The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report
Generation and How to Incorporate It

Anonymous ACL submission

Abstract

This study investigates the integration of di-
verse patient data sources into multimodal lan-
guage models for automated chest X-ray (CXR)
report generation. Traditionally, CXR report
generation relies solely on CXR images and
limited radiology data, overlooking valuable
information from patient health records, par-
ticularly from emergency departments. Util-
ising the MIMIC-CXR and MIMIC-IV-ED
datasets, we incorporate detailed patient infor-
mation such as aperiodic vital signs, medica-
tions, and clinical history to enhance diagnos-
tic accuracy. We introduce a novel approach
to transform these heterogeneous data sources
into embeddings that prompt a multimodal lan-
guage model, significantly enhancing the diag-
nostic accuracy of generated radiology reports.
Our comprehensive evaluation demonstrates
the benefits of using a broader set of patient
data, underscoring the potential for enhanced
diagnostic capabilities and better patient out-
comes through the integration of multimodal
data in CXR report generation.

1 Introduction

Chest X-ray (CXR) exams, which consist of mul-
tiple images captured during an imaging session,
are essential for diagnosing and managing a wide
range of conditions, playing a significant role in pa-
tient care. Radiologists interpret these exams and
produce a written report with their findings. How-
ever, prompt reporting is hindered by a multitude of
issues, including high patient volumes and limited
availability of radiologists (Bailey et al., 2022).
Machine learning for automated CXR report gen-
eration is a promising solution that has garnered
significant attention in the literature (Jones et al.,
2021). By leveraging multimodal language mod-
els, exams can be rapidly interpreted and reported,
potentially providing quick and reliable diagnostic
insights crucial for decision-making, such as triag-
ing patients. Models are often trained to generate

Patient data
MIMIC-CXR exam

Radiologist report Images (CXRs)

(INDICATION: Evaluate for pneumonia.

HISTORY: Asthma and wheezing for two days.
COMPARISONS: Chest radiograph ___.

FINDINGS: The lungs are clear. There is no
pleural effusion or pneumothorax. There is no
focal airspace consolidation to suggest
pneumonia. Accounting for technique, the heart
size is normal. The mediastinal contours are
unremarkable.

IMPRESSION: No acute intrathoracic process.
\ J

Metadata table Ground truth

dicom_id| PerformedProcedure... | ViewPosition | Rows [Columns| StudyDate
2catll...| CHEST (PAAND LAT) PA 3056 | 2544 | 21430703
918b4...| CHEST (PAAND LAT) | LATERAL | 3056 | 2544 | 21430703

C StudyTime ProcedureCode... ViewCode... | PatientOrientation...
150237 | CHEST (PA AND LAT) |postero-anterior Erect

150237 | CHEST (PAAND LAT) lateral Erect

MIMIC-IV-ED tables

ED stays

intime outtime |gender| race |arrival_transport| disposition
*i55200 | 220614 | © |cHmEse| WAKN [ADMITTED
Triage
Itempera\ure [heanrale[resprale[ o2sat [ sbp [dbp [pain [ acuity [chieicomplainll
[ 975 | 98 | 16 | Nul [130[81 [ 8] 3 [ ABDPAN |

Aperiodic vital signs

charttime | temperature | heartrate |resprate| 02sat | sbp | dbp |[rhythm| pain
2143-07-03 975 98 16 | Null [130 |81 [ Nul | 8
12:33:00
2143-07-03 98.1 97 15 | 99 [121|78 [ Nun | 7
13:26:00

Medicine reconciliation
charttime name gsn ndc etc_rn| etccode

2143-07-03 00000583 Analgesic_ Opioid
13:39:00 Aaonists

2143-07-03 Asthma Therapy -
13:39:00 Inhaled Cortico...

