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ABSTRACT

Learning representations on Heterogeneous Multiplex Graphs (HMGs) is an ac-
tive field of study, driven by the need for generating expressive, low-dimensional
embeddings to support downstream machine learning tasks. A key component
of this process is the design of the graph processing pipeline, which directly im-
pacts the quality of learned representations. Information fusion techniques, which
aggregate information across layers of a multiplex graph, have been shown to im-
prove the performance of Graph Neural Network (GNN)-based architectures on
various tasks including node classification, edge prediction, and graph-level clas-
sification. Recent research has explored fusion strategies at different stages of the
processing pipeline, leading to graph-, GNN-, embedding-, and prediction-level
approaches. In this work, we propose a model extending the GraphSAGE ar-
chitecture, which simultaneously refines layer-wise embeddings produced by the
encoder while training downstream models. We evaluate the model’s effective-
ness on an HMG on real-world and benchmark datasets, comparing it to models
utilizing either graph-level or prediction-level fusion without jointly optimizing
their vector embeddings. We demonstrate that our approach enhances the model’s
performance on downstream tasks, particularly node classification.

1 INTRODUCTION

As the internet continues to expand rapidly, users are increasingly exposed to irrelevant and un-
wanted information, driving demand for systems connecting users with more personalized and
streamlined content (Bawden & Robinson! (2020)). Recommendation systems have thus become
essential for enhancing user experiences, and for enabling companies to influence consumer behav-
ior across industries. These systems learn and predict user preferences to recommend relevant items,
driving user engagement, satisfaction, and revenue (Roy & Duttal (2022)). In 2013, 35% of Amazon
purchases and 75% of Netflix streams were driven by algorithmic recommendations (MacKenzie
(2024)). Their significance is underscored by the growth of companies who rely on them including
Amazon, Netflix, Spotify, and Facebook.

Recommendation systems are categorized as either content-based, collaborative filtering-based, or
hybrid systems (Roy & Dutta (2022))). Content-based algorithms create user and item profiles from
features and interactions, but face shortcomings with exploring new interests and leveraging the in-
formation of other users. Collaborative filtering addresses this problem by creating neighbourhoods
of users with similar interests, using either memory- or model-based approaches to make predictions
(Roy & Duttal (2022)).

These approaches typically operate only on predefined data types and user-item connections. With
advances in data collection, modern recommendation systems aim to incorporate more diverse and
complex feature and connection data. This demand has led to the popularization of hybrid- and
graph- based systems, which excel at modeling intricate relationships. (Roy & Dutta| (2022)).

Graph Representation Learning (GRL) algorithms use shallow or deep methods to learn low-
dimensional embedding vectors of graph elements, enabling their use for downstream tasks includ-
ing node classification, edge prediction, clustering, and graph-level classification (Kipf & Welling
(2016); [Hamilton| (2020)). While most GNN-based architectures are designed for homogeneous
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graphs, with uniform node and edge types, real-world networks are often inherently heterogeneous
and/or multiplex, containing both nodes and edges of multiple distinct types (Zhang et al.| (2024)).
Accordingly, improving learned representations for Heterogeneous Multiplex Graphs (HMGs) is an
active field of research.

1.1 MULTIPLEX GRAPH REPRESENTATION LEARNING

Multiplex graphs model different connection types between nodes as distinct edge layers, enabling
the incorporation of edge type information into models (Gong & Cheng|(2019)). Information fusion
is necessary to consolidate information across layers of a multiplex network during representation
learning, and is categorized into four distinct types: graph-, GNN-, embedding-, and prediction-level
Bielak & Kajdanowicz (2024).

Graph-level fusion-based architectures flatten all edge layers of a multiplex graph into a single
layer prior to learning embeddings. Models such as MHGCN (Yu et al.| (2022)) learn aggregation
functions, while others simply flatten the graph before passing it to a GNN, Graph Convolutional
Network (GCN), or other homogeneous graph-compatible model. These architectures are typically
outperformed by models utilizing more complex fusion strategies (Bielak & Kajdanowicz (2024)).

GNN-level fusion-based architectures consider the multi-layered graph structure while learning
node embeddings, to account for connections in all layers. DMGI combines layer-wise embeddings
using a learned matrix (Park et al.| (2020)). HDGI uses an attention mechanism to capture layer-
specific information (Ren et al.|(2020)). S2MGRL uses a Multi-Layer-Perceptron (MLP) and GCN
to provide a fused embedding that captures layer-specific information (Mo et al.| (2022)). These
methods output a single embedding for each node to be used in downstream tasks.

Embedding-level fusion-based models compute node embeddings for each layer and then com-
bine them using a fusion operator. Operators can be trainable (using attention, projection, or ma-
trix lookup) or non-trainable (Mean, Concat, Min, Max, or Sum) (Bielak & Kajdanowicz (2024)).
Complex architectures, such as MxPool, use trained, differentiable pooling operators to generate
hierarchical node embeddings (Liang et al.| (2020)).

Prediction-level fusion learns node embeddings independently for each layer using an architecture
like DGI, DW, ARVGA, or GraphSAGE, and trains a distinct task model on each layer.(Velickovi¢
et al.| (2018); Perozzi et al.| (2014); Pan et al.| (2018)); Hamilton et al.[| (2017)). Predictions are ag-
gregated across layers using either soft or hard ensemble voting to give a single result (Bielak &
Kajdanowicz|(2024)).

These information fusion techniques produce node embeddings for multiplex graphs, but are not
specifically optimized for the downstream tasks for which they may be used.

1.2 USING LEARNED REPRESENTATIONS FOR DOWNSTREAM TASKS

Learned embeddings can perform sub-optimally on downstream tasks such as node classification
and clustering (Velickovic¢ et al.| (2018); Hamilton| (2020)). To address these challenges, joint op-
timization, where encoders and downstream models are trained simultaneously have been used in
other application domains such as computer vision and text classification (Zhuge et al.| (2019); |Jer-
nite et al.|(2017);|Asano et al.|(2020); Vargas-Vieyra et al.|(2020)). This paradigm has been shown
to produce task-optimal representations and improve downstream performance relative to baseline
models.

The objective of this paper is three-fold:
1. To apply joint-optimization techniques for learning task-specific representations for graph-
based recommendation systems.
2. Handle the challenges of learning meaningful representations in the context of HMGs.

