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Abstract

This study investigates the integration of di-001
verse patient data sources into multimodal lan-002
guage models for automated chest X-ray (CXR)003
report generation. Traditionally, CXR report004
generation relies solely on CXR images and005
limited radiology data, overlooking valuable006
information from patient health records, par-007
ticularly from emergency departments. Util-008
ising the MIMIC-CXR and MIMIC-IV-ED009
datasets, we incorporate detailed patient infor-010
mation such as aperiodic vital signs, medica-011
tions, and clinical history to enhance diagnos-012
tic accuracy. We introduce a novel approach013
to transform these heterogeneous data sources014
into embeddings that prompt a multimodal lan-015
guage model, significantly enhancing the diag-016
nostic accuracy of generated radiology reports.017
Our comprehensive evaluation demonstrates018
the benefits of using a broader set of patient019
data, underscoring the potential for enhanced020
diagnostic capabilities and better patient out-021
comes through the integration of multimodal022
data in CXR report generation.023

1 Introduction024

Chest X-ray (CXR) exams, which consist of mul-025

tiple images captured during an imaging session,026

are essential for diagnosing and managing a wide027

range of conditions, playing a significant role in pa-028

tient care. Radiologists interpret these exams and029

produce a written report with their findings. How-030

ever, prompt reporting is hindered by a multitude of031

issues, including high patient volumes and limited032

availability of radiologists (Bailey et al., 2022).033

Machine learning for automated CXR report gen-034

eration is a promising solution that has garnered035

significant attention in the literature (Jones et al.,036

2021). By leveraging multimodal language mod-037

els, exams can be rapidly interpreted and reported,038

potentially providing quick and reliable diagnostic039

insights crucial for decision-making, such as triag-040

ing patients. Models are often trained to generate041

INDICATION: Evaluate for pneumonia. 

HISTORY: Asthma and wheezing for two days.

COMPARISONS: Chest radiograph ___.

FINDINGS: The lungs are clear. There is no
pleural effusion or pneumothorax. There is no
focal airspace consolidation to suggest
pneumonia. Accounting for technique, the heart
size is normal. The mediastinal contours are
unremarkable.

IMPRESSION: No acute intrathoracic process.

Radiologist report

dicom_id PerformedProcedure... ViewPosition Rows Columns StudyDate
2ca11... CHEST (PA AND LAT) PA 3056 2544 21430703
918b4... CHEST (PA AND LAT) LATERAL 3056 2544 21430703

Metadata table

StudyTime ProcedureCode... ViewCode... PatientOrientation...
150237 CHEST (PA AND LAT) postero-anterior Erect
150237 CHEST (PA AND LAT) lateral Erect

MIMIC-CXR exam

intime outtime gender race arrival_transport disposition
2143-07-03

12:32:00
2143-07-03

22:06:14
F ASIAN -

CHINESE
WALK IN ADMITTED

ED stays

temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint
97.5 98 16 Null 130 81 8 3 ABD PAIN

Triage

charttime temperature heartrate resprate o2sat sbp dbp rhythm pain
2143-07-03

12:33:00
97.5 98 16 Null 130 81 Null 8

2143-07-03
13:26:00

98.1 97 15 99 121 78 Null 7

... ... ... ... ... ... ... ... ...

Aperiodic vital signs

charttime name gsn ndc etc_rn etccode etcdescription
2143-07-03

13:39:00
Dilaudid 004110 13107010701 1 00000583 Analgesic Opioid

Agonists
2143-07-03

13:39:00 fluticasone 019319 35356049401 1 00000371 Asthma Therapy -
Inhaled Cortico...

... ... ... ... ... ... ...

Medicine reconciliation

charttime med_rn name gsn_rn gsn
2143-07-03 14:27:00 1 Ondansetron 2 061716
2143-07-03 14:27:00 2 HYDROmorphone (Dilaudid) 1 062823

... ... ... ... ...

MIMIC-IV-ED tables

Medicine administration

Images (CXRs)

Ground truth

Patient data

Figure 1: The patient data from MIMIC-IV-ED asso-
ciated with a CXR exam from MIMIC-CXR. This in-
cludes the exam’s images, the corresponding radiology
report, and the associated image metadata. The findings
and impression sections of the radiology report form the
ground truth for CXR report generation. ED-specific
data, such as medicine reconciliation and aperiodic vital
signs, is also available for the patient.
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the findings and impression sections of a radiol-042

