
Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through
Self-Correction in Language Models

Anonymous ACL submission

Abstract

Requiring a Large Language Model to generate001
intermediary reasoning steps has been shown002
to be an effective way of boosting performance.003
In fact, it has been found that instruction tun-004
ing on these intermediary reasoning steps im-005
proves model performance. In this work, we006
present a novel method of further improving007
performance by requiring models to compare008
multiple reasoning chains before generating a009
solution in a single inference step. We call010
this method Divergent CoT (DCoT). We find011
that instruction tuning on DCoT datasets boosts012
the performance of even smaller, and therefore013
more accessible, LLMs. Through a rigorous014
set of experiments spanning a wide range of015
tasks that require various reasoning types, we016
show that fine-tuning on DCoT consistently017
improves performance over the CoT baseline018
across model families and scales (1.3B to 70B).019
Through a combination of empirical and man-020
ual evaluation, we additionally show that these021
performance gains stem from models generat-022
ing multiple divergent reasoning chains in a sin-023
gle inference step, indicative of the enabling of024
self-correction in language models. Our code025
and data are publicly available.1026

1 Introduction and Motivation027

Chain of Thought (CoT; Wei et al. 2022), the028

prompting method to generate intermediate rea-029

soning steps to answer a question, is recognized030

as a simple yet effective mechanism for improving031

the performance of large language models (LLMs).032

Given that requiring models to generate intermedi-033

ary steps improves performance, it stands to reason034

that requiring models to simultaneously generate035

multiple chains could further improve performance.036

Prior work exploring this idea includes that by037

Wang et al. (2023), wherein they generate multiple038

CoTs and ensemble them with a voting mecha-039

nism. However, this and similar extensions (also040

1https://anonymous.4open.science/r/DCoT-149B/

Figure 1: Divergent CoT (k = 2) generates k CoTs in a
single inference step and selects the correct answer.

see Section 2) do not use multiple inference chains 041

simultaniously, and so the models do not have ac- 042

cess to the different possible reasoning chains in a 043

single inference step. 044

We present a novel mechanism that allows an 045

LLM to compare multiple reasoning chains in a 046

single inference step, leading to improved perfor- 047

mance. We call this method Divergent Chain of 048

Thought (DCoT). This method is inspired by the 049

psychological theory of Divergent and Conver- 050

gent Thinking, which posits that problem solving 051

involves two distinct phases: divergent thinking, 052

where many ideas are generated and explored, fol- 053

lowed by convergent thinking, which involves con- 054

sidering these different ideas to arrive at a single 055

solution or response (Guilford, 1967). 056

Unfortunately, the added complexity of generat- 057

ing multiple chains of thought (divergence) before 058

selecting a single solution (convergence) makes this 059

process too complex for most LLMs to perform us- 060

ing prompting alone. Our experiments show that 061

the errors that are a result of the added complexity 062

of this method almost completely offset the gains 063

it might provide even in the most powerful current 064

generation models, including GPT-4o. However, 065

given that instruction fine-tuning, which involves 066

fine-tuning on datasets consisting of task require- 067

1

https://anonymous.4open.science/r/DCoT-149B/

ments and associated solutions, improves perfor-068

mance on those tasks, we hypothesize that similar069

instruction tuning on this complex divergent CoT070

is likely to enable not only large models but also071

smaller models to perform better. This hypothesis072

is further supported by previous results showing073

that the addition of CoTs into the instruction tuning074

data allows the model to better learn to use CoTs in075

generating outputs (Chung et al., 2024; Kim et al.,076

2023). As such, this work focuses on boosting077

the performance of LLMs, including small-scale,078

more easily accessible LLMs, by inducing them079

to generate accurate and effective DCoTs through080

instruction fine-tuning.081

We demonstrate that fine-tuning using DCoTs082

improves LLM performance over the CoT baseline083

by rigorously testing on a range of tasks requiring084

different types of reasoning across model families085

and scales (1.3B to 70B). Moreover, we show that086

DCoT fine-tuning provides the additional benefit of087

allowing LLMs to improve their first answer with-088

out external feedback, which we verify through a089

manual analysis of the outputs. Additionally, we090

show that once fine-tuned, DCoT can be further091

augmented by the same methods that boost CoT,092

such as self-ensembling (Wei et al., 2022). Indepen-093

dently, performance boosts provided by instruction094

tuning on DCoT data show that we can encode095

other non-trivial reasoning methods into LLMs by096

instruction tuning on appropriate datasets.097

The contributions of this work are as follows:098

• We introduce Divergent CoT, a modifica-099

tion to CoT that generates multiple reason-100

ing chains and selects an answer in a single101

inference step.102

• We show the effectiveness of fine-tuning on103

DCoT data, through a rigorous set of experi-104

ments on a range of LLM families and sizes105

across multiple multiple reasoning tasks.106

• We show DCoT has the side-effect of learning107

to self-correct without external feedback or108

prompt optimization, which to the best of our109

knowledge, is the first work to do so.110

2 Related Works111

In this section, we examine related work from three112

distinct perspectives: (i) prompting methods that113

enhance CoT prompting for divergence, (ii) re-114

search focused on instruction tuning models using115

CoTs, and (iii) studies on self-correction.116

Divergent Prompting. Many works have shown 117

the benefits of generating diverse CoTs and ag- 118

gregating them (Wang et al., 2023; Zhang et al., 119

2024; Yoran et al., 2023; Li et al., 2022; Weng 120

et al., 2023). In particular, Wang et al. (2023) pro- 121

posed the creation of self-assembles of CoTs to 122

improve LLM’s performance, which they call self- 123

consistency. They sample a series of CoTs, select 124

the most repeated answer, and show large perfor- 125

mance gains on reasoning tasks. Yoran et al. (2023) 126

extends this work by creating a meta prompt that 127

aggregates the reasoning paths instead of select- 128

ing the most common answer. Zhang et al. (2024) 129

propose explicit steps to contrast each CoT and 130

reflect on the final answer. However, none of these 131

works induce LLMs to generate multiple CoTs in 132

the same inference step. 133

Divergent Fine-Tuning. The success of CoT 134

prompting led to the creation of instruction-tuning 135

datasets with CoTs (Chung et al., 2024). Kim 136

et al. (2023) argue that small LMs perform poorly 137

on CoT on unseen tasks compared to large LMs. 138

Hence, they create an instruction-tuning dataset 139

of CoT to equip small LMs with CoT capabilities. 140

Others suggest distilling CoTs from very large lan- 141

guage models (vLLMs) (Hsieh et al., 2023; Li et al., 142

2023a). Ho et al. (2023) also show the benefits of 143

distilling CoTs from these vLLMs and claim that 144

sampling multiple CoTs per question is an effective 145

data augmentation technique that improves the per- 146

formance of distilled models. However, they do not 147

use this diversity at inference time, and unlike us, 148

their method only generates one CoT per question. 149

Huang et al. (2023) show that vLLMs can improve 150

performance on reasoning tasks by self-training on 151

their own CoT generations from sampling. 152

Self-Correction. Some initial works suggest that 153

LLMs possess self-correct abilities (Shinn et al., 154

2024; Madaan et al., 2023; Pan et al., 2023; Kim 155

et al., 2024; Weng et al., 2023; Jiang et al., 2023). 156

However, Huang et al. (2024); Stechly et al. (2024); 157

Tyen et al. (2023) argue that self-correction’s gains 158

stem from the use of external feedback. Divergent 159

CoT, on the other hand, exhibits superior perfor- 160

mance when generating more than one CoT in a 161

single inference step, using essentially the same 162

prompt, suggesting that DCoT may enable mod- 163

els to self-correct without external supervision or 164

prompt optimization. 165

2

Figure 2: We train on a series of CoTs to make the model learn how to generate multiple CoTs in one inference step.