3. Provide a set of best practices for learning representations from realistic graph datasets.

Simultaneous Encoder-Classifier Optimization (SECO) To address objective 1, we introduce
and define the concept of SECO, a paradigm in which a model iteratively and simultaneously up-
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Model Information Fusi?n Level _ SECO
Graph- GNN- Embedding- Prediction-

Graph-level flattening
(GCN/GAT/DW/DGI) v X X X X
(Bielak & Kajdanowicz| (2024))

| MHGCN (Yu et al(2022)) v X X X X
Model C1 - v X X X X
Model C2 v X X X v
DMGI (Park et al.[(2020)) X v X X X
HDGI (Ren et al.| (2020)) X v X X X
MxPool (Liang et al. (2020)) X v X X X
S 2MGRL (Mo et al.7(2022)) X v X X X
Embedding-level ﬂatt%ning
(GCN/GAT/DW/DGI) X X v X X
(Bielak & Kajdanowicz| (2024))

| Vote (Bielak & Kajdanowicz|(2024)) X X X v X
Model C3 R X X X v X
SECSAGE - (Our proposed model) X X X v v

Table 1: Comparison of Information Fusion methods on Multiplex GRL Models

dates its encoder and downstream classifier in a supervised manner, learning task-optimal node
embeddings.

HMGSAGE To address the second objective of the paper, we introduce HMGSAGE, an encoder
extending the GraphSAGE architecture for inductive GRL to learn embeddings on HMGs. The
encoder uses parallel GraphSAGE layers to sample and aggregate neighbours of nodes within the
graph, preserving the structure of the data while maintaining flexibility and scalability on large
graphs. HMGSAGE can be trained as part of a Graph Autoencoder (GAE) using contrastive ap-
proaches to learn node embeddings for HMGs that are useful for edge prediction tasks.

SECSAGE This model combines the HMGSAGE encoder with a downstream classifier and aggre-
gates the classification outputs using prediction-level fusion. HMGSAGE and the classifier are trained
simultaneously using SECO, jointly optimizing embeddings learned by the HMGSAGE encoder for
node classification tasks.

Studying these concepts and models addresses the existing research gap in the study of SECO. We
show that it increases a classifier’s Macro F1 accuracy, and produces more expressive and separa-
ble embeddings, as evidenced by their silhouette scores. The performance of both HMGSAGE and
SECSAGE are assessed and benchmarked against baseline models for edge prediction and node
classification, respectively. First, HMGSAGE is tested against a GraphSAGE encoder operating on a
flattened graph. Second, SECSAGE is evaluated against Models C1, C2, and C3 defined in Table T
on node classification tasks. Both HMGSAGE and SECSAGE are shown to outperform baseline mod-
els, and SECO is shown to reduce training time compared to methods where encoders and classifiers
are trained separately.

We address the third objective of our paper by testing the concepts defined above on a real-world
travel dataset, “Travel Dubai”, and a standard “Amazon” product review dataset (Hou et al.| (2024))
while highlighting the challenges associated with these datasets such as underrepresentation of class
labels and multiplex layers.

2 METHODOLOGY

We first define the following notation related to HMGs and the concept of inductive representation
learning to help describe the proposed models in Section[I.2]
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Definition 1. Heterogeneous Graph A heterogeneous graph is defined as a graph
G=W,¢&,Q,¢),in which V is a set of vertices, £ is a set of edges, and ¢ is a vertex type mapping
function ¢ : V — Q. In a heterogeneous graph, the set of vertices can be partitioned into k disjoint
sets V = V1 UVoU...UVy, where k = |Q|, V; (| V; = 0, Vi # j and each set of vertices V; represents
a distinct type of node with a unique set of properties (Hamilton| (2020)).

Definition 2. Multiplex Graph A multiplex graphis a graph G = (V,£_, R,¢), VT € R, where
1 : £ — R maps each edge to its type. The set of edges for each layer of the graph, £;, is a subset
of the Cartesian product of all vertices in the graph, £, C V x V, V 7 € R. Thus, there are multiple
layers of connections, and for any pair of vertices u,v € V, up to one connection in each edge layer
& is permitted.

Definition 3. Heterogeneous Multiplex Graph In this paper, a Heterogeneous Multiplex Graph
(HMG) is defined as a graph G = (V,&,, Q, R, ¢,9), V7 € R, in which V is a set of vertices, £
is a set of edges, ¢ is a vertex type mapping function ¢ : ¥V — Q and ¢ is an edge type mapping
function ¢ : &€ — R. It is defined that |Q| > 1 and |R| > 1.

Definition 4. Inductive Learning For any type of graph-based model, inductive learning de-
scribes its ability to generalize to unseen nodes and edges based on patterns learned on the training
graph. Thus, the ability of a model trained on Gyain = (Virain, Ewain) to make inferences on a graph
Grest = (Vtesu gtesl) where Viin ﬂ Viest = Etrain n Elest = 0 (Hamilton| (2020)).

2.1 THE HETEROGENEOUS MULTIPLEX GRAPH ENCODER

We outline the approach of maintaining the multiplex graph structure G = (V, &, Q, R, ¢, ¥), VT €
‘R throughout the learning pipeline by training separate encoders for each multiplex layer 7 € R.
Each layer’s encoder is composed of neural message-passing operators ¢ € Q, resulting in |R| X | Q|
operators, each with their own aggregation and update operators, as defined in Equation (TJ).
h{") « UPDATE, .- (h{";"), AGGREGATE .- ({h{;), vo € Ny (w) }) )
(1)
— UPDATE» (¥, m{{ 1))

Here, k € {1,2,---, K} indicates the depth of the neighborhood samples being aggregated, where
K is the total number of layers in the neighborhood sampling tree. The node type ¢ € Q is de-

termined by the node type mapping function ¢ = ¢(u), and the message, denoted by mﬁ\lﬁ_(i)), is

aggregated from the neighborhood of node w in layer .

This adaption of the GraphSAGE algorithm by Hamilton et al.| (2017) for inductive representation
learning is described in Algorithm [I| We define this encoding algorithm as the Heterogeneous
Multiplex GraphSAGE (HMGSAGE) encoder. We note that a mini-batching procedure is used for
training HMGSAGE as described by Hamilton et al.| (2017).