ogy report (Figure 1), where the former details043

the interpretation of a patient’s exam and the latter044

summarises the most important findings. Potential045

benefits include enhanced radiologist effectiveness,046

a reduced workload, alleviation of the burden of re-047

port writing, and improved patient outcomes (Shen,048

2021; Irmici et al., 2023).049

Early methods for CXR report generation pro-050

duced a separate report for each image within an051

exam (Wang et al., 2018). Later methods improved052

on this by considering all images of an exam to gen-053

erate a single report (Miura et al., 2021; Nicolson054

et al., 2024a), and incorporating prior exams for055

a patient (Wu et al., 2022; Nicolson et al., 2024a).056

Additionally, including the reason for conducting057

the exam (the indication section in Figure 1) of-058

fered a further improvement (Nguyen et al., 2023).059

This indicates that CXR report generation could060

benefit from the inclusion of a more comprehen-061

sive set of patient data.062

Modern patient record systems are another rich063

source of patient data, containing detailed informa-064

tion that may be valuable for CXR report genera-065

tion. However, (1) the utility of this data has not066

been empirically investigated, and (2) it is unclear067

how to harmonise this heterogeneous data into a068

unified multimodal language model. This paper069

aims to address these two points. To achieve this,070

we combine CXR exams from MIMIC-CXR (John-071

son et al., 2019) with emergency department (ED)072

patient records from MIMIC-IV-ED (Johnson et al.,073

2023). This means that for a single exam, a wide074

variety of multimodal data is available, as shown075

in Figure 1. From MIMIC-CXR, we utilise the076

images, their metadata, and several sections of the077

radiology report. Notably, incorporating the com-078

parison or history section is a novel approach in079

the literature. From MIMIC-IV-ED, we investigate080

triage information, aperiodic vital signs, medica-081

tions, and other data to provide a wider clinical082

context.083

We explore combining these sources of patient084

data as patient embeddings to prompt a multimodal085

language model. We demonstrate that complemen-086

tary information from different data sources can087

improve the diagnostic accuracy of CXR report088

generation. To achieve this, we develop methods089

to transform tabular and aperiodic time series data090

into embeddings that can be used alongside token091

and image embeddings. We evaluate our model on092

MIMIC-CXR exams with accompanying patient093

data from MIMIC-IV-ED, using metrics shown to 094

closely correlate with radiologists’ assessments of 095

reporting (Yu et al., 2023). The main contributions 096

of this work are: 097

• An investigation into how patient data impacts 098

CXR report generation, focusing on the effects 099

of specific data sources, such as medications and 100

vital signs. 101

• An empirical evaluation demonstrating that using 102

multiple patient data sources — from a patient’s 103

CXR exams and their ED record — significantly 104

improves diagnostic accuracy. 105

• Introducing methods to convert multimodal pa- 106

tient data into embeddings for a language model, 107

including numerical, categorical, free text, tem- 108

poral, and image data. 109

• A release of dataset splits based on MIMIC- 110

CXR and MIMIC-IV-ED, linking patient exams 111

with their associated ED records (available as 112

a Hugging Face dataset). This, along with our 113

code repository and Hugging Face checkpoint 114

can be found at: https://anonymous.4open. 115

science/r/anon-D83E, enabling others to ex- 116

periment with new methods for multimodal pa- 117

tient data. 118

2 Background and Related Work 119

There is evidence to suggest that incorporating 120

more patient data improves diagnostic accuracy 121

in radiology reporting. Initial improvements came 122

from using multiple images per exam, like EMNLI, 123

which often includes complementary frontal and 124

lateral views of the patient (Miura et al., 2021; 125

Gaber et al., 2005). Methods such as CXRMate 126

enhance diagnostic accuracy by incorporating a pa- 127

tient’s prior exams to identify changes over time 128

(Nicolson et al., 2024a; Wu et al., 2022; Kelly, 129

2012). Including the indication section of the ra- 130

diology report to provide clinical context also pro- 131

vides an improvement (Nguyen et al., 2023). This 132

trend indicates that providing more comprehensive 133

patient data improves diagnostic accuracy, which 134

we investigate in this work. 135

ED records contain a myriad of data, including 136

vital signs such as respiratory rate, temperature, 137

and blood pressure, which can aid in the identifica- 138

tion of various diseases. A high respiratory rate and 139

low blood oxygen saturation are indicative of condi- 140

tions that compromise pulmonary function, such as 141

pulmonary embolism. Similarly, an elevated body 142

temperature is suggestive of an infectious process, 143
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such as pneumonia or tuberculosis. Incorporat-144

ing such data into a CXR report generator could145

help corroborate subtle radiographic signs typical146

of these infections. Our findings demonstrate that147

patient data from the ED can indeed enhance CXR148

report generation.149

Recent advancements in integrating multimodal150

patient data have enhanced diagnostic and predic-151

tive healthcare capabilities. A study showed that a152

Transformer encoder combining imaging and non-153

imaging data outperformed single-modality mod-154

els, diagnosing up to 25 conditions with higher155

AUC scores (Khader et al., 2023b). Similarly, the156

MeTra architecture, which integrates CXRs and157

clinical parameters, demonstrated superior perfor-158

mance in predicting ICU patient survival compared159

to using either CXRs or clinical data alone (Khader160

et al., 2023a). ETHOS, using a zero-shot learn-161

ing approach, outperformed single-modality mod-162

els in predicting inpatient mortality, ICU length163

of stay, and readmission rates (Renc et al., 2024).164

These studies highlight the importance of multi-165

modal data for improved healthcare analytics. Our166

work demonstrates that incorporating a comprehen-167

sive set of multimodal patient data enhances CXR168

report generation.169

Recent advancements in multi-task learning have170

significantly improved biomedical models by lever-171

aging shared knowledge. Med-PaLM M, a gen-172

eralist biomedical model, excels in multiple tasks173

including classification, question answering, visual174

question answering (VQA), report summarisation,175

report generation, and genomic variant calling, us-176

ing diverse input modalities like images, text, and177

genomics. It often outperforms specialised models,178

demonstrating superior performance and generali-179

sation (Tu et al., 2024).180

Similarly, MIMIC-CXR has been leveraged for181

multi-task learning with models like MedXChat,182

which integrates instruction-tuning and Stable Dif-183

fusion to perform CXR report generation, VQA,184

and report-to-CXR generation, outperforming other185

LLM multi-task learners (Yang et al., 2023). RaDi-186

alog, another LLM-based method, combines visual187

features and pathology findings to generate accu-188

rate radiology reports and support interactive tasks,189

significantly improving clinical efficacy. CXR-190

LLaVA, a multimodal LLM integrating a vision191

transformer with a language model, outperformed192

models like GPT-4 Vision and Gemini Pro Vision193

in CXR report generation (Lee et al., 2024).194

Determining the state-of-the-art CXR report gen-195

eration model can be challenging due to the un- 196

availability of some models and the lack of com- 197

parison to recent methods. The 2024 Shared 198

Task on Large-Scale Radiology Report Generation 199

(RRG24) aimed to address this by benchmarking 200

models on a common leaderboard. The winning 201

model, CXRMate-RRG24 (Nicolson et al., 2024b), 202

a derivative of CXRMate, emerged as a strong 203

contender for state-of-the-art. In this work, we 204

compare our model to established models (e.g., 205

EMNLI) and recent benchmarks (e.g., CXRMate- 206

RRG24, CXRMate, CXR-LLaVA, MedXChat, and 207

RaDialog). We ensure a fair comparison by us- 208

ing available code or obtaining generated reports 209

directly from the authors. Our findings indicate 210

our model produces significantly better results than 211

these models. 212

3 Dataset 213

We construct a dataset of 46 106 patients by linking 214

individual patient information from two separate 215

sources: (1) CXR exams from MIMIC-CXR and 216

(2) emergency records from MIMIC-IV-ED. Thus 217

we consider MIMIC-CXR exams that occurred dur- 218

ing an ED stay from MIMIC-IV-ED. Both datasets 219

are publicly available and originate from the Beth 220

Israel Deaconess Medical Center in Boston, MA. 221

MIMIC-CXR was formed by first extracting pa- 222

tient identifiers for exams performed in the ED 223

between 2011–2016, and then extracting all exams 224

for this set of patients from all departments between 225

2011–2016. Each exam includes a semi-structured 226

free-text radiology report (Figure 1) that describes 227

the radiological findings of the images, written by 228

a practising radiologist contemporaneously during 229

routine clinical care. All images and reports were 230

de-identified to protect privacy. Sections from the 231

radiologist reports were extracted using a modifica- 232

tion1 of the official text extraction tool2 in order to 233

obtain the findings, impression, indication, history, 234

and comparison sections. 235

MIMIC-IV-ED consists of de-identified data 236

from ED stays between 2011–2019. The data was 237

converted into a denormalised relational database 238

with six primary tables: ED stays, diagnosis, 239

medicine reconciliation, medicine administration, 240

triage, and aperiodic vital signs. We do not con- 241

sider the diagnosis table in this work, as it indicates 242

the outcome of a patient’s ED stay. The patients of 243

1https://anonymous.4open.science/r/anon-D83E
2https://github.com/MIT-LCP/mimic-cxr/tree/master/txt
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Generation: Report token embeddings