3 Methods166

To analyze the effectiveness of DCoT, we first eval-167

uate the performance of LLMs when prompted to168

generate multiple chains. However, we focus the169

majority of our experiments on the effect of instruc-170

tion tuning on DCoTs, as this allows us to extend171

the effectiveness of our methods to smaller, more172

accessible models.173

3.1 Prompting174

We conducted exploratory experiments to evaluate175

the effectiveness of DCoT prompting on commer-176

cial black-box LLMs. We use prompts to require177

models to generate multiple CoTs, compare them,178

and generate an answer, all in a single inference179

step. We found that smaller LLMs, with fewer than180

100B parameters, lacked the capacity to perform181

this complex task. When prompted, they often gen-182

erated the same CoT repeatedly. Even when they183

did generate multiple CoTs, our manual evaluation184

revealed they failed to effectively select the cor-185

rect answer from among them. These results are186

in line with prior results that indicate that these187

smaller models are also not the most effective in188

generating CoTs (Kim et al., 2023). While GPT-189

4o showed more success, the complexity of the190

task also heightened its tendency to hallucinate.191

Consequently, we observed no performance boost192

through prompting alone and thus focused our ex-193

periments on instruction tuning using DCoTs, as194

detailed in subsequent sections. Appendix C re-195

ports the prompts we used.196

3.2 Fine-Tuning 197

DCoT. We aim to instruction-tune LLMs to gen- 198

erate a sequence of divergent CoTs before select- 199

ing the final answer in a single inference step at 200

inference time. To this end, we devise a DCoT 201

instruction template, where we introduce a set of 202

commands (in brackets) to request the number of 203

CoTs to generate: 204

Prompt: [Question] Question [Options] Options 205

[Number of answers] k 206

Response: [Answer 1] CoT1 [Answer 2] ... [An- 207

swer k] CoTk [Final answer] answer 208

We instruction-tune each of the models we exper- 209

iment with (Section 3.5) using the above template. 210

We generate DCoT data in the required format us- 211

ing methods described in Section 3.3. For brevity, 212

we refer to instruction-tuned models on DCoT data 213

as DCoT. 214

CoT (Baseline). So as to establish a comparable 215

baseline, we instruction-tune the same LLMs using 216

the more traditional CoT format. To ensure a fair 217

comparison, we use the same reasoning chains as 218

above. As shown in Figure 2, each data point is 219

composed of a question and a CoT, and a question 220

may appear in more than one data point but with 221

a different CoT. In this way, the model leverages 222

CoT diversity at training time but, unlike in DCoT, 223

it does not do so at inference time. Once again, for 224

brevity, we refer to these models as CoT. 225

3

3.3 Dataset Generation226

We follow the methods set out by Ott et al. (2023)227

to create CoTs that we use to create our CoT and228

DCoT tuning datasets. We use GPT 3.5 turbo in229

the zero-shot setting with multiple triggers to gen-230

erate CoTs. Specifically, CoT Triggers are prompt231

suffixes, such as “Let’s think step by step” that232

‘trigger’ LLMs to generate CoTs. We use the same233

triggers as in (Ott et al., 2023). For each question,234

we select four random CoT triggers. We limit the235

number of CoTs to four to ensure that the targets236

fit the context window of the LLMs. We restrict237

the training data to those reasoning chains that lead238

to correct answers as determined by the labels pro-239

vided by the corresponding dataset. We report the240

prompt templates and triggers in Appendix H.241

3.4 Fine-Tuning Dataset Creation242

Table 1 lists the datasets we use to generate our243

CoTs and train the models. These datasets were244

selected following prior works (Wang et al., 2023;245

Yoran et al., 2023). We have added BoardgameQA246

(Kazemi et al., 2023) to include logic and Con-247

ditionalQA (Sun et al., 2022) to include natural248

conditional reasoning, both of which are highly249

complex and a second thought can be beneficial250

to find the answer. With this selection, we cover251

multiple domains, output spaces, and reasoning252

abilities. More details are provided in Appendix A.253

Dataset Reasoning Type

ARC (Clark et al.,
2018)

High-School Science

BGQA (Kazemi et al.,
2023)

Logic

CoinFlip (Wei et al.,
2022)

State-tracking

CondQA (CQA; Sun
et al. 2022)

Conditional

GSM8K (Cobbe et al.,
2021)

Math

HotpotQA (HQA;
Yang et al. 2018)

Explicit multli-hop

LLC (Wei et al., 2022) Symbolic
Quartz (Tafjord et al.,
2019)

Relationships

StrategyQA (StrQA;
Geva et al. 2021)

Implicit multi-hop

Table 1: Brief description of the training datasets.

3.5 Models254

We train a series of models covering the scaling255

laws and different families. Concretely, we em-256

ploy Phi 1.5 (1.3B; Li et al. 2023b), Phi 2 (2.7B; 257

Abdin et al. 2023), LLaMA-2 7B, LLaMA-2 13B 258

(Touvron et al., 2023). For all of our experiments, 259

we select the non-instruction tuned-based mod- 260

els so as to ensure that the comparison between 261

DCoT and CoT is fair. This is because instruction- 262

tuning datasets contain CoT data (Touvron et al., 263

2023), which would otherwise make the compari- 264

son unfair. We also conduct a smaller experiment 265

on LLaMA-2 13B Chat to analyze whether our 266

DCoT instruction-tuning method can be applied to 267

already-instruction-tuned models and on LLaMA-2 268

70B. We refer the reader to Appendix B for details 269

on the training setup of the models. 270

3.6 Evaluation 271

We use the macro average F1 metric for all in- 272

domain classification tasks and the squad-metric 273

(Rajpurkar et al., 2016) for the in-domain span- 274

extraction tasks (i.e., ConditionalQA and Hot- 275

potQA). We run our DCoT with k ∈ [1, 4] and select 276

the best k for each dataset based on the dev set. For 277

LLaMA-2 70B, we only report results on the dev 278

set due to the costs for hyperparameter tuning. Fur- 279

ther discussions are provided in Appendix B. 280

For the out-of-domain evaluation, we select tasks 281

from the three domains on which self-consistency 282

has been shown to improve, namely math, common- 283

sense, and symbolic reasoning (Wang et al., 2023). 284

Specifically, we evaluate on AQuA (math; Ling 285

et al. 2017), SVAMP (math; Patel et al. (2021)), 286

CommonsenseQA (CSQA; Talmor et al. 2019), 287

and Object Counting (symbolic reasoning; Suz- 288

gun et al. 2023). We hypothesize that DCoT tuning 289

will improve performance on these tasks. 290

Lastly, we use Big Bench Hard (Suzgun et al., 291

2023) as a control experiment to evaluate whether 292

generating multiple CoTs can confuse the models 293

and generate worse performance. We specifically 294

use this benchmark because their authors report 295

that CoT is only beneficial in large enough models; 296

in other words, not using CoT is better for small 297

models. This implies that it is extremely difficult 298

for small models to generate correct CoTs for these 299

tasks, and therefore, generating more than one is 300

even more difficult, so it is reasonable to question 301

whether DCoT can reduce performance. 302

4 Results and Analysis 303

In this section, we present results demonstrating 304

the following: 305

4

LLM Method Avg. ARC BGQA CQA GSM8K HQA LLC Quartz StrQA

CoT 47.20 48.70 32.39 61.21 34.95 32.56 41.00 72.69 54.08
Phi 1.5 DCoT (Ours) 49.39 50.01 38.60 62.48 36.85 34.81 39.00 77.39 55.97

(1.3B) CoT + SC 46.48 53.81 21.59 63.39 40.33 33.63 32.00 75.11 51.96
DCoT + SC 49.01 53.24 27.60 65.23 40.18 37.79 31.00 81.08 55.97

CoT 60.85 70.87 39.48 65.13 56.71 52.65 58.00 82.91 61.06
Phi 2 DCoT 62.60 73.77 47.07 68.61 60.73 55.15 58.00 83.16 54.34

(2.7B) CoT + SC 61.50 74.36 28.99 68.14 64.97 55.82 55.00 85.20 59.51
DCoT + SC 65.12 76.06 44.16 70.53 68.08 58.61 66.00 86.09 51.43

CoT 58.97 61.63 43.13 65.73 28.51 53.88 75.00 79.32 64.59
LLaMA2 DCoT 60.80 62.70 41.91 70.99 29.57 56.26 82.00 81.37 61.64

7B CoT + SC 62.90 65.98 46.04 69.92 33.97 57.05 81.00 83.28 65.99
DCoT + SC 61.09 68.53 28.20 71.36 36.01 58.35 83.00 84.05 59.22

CoT 64.39 71.79 42.63 70.25 42.53 60.23 81.00 84.82 61.85
LLaMA2 DCoT 66.18 71.41 50.21 71.56 44.28 63.52 80.00 83.29 65.16

13B CoT + SC 66.82 74.82 40.80 72.72 50.27 62.34 80.00 85.84 67.75
DCoT + SC 68.12 74.89 41.27 72.61 54.51 65.92 86.00 85.07 64.65

LLaMA2 CoT 64.87 70.43 44.39 71.71 42.76 60.83 78.00 84.04 66.78
13B Chat DCoT 64.62 72.22 40.94 71.59 44.20 63.87 71.00 85.43 67.68
LLaMA2 CoT 66.96 81.69 44.34 73.59 56.00 55.94 76.00 81.99 66.15
70B* DCoT 68.63 89.04 38.30 69.57 66.00 49.78 82.00 85.99 68.34

Table 2: Comparison of DCoT against CoT on the test sets. *70B results on the dev set.