2.2 THE HETEROGENEOUS MULTIPLEX GRAPH AUTOENCODER

In this section, a GAE model is defined for HMGs, which takes a set of embedding vectors
Zy,r, Vu € V,7 € R generated by HMGSAGE as input. This model is trained to reconstruct an
input graph by estimating both the probability of an edge’s existence, and the similarity between all
pairs of nodes for each layer S;[u,v], ¥V 7 € R. A variety of similarity metrics can be selected,
each of which captures relationships between nodes in a different manner.

To construct this GAE, we define two sets of decoders. First, a layer-wise set of reconstruction
decoders DEC; y¢s, V 7 € R, each of which outputs the probability of an edge existing between
two nodes within its layer 7 € R. A second set of decoders DEC; s, ¥V 7 € R reconstructs each

layers’ similarity matrix, S..

The GAE and reconstruction decoders DEC; 4, ¥V 7 € R are trained with a noise contrastive
approach, in which reconstruction error is calculated using cross-entropy loss with negative sampling
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Algorithm 1 HMGSAGE encoder forward propagation

Input:
Heterogeneous Multiplex Graph G(V, &, R, Q, ¢,v), VT € R;
Input features {x,,, ¥V u € V};
Sampling height K;
Update functions UPDATEy, , ,, Vk € {1,--- K}, T€ R,q € Q;
Aggregator functions AGGREGATEy, 4 -, Vk e {l,--- K}, T€R, g€ Q;
Neighbourhood function N, : v — 2Y, V17 € R;

Output: Low-dimensional node embedding vectors z,, -, Vu € V, 7 € R

1: procedure HMGSAGE(G, x,; K, UPDATE}, ; ,, AGGREGATEy, 4 -, ;)
2 for 7 € R do

3: h) < x,, Vuey

4: fork=1---K do

5: for u € V do

6 q < ¢(u)

; m( ) + AGGREGATE,, ({h&’f: D v e NT(u)})
8: h{$) = UPDATE- (hif; ¥, m{ )

0: b « b /[,
10: end for

11: end for
12: Zy,r hﬁT,Vu eV
13: end for

14: end procedure

(Grover & Leskovec| (2016)). This can be computed using a Monte Carlo approach by sampling
negative edge examples during training as shown in Equation (2)),

»C'r,neg = Z —log (o (DECT,neg(Zu,n Zv,‘r))) - Z [log (o (_DECT,neg (Zu,ry Zvn,‘r)))]
(u,v)e€r Vi €Pnu
2
where P, ,, is the set of negative edges obtained by sampling v,, ~ U (V \ N(u)) and o is the
logistic function. The cardinality of the negative samples, |P,, .|, is a hyperparameter, typically
assigned a low value.

The second loss term used is the Mean Squared Error (MSE) reconstruction loss. For each layer 7 €
R, the similarity measure S [u, v] is defined as the edge weights A, [u, v]. This loss is calculated
according to Equation (3).

Lrm = ﬁ S (Asfu,0] = DECr g2, 70.1)) 3)
(uv)€EE,
The final loss is calculated as a weighted sum of the two, as per Equation (4),
Lr=Arpeg + (1 = AN Ls sim G))
where the weight X is a hyperparameter defined in Appendix [D]

The final step aggregates the individual layer losses, while applying a weighting factor ﬁ to
improve model performance on imbalanced multiplex graphs (See Appendix [E.3).

L= wkLs,
TER

where w; is the edge weighting factor. The GAE extending the HMGSAGE encoder is illustrated in
Figure[I] and an algorithmic description of the model’s forward pass is given in Appendix [B] This
model is trained using stochastic gradient descent (Kingma & Bal(2015)).
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HMGSAGE : ENC, VT € R DEC,VTeR
A [u,v] r - s - 3

= | Xr,l Zm —4 L

Edge
similarities

GraphSAGE

GraphSAGE

Decoder Edge
probabilities

GraphSAGE GraphSAGE

H,

N e T I
G-VTER g | A-fu, ] R e
|

u, V|

Subgraphs for - -
each edge type Reconstruction loss Predicted subgraphs

Figure 1: GAE model architecture

2.3  SUPERVISED REPRESENTATION LEARNING FOR INDUCTIVE HMG NODE
CLASSIFICATION

We introduce the SECSAGE model, designed to perform node classification on Heterogeneous Mul-
tiplex Graphs. The SECSAGE architecture uses SECO to simultaneously train an HMGSAGE encoder
and layer-wise classifiers CLASS,, V 7 € R. At each layer 7 € R, the encoder generates embed-
dings z,, -, V u € V, which are used as inputs to CLASS . The classifier applies a linear transfor-
mation to the embeddings, then passes them through a softmax layer to calculate the predicted class
probabilities ¥, -. A detailed algorithm for the forward pass of the SECSAGE decoder is given in
Appendix [B] Loss is computed using negative log-likelihood, as shown in Equation [5]

c
L cLass, = _ L Z Zyu7c log (Yu,r,c) )
|V| uey c=1
where y, and y, . are the one-hot encoded class labels and class probabilities for node u layer
T, respectively. C' is the number of classes present in the dataset. The final loss is calculated
by aggregating the classification loss weighted for each multiplex layer w, V 7 € ‘R, given by
Equation (6]
Lerass = Z wr L7 CLASS- (6)
TER
During prediction, ¥, - is fused using soft (mean) or hard fusion across the R dimension. A
schematic of the HMG node classification model is shown in Figure 2]

HMGSAGE : ENC, VT € R CLASS, VTEeR
A [u,v] r - ale - N

e

=
’_I:

N
’_A;

Linear
GraphSAGE GraphSAGE projection 4>
layers
Y,
1 ! 1 ! 1
Linear
Ll GraphSAGE GraphSAGE projection *7
G:VTER prediction-level fusion
Subgraphs for A fu,v] hard/soft

each edge type

Figure 2: HMG node classification model
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Figure 3: Visualization of the “Dubai Travel” dataset used for the experiments. Nodes on the left
belong the “Traveller” node type while nodes on the right belong to the “Destination” node type.
The sizes of the nodes are proportional to their degree.