Decode

Generated report

Llama Decoder

Autoregression

Token

Position

Em
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ty

pe

Source Source• • •

Time delta

+ + + + + +

Figure 2: Multimodal language model for CXR report generation. The patient data embeddings prompt the decoder
to generate the findings and impression sections of a radiology report.

MIMIC-CXR can be linked to MIMIC-IV-ED via244

an identifier, allowing an ED specific dataset to be245

formed.246

Example tables for a patient’s exam are shown247

in Figure 1. The dataset was formed by extract-248

ing a patient’s exams whose times (formed by249

the ‘StudyDate’ and ‘StudyTime’ columns of the250

metadata table) occurred within the ‘intime’ and251

‘outtime’ of one of their ED stays.3 Exams with252

either a missing findings or impression section253

were not considered. Using the official splits of254

MIMIC-CXR, this gave a train/validation/test split255

of 45 527/343/236 patients, 76 398/556/958 exams,256

and 151 818/1 137/1 812 CXRs. Each of these ex-257

ams had one ED stay and triage row; 53% had at258

least one medicine reconciliation row with up to259

106 rows; 62% had at least one vital signs row with260

up to 69 rows; and 37% had at least one medication261

administration row with up to 52 rows. Exams had262

an indication section 66% of the time with a maxi-263

mum of 75 words, a history section 34% of the time264

with a maximum of 74 words, and a comparison265

section 97% of the time with a maximum of 129266

words. Only one exam had both an indication and267

a history section.268

4 Methods269

The patient data from MIMIC-CXR and MIMIC-270

IV-ED for an exam are transformed into embed-271

dings, which are used to prompt a multimodal lan-272

guage model to generate the findings and impres-273

sion sections of the radiology report, as illustrated274

in Figure 2. Additionally, ‘Source’ embeddings275

differentiate the source of the data (e.g., the ‘chief276

complaint’ column from the triage table, the indi-277

3Exam 59128861 was removed as it overlapped with two
separate ED stays for the patient.

cation section, etc.), and time delta embeddings 278

represent the time difference between an event and 279

the exam. Standard embeddings, such as position 280

and token embeddings, are also included. The pa- 281

tient data embeddings originate from three main 282

groups: the tables of MIMIC-IV-ED; the report, 283

images, and metadata of the current exam from 284

MIMIC-CXR; and the patient’s prior exams (also 285

originating from MIMIC-CXR). The prior exam 286

and image embeddings are described in Section A 287

and Subsection C.2, respectively. 288

4.1 Time, Position, & Source Embeddings 289

The ED information from MIMIC-IV-ED is typi- 290

cally recorded as discrete events, such as medica- 291

tions administered or vital signs measured, each 292

with a specific timestamp. Events that occur closer 293

to the time of the patient’s exam are generally 294

more relevant for diagnostic purposes. To cap- 295

ture this, a time delta is calculated by subtract- 296

ing the time of an event from the time of the 297

exam. The exam time originates from MIMIC- 298

CXR’s metadata table (Figure 3), whereas most 299

of the MIMIC-IV-ED tables have event times for 300

each row. As shown in Figure 3, the time delta 301

is first converted to hours and then mapped using 302

1/
√
∆+ 1, assigning higher weights to events that 303

occurred closer to the exam. The mapped time 304

deltas are then passed through a feedforward neu- 305

ral network (FNN) defined as f(∆W1)W2, where 306

W1 ∈ R1,2048, W2 ∈ R2048,H , f(·) is the sigmoid 307

linear unit (SiLU) activation function (Hendrycks 308

and Gimpel, 2016), and H is the hidden size of 309

the decoder. This process generates the time delta 310

embeddings, which are subsequently added to the 311

embeddings of their respective sources. As shown 312

in Figure 2, time delta embeddings are only applied 313
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MIMIC-CXR embeddings

History

Tokenizer

Token
embeddings

"___ years old man 

• • • • • •

Exam time delta: 0

CXRs

with fever."

• • •

Patient data embeddings

Figure 3: Proposed patient data embeddings from the multiple heterogeneous data types taken from MIMIC-IV-ED
and MIMIC-CXR. The embeddings are formed from numerical, categorical, textual, temporal, and image data.

to the prompt. Patient data from the current exam,314

such as the images, have a time delta of zero, while315

data from prior exams have a positive time delta.316

The position embeddings are ordered by the time317

delta (Figure 3). This is due to the rotary position318

embeddings of the decoder; tokens that are closer319

together are given more importance. Hence, the320

smaller the time delta, the closer the embedding’s321

position is to the report token embeddings. Fol-322

lowing Nicolson et al. (2024a), each unique patient323

data source is given its own source embedding.324

This includes the images, each report section, each325

table’s text column and value-category columns326

(described in the next section), and prior images327

and report sections.328

4.2 Tabular Data329

An example table and its conversion to embeddings330

is shown in Figure 3. To convert an exam’s tabu-331

lar data to embeddings, columns were designated332

as value, category, text, or time columns. Value333

columns contained numeric data, while category334

columns contained categorical data. Datum from335

value and category columns were grouped by their336

time delta, with each group forming a feature vec-337

tor. The feature vector initially consisted of zeros.338

Values and categories from the group were then339

used to set its values based on indices determined340

by a lookup table. For value columns, the lookup 341

table determined the index where the numeric value 342

was placed. For category columns, it determined 343

which indices were activated (set to 1). 344

Next, the feature vector was passed through 345

an FNN f(XiW1)W2 to form the embedding, 346

where Xi ∈ R|UC |,|Li| are the grouped features, 347

W1 ∈ R|Li|,2048 and W2 ∈ R2048,H , Li is a 348

lookup table, and i designates the table. Each ta- 349

ble has a unique FNN and lookup table. Rows 350

for a value column always had a unique time, pre- 351

venting multiple values from the same column in 352

a group. We investigated alternatives to form the 353

value-category embeddings in Section 5. The de- 354

scribed framework was found to be the most effi- 355

cient. Columns with a high cardinality were set 356

as text columns. Text embeddings were formed 357

via the decoder’s tokenizer and token embeddings. 358

Text embeddings were given the time delta em- 359

bedding from their respective row. The column 360

designation for each table in Figure 1 is described 361

in the Appendix B. 362

4.3 Report Section Embeddings 363

Here, we consider five sections of the radiology 364

report: the findings, impression, indication, his- 365

tory, and comparison sections. The findings and 366

impression sections serve as the ground truth to be 367
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generated. The remainder form part of the patient368