1. The in-domain effectiveness of DCoT, as mea-306

sured by its effectiveness on the tasks that we307

instruction tune on (Section 4.1)308

2. The generalisability of DCoT to unseen tasks309

(Section 4.2)310

3. The robustness of DCoT to tasks where CoT is311

detrimental (Section 4.3)312

4. The feasibility of using post-hoc CoT exten-313

sions with DCoT (Section 4.4)314

5. That DCoT elicits self-correct abilities in315

LLMs (Section 5 and 5.1)316

4.1 DCoT is Beneficial on In-Domain Tasks317

Overall performance. The first two rows of each318

model in Table 2 compares DCoT with the CoT base-319

line using the greedy decoding.2 As explained in320

Section 3.6, DCoT uses the best k for each dataset321

according to the results on the dev set. The first322

result we observe is that DCoT achieves consistent323

and significant performance gains compared to CoT.324

The largest average gain is 2.19 for Phi 1.5, the325

smallest gain is 1.75 for Phi 2, and the maximum326

2CoinFlip results are omitted because all models achieve
perfect scores.

gain of 7.59 on Phi 2 on BGQA. We also observe 327

that, overall, these gains are consistent across all 328

datasets for all models. In particular, we only ob- 329

serve one dataset where CoT outperforms DCoT in 330

Phi 1.5 and Phi 2, two in LLaMA 7B, and three in 331

LLaMA-2 13B. However, the largest decrements 332

are on StrategyQA, the only boolean QA dataset. 333

We attribute this to the nature of this dataset, where 334

only two options are possible, and thus, the diver- 335

gence in the reasoning is less needed. 336

Performance across k. Table 3 shows the av- 337

erage performance across all datasets for each k. 338

We can see that, in general, a k > 1 (i.e., the 339

number of generated CoTs in our DCoT) improves 340

the performance of the model across all datasets 341

(compared to k = 1). Concretely, the best perfor- 342

mance of our model is achieved with more than 343

one CoT in 25 cases out of 32 dataset × LLM com- 344

binations (see Figure 3 in Appendix G). However, 345

DCoT sometimes exhibits some performance drop 346

when increasing k (e.g., Phi-2@4 on GSM8K). We 347

attribute this to an overthinking effect, where the 348

model tries to explore more CoTs and ends up gen- 349

erating wrong CoTs that bias the final answer. We 350

report the best k for each dataset × LLM combina- 351

5

LLM k=1 k=2 k=3 k=4

Phi 1.5 49.64 49.36 49.16 48.47

Phi 2 61.60 63.04 64.21 62.71

LLaMa2 7B 61.08 62.20 62.28 62.26

LLaMA2 13B 65.37 67.85 67.45 67.32

Table 3: DCoT average performance across different
number of CoTs per question on the dev sets.

tion on Table 12 in Appendix F.352

DCoT@1 ≈ CoT Table 11 in Appendix D reports353

the mean and standard deviation of both methods354

across three random seeds on the dev set. An im-355

portant phenomenon we observe there is that the356

performance of DCoT when generating a single CoT357

(i.e., DCoT@1) is very similar to the CoT baseline, as358

expected. This result shows that our DCoT training359

does not interfere with the regular CoT generation.360

Therefore, DCoT is a safe replacement to CoT in361

regular instruction-tuning datasets.362

We also conduct a smaller experiment on gen-363

eral instruction-tuned models (LLaMA2 13B chat).364

It is worth noting that comparing CoT with DCoT365

is not completely fair in this setting because this366

model has already been fine-tuned on CoTs (Tou-367

vron et al., 2023); thus, the CoT training is larger368

and more diverse than the DCoT one. Despite this,369

we observe that in more than half of the datasets370

DCoT outperforming CoT. However, the average371

score across all tasks is very similar for both meth-372

ods. This is because of the performance outlier in373

LLC, where CoT outperforms DCoT by 7 points.374

4.2 DCoT is Beneficial on Unseen Tasks375

In this section, we investigate whether DCoT re-376

mains beneficial on unseen tasks. To answer this,377

we utilize the DCoT and CoT trained on the nine378

tasks described on Section 3.4 and evaluate them379

on new ones where self-consistency is known to im-380

prove performance (Wang et al., 2023). We report381

these results in Table 4 and observe that DCoT out-382

performs CoT on most datasets with Phi 1.5, Phi 2,383

and LLaMA2 7B. In particular, we find gains larger384

than 5 points on AQuA and SVAMP for Phi 2, and385

larger than 3 on ObjCnt for Phi2 and SVAMP for386

LLaMA-2 7B. However, the results on LLaMA-2387

13B are mixed and only on the non-math domains388

we observe significant gains. Moreover, we ob-389

serve consistent and large gains by increasing k on390

LLM Method AQuA CSQA ObjCnt SVAMP

Phi 1.5

CoT 20.27 33.88 35.60 40.00

DCoT@1 21.51 32.26 25.20 40.50
DCoT@2 17.31 34.23 27.60 30.00
DCoT@3 22.38 33.81 30.80 30.00
DCoT@4 22.06 34.73 30.00 31.50

Phi 2

CoT 29.52 44.29 54.00 55.00

DCoT@1 34.86 44.15 58.40 60.50
DCoT@2 34.09 44.13 56.40 60.50
DCoT@3 31.83 45.99 57.60 60.00
DCoT@4 34.73 45.43 56.40 59.50

CoT 19.41 38.41 34.80 39.50

DCoT@1 17.70 36.94 40.00 41.50
LLaMA2 DCoT@2 17.27 40.79 39.60 43.00
7B DCoT@3 16.90 40.67 36.80 43.00

DCoT@4 17.21 40.43 37.20 39.00

CoT 24.85 46.55 45.2 62.50

DCoT@1 23.98 44.62 46.00 55.00
LLaMA2 DCoT@2 22.42 45.48 47.60 53.50
13B DCoT@3 20.72 47.42 52.40 56.50

DCoT@4 23.13 46.45 54.00 53.50

Table 4: DCoT vs. CoT on unseen tasks.

Method Phi 1.5 Phi 2 LL. 7B LL. 13B

CoT 28.37 46.7 31.08 36.38
DCoT@1 28.31 44.56 31.23 34.59
DCoT@2 28.07 45.81 31.11 35.94
DCoT@3 28.35 45.92 31.00 36.90
DCoT@4 28.21 46.71 31.13 36.45

Table 5: Results on Big Bench Hard. LL stands for
LLaMA2.

Object Count, showing its capability to improve 391

the CoTs consistently. 392

4.3 DCoT is Robust on Tasks where CoT is 393

Detrimental 394

We analyze the performance of our method on Big 395

Bench Hard, a benchmark where small models do 396

not benefit from CoTs (Suzgun et al., 2023) to 397

discover whether generating multiple CoTs can 398

further confuse the models and lead to worse re- 399

sults than the CoT baseline. The results from Ta- 400

ble 5 show that on these tasks, DCoT exhibits similar 401

performance to CoT, thus demonstrating that DCoT 402

does not lead to deterioration in challenging cases, 403

where CoT might be detrimental. Moreover, we 404

can observe some performance gains on Phi 2 and 405

LLaMA-2 13B when increasing k, further showing 406

the robustness of DCoT tuning and generalization 407

to unseen tasks. 408

6

LLM ARC BGQA CQA GSM8K HQA LLC Quartz StrQA

Phi 1.5 1.26 ↑ 2.10 ↑ 0.10 3.00 ↑ 0.83 ↑ -14.00 ↓ 3.38 ↑ 1.11 ↑
Phi 2 -3.56 ↓ -2.38 ↓ 0.95 ↑ 0.80 ↑ 1.06 ↑ 14.00 ↑ 1.55 ↑ -0.85 ↓
LLaMA2 7B 1.28 ↑ -0.99 ↓ -0.56 ↓ 4.00 ↑ -0.01 6.00 ↑ -1.04 ↓ 0.25
LLaMA2 13B 4.15 ↑ 0.91 ↑ -1.02 ↓ 3.00 ↑ 2.02 ↑ 12.00 ↑ 0.77 ↑ -2.03 ↓
LLaMA2 70B 3.24 ↑ 1.38 ↑ 3.68 ↑ 10.00 ↑ 0 4.00 ↑ -1.00 ↓ -4.07 ↓

Table 6: Performance gain from generating two CoTs instead of one on the dev set.