etcdescription

Dilaudid 004110 13107010701 1

fluticasone | 019319 (35356049401| 1 (00000371

Medicine administration
charttime med_rn name gsn_m gsn

2143-07-03 14:27:00 1 061716
2143-07-03 14:27:00 2 062823

Ondansetron 2
HYDROmorphone (Dilaudid) 1

Figure 1: The patient data from MIMIC-IV-ED asso-
ciated with a CXR exam from MIMIC-CXR. This in-
cludes the exam’s images, the corresponding radiology
report, and the associated image metadata. The findings
and impression sections of the radiology report form the
ground truth for CXR report generation. ED-specific
data, such as medicine reconciliation and aperiodic vital
signs, is also available for the patient.



the findings and impression sections of a radiol-
ogy report (Figure 1), where the former details
the interpretation of a patient’s exam and the latter
summarises the most important findings. Potential
benefits include enhanced radiologist effectiveness,
a reduced workload, alleviation of the burden of re-
port writing, and improved patient outcomes (Shen,
2021; Irmici et al., 2023).

Early methods for CXR report generation pro-
duced a separate report for each image within an
exam (Wang et al., 2018). Later methods improved
on this by considering all images of an exam to gen-
erate a single report (Miura et al., 2021; Nicolson
et al., 2024a), and incorporating prior exams for
a patient (Wu et al., 2022; Nicolson et al., 2024a).
Additionally, including the reason for conducting
the exam (the indication section in Figure 1) of-
fered a further improvement (Nguyen et al., 2023).
This indicates that CXR report generation could
benefit from the inclusion of a more comprehen-
sive set of patient data.

Modern patient record systems are another rich
source of patient data, containing detailed informa-
tion that may be valuable for CXR report genera-
tion. However, (1) the utility of this data has not
been empirically investigated, and (2) it is unclear
how to harmonise this heterogeneous data into a
unified multimodal language model. This paper
aims to address these two points. To achieve this,
we combine CXR exams from MIMIC-CXR (John-
son et al., 2019) with emergency department (ED)
patient records from MIMIC-IV-ED (Johnson et al.,
2023). This means that for a single exam, a wide
variety of multimodal data is available, as shown
in Figure 1. From MIMIC-CXR, we utilise the
images, their metadata, and several sections of the
radiology report. Notably, incorporating the com-
parison or history section is a novel approach in
the literature. From MIMIC-IV-ED, we investigate
triage information, aperiodic vital signs, medica-
tions, and other data to provide a wider clinical
context.

We explore combining these sources of patient
data as patient embeddings to prompt a multimodal
language model. We demonstrate that complemen-
tary information from different data sources can
improve the diagnostic accuracy of CXR report
generation. To achieve this, we develop methods
to transform tabular and aperiodic time series data
into embeddings that can be used alongside token
and image embeddings. We evaluate our model on
MIMIC-CXR exams with accompanying patient

data from MIMIC-IV-ED, using metrics shown to
closely correlate with radiologists’ assessments of
reporting (Yu et al., 2023). The main contributions
of this work are:

* An investigation into how patient data impacts
CXR report generation, focusing on the effects
of specific data sources, such as medications and
vital signs.

* An empirical evaluation demonstrating that using
multiple patient data sources — from a patient’s
CXR exams and their ED record — significantly
improves diagnostic accuracy.

* Introducing methods to convert multimodal pa-
tient data into embeddings for a language model,
including numerical, categorical, free text, tem-
poral, and image data.

* A release of dataset splits based on MIMIC-
CXR and MIMIC-IV-ED, linking patient exams
with their associated ED records (available as
a Hugging Face dataset). This, along with our
code repository and Hugging Face checkpoint
can be found at: https://anonymous.4open.
science/r/anon-D83E, enabling others to ex-
periment with new methods for multimodal pa-
tient data.

