bounding costs vary more significantly.

5 RELATED WORK

Neural Network Verification Beyond the Single Neuron Convex Barrier After the so-called
(Single Neuron) Convex Barrier has been described by Salman et al. (2019) for incomplete
relaxation-based methods, a range of approaches has been proposed that consider multiple neu-
rons jointly to obtain tighter relaxations. Singh et al. (2019a) and Müller et al. (2022) derive joint
constraints over the input-output space of groups of neurons and refine their relaxation using the
intersection of these constraints. Tjandraatmadja et al. (2020) merge the ReLU and preceding affine
layer to consider multiple inputs but only one output at a time. While the two approaches are theo-
retically incomparable, the former yields empirically better results (Müller et al., 2022).

Early complete verification methods relied on off-the-shelf SMT (Katz et al., 2017; Ehlers, 2017)
or MILP solvers (Dutta et al., 2018; Tjeng et al., 2019). However, these methods do not scale
beyond small networks. In order to overcome these limitations, Bunel et al. (2020) formulated a
BaB style framework for complete verification and showed it contains many previous methods as
special cases. The basic idea is to recursively split the verification problem into easier subproblems
on which cheap incomplete methods can show robustness. Since then, a range of partially (Xu
et al., 2021) or fully (Wang et al., 2021; Palma et al., 2021) GPU-based BaB frameworks have been
proposed. The most closely related, Palma et al. (2021), leverages the multi-neuron constraints from
Tjandraatmadja et al. (2020) but yields an optimization problem of different structure, as constraints
only ever include single output neurons.

Branching Most ReLU branching methods proposed to date use the bound improvement of the
two child subproblems as the metric to decide which node to branch on next. Full strong branching
(Applegate et al., 1995) exhaustively evaluates this for all possible branching decisions. However,
this is intractable for all but the smallest networks. Lu & Kumar (2020) train a GNN to imitate
the behavior of full strong branching at a fraction of the cost, but transferability remains an open
question and collecting training data to imitate is costly. Bunel et al. (2020) proposed an efficiently
computable heuristic score, locally approximating the bound improvement of a branching decision
using the method of Wong & Kolter (2018). Henriksen & Lomuscio (2021) refine this approach
by additionally approximating the indirect effect of the branching decision, however, this requires
using two different bounding procedures. De Palma et al. (2021) introduced filtered-smart-branching
(FSB), using BaBSR to select branching candidates and then computing a more accurate heuristic
score only for the selected candidates. Instead of targeting the largest bound improvement, Kouvaros
& Lomuscio (2021) aim to minimize the number of unstable neurons by splitting the ReLU node
with the most other ReLU nodes depending on it.

6 CONCLUSION

We propose the complete neural network verifier MN-BAB. Building on the Branch-and-Bound
methodology, MN-BAB leverages tight multi-neuron constraints, a novel branching heuristic and an
efficient dual solver, able to utilize massively parallel hardware accelerators, to enable the verifica-
tion of particularly challenging networks. Our thorough empirical evaluation shows how MN-BAB
is particularly effective in verifying challenging networks with high natural accuracy and practical
relevance, reaching a new state-of-the-art in several settings.
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7 ETHICS STATEMENT

Most machine learning based systems can be both employed with ethical as well as malicious pur-
poses. Methods such as ours that enable the certification of robustness properties of neural networks
are a step towards more safe and trustworthy AI systems and can hence amplify any such usage.
Further, malicious actors might aim to convince regulators that the proposed approach is sufficient
to show robustness to perturbations encountered during real world application, which could lead to
insufficient regulation in safety critical domains.

8 REPRODUCIBILITY STATEMENT

We will make all code and trained networks required to reproduce our experiments available during
the review process as supplementary material and provide instructions on how to run them. Upon
publication, we will also release them publicly. We explain the basic experimental setup in Section 4
and provide more details in Section A. All datasets used in the experiments are publicly available.
Random seeds are fixed where possible and provided in the supplementary material.
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Table 3: Overview of the experimental configuration for every network.

Dataset Model Training Timeout Batch sizes #Activation
Layers

#Activation
Nodes

MNIST ConvSmall NOR 360 [100, 200, 400] 3 3 604
ConvBig DiffAI 2000 [2, 2, 4, 8, 12, 20] 6 34 688
ConvSuper DiffAI 360 [1, 2, 2, 3, 4, 8] 6 88 500

CIFAR10 ConvSmall PGD 360 [100, 150, 250] 3 4 852
ConvBig PGD 500 [3, 3, 6, 6, 8, 16] 6 62 464
ResNet6-A PGD 600 [4, 4, 8, 12, 16, 100] 6 10 340
ResNet6-B PGD 600 [4, 8, 32, 64, 128, 256] 6 10 340
ResNet8-A PGD 600 [2, 2, 2, 4, 8, 16, 32, 64] 8 11 364

A EXPERIMENT DETAILS

In Table 3 we show the per-sample timeout and the batch sizes that were used in the experiments.
The timeouts for the first 4 networks were chosen to approximately match the average runtimes
reported by Wang et al. (2021), to facilitate comparability.