4.4 DCoT Benefits from CoT Extensions409

The last two rows of each model (i.e., CoT+SC and410

DCoT+SC) in Table 2 compares our DCoT with the411

CoT baseline using the self-consistency decoding412

(Wang et al., 2023). This decoding method is an413

add-on that has been shown to increase the per-414

formance of CoT across a wide range of tasks by415

sampling multiple generations and the aggregating416

them by a voting mechanism.417

We observe that our DCoT also benefits from this418

mechanism and keeps its performance gains over419

the CoT baseline, showing that our method can be420

a replacement for CoT in future instruction-tuning421

datasets. It is also worth noting that our DCoT with422

the greedy decoding even outperforms CoT+SC on423

all models, showing its superiority against CoT.424

5 DCoT Elicits Self-Correct Abilities425

Intrinsic self-correction refers to the ability of an426

LLM to revise or correct its initial response using427

only its inherent capabilities without relying on ex-428

ternal feedback. As previously discussed, recent429

work suggests that truly intrinsic self-correction is430

yet to be found in LLMs. Our findings show that431

DCoT-tuned models can intrinsically self-correct,432

as demonstrated by their ability to refine and cor-433

rect their answers generated in the initial chain of434

thought when generating subsequent chains. In this435

section, we provide a detailed empirical and careful436

manual analysis to support this finding.437

In the previous sections, we have demonstrated438

that DCoT does indeed improve performance. How-439

ever, these gains could be achieved in two distinct440

ways: it could be a result of self-ensembling as441

in the case of self-consistency, or alternatively, it442

could be a result of self-correction. To test which443

of these mechanisms leads to improvements, we444

compare the performance of DCoT when we gener-445

ate two reasoning chains (k = 2) to that where we446

generate just one. Importantly, any performance447

improvement between these cases cannot be a re-448

sult of self-consistency as two outputs are not suffi-449

cient to provide a majority vote, and at least three 450

reasoning chains are needed. 451

We can see in Table 6 that all models improve 452

performance for most datasets when generating two 453

CoTs instead of one. Specifically, in over 62% of 454

cases (i.e., 25 out of 40 LLM × dataset). Further- 455

more, we can observe performance improvements 456

greater than 0.5 for more than half of the datasets 457

for Phi 1.5, Phi2, LLaMA2 13B, and 70B. This 458

result is significant because it means that the gen- 459

eration of a second CoT is beneficial. We observe 460

a similar effect on the unseen tasks in Table 4, al- 461

though the effect is less pronounced due to lower 462

overall improvements on these out-of-domain tasks. 463

Regardless, across models and tasks, we find that 464

in 6/16 cases, DCoT@2 improves over DCoT@1, and 465

in 8/16 DCoT@k for k > 1 improves over DCoT@1, 466

with an additional two cases where the drop with 467

increased k is only marginal. 468

These results indicate that DCoT tuning enables 469

models to self-correct. Notably, our training data 470

includes only reasoning chains that lead to the cor- 471

rect answer, never incorrect ones. This suggests 472

that the ability to self-correct can be enabled in 473

LLMs without explicitly training for it. 474

5.1 Manual Analysis 475

We conduct a manual evaluation to verify our con- 476

clusions based on the quantitative results. Specifi- 477

cally, we verify that DCoT achieves self-correction 478

abilities by generating an improved second CoT. To 479

this end, we select instances for every dataset where 480

LLaMA 7B with DCoT@1 outputs an incorrect an- 481

swer while DCoT@2 results in a correct answer. We 482

then randomly sample five instances per dataset, 483

resulting in a total of 33 samples. We note that the 484

first reasoning chain of DCoT@2 might differ from 485

that of DCoT@1 because they are different runs. We 486

find this to be the case in nine instances. This im- 487

plies that in most cases, the first CoT is the same in 488

both cases. Of these instances where the first rea- 489

soning chain is shared, we observe that in 45% of 490

the cases, the second CoT of DCoT@2 exhibits a dif- 491

7

ferent reasoning pattern from the first. Therefore,492

in 45% of the cases, a second, improved CoT, al-493

lows the model to generate a correct answer, when494

the first CoT results in an incorrect answer. In other495

words, we observe that the performance gains in496

DCoT@2 can be attributed to self-correction.497

A more fine-grained analysis of these instances498

reveals that in one case, we observe that the second499

CoT is very similar to the first one but extracts more500

information from the context and uses it for the log-501

ical inference that allows it to reach the correct502

answer. In three cases, the second CoT fixes a con-503

clusion from the first CoT. In the last three cases,504

the CoTs lead to two potential answers, and only505

the second CoT selects the correct one. Table 13 in506

Appendix E shows examples of these observations.507

Overall, our manual analysis confirms that the per-508

formance gains achieved through DCoT result from509

the model self-correcting its initial answer.510

6 Discussion511

It is important to note that both DCoT and CoT are512

trained on exactly the same amount of CoTs and513

questions. While the CoT baseline uses data points514

in the form of [(q, cot1), (q, cot2), ...], DCoT uses515

data points in the form of [(q, cot1, cot2, ...) ,516

...]. In other words, a simple re-organization of517

the training CoTs into the form of multiple cots518

per label has a major impact on the model’s per-519

formance, making our results more striking. Im-520

portantly, DCoT@1 matches the performance of the521

CoT baseline, indicating that it is safe to augment522

existing instruction-tuning datasets with DCoT data,523

as it will not hinder model performance.524

DCoT is different from ensembling methods like525

self-consistency, which also benefit from generat-526

ing multiple candidate answers but do so across dif-527

ferent inference steps using high-temperature val-528

ues. DCoT, while it may resemble these ensemble529

methods, is fundamentally different. Our method530

generates reasoning chains that have access to pre-531

vious ones and shows performance improvements532

even when generating just two CoT chains.533

The most surprising aspect of our findings is534

that DCoT has the ability to self-correct. This abil-535

ity presents itself despite us not explicitly training536

models to learn to correct themselves. The rea-537

soning chains we use for training are all correct538

CoTs, and we fine-tune base models without prior539

instruction-following capabilities. Despite this, the540

self-correct abilities surface in our DCoT models.541

We argue that these abilities stem from the model’s 542

attempt to generate subsequent correct CoTs. In 543

other words, the model may generate a first wrong 544

CoT without knowing it, but it generates a second 545

CoT that is correct and, therefore, as a side-effect, 546

corrects the first one. 547

More generally, we deduce that these abilities 548

arise from the model’s capacity to learn to gener- 549

alize based on the divergent reasoning chains we 550

train on. This supposition gains further credence 551

from recent work suggesting that instruction tuning 552

allows models to generalize their abilities to solve 553

tasks, rather than leading to novel capabilities (Lu 554

et al., 2023). Regardless of the underlying mech- 555

anism—identification of which we leave to future 556

work—we provide a novel method for enabling 557

LLMs to self-correct. We posit that instruction 558

tuning on other complex multi-step reasoning prob- 559

lems, as we have done with generating multiple di- 560

vergent CoTs before converging on a final answer, 561

will lead to encoding those complex capabilities 562

into LLMs while also allowing them to generalize 563

in powerful new ways. 564

7 Conclusions 565

This work presents Divergent Chain of Thought 566

(DCoT), a new CoT method that aims to improve 567

LLM’s performance on reasoning tasks by gener- 568

ating multiple CoTs in a single inference step. We 569

show through extensive quantitative experiments 570

the effectiveness of our method across a wide range 571

of reasoning tasks (in domain and out of domain), 572

model families, and sizes. We also show that DCoT 573

can be extended with any CoT extension, such as 574

self-consistency, wherein it outperforms CoT sim- 575

ilarly extended with self-consistency. Lastly, we 576

show a beneficial side effect of our method: the 577

subsequent generated CoTs can self-correct pre- 578

vious reasoning chains without any external feed- 579

back or prompt optimization. This is the first work 580

that achieves such self-correct ability in LLMs. 581

We show quantitatively the occurrence of this phe- 582

nomenon with gains up to 14 points, and further 583

explain it with a qualitative analysis showing that 584

the second generated CoT provides a different rea- 585

soning chain compared to the first one and that this 586

second CoT leads to a correct answer. 587

We leave as future work extending our DCoT 588

fine-tuning to other types of prompting such as 589

code prompting (Puerto et al., 2024) or graph of 590

thoughts (Besta et al., 2024). 591

8

Limitations592

Our method is limited by the context window of the593

underlying model. In this work, we have explored594