2 Background and Related Work

There is evidence to suggest that incorporating
more patient data improves diagnostic accuracy
in radiology reporting. Initial improvements came
from using multiple images per exam, like EMNLI,
which often includes complementary frontal and
lateral views of the patient (Miura et al., 2021;
Gaber et al., 2005). Methods such as CXRMate
enhance diagnostic accuracy by incorporating a pa-
tient’s prior exams to identify changes over time
(Nicolson et al., 2024a; Wu et al., 2022; Kelly,
2012). Including the indication section of the ra-
diology report to provide clinical context also pro-
vides an improvement (Nguyen et al., 2023). This
trend indicates that providing more comprehensive
patient data improves diagnostic accuracy, which
we investigate in this work.

ED records contain a myriad of data, including
vital signs such as respiratory rate, temperature,
and blood pressure, which can aid in the identifica-
tion of various diseases. A high respiratory rate and
low blood oxygen saturation are indicative of condi-
tions that compromise pulmonary function, such as
pulmonary embolism. Similarly, an elevated body
temperature is suggestive of an infectious process,
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such as pneumonia or tuberculosis. Incorporat-
ing such data into a CXR report generator could
help corroborate subtle radiographic signs typical
of these infections. Our findings demonstrate that
patient data from the ED can indeed enhance CXR
report generation.

Recent advancements in integrating multimodal
patient data have enhanced diagnostic and predic-
tive healthcare capabilities. A study showed that a
Transformer encoder combining imaging and non-
imaging data outperformed single-modality mod-
els, diagnosing up to 25 conditions with higher
AUC scores (Khader et al., 2023b). Similarly, the
MeTra architecture, which integrates CXRs and
clinical parameters, demonstrated superior perfor-
mance in predicting ICU patient survival compared
to using either CXRs or clinical data alone (Khader
et al., 2023a). ETHOS, using a zero-shot learn-
ing approach, outperformed single-modality mod-
els in predicting inpatient mortality, ICU length
of stay, and readmission rates (Renc et al., 2024).
These studies highlight the importance of multi-
modal data for improved healthcare analytics. Our
work demonstrates that incorporating a comprehen-
sive set of multimodal patient data enhances CXR
report generation.

Recent advancements in multi-task learning have
significantly improved biomedical models by lever-
aging shared knowledge. Med-PaLM M, a gen-
eralist biomedical model, excels in multiple tasks
including classification, question answering, visual
question answering (VQA), report summarisation,
report generation, and genomic variant calling, us-
ing diverse input modalities like images, text, and
genomics. It often outperforms specialised models,
demonstrating superior performance and generali-
sation (Tu et al., 2024).

Similarly, MIMIC-CXR has been leveraged for
multi-task learning with models like MedXChat,
which integrates instruction-tuning and Stable Dif-
fusion to perform CXR report generation, VQA,
and report-to-CXR generation, outperforming other
LLM multi-task learners (Yang et al., 2023). RaDi-
alog, another LLM-based method, combines visual
features and pathology findings to generate accu-
rate radiology reports and support interactive tasks,
significantly improving clinical efficacy. CXR-
LLaVA, a multimodal LLM integrating a vision
transformer with a language model, outperformed
models like GPT-4 Vision and Gemini Pro Vision
in CXR report generation (Lee et al., 2024).

Determining the state-of-the-art CXR report gen-

eration model can be challenging due to the un-
availability of some models and the lack of com-
parison to recent methods. The 2024 Shared
Task on Large-Scale Radiology Report Generation
(RRG24) aimed to address this by benchmarking
models on a common leaderboard. The winning
model, CXRMate-RRG24 (Nicolson et al., 2024b),
a derivative of CXRMate, emerged as a strong
contender for state-of-the-art. In this work, we
compare our model to established models (e.g.,
EMNLI) and recent benchmarks (e.g., CXRMate-
RRG24, CXRMate, CXR-LLaVA, MedXChat, and
RaDialog). We ensure a fair comparison by us-
ing available code or obtaining generated reports
directly from the authors. Our findings indicate
our model produces significantly better results than
these models.