3 EXPERIMENTS

In this section, we introduce a real-world dataset, “Travel Dubai”, and use it to compare the perfor-
mance of our proposed models to that of baselines. We also perform experiments on the “Amazon”
product rating dataset described by [Hou et al.| (2024). We first present results highlighting the ad-
vantages of preserving the structure of an HMG throughout the training of a GAE, comparing the
GAE model proposed in Section [2.2] to that of Model C1 on both the “Travel Dubai” and “Ama-
zon” datasets. Afterwards, we show that SECSAGE outperforms Models C1, C2, and C3 on node
classification tasks, showing the merits of Simultaneous Encoder-Classifier Optimization on both
datasets.

3.1 DATA

This paper introduces a travel review dataset collected from proprietary sources based on public
travel and tourism data. The data includes a travel network comprised of “Traveller” and “Destina-
tion” nodes, i.e., @ = {Traveller, Destination}. These are connected by multiplex layers defined as
R = {Business, Romantic, Group, Family, Individual, None}, where unlabeled edges are assigned
to None. The structure of the raw data is described in Appendix

We also use the “Amazon” dataset which is much larger in size relative to “Travel Dubai”.
It has two node types “Users” and “Items” connected by reviews in multiplex layers R =
{Verified purchase, Unverified purchase}. See Appendix for details.

Both datasets are processed into HMGs, and all nodes and edges are assigned to their node types and
multiplex layers, respectively. Each edge is weighted according to its review rating, a continuous
score between 1 and 5, where 5 is a positive rating. A downsampled version of the “Travel Dubai”
graph is shown in Figure 3]

The HMGs are split into distinct train and test subgraphs Gy, and Gieg using a 70% - 30% split on
the graph nodes. We ensure that these subgraphs have mutually exclusive node and edge sets. We
also stratify nodes and edges by their respective types, to ensure an equivalent distribution in both
the train and test subgraphs (see Appendix |C|for further details).

To test the effectiveness of graph-level information fusion, we created flattened versions of both sub-
graphs, Girin and Gies, by simply collapsing all multiplex layers into one graph, i.e., G(V,&;), V7 €
R — gﬂattened (Vv 5t0tal), where gtotal = 51 U 52 U---u 5|R\
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3.2 GAE TRAINING AND PERFORMANCE

Using the GAE defined in Section[2.2] we train the HMGSAGE encoder on the train subgraph Gyin for
both the edge prediction and edge rating tasks. We use the aggregate loss defined in Equation (4.
Afterwards, we evaluate the trained model on the test subgraph G.y. We also train Model C1, a
GAE with a standard GraphSAGE backbone, on the flattened subgraphs. The hyperparameters of
our GAE models are reported in Appendix

To evaluate the performance of the GAEs on Gy, we scale all edge weights to lie on the range
[0,1]. Next, we binarize the edge weights, converting them into binary (0 or 1) values based on a
predefined threshold which we define as the expectation.

0, for A pinary[t,v] < E({A;[u,v], Vu,v €&,
A pinary [t V] = { 1, for AT’bin:;/[EL,v]] > E(({{AT[[U,’U]], YVu,v e 57‘%% @
We compare A ; pinary [0, v] With AT,binary [, v] to compute the area under the curve (AUC) of the
Receiver Operating Characteristic (ROC) curve. We also check the AUC of the Precision-Recall
(PR-RC) curves for the adjacency prediction task which provides more informative metrics for im-
balanced data, as is the case for A[u,v] in both datasets (see Appendix |C| for detailed statistics of
the datasets). We also compute the ROC AUC for the edge prediction task, DEC ;g (Zu v Zo,7)-
Finally, we compute accuracy and F1 scores, based on probability thresholds selected in Appen-
dices [E.T|and [E.2] for the “Travel Dubai” and “Amazon” datasets, respectively. Table 2] summarizes
all relevant metrics for each GAE implementation. The results show that Graph-level fusion reduced

Table 2: Binary classification results for the GAE models

Decoder task AUCROC AUCPR-RC  Accuracy Fl-score | Threshold
“Travel Dubai” dataset
With graph-level fusion, GraphSAGE encoder-decoder

Edge prediction | 0.88969 0.85822 0.84466 0.865546 0.04654
Edge rating 0.81785 0.91038 0.83441 0.894465 0.57059

Without graph-level fusion, HMGSAGE encoder-decoder
Edge prediction | 0.90186 0.86096 0.85437 0.866535 0.00358
Edge rating 0.89921 0.95200 0.83711 0.891601 0.66482

“Amazon” dataset

With graph-level fusion, GraphSAGE encoder-decoder
Edge prediction | 0.96690 0.92758 0.89065 0.863585 0.02272
Edge rating 0.96567 0.97893 0.90825 0.927288 0.78718

Without graph-level fusion, HMGSAGE encoder-decoder

Edge prediction | 0.96733 0.92889 0.89126 0.863171 0.02311
Edge rating 0.97435 0.98453 0.91668 0.935017 0.78496

the performance of the model on edge prediction tasks in both datasets, suggesting that better and
more expressive representations are learned on HMG-based models.

3.3 CLASSIFIER TRAINING AND PERFORMANCE

We train SECSAGE on the train subgraph G.i, for a node classification task to predict
class membership of “Destination” and “Item” nodes for the “Travel Dubai” and “Amazon”
datasets, respectively. The labels are {“Landmark”, “Accommodation”, “Food & Drink”} and
{“Automotive”, “Beauty”, “Lawn, Garden & Patio”} for the “Travel Dubai” and “Amazon” datasets,
respectively. The classifier is trained using the loss defined in Equation (6)). We evaluate the trained
model on the test subgraph G and compare it to models C1, C2, and C3. The hyperparameters of
our SECSAGE model are reported in Appendix

To evaluate the performance of the SECSAGE model on G, we calculate each class-wise F1 score,
and compute the mean to obtain a macro-averaged F1 score for the model. This places equal weight
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on each class, providing a more balanced view of the model’s performance since the classes are
imbalanced in both datasets (See Appendix [C). We also calculate the raw accuracy of the model,
which is the proportion of correctly classified nodes to the total number of nodes in the test sub-
graph. The results are summarized in Table[3] We also present the confusion matrix for the models
trained with and without SECO in Appendices and [E1] for the “Travel Dubai” and “Amazon”
datasets, respectively. The results show that using SECO to simultaneously train the encoder and