generating CoTs up to 4, however, it remains inter-595

esting whether this approach can further generalize596

to larger number of CoTs, especially on very large597

language models with massive context windows,598

such as Google’s Gemini.599

We limit the generation of the CoTs to a single600

commercial LLM provider because our preliminary601

experiments showed performance drops when com-602

bining multiple LLM providers. Further research603

on how to combine multiple LLM providers for604

distilling to smaller models is interesting and we605

leave that for future work.606

Due to the computational costs, we could not ex-607

tensively experiment on the 70B model. We could608

only afford to train with one seed and on a smaller609

dataset of 900 questions. Similarly, we could only610

evaluate it on 100 random questions per dataset.611

Nevertheless, the clear gains we observed on the612

dev sets, where we do not do any hyperparame-613

ter fine-tuning due to its costs, are indicative of614

the potential of our method on very large language615

models.616

Ethics and Broader Impact Statement617

This work adheres to the ACL Code of Ethics.618

In particular, all the datasets we used have been619

shown by prior works to be safe for research pur-620

poses. They are not known to contain personal621

information or harmful content. Our method aims622

to improve the reasoning abilities of LLMs. More-623

over, by generating multiple CoTs in one inference624

step, we allow the model to explore more reason-625

ing chains and potentially diminish the effects of626

potentially biased or incorrect CoTs. Because of627

this, we believe our work can contribute to the safe628

deployment of LLMs in real-world scenarios.629

References630

Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio631
César Teodoro Mendes, Weizhu Chen, Allie Del632
Giorno, Ronen Eldan, Sivakanth Gopi, Suriya Gu-633
nasekar, Mojan Javaheripi, Piero Kauffmann, Yin Tat634
Lee, Yuanzhi Li, Anh Nguyen, Gustavo de Rosa,635
Olli Saarikivi, Adil Salim, Shital Shah, Michael San-636
tacroce, Harkirat Singh Behl, Adam Taumann Kalai,637
Xin Wang, Rachel Ward, Philipp Witte, Cyril Zhang,638
and Yi Zhang. 2023. Phi-2: The surprising power of639
small language models. Microsoft Ignite 2023.640

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger- 641
stenberger, Michal Podstawski, Lukas Gianinazzi, 642
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom- 643
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph 644
of thoughts: Solving elaborate problems with large 645
language models. Proceedings of the AAAI Confer- 646
ence on Artificial Intelligence, 38(16):17682–17690. 647

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 648
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 649
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 650
2024. Scaling instruction-finetuned language models. 651
Journal of Machine Learning Research, 25(70):1–53. 652

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 653
Ashish Sabharwal, Carissa Schoenick, and Oyvind 654
Tafjord. 2018. Think you have solved question an- 655
swering? try arc, the ai2 reasoning challenge. arXiv 656
preprint arXiv:1803.05457. 657

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 658
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 659
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 660
Nakano, et al. 2021. Training verifiers to solve math 661
word problems. arXiv preprint arXiv:2110.14168. 662

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 663
Dan Roth, and Jonathan Berant. 2021. Did aristotle 664
use a laptop? a question answering benchmark with 665
implicit reasoning strategies. Transactions of the 666
Association for Computational Linguistics, 9:346– 667
361. 668

Joy P Guilford. 1967. Creativity: Yesterday, today and 669
tomorrow. The Journal of Creative Behavior, 1(1):3– 670
14. 671

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023. 672
Large language models are reasoning teachers. In 673
Proceedings of the 61st Annual Meeting of the As- 674
sociation for Computational Linguistics (Volume 1: 675
Long Papers), pages 14852–14882, Toronto, Canada. 676
Association for Computational Linguistics. 677

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, 678
Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay 679
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Dis- 680
tilling step-by-step! outperforming larger language 681
models with less training data and smaller model 682
sizes. In Findings of the Association for Compu- 683
tational Linguistics: ACL 2023, pages 8003–8017, 684
Toronto, Canada. Association for Computational Lin- 685
guistics. 686

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 687
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 688
Chen. 2022. LoRA: Low-rank adaptation of large 689
language models. In International Conference on 690
Learning Representations. 691

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi 692
Wang, Hongkun Yu, and Jiawei Han. 2023. Large 693
language models can self-improve. In Proceedings 694
of the 2023 Conference on Empirical Methods in Nat- 695
ural Language Processing, pages 1051–1068, Singa- 696
pore. Association for Computational Linguistics. 697

9

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://onlinelibrary.wiley.com/doi/10.1002/j.2162-6057.1967.tb00002.x
https://onlinelibrary.wiley.com/doi/10.1002/j.2162-6057.1967.tb00002.x
https://onlinelibrary.wiley.com/doi/10.1002/j.2162-6057.1967.tb00002.x
https://doi.org/10.18653/v1/2023.acl-long.830
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67

Jie Huang, Xinyun Chen, Swaroop Mishra,698
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-699
ing Song, and Denny Zhou. 2024. Large language700
models cannot self-correct reasoning yet. In The701
Twelfth International Conference on Learning702
Representations.703

Weisen Jiang, Han Shi, Longhui Yu, Zhengying704
Liu, Yu Zhang, Zhenguo Li, and James T. Kwok.705
2023. Forward-backward reasoning in large language706
models for mathematical verification. Preprint,707
arXiv:2308.07758.708

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung709
Kim, Xin Xu, Vaiva Imbrasaite, and Deepak Ra-710
machandran. 2023. BoardgameQA: A dataset for711
natural language reasoning with contradictory infor-712
mation. In Thirty-seventh Conference on Neural In-713
formation Processing Systems Datasets and Bench-714
marks Track.715

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.716
2024. Language models can solve computer tasks.717
Advances in Neural Information Processing Systems,718
36.719

Seungone Kim, Se Joo, Doyoung Kim, Joel Jang,720
Seonghyeon Ye, Jamin Shin, and Minjoon Seo.721
2023. The CoT collection: Improving zero-shot722
and few-shot learning of language models via chain-723
of-thought fine-tuning. In Proceedings of the 2023724
Conference on Empirical Methods in Natural Lan-725
guage Processing, pages 12685–12708, Singapore.726
Association for Computational Linguistics.727

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying728
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.729
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-730
cient memory management for large language model731
serving with pagedattention. In Proceedings of the732
ACM SIGOPS 29th Symposium on Operating Systems733
Principles.734

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang735
Ren, Kai-Wei Chang, and Yejin Choi. 2023a. Sym-736
bolic chain-of-thought distillation: Small models can737
also “think” step-by-step. In Proceedings of the 61st738
Annual Meeting of the Association for Computational739
Linguistics (Volume 1: Long Papers), pages 2665–740
2679, Toronto, Canada. Association for Computa-741
tional Linguistics.742

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,743
Jian-Guang Lou, and Weizhu Chen. 2022. Making744
large language models better reasoners with step-745
aware verifier. arXiv preprint arXiv:2206.02336.746

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie747
Del Giorno, Suriya Gunasekar, and Yin Tat Lee.748
2023b. Textbooks are all you need ii: phi-1.5 techni-749
cal report. arXiv preprint arXiv:2309.05463.750

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-751
som. 2017. Program induction by rationale genera-752
tion: Learning to solve and explain algebraic word753

problems. In Proceedings of the 55th Annual Meet- 754
ing of the Association for Computational Linguistics 755
(Volume 1: Long Papers), pages 158–167, Vancouver, 756
Canada. Association for Computational Linguistics. 757

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Har- 758
ish Tayyar Madabushi, and Iryna Gurevych. 2023. 759
Are emergent abilities in large language models just 760
in-context learning? Preprint, arXiv:2309.01809. 761

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 762
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 763
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 764
Shashank Gupta, Bodhisattwa Prasad Majumder, 765
Katherine Hermann, Sean Welleck, Amir Yazdan- 766
bakhsh, and Peter Clark. 2023. Self-refine: Itera- 767
tive refinement with self-feedback. In Thirty-seventh 768
Conference on Neural Information Processing Sys- 769
tems. 770

Sourab Mangrulkar, Sylvain Gugger, Lysandre De- 771
but, Younes Belkada, Sayak Paul, and Benjamin 772
Bossan. 2022. Peft: State-of-the-art parameter- 773
efficient fine-tuning methods. https://github. 774
com/huggingface/peft. 775

Simon Ott, Konstantin Hebenstreit, Valentin Liévin, 776
Christoffer Egeberg Hother, Milad Moradi, Maxi- 777
milian Mayrhauser, Robert Praas, Ole Winther, and 778
Matthias Samwald. 2023. Thoughtsource: A central 779
hub for large language model reasoning data. Scien- 780
tific Data, 10(1):528. 781