3 Dataset

We construct a dataset of 46 106 patients by linking
individual patient information from two separate
sources: (1) CXR exams from MIMIC-CXR and
(2) emergency records from MIMIC-IV-ED. Thus
we consider MIMIC-CXR exams that occurred dur-
ing an ED stay from MIMIC-IV-ED. Both datasets
are publicly available and originate from the Beth
Israel Deaconess Medical Center in Boston, MA.

MIMIC-CXR was formed by first extracting pa-
tient identifiers for exams performed in the ED
between 2011-2016, and then extracting all exams
for this set of patients from all departments between
2011-2016. Each exam includes a semi-structured
free-text radiology report (Figure 1) that describes
the radiological findings of the images, written by
a practising radiologist contemporaneously during
routine clinical care. All images and reports were
de-identified to protect privacy. Sections from the
radiologist reports were extracted using a modifica-
tion! of the official text extraction tool? in order to
obtain the findings, impression, indication, history,
and comparison sections.

MIMIC-IV-ED consists of de-identified data
from ED stays between 2011-2019. The data was
converted into a denormalised relational database
with six primary tables: ED stays, diagnosis,
medicine reconciliation, medicine administration,
triage, and aperiodic vital signs. We do not con-
sider the diagnosis table in this work, as it indicates
the outcome of a patient’s ED stay. The patients of
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Figure 2: Multimodal language model for CXR report generation. The patient data embeddings prompt the decoder
to generate the findings and impression sections of a radiology report.

MIMIC-CXR can be linked to MIMIC-IV-ED via
an identifier, allowing an ED specific dataset to be
formed.

Example tables for a patient’s exam are shown
in Figure 1. The dataset was formed by extract-
ing a patient’s exams whose times (formed by
the ‘StudyDate’ and ‘StudyTime’ columns of the
metadata table) occurred within the ‘intime’ and
‘outtime’ of one of their ED stays.® Exams with
either a missing findings or impression section
were not considered. Using the official splits of
MIMIC-CXR, this gave a train/validation/test split
of 45 527/343/236 patients, 76 398/556/958 exams,
and 151 818/1 137/1 812 CXRs. Each of these ex-
ams had one ED stay and triage row; 53% had at
least one medicine reconciliation row with up to
106 rows; 62% had at least one vital signs row with
up to 69 rows; and 37% had at least one medication
administration row with up to 52 rows. Exams had
an indication section 66% of the time with a maxi-
mum of 75 words, a history section 34% of the time
with a maximum of 74 words, and a comparison
section 97% of the time with a maximum of 129
words. Only one exam had both an indication and
a history section.

4 Methods

The patient data from MIMIC-CXR and MIMIC-
IV-ED for an exam are transformed into embed-
dings, which are used to prompt a multimodal lan-
guage model to generate the findings and impres-
sion sections of the radiology report, as illustrated
in Figure 2. Additionally, ‘Source’ embeddings
differentiate the source of the data (e.g., the ‘chief
complaint’ column from the triage table, the indi-

*Exam 59128861 was removed as it overlapped with two
separate ED stays for the patient.

cation section, etc.), and time delta embeddings
represent the time difference between an event and
the exam. Standard embeddings, such as position
and token embeddings, are also included. The pa-
tient data embeddings originate from three main
groups: the tables of MIMIC-IV-ED; the report,
images, and metadata of the current exam from
MIMIC-CXR; and the patient’s prior exams (also
originating from MIMIC-CXR). The prior exam
and image embeddings are described in Section A
and Subsection C.2, respectively.