Since we keep intermediate bounds of neurons before the split layer fixed, as described in Sec-
tion 3.2, the memory requirements for splitting at different layers can vary. We exploit this fact and
choose batch sizes for our bounding procedure depending on the layer where the split occurred.

In order to falsify properties more quickly, we run a strong adversarial attack with the following
parameters before attempting certification: We apply two targeted versions (towards all classes) of
PGD (Madry et al., 2018) using margin loss (Gowal et al., 2018) and GAMA loss (Sriramanan et al.,
2020), both with 5 restarts, 50 steps, and 10 step output diversification (?).

A.1 ARCHITECTURES

In this section, we provide an overview of all the architectures evaluated in Section 4. The ar-
chitectures of the convolutional networks for MNIST and CIFAR10 are detailed in Table 4. The
architectures of both ResNet6-A and ResNet6-B are given in Table 5

Table 4: Network architectures of the convolutional networks for CIFAR10 and MNIST. All layers
listed below are followed by an activation layer. The output layer is omitted. ‘CONV c h×w/s/p’
corresponds to a 2D convolution with c output channels, an h×w kernel size, a stride of s in both
dimensions, and an all-around zero padding of p.

ConvSmall ConvBig ConvSuper

CONV 16 4×4/2/0 CONV 32 3×3/1/1 CONV 32 3×3/1/0
CONV 32 4×4/2/0 CONV 32 4×4/2/1 CONV 32 4×4/1/0

FC 100 CONV 64 3×3/1/1 CONV 64 3×3/1/0
CONV 64 4×4/2/1 CONV 64 4×4/1/0

FC 512 FC 512
FC 512 FC 512

B SPLIT-COST COMPUTATION FOR CAB

Recall that for CAB, we normalize the branching score obtained with an arbitrary branching heuris-
tic with the (approximate) cost of the corresponding split. The true cost of a split consists of the
direct cost of the next branching step and the change of cumulative cost for all consecutive steps. As
a local approximation, we just consider the former component.

We approximate this direct cost by the number of floating-point operations required to compute
the new bounds. This is computed as the sum of floating-point operations required for bounding
all intermediate bounds that are recomputed. Our bounding approach only enforces constraints
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Table 5: Network architecture of the ResNet6 and ResNet8. All layers listed below are followed by a
ReLU activation layer, except if they are followed by a RESADD layer. The output layer is omitted.
‘CONV c h×w/s/p’ corresponds to a 2D convolution with c output channels, an h×w kernel size, a
stride of s in both dimensions, and an all-around zero padding of p.

ResNet6 ResNet8

CONV 16 3×3/1/1 CONV 16 3×3/2/1
CONV 32 1×1/2/0 CONV 32 3×3/2/1 CONV 32 1×1/2/0 CONV 32 3×3/2/1

CONV 32 3×3/1/1 CONV 32 3×3/1/1
RESADD RESADD

CONV 64 1×1/2/0 CONV 64 3×3/2/1 CONV 64 1×1/2/0 CONV 64 3×3/2/1
CONV 64 3×3/1/1 CONV 64 3×3/1/1

RESADD RESADD
FC 100 CONV 128 1×1/2/0 CONV 128 3×3/2/1

CONV 128 3×3/1/1
RESADD
FC 100

on neurons preceding the neurons included in the bounding objective. Hence, we only recompute
intermediate bounds for layers after the layer where the split occurs, as discussed in §3.2.

To compute the cost of recomputing the lower (or upper) bound of one intermediate node, we add up
all floating point operations needed to perform the backsubstitution described in §3.1. As backsub-
stitution is just a series of matrix multiplications, the number of required floating point operations
can be deduced from the sizes of the multiplied matrices.

Thus if we split on layer k of an L layer network and the cost of backsubstituion from layer i is Ci
and the number of nodes is di, the final cost of the split is:

L∑
i=k+1

2diCi

Where the factor 2 comes from the fact that for intermediate bounds we need to recompute both
lower and upper bounds. The cost Ci of a full backsubstitution from layer i can be computed as the
sum over the cost of backsubstituting through all preceding layers Ci =

∑i−1
j=0 cj , where the cost

for a single layer can be computed as follows:

• ReLU layer: cj = dj + pj , where pj is the number of multi-neuron constraints.
• Linear layer: cj = #Wj , where #Wj is the number of elements in the weight matrix.

• Conv layer: cj = djk
2
j , where kj is the kernel size.
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