Liangming Pan, Michael Saxon, Wenda Xu, Deepak 782
Nathani, Xinyi Wang, and William Yang Wang. 2023. 783
Automatically correcting large language models: Sur- 784
veying the landscape of diverse self-correction strate- 785
gies. arXiv preprint arXiv:2308.03188. 786

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 787
2021. Are NLP models really able to solve simple 788
math word problems? In Proceedings of the 2021 789
Conference of the North American Chapter of the 790
Association for Computational Linguistics: Human 791
Language Technologies, pages 2080–2094, Online. 792
Association for Computational Linguistics. 793

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, 794
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, 795
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 796
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- 797
esnay. 2011. Scikit-learn: Machine learning in 798
Python. Journal of Machine Learning Research, 799
12:2825–2830. 800

Haritz Puerto, Martin Tutek, Somak Aditya, Xiaodan 801
Zhu, and Iryna Gurevych. 2024. Code prompting 802
elicits conditional reasoning abilities in text+code 803
llms. Preprint, arXiv:2401.10065. 804

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 805
Percy Liang. 2016. SQuAD: 100,000+ questions for 806
machine comprehension of text. In Proceedings of 807
the 2016 Conference on Empirical Methods in Natu- 808
ral Language Processing, pages 2383–2392, Austin, 809
Texas. Association for Computational Linguistics. 810

10

https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2308.07758
https://arxiv.org/abs/2308.07758
https://arxiv.org/abs/2308.07758
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://arxiv.org/pdf/2303.17491
https://doi.org/10.18653/v1/2023.emnlp-main.782
https://doi.org/10.18653/v1/2023.emnlp-main.782
https://doi.org/10.18653/v1/2023.emnlp-main.782
https://doi.org/10.18653/v1/2023.emnlp-main.782
https://doi.org/10.18653/v1/2023.emnlp-main.782
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://arxiv.org/pdf/2206.02336
https://arxiv.org/pdf/2206.02336
https://arxiv.org/pdf/2206.02336
https://arxiv.org/pdf/2206.02336
https://arxiv.org/pdf/2206.02336
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2309.05463
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://arxiv.org/abs/2309.01809
https://arxiv.org/abs/2309.01809
https://arxiv.org/abs/2309.01809
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://www.nature.com/articles/s41597-023-02433-3
https://www.nature.com/articles/s41597-023-02433-3
https://www.nature.com/articles/s41597-023-02433-3
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://arxiv.org/abs/2401.10065
https://arxiv.org/abs/2401.10065
https://arxiv.org/abs/2401.10065
https://arxiv.org/abs/2401.10065
https://arxiv.org/abs/2401.10065
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Noah Shinn, Federico Cassano, Ashwin Gopinath,811
Karthik Narasimhan, and Shunyu Yao. 2024. Re-812
flexion: Language agents with verbal reinforcement813
learning. Advances in Neural Information Process-814
ing Systems, 36.815

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-816
hampati. 2024. On the self-verification limitations817
of large language models on reasoning and planning818
tasks. Preprint, arXiv:2402.08115.819

Haitian Sun, William Cohen, and Ruslan Salakhutdinov.820
2022. ConditionalQA: A complex reading compre-821
hension dataset with conditional answers. In Pro-822
ceedings of the 60th Annual Meeting of the Associa-823
tion for Computational Linguistics (Volume 1: Long824
Papers), pages 3627–3637, Dublin, Ireland. Associa-825
tion for Computational Linguistics.826

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-827
bastian Gehrmann, Yi Tay, Hyung Won Chung,828
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny829
Zhou, and Jason Wei. 2023. Challenging BIG-bench830
tasks and whether chain-of-thought can solve them.831
In Findings of the Association for Computational Lin-832
guistics: ACL 2023, pages 13003–13051, Toronto,833
Canada. Association for Computational Linguistics.834

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter835
Clark. 2019. QuaRTz: An open-domain dataset of836
qualitative relationship questions. In Proceedings of837
the 2019 Conference on Empirical Methods in Natu-838
ral Language Processing and the 9th International839
Joint Conference on Natural Language Processing840
(EMNLP-IJCNLP), pages 5941–5946, Hong Kong,841
China. Association for Computational Linguistics.842

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and843
Jonathan Berant. 2019. CommonsenseQA: A ques-844
tion answering challenge targeting commonsense845
knowledge. In Proceedings of the 2019 Conference846
of the North American Chapter of the Association for847
Computational Linguistics: Human Language Tech-848
nologies, Volume 1 (Long and Short Papers), pages849
4149–4158, Minneapolis, Minnesota. Association for850
Computational Linguistics.851

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-852
bert, Amjad Almahairi, Yasmine Babaei, Nikolay853
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti854
Bhosale, et al. 2023. Llama 2: Open founda-855
tion and fine-tuned chat models. arXiv preprint856
arXiv:2307.09288.857

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter858
Chen, and Tony Mak. 2023. Llms cannot find rea-859
soning errors, but can correct them given the error860
location. Preprint, arXiv:2311.08516.861

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,862
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,863
and Denny Zhou. 2023. Self-consistency improves864
chain of thought reasoning in language models. In865
The Eleventh International Conference on Learning866
Representations.867

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 868
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, 869
and Denny Zhou. 2022. Chain-of-thought prompt- 870
ing elicits reasoning in large language models. In 871
Advances in Neural Information Processing Systems, 872
volume 35, pages 24824–24837. Curran Associates, 873
Inc. 874

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, 875
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao. 876
2023. Large language models are better reasoners 877
with self-verification. In Findings of the Associa- 878
tion for Computational Linguistics: EMNLP 2023, 879
pages 2550–2575, Singapore. Association for Com- 880
putational Linguistics. 881

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, 882
William Cohen, Ruslan Salakhutdinov, and Christo- 883
pher D. Manning. 2018. HotpotQA: A dataset for 884
diverse, explainable multi-hop question answering. 885
In Proceedings of the 2018 Conference on Empiri- 886
cal Methods in Natural Language Processing, pages 887
2369–2380, Brussels, Belgium. Association for Com- 888
putational Linguistics. 889

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel 890
Deutch, and Jonathan Berant. 2023. Answering 891
questions by meta-reasoning over multiple chains 892
of thought. In Proceedings of the 2023 Conference 893
on Empirical Methods in Natural Language Process- 894
ing, pages 5942–5966, Singapore. Association for 895
Computational Linguistics. 896

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying 897
Peng, Jun Wang, Yueting Zhuang, and Weiming 898
Lu. 2024. Self-contrast: Better reflection through 899
inconsistent solving perspectives. arXiv preprint 900
arXiv:2401.02009. 901

A Datasets 902

All the datasets used in this work are exclusively in 903

English language. In particular, we use ARC (Clark 904

et al., 2018), BGQA (Kazemi et al., 2023),Coin- 905

Flip (Wei et al., 2022), ConditionalQA (CQA) (Sun 906

et al., 2022), GSM8K (Cobbe et al., 2021), Hot- 907

potQA (HQA) (Yang et al., 2018), LLC (Wei et al., 908

2022), Quartz (Tafjord et al., 2019), and Strate- 909

gyQA (StrQA) (Geva et al., 2021) for training, 910

while we use AQuA (Ling et al., 2017), Common- 911

senseQA (Talmor et al., 2019), Object Count (a task 912

of Big Bench Hard Suzgun et al. 2023), SVAMP 913

(Patel et al., 2021), and Big Bench Hard for out of 914

domain evaluation. For BGQA, we use the parti- 915

tion main-3, the most difficult one requiring 3-hop 916

reasoning skills. 917

Some of these datasets do not provide a vali- 918

dation set. In those cases, we randomly sample 919

500 instances from the training set and use them 920

as validation set. Similarly, when a dataset does 921

11

https://openreview.net/pdf?id=vAElhFcKW6
https://openreview.net/pdf?id=vAElhFcKW6
https://openreview.net/pdf?id=vAElhFcKW6
https://openreview.net/pdf?id=vAElhFcKW6
https://openreview.net/pdf?id=vAElhFcKW6
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/D19-1608
https://doi.org/10.18653/v1/D19-1608
https://doi.org/10.18653/v1/D19-1608
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://arxiv.org/pdf/2401.02009
https://arxiv.org/pdf/2401.02009
https://arxiv.org/pdf/2401.02009