data embeddings. The indication section explains369

the reason for the exam, such as symptoms or sus-370

pected conditions. The history section provides371

relevant medical history, such as past conditions372

and treatments. The comparison section mentions373

any prior exams used to identify changes over time.374

These sections provide context that guides the in-375

terpretation of the exam, influencing the content376

of the findings and impression sections. The em-377

beddings were formed via the decoder’s tokenizer378

and token embeddings. Of these, the history and379

comparison sections have not been investigated for380

CXR report generation. The comparison section381

was used only when prior exams were considered.382

4.4 Experiment Setup383

Our multimodal language model, illustrated in Fig-384

ure 2, is based on CXRMate-RRG24; it features385

a Llama decoder and the UniFormer as the image386

encoder. The training procedure for our model387

involved three stages: (1) initial training on the388

MIMIC-CXR training set using only images as389

input with Teacher Forcing (TF) (Williams and390

Zipser, 1989), (2) further training on the dataset391

described in Section 1 with the inputs detailed in392

Table 1, again using TF, and (3) reinforcement393

learning on the same dataset through self-critical se-394

quence training (SCST) (Rennie et al., 2017) (only395

for Table 2). Our evaluation metrics included three396

that capture the semantics of radiology reporting —397

RadGraph-F1 (RG), CheXbert-F1 (CX), and CXR-398

BERT (CB) — as well as five natural language399

generation metrics: BERTScore-F1 (BS), CIDEr400

(C), METEOR (M), ROUGE-L (R-L), and BLEU-4401

(B4). Comprehensive details on the model architec-402

ture, training procedure, significance testing, and403

comparison methods are provided in Appendix C.404

5 Results & Discussion405

The impact of different patient data sources on406

the performance of CXR report generation is sum-407

marised in Table 1. This analysis identifies which408

additional data sources enhance performance com-409

pared to using only images.410

Significant improvements were observed by in-411

corporating either the ED stays, triage, medicine412

reconciliation, or vital signs data from MIMIC-413

IV-ED dataset. Notably, the ED data markedly414

improved scores on the radiology report metrics415

(RG, CX, and CB). The medicine administration416

table did not significantly improve the scores over- 417

all, likely due to its infrequent occurrence in the 418

exams (37%). (However, as shown in Table 4, it sig- 419

nificantly improves performance when evaluated 420

solely on exams that include a medicine adminis- 421

tration table.) These findings demonstrate that ED 422

patient data can enhance the diagnostic accuracy of 423

CXR report generation. 424

Incorporating the indication or history section 425

led to significant score improvements. This demon- 426

strates the substantial influence these sections have 427

on the findings and impression sections. Con- 428

versely, adding the metadata table did not result in 429

significant score improvements, indicating it lacks 430

valuable information for CXR report generation. 431

While previous studies have established that the 432

indication section boosts CXR report generation 433

(Nguyen et al., 2023), our findings demonstrate that 434

the history section is equally important. 435

When examining the impact of prior exams, we 436

considered a maximum history size h of up to three, 437

incorporating the findings and impression sections, 438

and images from prior exams. Any history size sig- 439

nificantly increases the scores compared to using 440

solely the images, consistent with previous find- 441

ings (Wu et al., 2022). However, performance 442

gradually degrades as the history size increases, 443

which contradicts earlier studies. Additionally, the 444

comparison section appears to slightly degrade per- 445

formance. We suspect this is due to the increas- 446

ing number of inputs as h grows, combined with 447

the limitations of our model architecture. |E[:, 0]| 448

in Table 1 is the average prompt length over the 449

test set, where E = [E0,E1, · · · ]. It can be seen 450

that |E[:, 0]| increases substantially as h increases. 451

Since we provide all inputs to the decoder’s self- 452

attention, a large input size may cause attention 453

dilution. With more inputs, the attention weights 454

must be distributed across a larger number of inputs, 455

resulting in each input receiving a smaller share of 456

the attention, making it harder for the model to 457

focus on the most relevant inputs (Qin et al., 2022). 458

We then combined all the effective sources of 459

patient data (those providing a significant improve- 460

ment). This excluded ‘medicine administration’, 461

‘metadata’, and ‘comparison’. The best perfor- 462

mance was observed with no prior exams (h = 0), 463

indicating that using any prior exams in combina- 464

tion with other sources is detrimental due to at- 465

tention dilution. With h = 0, the combination 466

of all effective sources outperformed each individ- 467

ual source. We then performed an ablation study 468
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Table 1: Results of the various patient data sources on the test set described in Section 3. Results were calculated
over ten training runs (n = 9580 exams; 958 × 10 runs). Underlined and Dashed underlined scores indicate a
significant difference to the scores of ‘Images’ and ‘Images + effective sources (h = 0)’, respectively (p < 0.05).
Evaluation is performed on both the findings and impression sections.

Patient data sources RG CX CB BS C M R-L B4 |E[:, 0]|

Images only
Images 26.00 29.24 58.87 24.10 12.24 14.35 24.34 6.33 272.4

Patient Emergency Department (ED) data (MIMIC-IV-ED)
Images + ED stays 26.10 29.47 60.65 24.17 12.39 14.52 24.50 6.36 273.4
Images + triage 26.46 31.27 63.06 24.29 12.32 14.66 24.58 6.44 278.9
Images + vital signs 26.47 31.72 63.39 24.32 13.16 14.61 24.74 6.47 274.7
Images + medicine reconciliation 26.86 31.37 63.98 24.52 12.77 14.90 24.85 6.60 343.5
Images + medicine administration 26.15 29.47 59.21 24.25 12.30 14.44 24.47 6.38 273.0