Table 3: Node classification results comparing models C1, C2, C3, and SECSAGE on all datasets

Prediction-fusion - - soft hard soft hard
Graph-fusion v 4 X X X X
with SECO X v X X v v
Model Cl C2 C3 C3 SECSAGE SECSAGE
“Travel Dubai’ dataset
Accuracy 0.61491 0.72727 0.74157 0.74566 0.74566 0.75383
Micro F1 0.59823 0.74893 0.76521 0.76855 0.76886 0.77615
Macro F1 0.36606 0.67659 0.69267 0.69407 0.69648 0.70127
“Amazon” dataset
Accuracy 0.19676 0.18713 0.36424 0.28898 0.44405 0.44516
Micro F1 0.18380 0.17266 0.41348 0.32382 0.48638 0.48066
Macro F1 0.20814 0.18240 0.32071 0.26037 0.37059 0.35510

downstream classifier improves its performance in terms of macro-averaged F1 score. We visual-
ize the embeddings learned by the GraphSAGE encoder on the “Travel Dubai” dataset with and
without SECO (C1 versus C2) in Figure ] The embeddings are projected into 2 dimensions using
t-Distributed Stochastic Neighbor Embedding (t-SNE). We observe a larger degree of separation
between the classes when using SECO compared to the baseline model as given by the silhouette
score. This can help explain the improved classification performance of SECO, due to the better
separation of the classes in the embedding domain and subsequent improved decision boundaries
learned by the downstream classifier. We also show in Appendix [D| that the computational time
needed to train the models slightly increases when using parallel GraphSAGE layers in HMGSAGE
and SECSAGE relative to their flattened counterparts. However, SECO is shown to reduce the time
needed to learn embeddings, as the encoder is simultaneously trained without the need of a GAE or
other contrastive approaches.

A Food & Drink @ Accomodation E Landmark

(a) Model Cl1, Silhouette score: -0.02353

(b) Model C2, Silhouette score: 0.07260

Figure 4: Two-dimensional projection of z,,, V ¢(u) = “Destination” in the “Travel Dubai” dataset
for Models (a) C1 and (b) C2. The sizes of the points are proportional to the node degree.
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4 CONCLUSION

In this paper, we propose three GRL models and evaluate them on a new real-world dataset and
a large benchmark dataset. First, we introduce an encoder for Heterogeneous Multiplex Graphs
denoted HMGSAGE. Next, we extend HMGSAGE to create a Graph Autoencoder which performs
inductive edge prediction on HMG-structured data. Finally, we introduce the topic of Simultaneous
Encoder-Classifier Optimization. We use it to extend HMGSAGE for the task of inductive node
classification on HMGs, creating a model denoted SECSAGE. After comparing these to baseline
models, we show that our architectures outperform those using other information fusion techniques
on both edge prediction and node classification tasks.

From these comparisons, two primary conclusions can be drawn. We show that preserving the
graph structure of an HMG early in the learning pipeline leads to the learning of better embeddings.
This is evidenced by the performance of our GAE using HMGSAGE against a similar model using
GraphSAGE and graph-level fusion. We also show that by using SECO, models learn task-optimal
embeddings, improving the performance of a particular downstream task. This improves even fur-
ther when combined with prediction-level fusion as opposed to graph-level.

We also note that multiplex layers are often imbalanced in real-world datasets, and can be han-
dled by using weighted loss terms in combination with dedicated GRL operators for each layer as
demonstrated in this paper. Furthermore, edge weights and class labels can also be imbalanced, and
appropriate metrics should be used for evaluating model performance. This offers some practical
considerations when working with graph-based recommendation systems.

There are several possibilities for further research towards better GRL on HMGs. More test-
ing should be conducted into measuring the performance of SECSAGE on other HMG datasets,
with comparisons against more baselines using other encoders such as DGI interchangeably with
HMGSAGE. Additionally, the benefits of SECO should be studied on models using other types of
information fusion, specifically GNN-level and embedding-level. The potential to generalize SECO
to produce task-optimal embeddings for other tasks such as clustering, graph-level classification,
and combinations thereof also merit investigation.
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A BACKGROUND
This section provides a background on related concepts used throughout the paper.

Graph Autoencoder (GAE) A Graph Autoencoder is a neural-network-based machine learning
model designed to learn low-dimensional latent representations, known as embedding vectors, of
various elements of graph-structured data. In this paper we focus on learning embeddings for the
different nodes in our graph z,,, Vu € V. We use an encoder-decoder paradigm similar to the seminal
work of Kipf & Welling|(2016). The encoder is constructed using several GNN operators and maps
nodes to high-dimensional vector space ENC : V +— R? where d is the dimensionality of the
embedding vectors z,, € R forv € V.

ENC(v) = Z[v], )

The decoder is a model that obtains the embeddings z,, in the low-dimensional space and recon-
structs information about the nodes’ local neighborhood in the original graph. As an example, the
reconstructed information could represent the set of neighbours of node u, N'(u) or its row A[v] in
the adjacency matrix. However, a better approach is to use a pairwise decoder which reconstructs
information about the relationship between pairs of nodes, i.e.,

DEC(ENC(u), ENC(v)) = DEC(2y, 2,,) ~ S[u, v], 9)
where S[u, v] is the reconstruction objective, e.g., S[u,v] = A[u,v], although different objectives
can be defined other than the adjacency matrix.

Finally, a reconstruction loss can be defined over a set of training nodes D € ) and used to optimize
the parameters of the encoder and decoder using gradient descent:

L= Y ((DEC(zy,2,),S[u,v)),
(u,v)€D
where ¢ : R X R — R is a loss function such as mean-squared error or binary cross entropy loss.

There are many different models for the decoder, the similarity measure S[u, v], and loss function,
different combinations of which results in different representation learning algorithms. In this paper,
we focus on a simple decoder that uses a feedforward layer to concatenate pairs of node embeddings
following by a sigmoid layer to scale the predicted similarity measure between 0 and 1 as explained
in Section
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B ALGORITHMS FOR DOWNSTREAM TASKS

In this section, we provide the detailed algorithmic descriptions for the forward pass of the GAE
model in Section @], and the supervised learning task for HMG node classification in Section [2.3]
The GAE model is described in Algorithm [2] below and is used to predict the probablhty matrix
P which gives the probability of an edge between pairs of nodes. The adjacency matrix A is also
predicted for each layer 7 € R during the forward pass. We assume the node embeddings z,, , are
already computed using the HMGSAGE encoder.