not provide a test set, we use the validation set as922

a test and create a validation set from the unused923

instances from the training set. When the training924

set is not larger than 1k, we divide the validation925

set into two. For Last Letter Concatenation (LLC),926

the training set is very small (350 instances), and927

the test set is also very small (150), so we pick 50928

instances of the test set as validation and 100 as929

test. We release in our github repository the exact930

partitions we used.931

Table 9 reports the licenses and sizes of the train-932

ing, dev, and test sets of the datasets we used and933

Table 10 reports for the out of domain datasets.934

We use these datasets for research purposes only,935

fulfilling their intended use.936

Due to the large size of LLaMA-2 70B and its937

computation costs, we trained it on a smaller sam-938

ple data of 900 questions. Similarly, for inference,939

we pick a random sample of 100 questions per940

dataset.941

B Experimental Setup942

We run all our experiments on a GPU cluster with943

an Nvidia A180. To run GPT models, we use the944

Azure OpenAI service and prompt them with the li-945

brary Langchain.3 We use Scikit-learn (Pedregosa946

et al., 2011) for the implementation of the evalua-947

tion metrics.948

We train all models using LoRA (Hu et al., 2022)949

with the PEFT library (Mangrulkar et al., 2022)950

and use vLLM (Kwon et al., 2023) as the inference951

engine. For training, we load the models with fp8,952

while for inference, we load them with fp16. We953

train models for three epochs, save checkpoints for954

each epoch and select the best checkpoint based on955

the average results on the dev set.956

Due to the challenge of running very large mod-957

els, such as LLaMA-2 70B, to simplify the evalua-958

tion setup. We trained the model with 8-bit quanti-959

zation and ran the evaluation on 4-bit. Instead of960

evaluating on the full dev sets, we had to evaluate961

on a random sample of 100 questions per dataset962

and only evaluate the last checkpoint. Therefore,963

we could not conduct hyperparameter tuning either.964

Because of these challenges, we cannot report re-965

sults on the test set, and instead, we only report966

results on the dev set. It is important to emphasize967

again that we do not conduct any hyperparameter968

tuning, so the results on the dev set are represen-969

tative of the performance of our method on large-970

3https://github.com/langchain-ai/langchain

scale models. 971

Table 8 reports the best hyperparameters we 972

found on the dev set. Training Phi 1.5 on DCoT 973

takes approximately 12h, Phi 2 20h, LLaMA 7B 974

35h, LLaMA 13B 51h, and LLaMA 70B 30h. 975

Training on CoT takes 9h for Phi 1.5, 15h for Phi 976

2, 25h for LLaMA-2 7B, 39h for LLaMA-2 13B, 977

and 13h for LLaMA-2 70B. As expected, DCoT 978

training is slower since the targets are longer. The 979

parameters we use to train the models are reported 980

in Table 7. 981

Param. name Value

lora_r 64
lora_alpha 16
lora_dropout 0.1
batch size 4
max_grad_norm 0.3
learning_rate 2e-4
weight_decay 0.001
optim paged_adamw_32bit
lr_scheduler_type constant
max_steps -1
warmup_ratio 0.03
group_by_length True
max_seq_length 4096
packing False
seeds 0, 42, 2024
load_in_8bit True

Table 7: Training parameters

Model Method Seed Epoch

Phi 1.5
CoT 0 2

DCoT 42 2

Phi 2
CoT 0 3

DCoT 2024 2

LLaMA2 7B
CoT 0 2

DCoT 0 3

LLaMA2 13B
CoT 42 3

DCoT 42 3

Table 8: Best hyperparameters tuned on the dev set.

C Prompting 982

The prompts we used with GPT4o for DCoT and 983

CoT are “Generate k different reasoning chains 984

that answer the question. Make sure that none of 985

the reasoning chains are repeated. Generate each 986

12

https://github.com/langchain-ai/langchain

Dataset Task Train Dev Test License Source

ARC Multiple choice 1033 294 1150 CC BY-SA 4.0 Link
BGQA Multiple choice 716 500 1000 CC BY Link
Coin Flip Multiple choice 1000 1333 3333 mit Link
CQA Span extraction 958 285 804 CC BY-SA 4.0 Link
GSM8K Generation (numbers) 1000 500 1319 mit Link
HQA Span extraction 1000 500 7405 CC BY-SA 4.0 Link
LLC Generation 350 50 100 N/A Link
Quartz Multiple choice 953 384 784 CC BY-SA 4.0 Link
StrQA Boolean QA 998 343 344 mit Link

Table 9: Training datasets. The training size corresponds to our CoT generations to build the DCoT dataset.

Dataset Task Dev License Source

AQuA Multiple choice 254 Apache 2.0 Link
CSQA Multiple choice 1220 mit Link
SVAMP Generation (numbers) 100 mit Link
Big Bench Hard Multiple choice & Generation 6511 mit Link

Table 10: Out of domain datasets.

reasoning chain independently, and not based on987

previous reasoning chains. This means that each988

reasoning chain must be as different from the others989

as possible. When generating the different reason-990

ing chains, do so without knowledge of the answer.991

Each step in each of the reasoning chains must992

build on the previous steps in that reasoning chain.993

Once the required number of reasoning chains are994

generated, generate an answer based on the all the995

answers generated by all the reasoning chains.” and996

“Generate a reasoning chain that answer the ques-997

tion.” In both cases, after generating the CoT, we998

extracted the answer with the following prompt for999

SVAMP “Therefore, based on the solution above,1000

extract the number that represents the answer:” and1001

“Therefore, based on the solution above, select one1002

of the options (options) as the answer to the ques-1003

tion (just give me the option and nothing else).” for1004

ARC and Quartz.1005

D Dev Set Results1006

We report the mean and stardard deviation results1007

from the validation set across threee random seeds1008

in Table 11.1009

E Manual Analysis1010

Appendix E shows two examples of how the second1011

CoT of LLaMA 7B with DCoT corrects the first1012

CoT.1013

F DCoT Best k Parameter 1014

Table 12 shows the best k (i.e., number of CoTs) 1015

per model and dataset according to the dev set. 1016

G DCoT Performance across k 1017

Figure 3 shows the performance gains of DCoT@k 1018

against DCoT@1. 1019

H Data Generation 1020

We report the CoT triggers used to generate the 1021

training CoTs in Table 14. To extract the an- 1022

swers from the CoTs, we used the following for- 1023

mat: “{cot} Therefore, the answer (A, B, C, or 1024

D) is:” where we change (A, B, C, D) for the cor- 1025

responding options of the dataset. If the dataset 1026

expects a number and not a list of options, we don’t 1027

give any list of options in the prompt and extract 1028

the number with a regular expression. Lastly, for 1029

the span extraction datasets, we use the following 1030

template: “{text} {question} Answer: {answer} 1031

{cot_trigger}.” The idea behind this template is to 1032

provide the golden answer and prompt the model 1033

to generate rationales that explain that answer and 1034

use them as CoTs as in (Kim et al., 2023). The 1035

total GPT cost to generate the CoTs is $43.68. 1036

13

https://huggingface.co/datasets/allenai/ai2_arc
https://storage.googleapis.com/gresearch/BoardgameQA/BoardgameQA.zip
https://huggingface.co/datasets/skrishna/coin_flip
https://haitian-sun.github.io/conditionalqa/
https://huggingface.co/datasets/openai/gsm8k
https://hotpotqa.github.io/
https://huggingface.co/datasets/ChilleD/LastLetterConcat
https://huggingface.co/datasets/allenai/quartz
https://huggingface.co/datasets/ChilleD/StrategyQA
https://github.com/google-deepmind/AQuA
https://huggingface.co/datasets/tau/commonsense_qa/
https://github.com/arkilpatel/SVAMP
https://huggingface.co/datasets/maveriq/bigbenchhard

LLM Method k Avg ARC BGQA CQA GSM8K HQA LLC Quartz StrQA

Phi 1.5
DCoT

1 47.87±1.71 44.13±1.94 39.43±3.91 61.83±.74 36.07±1.70 38.70±3.18 36.00±3.46 71.69±1.73 55.13±.35
2 48.63±0.67 46.98±2.60 41.94±3.10 60.87±1.14 38.80±3.10 39.79±3.80 30.00±4.00 74.29±2.69 56.40±.87
3 48.96±0.66 47.32±1.66 42.75±1.92 60.75±1.15 39.00±1.71 38.19±2.81 32.67±7.02 75.42±2.38 55.57±1.52
4 48.76±0.33 46.78±1.14 43.23±2.22 60.16±1.32 38.93±3.31 37.33±2.92 32.67±7.02 75.60±3.32 55.41±1.30

CoT 47.51±1.77 46.60±2.38 36.65±1.90 59.55±0.61 37.40±3.22 35.28±4.22 36.67±9.02 75.07±2.36 52.84±2.47