4.1 Time, Position, & Source Embeddings

The ED information from MIMIC-IV-ED is typi-
cally recorded as discrete events, such as medica-
tions administered or vital signs measured, each
with a specific timestamp. Events that occur closer
to the time of the patient’s exam are generally
more relevant for diagnostic purposes. To cap-
ture this, a time delta is calculated by subtract-
ing the time of an event from the time of the
exam. The exam time originates from MIMIC-
CXR’s metadata table (Figure 3), whereas most
of the MIMIC-IV-ED tables have event times for
each row. As shown in Figure 3, the time delta
is first converted to hours and then mapped using
1/v A + 1, assigning higher weights to events that
occurred closer to the exam. The mapped time
deltas are then passed through a feedforward neu-
ral network (FNN) defined as f(A W)W, where
W, € RV2048 W, ¢ R2048H | £(.) is the sigmoid
linear unit (SiLU) activation function (Hendrycks
and Gimpel, 2016), and H is the hidden size of
the decoder. This process generates the time delta
embeddings, which are subsequently added to the
embeddings of their respective sources. As shown
in Figure 2, time delta embeddings are only applied
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Flgure 3: Proposed patient data embeddings from the multiple heterogeneous data types taken from MIMIC-IV-ED
and MIMIC-CXR. The embeddings are formed from numerical, categorical, textual, temporal, and image data.

to the prompt. Patient data from the current exam,
such as the images, have a time delta of zero, while
data from prior exams have a positive time delta.

The position embeddings are ordered by the time
delta (Figure 3). This is due to the rotary position
embeddings of the decoder; tokens that are closer
together are given more importance. Hence, the
smaller the time delta, the closer the embedding’s
position is to the report token embeddings. Fol-
lowing Nicolson et al. (2024a), each unique patient
data source is given its own source embedding.
This includes the images, each report section, each
table’s text column and value-category columns
(described in the next section), and prior images
and report sections.

4.2 Tabular Data

An example table and its conversion to embeddings
is shown in Figure 3. To convert an exam’s tabu-
lar data to embeddings, columns were designated
as value, category, text, or time columns. Value
columns contained numeric data, while category
columns contained categorical data. Datum from
value and category columns were grouped by their
time delta, with each group forming a feature vec-
tor. The feature vector initially consisted of zeros.
Values and categories from the group were then
used to set its values based on indices determined

by a lookup table. For value columns, the lookup
table determined the index where the numeric value
was placed. For category columns, it determined
which indices were activated (set to 1).

Next, the feature vector was passed through
an FNN f(X;W;)W, to form the embedding,
where X; € RIUchlLil are the grouped features,
W, € RILil:2048 apq W, € R24&H 1.5 a
lookup table, and ¢ designates the table. Each ta-
ble has a unique FNN and lookup table. Rows
for a value column always had a unique time, pre-
venting multiple values from the same column in
a group. We investigated alternatives to form the
value-category embeddings in Section 5. The de-
scribed framework was found to be the most effi-
cient. Columns with a high cardinality were set
as text columns. Text embeddings were formed
via the decoder’s tokenizer and token embeddings.
Text embeddings were given the time delta em-
bedding from their respective row. The column
designation for each table in Figure 1 is described
in the Appendix B.

4.3 Report Section Embeddings

Here, we consider five sections of the radiology
report: the findings, impression, indication, his-
tory, and comparison sections. The findings and
impression sections serve as the ground truth to be



generated. The remainder form part of the patient
data embeddings. The indication section explains
the reason for the exam, such as symptoms or sus-
pected conditions. The history section provides
relevant medical history, such as past conditions
and treatments. The comparison section mentions
any prior exams used to identify changes over time.
These sections provide context that guides the in-
terpretation of the exam, influencing the content
of the findings and impression sections. The em-
beddings were formed via the decoder’s tokenizer
and token embeddings. Of these, the history and
comparison sections have not been investigated for
CXR report generation. The comparison section
was used only when prior exams were considered.