Patient additional radiology data (MIMIC-CXR)
Images + indication 26.94 32.13 65.43 24.74 14.16 15.19 25.16 7.02 279.5
Images + history 27.00 31.88 65.06 25.05 14.32 15.30 25.48 7.33 277.0
Images + metadata 26.34 29.63 59.55 24.37 12.40 14.55 24.50 6.43 273.4

Prior exams
Images + h = 1 26.98 31.42 63.98 24.65 12.65 15.11 25.03 6.78 558.9
Images + h = 1 + comparison 26.76 31.55 64.20 24.42 13.36 15.03 24.82 6.74 563.4
Images + h = 2 26.67 30.48 61.27 24.53 13.60 14.94 24.85 6.72 810.6
Images + h = 2 + comparison 26.20 30.19 61.24 24.05 12.43 14.80 24.55 6.58 815.0
Images + h = 3 26.47 29.96 59.95 24.14 12.90 14.94 24.66 6.65 1037.1
Images + h = 3 + comparison 26.14 30.09 60.51 23.90 13.22 14.87 24.56 6.64 1041.5

All effective sources (no medicine administration, metadata, or comparison)
Images + effective sources (h = 0) 27.11 32.23 64.80 25.07 14.48 15.15 25.40 7.07 365.0
Images + effective sources (h = 1) 26.78 31.83 63.85 24.75 14.10 15.15 25.25 7.01 651.7

Ablation from Images + effective sources (h = 0)
- medicine reconciliation 26.78 32.81 65.60 24.84 14.44 15.21 25.33 7.19 293.9
- ED stays 26.94 31.56 64.87 25.02 14.08 15.14 25.37 7.09 364.0
- triage 27.15 32.45 65.18 25.15 14.80 15.27 25.54 7.25 358.5
- vital signs 27.27 31.78 65.44 25.14 14.07 15.35 25.49 7.22 362.6
- indication 26.89 31.25 64.65 24.99 13.87 15.07 25.39 7.00 357.9
- history 26.96 31.87 64.02 24.86 14.60 15.10 25.24 7.04 360.3
- time delta 27.17 32.11 65.10 25.18 14.64 15.24 25.54 7.16 365.0

using ‘CXRs + effective sources (h = 0)’. Re-469

moving ‘medicine reconciliation’ significantly in-470

creased performance, specifically for CXR-BERT.471

This improvement was also likely due to attention472

dilution, as removing medicine reconciliation sub-473

stantially decreased |E[:, 0]|.474

Next, we further trained ‘Images + effective475

sources (h = 0) - medicine reconciliation’ with rein-476

forcement learning, as described in Subsection 4.4.477

This model, denoted as ‘Ours’ in Table 2, was com-478

pared to other benchmark CXR report generation479

models in the literature that included MIMIC-CXR480

in their training data. Despite having substantially481

fewer training samples than the other models, our482

model significantly outperformed them on CXR-483

BERT, BERTScore-F1, METEOR, ROUGE-L, and484

BLEU-4. This demonstrates the impact of incorpo-485

rating a more comprehensive set of patient data on486

CXR report generation.487

A case study is presented in Figure 4 demonstrat-488

ing how a diverse set of patient data can impact489

report generation. Here, the first model is given the490

image only, and fails to identify key findings that491

the radiologist noted in their report. The second 492

model is given the additional patient data available 493

for this exam; the indication section and triage data. 494

Hypoxia, as indicated by the low oxygen saturation 495

(‘o2sat’), along with the elevated respiratory rate 496

(‘resprate’) and systolic blood pressure (‘SBP’), are 497

consistent with the physiological responses to pul- 498

monary edema. Given this, the second model was 499

able to identify the moderate pulmonary edema, 500

echoing the radiologist’s findings. 501

Table 3 compares different methods for convert- 502

ing value and category columns into embeddings. 503

This evaluation includes images, the triage table, 504

and the medicine reconciliation table, as these ta- 505

bles contain multiple value and category columns. 506

The aforementioned method of producing embed- 507

dings by grouping data from value and category 508

columns (‘Grouped embeddings’) is compared to 509

two other methods. The first is separate embed- 510

dings for each datum, where each value column 511

datum is separately transformed using the previ- 512

ously described FNN, while each category column 513

datum is converted to an embedding using a learn- 514
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Table 2: Benchmark models on the test set described in Section 3 (n = 958). Evaluation is on the findings section
only. Underlined indicates statistical significance between the top two scores (p < 0.05). In the ‘Train samples’
column, ‘images’ means the model generates reports per image, while ‘exams’ means a report generated per exam.

Model Train samples RG CX CB BS C M R-L B4

EMNLI (Miura et al., 2021) 152 173 exams 32.8 28.9 66.6 24.4 19.4 17.1 28.1 8.9
CMN (Chen et al., 2021) 270 790 images 25.3 24.3 49.4 19.7 16.9 15.1 26.4 7.6
TranSQ (Kong et al., 2022) 368 960 images 29.8 30.4 62.3 20.4 14.9 17.6 22.6 7.9
RGRG (Tanida et al., 2023) 166 512 images 23.2 22.8 37.9 23.4 7.6 12.4 21.1 5.4
CvT2DistilGPT2 (Nicolson et al., 2023) 270 790 images 25.8 29.3 59.8 24.8 20.9 16.0 27.3 8.8
RaDialog (Pellegrini et al., 2023) 276 778 images 26.8 38.4 60.7 26.2 14.6 14.7 25.4 6.9
MedXChat (Yang et al., 2023) 270 790 images 22.6 13.1 21.3 19.3 9.8 14.3 23.2 7.0
CXR-LLaVA-v2 (Lee et al., 2024) 193 513 images 20.7 20.7 44.1 23.6 5.2 11.3 19.9 2.7
CXRMate (Nicolson et al., 2024a) 125 395 exams 28.8 33.9 71.3 30.5 22.4 17.7 28.1 9.7
CXRMate-RRG24 (Nicolson et al., 2024b) 550 395 exams 30.4 31.2 58.2 31.0 20.6 16.7 27.5 9.1
Ours 76,398 exams 33.7 35.1 79.1 35.8 24.1 19.1 30.6 11.9

Indication: Hypoxia.
Radiologist findings: A portable frontal chest radiograph demonstrate an unchanged cardiomediastinal
silhouette, which is top-normal in size. Bilateral opacities are consistent with moderate pulmonary edema. No
definite focal consolidation or pneumothorax is identified. There are likely trace bilateral pleural effusions.
Radiologist impression: Moderate pulmonary edema.
Triage: 

temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint
100.3 93 24 83 175 74 Null 1 ILI, Fever

Image (Model: Images from Table 1)
Generated findings: Cardiomediastinal silhouette is normal. There is no focal consolidation. There is no pneumothorax or pleural
effusion. There is no significant pleural effusion.
Generated impression: No acute cardiopulmonary process.