Algorithm 2 HMG GAE forward propagation
Input:
The node embeddings z,, -, Vu € V,7 € R;
The weights matrices Wi pee, VT € R, Wi gim, VT € R;
The non-linearity function o;
The adjacency matrix A, V7 € R;

Output: The similarity matrix P, € RI€l, Vr e R; A, e REI V7 e R

1: procedure HMGGAE(zy 7, Zy,7» Wrnegs Wrsim: VR, 0)
2 for € R do

3 P lu,v] <= 0 (Wi g - CONCAT (2, Zy.7))

4 A [u,v] < 0 (W, gn - CONCAT (2.7, %y 7))

5 end for

6: end procedure

The supervised learning task for HMG node classification is also described in Algorithm [3] below.
The model is used to predict the class probabilities y for each node u € V given the node embeddings
Z,,,r that are computed using the HMGSAGE encoder.

The model consists of a linear layer followed by a softmax layer to predict the class probabilities.
The linear layer maps the node embeddings to the class space using the weights matrices W, €
RE*4 where C is the number of node labels and d is the dimensionality of the node embeddings.

Algorithm 3 Supervised learning for HMG node classification
Input:
The node embeddings z,, -, Vu € V, 7 € R;
The number of node labels C ;
The projection layer weight matrices W, € R€*? V¥V r € R;
Output: The predicted class probabilities y,, -, YVu € V, VT € R

1: procedure HMGCLASS(z,, -, W, VR, C)

2 for 7 € R do

3: forc=1to C do W

4 gu,T,c — CeXp( TZ%T)C s VeelC
Yoo—1exp(Wizy 1),

5: end for

6: end for

7: end procedure

14
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C EXPERIMENTAL DATASET DETAILS

C.1 “TRAVEL DUBAI” DATASET

We first describe the statistics of the “Travel Dubai” dataset which we hope to publish and add to ex-
isting benchmark datasets popular in the field of Network Science and GRL. The Entity-Relationship
(ER) diagram for the raw data before processing it into an HMG is shown in Figure 5] The HMG

Traveller Reviews Destination

PK Traveller ID PK | Review ID JPK ination ID [ DB Granh element
User_handle FK1 | Destination ID Name Multiplex level

Number of contributions FK2 ! Traveller ID Description Node
Number of followers Rating (stars) Average rating | — Edge weight
Location Published date Number of reviews ‘ Edge

} Node type

Date joined Helpful votes Review rating counts L

Type Type (Hotel, Restaurant, Attraction)

Review text

Travel date Cost level

Review title

Figure 5: ER diagram of raw “Dubai Travel” dataset used for algorithm evaluation.

constructed from this data is reported in the main body of the paper and a subset is plotted in
Figure 3] Figure [6a] shows the relative distribution of different “Destination” node labels (used
for classification). We note that within the “Destination” nodes, the “Landmark” and “Accom-
modation” labels are underrepresented relative to “Food & Drink”. Figure [6b] shows a somewhat
balanced distribution among the various multiplex layers. The HMG formed by this data consists

Business None

. Landmark
Accommodation

X Individual
Romantic

Friends

Family

ood & Drink

(a) Distribution of the node labels Y pestination (b) Distribution of layers 7 € R

Figure 6: Distribution of (a) the “Destination” node labels ypestination and (b) edges within each
multiplex layer of the “Dubai Travel” dataset.

of 20,969 nodes and 20,904 edges. The HMG is split into train and test subgraphs that are mu-
tually exclusive, i.e., Viain U Viex = 0 and E; yrain U Eress = 0, V 7 € R. To achieve such a
split, we performed a train-test split on the set of nodes V stratified by the node type ¢ € Q.
We then constructed the set of train edges by selecting all edges spanned by the train nodes, i.e.,
5T,train = {u; v € g|u € Virain, ¥ € Vigain, V7 € R}

We show the distribution of the marginal edge weights (given by a rating on a scale of 1 to 5) and
distributed across different layers of the train and test HMGs in Figure []] We can see that our
train/test split procedure maintained the edge weight distribution in both graphs. Further, we can
notice that extremely positive ratings (5) are far more frequent relative to other ratings justifying the
use of metrics which penalize more on imbalanced data such as precision and recall as was done in
Section[3.2] Furthermore, we show the relative distribution of all the edge types and nodes types in
the complete, train, and test subgraphs is reported in Table[d This shows that all datasets maintain
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Figure 7: Probability Mass Function of the edge weights of the “Travel Dubai” multiplex graph
A V7 € R. The horizontal partitioning shows the distribution across the multiplex layers 7 € R
for (a) the train subgraph and (b) the test subgraph.

the same relative proportions across train/test splits. Finally, we report the absolute number of nodes
and edges in each of the train, test, and full graphs in Table 3]

Table 4: Statistics of train/test subgraphs of the “Travel Dubai” dataset

Relative proportion

Attribute .
Full graph G Train graph Test graph
train train
Traveller 0.84444 0.84446 0.84438
Landmark 0.01707 0.01744 0.01621
Destination Accommodation 0.02709 0.02698 0.02734
Food & Drink 0.11140 0.11112 0.11206
Business 0.07391 0.07077 0.08792
Romantic 0.19862 0.20401 0.18878
Family 0.28023 0.27961 0.25836
Edgetypes T € R Groyp 0.23948 0.23806 0.26052
None 0.10821 0.11015 0.10734
Individual 0.09955 0.09741 0.09709

Table 5: Node and edge counts in train, test, and full graphs of the “Travel Dubai” dataset

. Relative proportion
Attribute Full graph G Train graph Test graph
train train
Traveller 17707 12395 5312
Landmark 358 256 102
Destination Accommodation 568 396 172
Food & Drink 2336 1631 705
Business 1545 717 163
Romantic 4152 2067 350
Famil 5858 2833 479
Edge types 7 € R Groupy 5006 2412 483
None 2262 1116 199
Individual 2081 987 180
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Figure 8: Visualization of the “Amazon” dataset used for the experiments. Nodes on the left belong
the “User” node type while nodes on the right belong to the “Item” node type. The sizes of the nodes
are proportional to their degree.