4.4 Experiment Setup

Our multimodal language model, illustrated in Fig-
ure 2, is based on CXRMate-RRG24; it features
a Llama decoder and the UniFormer as the image
encoder. The training procedure for our model
involved three stages: (1) initial training on the
MIMIC-CXR training set using only images as
input with Teacher Forcing (TF) (Williams and
Zipser, 1989), (2) further training on the dataset
described in Section 1 with the inputs detailed in
Table 1, again using TF, and (3) reinforcement
learning on the same dataset through self-critical se-
quence training (SCST) (Rennie et al., 2017) (only
for Table 2). Our evaluation metrics included three
that capture the semantics of radiology reporting —
RadGraph-F1 (RG), CheXbert-F1 (CX), and CXR-
BERT (CB) — as well as five natural language
generation metrics: BERTScore-F1 (BS), CIDEr
(C), METEOR (M), ROUGE-L (R-L), and BLEU-4
(B4). Comprehensive details on the model architec-
ture, training procedure, significance testing, and
comparison methods are provided in Appendix C.

5 Results & Discussion

The impact of different patient data sources on
the performance of CXR report generation is sum-
marised in Table 1. This analysis identifies which
additional data sources enhance performance com-
pared to using only images.

Significant improvements were observed by in-
corporating either the ED stays, triage, medicine
reconciliation, or vital signs data from MIMIC-
IV-ED dataset. Notably, the ED data markedly
improved scores on the radiology report metrics
(RG, CX, and CB). The medicine administration

table did not significantly improve the scores over-
all, likely due to its infrequent occurrence in the
exams (37%). (However, as shown in Table 4, it sig-
nificantly improves performance when evaluated
solely on exams that include a medicine adminis-
tration table.) These findings demonstrate that ED
patient data can enhance the diagnostic accuracy of
CXR report generation.

Incorporating the indication or history section
led to significant score improvements. This demon-
strates the substantial influence these sections have
on the findings and impression sections. Con-
versely, adding the metadata table did not result in
significant score improvements, indicating it lacks
valuable information for CXR report generation.
While previous studies have established that the
indication section boosts CXR report generation
(Nguyen et al., 2023), our findings demonstrate that
the history section is equally important.

When examining the impact of prior exams, we
considered a maximum history size A of up to three,
incorporating the findings and impression sections,
and images from prior exams. Any history size sig-
nificantly increases the scores compared to using
solely the images, consistent with previous find-
ings (Wu et al., 2022). However, performance
gradually degrades as the history size increases,
which contradicts earlier studies. Additionally, the
comparison section appears to slightly degrade per-
formance. We suspect this is due to the increas-
ing number of inputs as i grows, combined with
the limitations of our model architecture. |E[:, 0]
in Table 1 is the average prompt length over the
test set, where £ = [Eo,Eq,---]. It can be seen
that |£[:, 0]| increases substantially as h increases.
Since we provide all inputs to the decoder’s self-
attention, a large input size may cause attention
dilution. With more inputs, the attention weights
must be distributed across a larger number of inputs,
resulting in each input receiving a smaller share of
the attention, making it harder for the model to
focus on the most relevant inputs (Qin et al., 2022).

We then combined all the effective sources of
patient data (those providing a significant improve-
ment). This excluded ‘medicine administration’,
‘metadata’, and ‘comparison’. The best perfor-
mance was observed with no prior exams (h = 0),
indicating that using any prior exams in combina-
tion with other sources is detrimental due to at-
tention dilution. With ~ = 0, the combination
of all effective sources outperformed each individ-
ual source. We then performed an ablation study




Table 1: Results of the various patient data sources on the test set described in Section 3. Results were calculated
over ten training runs (n = 9580 exams; 958 x 10 runs). Underlined and Dashed underlined scores indicate a

significant difference to the scores of ‘Images’ and ‘Images + effective sources (h = 0)’, respectively (p < 0.05).
Evaluation is performed on both the findings and impression sections.