Phi 2
DCoT

1 63.91±2.58 75.21±1.84 45.01±3.03 65.39±1.57 56.47±1.68 62.44±2.63 62.67±16.29 82.88±1.09 57.28±2.35
2 65.33±2.80 76.46±2.52 46.89±3.85 65.69±2.12 57.60±1.64 63.71±2.18 66.67±9.02 84.10±1.36 56.44±3.33
3 65.30±1.72 75.87±1.42 48.06±1.75 65.90±2.02 58.20±1.91 61.66±2.06 68.00±5.29 83.91±1.18 56.28±3.90
4 64.89±2.39 75.91±2.72 49.11±2.31 65.92±1.01 57.07±1.33 59.86±.96 66.00±8.00 84.09±1.88 56.97±5.00

CoT 63.51±.71 74.19±.61 42.08±.79 66.92±.29 62.80±3.53 56.45±.78 62.71±3.00 77.92±7.30 66.74±15.54

LLaMA-2

DCoT

1 61.28±.50 59.36±2.29 43.67±.35 65.31±.50 29.73±1.63 62.92±3.16 86.67±2.31 80.63±.92 61.96±1.45
7B 2 62.46±.45 61.63±1.46 43.56±.80 66.05±.80 33.40±.80 63.86±1.23 86.67±3.06 82.11±1.57 62.38±1.21

3 62.37±.23 60.98±2.37 44.23±.95 66.65±1.21 33.53±.50 63.46±1.46 86.67±1.15 80.89±2.65 62.51±.86
4 62.42±.59 62.13±3.21 43.85±.45 65.98±2.72 33.33±.50 63.63±2.16 86.00±3.46 82.20±2.78 62.20±1.42

CoT 59.30±.54 56.54±3.83 41.91±2.32 59.85±3.91 31.93±1.42 57.81±3.73 82.67±3.06 79.24±2.16 64.42±1.52

LLaMA-2

DCoT

1 67.30±.49 74.85±1.68 46.40±4.13 68.55±1.33 44.53±1.51 72.35±.93 81.33±3.06 84.89±.90 65.46±1.17
13B 2 66.92±.59 73.63±1.80 45.74±3.50 67.01±1.75 46.93±1.22 72.69±.85 81.33±3.06 84.37±1.04 63.62±1.32

3 66.70±.55 74.95±1.50 45.89±3.64 67.26±1.47 45.73±.42 72.75±.94 80.67±4.16 83.68±1.69 62.71±.75
4 64.20±.66 72.41±1.21 43.30±3.10 67.12±2.19 39.27±2.58 64.20±2.43 79.33±1.15 81.68±.65 66.31±.68

CoT 65.41±.91 71.66±2.15 44.45±1.53 68.39±1.70 42.67±2.32 66.12±.82 82.00±5.29 82.37±.82 65.64±1.29

LLaMA-2

DCoT

1 64.53 71.85 47.11 67.37 41.60 70.52 68.00 82.81 66.97
13B Chat* 2 65.95 70.73 47.76 69.16 42.40 71.02 74.00 84.87 67.68

3 66.10 72.22 46.82 67.48 43.60 72.08 76.00 84.87 65.76
4 66.17 71.85 45.03 69.70 45.00 71.75 74.00 86.44 65.59

CoT 66.27 70.43 45.36 70.71 44.20 70.11 80.00 82.53 66.78

LLaMA-2

DCoT

1 66.48 85.80 36.92 65.89 56.00 49.78 78.00 87.00 72.41
70B* 2 68.63 89.04 38.30 69.57 66.00 49.78 82.00 85.99 68.34

3 68.07 86.64 38.55 68.87 60.00 49.78 80.00 88.00 72.70
4 68.06 88.94 32.62 67.21 66.00 49.78 82.00 85.00 72.92

CoT 66.96 81.69 44.34 73.59 56.00 55.94 76.00 81.99 66.15

Table 11: Dev set results using 3 random seeds. *One seed for LLaMA-2 13B Chat and 70B.

Figure 3: DCoT performance across different k on the dev set.

14

Dataset Phi 1.5 Phi 2 LLaMA2 7B LLaMA2 13B

ARC 4 2 4 4
BGQA 2 4 4 2
ConditionalQA 2 4 4 1
GSM8K 2 3 2 3
HotpotQA 2 2 1 3
LCC 1 2 1 2
Quartz 4 4 2 2
StrategyQA 3 1 1 1

Table 12: Best number of cots (k parameter) for each model and dataset in our best DCoT models according to the
dev set.

15

Type Text

1st and 2nd
CoTs are
the same but
the 1st CoT
makes an
error when
generating
the answer.
2nd CoT
corrects
that.

Question: Take the last letters of each words in “Billie Paloma Tanner Raul” and
concatenate them.
[Answer 1] 1. Write down the words: Billie Paloma Tanner Raul
2. Take the last letter of the first word "Billie", which is "e".
3. Take the last letter of the second word "Paloma", which is "a".
4. Take the last letter of the third word "Tanner", which is "r".
5. Take the last letter of the fourth word "Raul", which is "l".
6. Concatenate these letters together: "ealr".
7. The result word is "ealr".
[Answer 2] Sure, let’s break it down step by step:
1. The last letter of "Billie" is "e".
2. The last letter of "Paloma" is "a".
3. The last letter of "Tanner" is "r".
4. The last letter of "Raul" is "l".
Now, if we concatenate these letters, we get the word "earl". Therefore, the answer
is "earl".
[Final answer] earl

2nd CoT
shows a
different
reasoing
pattern
and yields
the correct
answer.

Question: Cornelia likes to travel. She visited already 42 different countries. 20 of
them were in Europe and 10 in South America. From the rest of the countries, only
half of them were in Asia. How many Asian countries has Cornelia visited?
[Answer 1] 1. We know that Cornelia visited 42 countries in total.
2. We also know that 20 of those countries were in Europe and 10 were in South
America.
3. Therefore, the remaining countries must be half of the total number of countries
Cornelia visited, which is 42/2 = 21.
4. We know that Cornelia visited only half of the Asian countries, which means there
are 21 - 10 = 11 Asian countries left to be determined.
5. Therefore, Cornelia visited 11 Asian countries in total.
[Answer 2] Step 1: Let’s start by finding out how many countries Cornelia visited in
Europe and South America. We know that she visited 20 countries in Europe and 10
countries in South America, so the total number of countries she visited in these two
regions is: 20 + 10 = 30
Step 2: We know that Cornelia visited 42 countries in total. We also know that 30
of these countries were in Europe and South America. Therefore, the number of
countries she visited outside of these regions is: 42 - 30 = 12
Step 3: We are told that only half of the countries Cornelia visited outside of Europe
and South America were in Asia. This means that the number of countries she visited
in Asia is: 12 / 2 = 6
Therefore, Cornelia visited 6 Asian countries.
[Final answer] 6

Table 13: Examples of self-correction.

16

CoT Triggers

Answer: Let’s think step by step.
Answer: Before we dive into the answer,
Answer: Let’s think like a detective step by step.
Answer: Let’s think about this logically.
Answer: Let’s solve this problem by splitting it into steps.
Answer: The answer is after the proof.
Answer: Let’s differentiate using step by step reasoning .
Answer: Let’s think step by step using inductive reasoning.
Answer: Let’s be concise and think step by step.
Answer: Let’s reflect on each answer option step by step.
Answer: Let’s think step by step given every option equal consideration.
Answer: Let’s think step by step like a scientist.
Answer: Let’s use step by step inductive reasoning.
Answer: Let’s work by elimination step by step.
Answer: Let’s use step by step deductive reasoning.
Answer: Let’s work this out in a step by step way to be sure we have the right answer.

because of the following reasons:
Justification:
Here’s why:
Here is a list of the reasons:
Now, let’s think step by step about the reasons:

Table 14: List of CoT triggers used to generate the training CoTs. The bottom part of the table are the triggers for
span extraction datasets.

17

	Introduction and Motivation
	Related Works
	Methods
	Prompting
	Fine-Tuning
	Dataset Generation
	Fine-Tuning Dataset Creation
	Models
	Evaluation

	Results and Analysis
	DCoT is Beneficial on In-Domain Tasks
	DCoT is Beneficial on Unseen Tasks
	DCoT is Robust on Tasks where CoT is Detrimental
	DCoT Benefits from CoT Extensions

	DCoT Elicits Self-Correct Abilities
	Manual Analysis

	Discussion
	Conclusions
	Datasets
	Experimental Setup
	Prompting
	Dev Set Results
	Manual Analysis
	DCoT Best k Parameter
	DCoT Performance across k
	Data Generation