C.2 “AMAZON” DATASET

In this section, we describe the details of the “Amazon” dataset reported by (2024). A
subset is plotted in Figure[8] Figure[Da]shows the relative distribution of different “Item” node labels
(for classification). We note that within the “Item” nodes, the “Beauty” and “Patio, Lawn & Gar-
den” labels are underrepresented relative to “Automotive”. Figure [6b] shows an extreme imbalance
between the “Verified purchase” and “Unverified purchase” multiplex layers. The HMG for this

Unverified purchase

4.5%
Patio, Lawn & Garden
0,
L Beauty
Automotive

erified purchase

(a) Distribution of the node labels ypestination (b) Distribution of layers 7 € R

Figure 9: Distribution of (a) the “Item” node labels yitem and (b) edges within each multiplex layer
of the “Amazon” dataset.

dataset consists of 1.51M nodes and 1.43M edges. Similar to the “Travel Dubai” dataset, The HMG
is split into train and test subgraphs that are mutually exclusive, stratified by the node type ¢ € Q.

We show the distribution of the marginal edge weights (given by a rating on a scale of 1 to 5) and
distributed across different layers of the train and test HMGs in Figure We note that positive
ratings (5) are far more frequent relative to other ratings just as was observed with the “Travel
Dubai” dataset. We also show the relative distribution of all the edge types and nodes types in the
complete, train, and test subgraphs in Table[6] Finally, we report the absolute number of nodes and
edges in each of the train, test, and full graphs in Table
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Figure 10: Probability Mass Function of the edge weights of the “Amazon” multiplex graph
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for (a) the train subgraph and (b) the test subgraph.

Table 6: Statistics of train/test subgraphs of the “Amazon” dataset

Relative proportion

AdEu Full graph G Train graph Test graph
train train
User 0.93689 0.93692 0.93691
Automotive 0.04260 0.04260 0.004260
Item Beauty 0.00666 0.006610 0.006787
Patio, Lawn & Garden 0.01384 0.01388 0.01373
IEdle (v o € TR Verified purchase 0.95548 0.95623 0.95406
Unverified purchase 0.004452 0.004377 0.004564

Table 7: Node and edge counts in train, test, and full graphs of the “Amazon” dataset

Relative proportion

AdET Full graph G Train graph Test graph
gtrain gtrain

User 1.244M 871K 373.3K

Automotive 56.57K 39.6K 16.96K

Item Beauty 8.849K 6.145K 2.704K
Patio, Lawn & Garden 18.38K 12.9K 547K

Verified purchase 1.36"M 680.8K 117.7K

Edgetypes 7 € R 10 te 0 rehase 63.7K 31.16K 5.667K
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D DETAILED TRAINING SETUP

In this section, we report the training settings used for all the studies in this paper. The hyper-
paramters selected for each model developed in this paper are reported in Table 8]

Table 8: Hyperparameters used for training the GAE and classifiers

Model Parameter Value Description
HMGSAGE/ K 3 1S\Iam%ling ?eigh:ﬂf)or tll:e G(i:aphS]AGE layers
GraphSAGE  {Ni,--- , [Nk|} {25, 10,5} 1l'lm gr ohnelg ourhood samples per sam-
encoders pling dept . .
1] 1024 Batch size for minibatch training of
GraphSAGE layers
d 32 HMGSAGE embedding dimensionality
n 1 Number of layers used by the concatenation
fayers decoder models

GAE decoder [Pl 5 Negative sampling frequency per node
Weighting of edge prediction loss relative to

A 0.5 - .

similarity reconstruction loss

TNepochs 2000 Number of backpropagation steps

Niayers 2 Number of feedforward layers

Classifier Rdim 128 Intermediate dimension between layers
Tepochs 2000 Number of backpr'opagatio'n steps ’
All models Propout 01 Dropout . probability applied during back-

propagation

We also report the models’ training performance and memory cost in terms of their training time
and number of parameters, respectively in Table 0] We can see that the number of parameters
grows linearly in the number of multiplex layers |R| = 5 and |R| = 2 for the “Travel Dubai” and
“Amazon” datasets, respectively. The training time for the GAEs also increased in the absence of
graph-level fusion, however the increase in training time was not as significant in both datasets since
the total number of nodes and edges remains the same. Backpropagation of the training loss through
the additional parameters resulted in this observed increase in training time. Another observation, is
that the use of SECO also increased the training time (again due to the larger number of parameters
being updated during backpropagation) albeit more noticeably in the larger “Amazon” dataset. The
results in Table[9]suggest that the framework is scalable to larger datasets.

Table 9: Training performance and memory cost of all models reported in the paper. Training times
are reported after 500 epochs have elapsed.

Graph-fusion X 4 v 4 X X
with SECO - - X 4 X v
Model | GraphSAGE HMGSAGE | Cl C2 \ C3 SECSAGE
“Travel Dubai’ dataset
Trainable parameters 43330 259980 2307 28227 13842 169362
Total parameters 43330 259980 28227 28227 169362 169362
Training time (s) 113.306 230.742 22.1731 27.2747 45.2296 63.4619
‘“Amazon” dataset

Trainable parameters 42690 85380 2307 27587 4614 55174
Total parameters 42690 85380 27587 27587 55174 55174
Training time (s) 11204.7 13774 693.605 1502.15 806.7 1992.2
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E DETAILED RESULTS

In this section, we provide detailed results for the training of the GAE models in Section[3.2}

E.1 “TRAVEL DUBAI” DATASET RESULTS

We first report all the results for the models trained on the “Travel Dubai” dataset. Figures[ITa]and
show ROC and PR-RC curves, respectively for the edge prediction task. We also report the ROC
and PR-RC curves for the edge rating task in Figures [T[Tb| and [TTd] respectively. All figures show
a comparison between the HMGSAGE and GraphSAGE encoders. For the edge prediction task, we