Image + Indication + Triage (Model: Images + effective sources (h=0) - medicine reconciliation from Table 1)
Generated findings: There is moderate pulmonary edema. No definite focal consolidation is identified. There are probable small bilateral
pleural effusions. The cardiac silhouette is mildly enlarged. There is no pneumothorax.
Generated impression: Moderate pulmonary edema and small bilateral pleural effusions.

Case study

Figure 4: Case study demonstrating how incorporating a diverse set of patient data can aid with report generation.

able weight matrix, akin to how token embeddings515

are produced (‘Separate embeddings’). The sec-516

ond method modifies ‘Separate embeddings’ by517

instead converting the value column data to text518

and using the decoder’s tokenizer and token em-519

beddings (‘Values-to-text, categories-to-tokens’).520

The results indicate that the grouped embeddings521

method generally works best and is useful for en-522

coding heterogeneous patient data for multimodal523

models.524

6 Conclusion525

This paper demonstrates the value of incorporat-526

ing diverse patient data into automated CXR re-527

port generation. By integrating patient data from528

the MIMIC-CXR and MIMIC-IV-ED datasets, we529

have shown significant improvements in the diag-530

nostic accuracy of generated radiology reports. Our531

empirical evaluation uncovers new sources of pa-532

tient information that enhance CXR report genera-533

tion, including data from ED stays, triaging infor-534

mation, aperiodic vital signs, medications, and the535

history section of radiology reports. We present536

Table 3: Formatting strategies for the value-category
columns. Four training runs were used (n =
3832; exams 958 × 4 runs). Underlined indicates a
stat. sig. difference to ‘Baseline’ (p < 0.05).

Embeddings CX RG CB BS

Images
Baseline 25.81 29.00 59.04 23.85

Images + triage + medicine reconciliation
Grouped embeddings 26.72 31.69 64.01 24.38

Separate embeddings 25.32 25.28 46.29 23.51

Values-to-text, categories-
to-embeddings

26.46 30.70 58.62 24.58

specific methods to convert multimodal patient data 537

into embeddings for a language model, encompass- 538

ing numerical, categorical, textual, temporal, and 539

image data. We encourage further research and 540

experimentation using our released dataset splits, 541

code, and model checkpoints to explore innovative 542

methods for multimodal patient data integration, 543

with the ultimate goal of enhancing diagnostic ac- 544

curacy and patient care. 545
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7 Limitations546

Despite the promising results demonstrated in this547

study, several limitations must be acknowledged.548

Firstly, the generalisability of our findings may be549

constrained by the datasets utilised, specifically550

MIMIC-CXR and MIMIC-IV-ED, which are de-551

rived from a single institution, the Beth Israel Dea-552

coness Medical Center. This could introduce biases553

unique to the demographic and clinical practices of554

this institution, potentially limiting the applicabil-555

ity of our model to other healthcare settings with556

different patient populations or clinical workflows.557

Our reliance on these datasets is due to the fact that558

they are the only publicly available sources that559

link CXR exams with ED records.560

Another limitation pertains to the completeness561

and quality of the patient data. Despite incorporat-562

ing a wide range of data sources, the datasets still563

contain missing or incomplete information, which564

can affect model performance. For example, not565

all exams include a history section, and not all ED566

patient records have medicine administration de-567

tails, leading to potential gaps in the data that the568

model can utilise. However, this reflects the nature569

of real patient records where issues of data quality570

and completeness are to be expected.571

Our model’s architecture, while effective, has572

certain limitations. It struggles with large input573

sizes, especially when incorporating multiple prior574

exams, likely due to attention dilution. Future work575

should explore advanced attention mechanisms or576

hierarchical models to better manage large input577

sequences.578

The interpretability of the model also poses a579

challenge. While our model shows improved di-580

agnostic accuracy, the decision-making process581

within the multimodal language model remains a582

black box. Developing methods to enhance the583

interpretability and explainability of the model’s584

outputs would be beneficial, especially in clinical585

settings where understanding the rationale behind586

a diagnosis is critical.587

Finally, while we provide a comprehensive set of588

metrics to evaluate our model’s performance, these589

metrics focus primarily on the diagnostic accuracy590

and quality of the generated reports. Broader eval-591

uations considering clinical outcomes, such as the592

impact on patient management or reduction in ra-593

diologist workload, would offer a more holistic594

view of the benefits and limitations of CXR report595

generation models in general. Conducting such596

assessments could help to better understand the 597

practical implications of deploying these models in 598

a clinical setting. 599

In summary, while our study provides valuable 600

insights into the integration of multimodal patient 601

data for CXR report generation, addressing these 602

limitations will be crucial for further advancements 603

and broader adoption of such models in clinical 604

practice. Future research should explore alternative 605

architectures and training strategies, find alternative 606

datasets to evaluate generalisability, improve model 607

interpretability, and comprehensively assess the 608

practical impact on patient care and radiologist 609

workflow. 610

8 Ethical Considerations 611

In this research, we used real-world patient data 612

from the MIMIC-CXR and MIMIC-IV-ED datasets. 613

Since these datasets are de-identified, we consider 614

privacy leakage risks to be minimal. Our method 615

employs a language model to generate medical re- 616

ports from patient data. However, we acknowledge 617

that language models can exhibit bias and produce 618

hallucinations, which may result in incorrect con- 619

tent in the generated reports. 620
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A Prior exam embeddings 826

The images, findings section, and impression sec- 827

tion from previous exams were considered. For 828

prior exams, the time delta was positive, calculated 829

by subtracting the time of the prior exam from the 830

current exam. The images, findings section, and 831

impression section from prior exams were given 832

distinct source embeddings, separate from the cur- 833

rent exam, to enhance differentiation. The com- 834

parison section from the current exam was also 835

investigated, anticipating that references to prior 836

exams in this section would prompt the decoder to 837

reflect this in the generated report. We explored 838

prior exams with a history size h of up to three. 839

B Table column determination 840

The columns from the tables described in Figure 1 841

were given the following designations: 842

• For the ED stay table, the patients ‘intime’ 843

was used as the event time. Gender (e.g., ‘F’), 844

race (e.g., ‘HISPANIC OR LATINO’), and 845

arrival transport (e.g., ‘AMBULANCE’) were 846

designated as category columns. The disposi- 847

tion column was not considered. 848

• For the triage table, the ‘intime’ from the 849

ED stay table was used. Temperature (e.g., 850

‘100.6’), heart rate (e.g., ‘93’), respiratory rate 851

(e.g., ‘16’), O2 saturation (e.g., ‘94’), systolic 852

blood pressure (SBP) (e.g., ‘110’), diastolic 853

blood pressure (DBP) (e.g., ‘56’), and acuity 854

(e.g., ‘2’) were designated as value columns. 855

Pain (e.g., ‘6-9’ and ‘yes.’) and the chief 856

complaint (e.g., ‘BILATERAL FOOT PAIN’) 857

were designated as text columns. 858

• The column designations for the vital sign 859

table were identical to the triage table, except 860
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for the rhythm column (e.g., ‘Normal Sinus861

Rhythm’), which was treated as a category862

column. The vital signs table also had no863

chief complaint column and the ‘charttime’864

column was used as the event time.865

• For the medicine reconciliation table, the ‘in-866

time’ from the ED stay table was used as867

the event time, as it pertains to the patient’s868

medication history prior to the ED stay. The869

name column was designated as a text col-870

umn, while the gsn, ndc, etc_rn, and etccode871

columns were designated as category columns.872

The etcdescription column was not consid-873

ered, as it is a descriprion of the etccode col-874

umn.875

• For the medicine administration (pyxis) table,876

‘charttime’ was used as the event time. The877

med_rn, name, gsn_rn, and gsn columns were878

all treated as category columns. The name col-879

umn for the medicine reconciliation column880

did not have as high of a cardinality as the881

name column from the medicine reconcilia-882

tion column, allowing it to be considered as a883

category column.884

• For the metadata table, the ‘PerformedProce-885

dureStepDescription’, ‘ViewPosition’, ‘Proce-886

dureCodeSequence_CodeMeaning’, ‘View-887

CodeSequence_CodeMeaning’, and ‘Patien-888

tOrientationCodeSequence_CodeMeaning’889

columns were considered, and designated as890

category columns.891

C Experiment setup892

C.1 Metrics893

CheXbert-F1 (Smit et al., 2020), RadGraph-894

F1 (Delbrouck et al., 2022), BLEU-4 (Pa-895

pineni et al., 2001), and BERTScore-F1896

(roberta-large_L17_no-idf_rescaled)897

(Zhang et al., 2020) have been found to correlate898

with radiologists’ assessment of reporting (Yu899

et al., 2023) and were a part of our evaluation.900

Additionally, we include CXR-BERT (Boecking901

et al., 2022; Nicolson et al., 2024a), CIDEr902

(Vedantam et al., 2015), METEOR (Banerjee903

and Lavie, 2005), and ROUGE-L (Lin and Hovy,904

2003) as part of our evaluation. CheXbert-F1,905

RadGraph-F1, and CXR-BERT were intended to906

capture the clinical semantic similarity between907

the generated and radiologist reports, while908

BERTscore-F1 was intended to capture general 909

semantic similarity. Finally, CIDEr, METEOR 910

ROUGE-L, and BLEU-4 were intended to capture 911

the syntactic similarity between the generated and 912

radiologist reports. 913

For the models in Table 2 that generate a report 914

for each image in an exam, the average score was 915

taken across all reports for an exam. Following 916

this, the final average score was computed across 917

all exams for both models that generate a report per 918

image and those that generate a report per exam. 919

For CheXbert, the macro-averaged F1 was com- 920

puted between the 14 CheXbert observations ex- 921

tracted from the generated and radiologist reports. 922

“No mention”, “negative”, and “uncertain” were 923

considered negative, while “positive” was consid- 924

ered positive. Here, the true positives, false posi- 925

tives, and false negatives were averaged over the 926

reports of each exam for the models that generate a 927

report per image. 928

We also perform statistical testing; first, a Lev- 929

ene’s test was conducted to reveal if the variances 930

across model scores was homogeneous or not. If 931

the assumption of equal variances was upheld, a 932

one-way ANOVA was conducted to determine if 933

there was a significant difference between mod- 934

els. Finally, pairwise Tukey-HSD post-hoc tests 935

were used for pairwise testing. If the assumption of 936

equal variances was violated, a one-way Welch’s 937

ANOVA was conducted to determine if there was 938

a significant difference between models. Finally, 939

Games-Howell post hoc tests were used for pair- 940

wise testing. A p-value of 0.05 was used for all 941

significance testing. Statistical testing was not per- 942

formed for CheXbert, as it is a classification metric. 943

C.2 Model 944

Our model is illustrated in Figure 2; following 945

(Nicolson et al., 2024b), we utilised UniFormer 946

as the image encoder (in particular, the 384× 384 947

base model warm started with its token labelling 948

fine-tuned checkpoint) (Li et al., 2023). The image 949

embeddings are formed by processing each image 950

in the exam separately with the image encoder and 951

then projecting its last hidden state to match the 952

decoder’s hidden size using a learnable weight ma- 953

trix. Each image was resized using bicubic inter- 954

polation so that its smallest side had a length of 955

384 and its largest side maintained the aspect ratio. 956

Next, the resized image was cropped to a size of 957

R3×384×384. The crop location was random during 958

training and centred during testing. Following (El- 959
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gendi et al., 2021), the image was rotated around its960