— - HMGSAGE % HMGSAGE-threshold ~  ----- Random classifier
GraphSAGE ® GraphSAGE-threshold
1.0 — 104 e
*7 PR el
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Figure 11: Detailed evaluation of the binary output of the GAE for the edge prediction and edge
rating tasks of the “Travel Dubai” dataset using (a,b) ROC and (c,d) PR-RC curves. The notation
HMGSAGE refers to the GAE model trained on the unflattened graph.

select a threshold value based on the ROC curve that maximizes the distance of the true positive rate
and false positive rate to the diagonal line using Youden’s index as shown in Figures[TTaJand

For the edge rating task, we select a threshold value based on the PR-RC curve that maximizes the
F1 score as shown in Figures[TIcJand[TTd] We report the values of the thresholds for the HMGSAGE
and GraphSAGE models in Table [T0}

Next, we visualize the embeddings learned by the HMGSAGE encoders in models C3 (without SECO)
and SECSAGE (with SECO) in Figures [I2] and [T3] respectively. Note that for each node, a separate
embedding is learned for each multiplex layer 7 € R. Comparing the embeddings of Model C3
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Table 10: Threshold values for the GAE models trained on the “Travel Dubai” dataset. The bold
values indicate the selected threshold values for each task.

Decoder task Threshold AUC ROC  Threshold PR-RC
With graph-level fusion, GraphSAGE encoder-decoder

Edge prediction 0.04654 0.04654
Edge rating 0.58012 0.57059
Without graph-level fusion, HMGSAGE encoder-decoder
Edge prediction 0.00358 0.81482
Edge rating 0.00358 0.66482
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Figure 12: Two-dimensional projection of z,, V ¢(u) = Destination for Model C3 trained without
SECO. Each node’s size is proportional to its degree.

with those of the SECSAGE model, shows a larger degree of separation between the classes when
using SECO compared to Model C3 as given by the silhouette score across all multiplex layers.

Finally, we report the confusion matrices for the classification task for Model C3 trained without
SECO and the SECSAGE model in Figure[T4] We observe that the SECSAGE model slightly out-
performs Model C3 in terms of the classification accuracy for the “Accomodation” minority class.
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Figure 14: Confusion matrices for the classification task of the “Travel Dubai” dataset. (a) Model
C3 trained without SECO and (b) SECSAGE trained with SECO. Both models use soft prediction-
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E.2

“AMAZON” DATASET RESULTS

In this section, we report additional detailed results obtained by training the models in Section [3.2]
on the “Amazon” dataset. Figures [T5a) and show ROC and PR-RC curves, respectively for the
edge prediction task. Figures[T5b]and [I5d] show the ROC and PR-RC curves, respectively for the

edge rating task. We report

the values of the thresholds for the HMGSAGE and GraphSAGE models
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Figure 15: Detailed evaluation of the binary output of the GAE for the edge prediction and edge
rating tasks of the “Amazon” dataset using (a,b) ROC and (c,d) PR-RC curves.

in Table [Tl The confusion matrices for the classification task for Model C3 trained without SECO

Table 11: Threshold values for the GAE models trained on the “Amazon” dataset. The bold values
indicate the selected threshold values for each task.

Decoder task Threshold AUC ROC  Threshold PR-RC

With graph-level fusion, GraphSAGE encoder-decoder

Edge prediction 0.02272 0.02714
Edge rating 0.80440 0.78718
Without graph-level fusion, HMGSAGE encoder-decoder
Edge prediction 0.02311 0.02689
Edge rating 0.81242 0.78496
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Figure 16: Confusion matrices for the classification task of the “Amazon” dataset. (a) Model C3
trained without SECO and (b) SECSAGE trained with SECO. Both models use soft prediction-
level fusion.

and the SECSAGE model are shown in Figure [T6] We observe that the SECSAGE model greatly
outperforms Model C3 in terms of the classification accuracy for the “Beauty” minority class and
the “Automotive” majority class.
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E.3 EFFECT OF EDGE WEIGHTED LOSS ON GAE AND CLASSIFICATION MODELS

In Sections[2.2]and 2.3] we explained that the total loss for several multiplex layer 7 € R is aggre-
gated by a weighting factor that is defined as

2rerlérl
Wy = ——=. 10

] 1o
This means that more emphasis is placed on underrepresented multiplex layers during training re-
ducing the possibility of overfitting on majority layers. We demonstrate the merits of this approach
by running an experiment on the “Travel Dubai” dataset using the same workflow as in Section [3.3]
without the weights in Equation [I0} i.e., w, = 1V 7 € R placing equal weighting on each layer.
The results of these experiments on the “Travel Dubai” dataset are shown in Table T2 below. The
weighted loss results reported in Table [3]are shown again in Table [I2]to facilitate the comparison.

Table 12: Node classification results comparing models C3, and SECSAGE when trained using
weighted and unweighted loss on the “Travel Dubai” dataset.

Prediction-fusion soft hard soft hard
Graph-fusion X X X X
with SECO X X v v
Model ‘ C3 C3 SECSAGE SECSAGE
Weighted loss
Accuracy 0.74157 0.74566 0.74566 0.75383
Micro F1 0.76521 0.76855 0.76886 0.77615
Macro F1 0.69267 0.69407 0.69648 0.70127
Unweighted loss
Accuracy 0.62717 0.44433 0.74157 0.74872
Micro F1 0.59656 0.49181 0.76466 0.76984
Macro F1 0.33931 0.33581 0.69288 0.68851

Similarly, the experiments are run on the “Amazon” dataset where there is a bigger imbalance be-
tween the multiplex layers “Verified purchase” and “Unverified purchase”. The results are reported
in Table[T3]and compared against the weighted results presented in Section[3.3}

Table 13: Node classification results comparing models C3, and SECSAGE when trained using
weighted and unweighted loss on the “Amazon” dataset.

Prediction-fusion soft hard soft hard
Graph-fusion X X X X
with SECO X X 4 v
Model [ C3 C3 SECSAGE  SECSAGE
Weighted loss
Accuracy 0.36424 0.28898 0.44405 0.44516
Micro F1 0.41348 0.32382 0.48638 0.48066
Macro F1 0.32071 0.26037 0.37059 0.35510
Unweighted loss
Accuracy 0.28826 0.30549 0.20567 0.22994
Micro F1 0.32661 0.34537 0.20303 0.24192
Macro F1 0.27840 0.27333 0.20860 0.20994
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