centre during training, where the angle of rotation961

was sampled from U [−5◦, 5◦]. Finally, the image962

was standardised using the statistics provided with963

the UniFormer checkpoint. A maximum of five964

images per exam were used during training. If965

more were available, five were randomly sampled966

uniformly without replacement from the exam.967

Again following (Nicolson et al., 2024b), we968

employed the Llama architecture for the decoder,969

which is notable for features such as its rotary po-970

sitional encoding (RoPE), root mean square nor-971

malisation (RMSNorm), and SwiGLU activation972

function (Touvron et al., 2023). A byte-level byte973

pair encoding tokenizer (Wang et al., 2020) was974

trained with a vocabulary size of 30 000. It was975

trained on the findings, impression, indication, and976

history sections (not the comparison section) of977

the entire MIMIC-CXR training set, as well as the978

‘pain’ and ‘chiefcomplaint’ columns from the triage979

table, the ‘name’ column of the medicine reconcil-980

iation table, and the ‘pain’ column from the vital981

signs table (from the entire MIMIC-IV-ED dataset).982

Newline, tab, repeated whitespaces, and leading983

and trailing whitespaces were removed from any984

text before tokenization.985

The hyperparameters of the Llama decoder were986

six hidden layers, a hidden size of 768, 12 attention987

heads per layer, and an intermediate size of 3 072.988

The maximum number of position embeddings was989

set to 2048 to accommodate all the patient data990

embeddings and the report tokens. The maximum991

number of tokens that could be generated was set992

to 256, which was also the limit for the radiologist993

reports during training. During testing, a beam size994

of four was utilised. The Llama decoder allows a995

custom attention mask to be provided in current im-996

plementations.4 This enabled non-causal masking997

to be utilised for the prompt and causal masking for998

the report token embeddings, as shown in Figure999

5. This ensured that the self-attention heads were1000

able to attend to all of the patient data embeddings1001

at each position.1002

C.3 Training1003

Three stages of training were performed. Each1004

stage used AdamW (Loshchilov and Hutter, 2022)1005

for mini-batch gradient descent optimisation,1006

where training and evaluation was performed on a1007

94GB NVIDIA H100 GPU. The three stages were1008

4https://huggingface.co/blog/poedator/4d-masks
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Figure 5: Attention mask for the decoder. Non-causal
masking was used for the patient data embeddings and
causal masking for the report token embeddings.

as follows: 1009

1. Teacher forcing (TF) (Williams and Zipser, 1010

1989) was performed on the MIMIC-CXR 1011

dataset with only the images for an exam as 1012

input, and exams that contained both a find- 1013

ings and impression section. This gave a train- 1014

ing/validation split of 232 853/1 837 images, 1015

125 416/991 exams, and 57 101/436 patients. 1016

Training was performed with an initial learn- 1017

ing rate of 5e-5, a mini-batch size of 8, a maxi- 1018

mum of 32 epochs, and with float16 automatic 1019

mixed precision. All model parameters were 1020

trainable during this stage. The validation 1021

macro-averaged CheXbert-F1 was the mon- 1022

itored metric for checkpoint selection. This 1023

stage was necessary, as the language model 1024

struggled to generate reports from multiple 1025

sources without prior learning. 1026

2. TF on the dataset described in Section 3 with 1027

the inputs described in Table 1. The training 1028

strategy was identical to the previous stage, 1029

except that a maximum of 16 epochs was per- 1030

formed, and the image encoder’s parameters 1031

were frozen (except for its projection). The 1032

models featured in Table 1 were trained using 1033

only the first two stages. 1034

3. Reinforcement learning using self-critical se- 1035

quence training (SCST) (Rennie et al., 2017) 1036

with CXR-BERT and BERTScore as the re- 1037

ward (each weighted with 0.5) was performed 1038

in the final stage of training. The sample re- 1039

port for SCST was generated with top-k sam- 1040
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pling (k = 50). Training was performed with1041

an initial learning rate of 5e-6, a mini-batch1042

size of 32, a maximum of 24 epochs, and with1043

float32 precision. The image encoder’s param-1044

eters were frozen during this stage (except for1045

its projection). The validation BERTScore-F11046

was the monitored metric for checkpoint se-1047

lection, as it helped to select checkpoints less1048

prone to repetitions. This stage of training was1049

only applied to the best model from Table 1,1050

‘Images + effective sources (h = 0) - medicine1051

reconciliation’, with the results presented in1052

Table 2. This model had 161 185 728 parame-1053

ters.1054

C.4 Comparison Models1055

The generated reports for the models in Table 21056

were attained as follows:1057

• EMNLI reports were generated follow-1058

ing https://github.com/ysmiura/ifcc1059

(Miura et al., 2021).1060

• CMN reports were generated follow-1061

ing https://github.com/zhjohnchan/1062

R2GenCMN (Chen et al., 2021).1063

• TranSQ reports were kindly provided by the1064

authors (Kong et al., 2022).1065

• RGRG reports were generated follow-1066

ing https://github.com/ttanida/rgrg1067

(Tanida et al., 2023).1068

• CvT2DistilGPT2 reports were generated 1069

following https://github.com/aehrc/ 1070

cvt2distilgpt2 (Nicolson et al., 2023). 1071

• RaDialog reports were kindly provided by the 1072

authors (Pellegrini et al., 2023). 1073

• MedXChat reports were kindly provided by 1074

the authors (Yang et al., 2023). 1075

• CXR-LLaVA-v2 reports were generated fol- 1076

lowing https://huggingface.co/ECOFRI/ 1077

CXR-LLAVA-v2 (Lee et al., 2024). 1078

• CXRMate reports were generated following 1079

https://huggingface.co/aehrc/cxrmate 1080

(Nicolson et al., 2024a). 1081

• CXRMate-RRG24 reports were generated fol- 1082

lowing https://huggingface.co/aehrc/ 1083

cxrmate-rrg24 (Nicolson et al., 2024b). 1084

CXRMate-RRG24 was trained on five datasets, in- 1085

cluding MIMIC-CXR. RGRG was trained on the 1086

ImaGenome dataset derived from MIMIC-CXR — 1087

which may have some overlap with our test set. 1088

D Ancillary results 1089

In Figure 6, the F1-scores for each CheXbert la- 1090

bel are shown. The ‘Images + effective sources 1091

(h = 0) - medicine reconciliation’ model from Ta- 1092

ble 1 improves performance across all labels com- 1093

pared to the ‘Images’ model. This suggests that 1094
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Table 4: Results for exams that have a medicine ad-
ministration table (n = 3520; studies 352× 10 runs).
Underlined scores indicate a significant difference to
the scores of ‘Images’ (p < 0.05).

Inputs RG CX CB BS

Images 26.24 28.36 57.17 24.33
Images + medicine ad-
ministration

26.95 28.53 58.94 24.93

incorporating ancillary data from MIMIC-IV-ED1095

and MIMIC-CXR provides a general improvement,1096

rather than benefiting any specific pathology.1097

Further improvements are seen when training the1098

‘Images + effective sources (h = 0) - medicine rec-1099

onciliation’ model with SCST (i.e., our model from1100

Table 2) for most pathologies. However, there are1101

performance decreases for ‘enlarged cardiomedi-1102

astinum’, ‘lung lesion’, ‘pneumothorax’, and ‘frac-1103

ture’. This might be due to these pathologies be-1104

ing underrepresented in the MIMIC-CXR dataset,1105

leading the model to optimise for more common1106

pathologies during SCST.1107

The results for exams that include a medicine1108

administration table are show in Table 4. Adding1109

the medicine administration table produced a sig-1110

nificant improvement in the scores, indicating that1111

it should be considered if available.1112
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