Patient data sources RG CcX CB BS C M R-L B4 |E[:, 0]
Images only
Tmages 26.00 29.24 58.87 24.10 1224 1435 2434 633 2724
Patient Emergency Department (ED) data (MIMIC-1V-ED)

Images + ED stays 26.10 2947 60.65 24.17 1239 1452 2450 636 2734

Images + triage 26.46 | 3127 63.06 2429 1232 1466 2458 6.44 2789

Images + vital signs 2647 | 3172 6339 2432 1316 1461 2474 647 2747

Images + medicine reconciliation 26.86 | 3137 6398 2452 1277 | 1490 2485 6.60 3435

Images + medicine administration 26.15 2947 59.21 2425 1230 1444 2447 638 273.0

Patient additional radiology data (MIMIC-CXR)

Images + indication 26.94 65.43 14.16 25.16 279.5

Images + history 27.00 - 65.06 - 14.32 - 25.48 - 277.0

Images + metadata 26.34  29.63 59.55 2437 1240 1455 2450 643 2734

Prior exams

Images+h =1 2698 | 3142 63.98 @ 24.65 12.65 25.03 = 6.78 558.9

Images + h = 1 + comparison 2676 | 3155 6420 2442 13.36 - 24.82  6.74 5634

Images + h = 2 26.67 3048 61.27 @ 2453 13.60 2485 @ 6.72 810.6

Images + h = 2 + comparison 26.20  30.19 6124 24.05 1243 2455 6.58 815.0

Images + h = 3 26.47 2996 59.95 24.14 1290 24.66  6.65 1037.1

Images + h = 3 + comparison 26.14  30.09 60.51 2390 13.22 2456 = 6.64 1041.5

All effective sources (no medicine administration, metadata, or comparison)
Images + effective sources (h = 0) = 27.11 64.80 14.48 25.40 365.0
Images + effective sources (h = 1)  26.78 - 63.85 14.10 - 25.25 - 651.7
Ablation from Images + effective sources (h = 0)

- medicine reconciliation 26.78 14.44 25.33 293.9
- ED stays 26.94 14.08 25.37 364.0
- triage 27.15 14.80 25.54 358.5
- vital signs 27.27 14.07 25.49 362.6
- indication 26.89 13.87 25.39 357.9
- history 26.96 14.60 25.24 360.3
- time delta 27.17 14.64 25.54 365.0

using ‘CXRs + effective sources (h = 0)’. Re-
moving ‘medicine reconciliation’ significantly in-
creased performance, specifically for CXR-BERT.
This improvement was also likely due to attention
dilution, as removing medicine reconciliation sub-
stantially decreased |£][:, 0]|.

Next, we further trained ‘Images + effective
sources (h = 0) - medicine reconciliation” with rein-
forcement learning, as described in Subsection 4.4.
This model, denoted as ‘Ours’ in Table 2, was com-
pared to other benchmark CXR report generation
models in the literature that included MIMIC-CXR
in their training data. Despite having substantially
fewer training samples than the other models, our
model significantly outperformed them on CXR-
BERT, BERTScore-F1, METEOR, ROUGE-L, and
BLEU-4. This demonstrates the impact of incorpo-
rating a more comprehensive set of patient data on
CXR report generation.

A case study is presented in Figure 4 demonstrat-
ing how a diverse set of patient data can impact
report generation. Here, the first model is given the
image only, and fails to identify key findings that

the radiologist noted in their report. The second
model is given the additional patient data available
for this exam; the indication section and triage data.
Hypoxia, as indicated by the low oxygen saturation
(‘o2sat’), along with the elevated respiratory rate
(‘resprate’) and systolic blood pressure (‘SBP’), are
consistent with the physiological responses to pul-
monary edema. Given this, the second model was
able to identify the moderate pulmonary edema,
echoing the radiologist’s findings.

Table 3 compares different methods for convert-
ing value and category columns into embeddings.
This evaluation includes images, the triage table,
and the medicine reconciliation table, as these ta-
bles contain multiple value and category columns.
The aforementioned method of producing embed-
dings by grouping data from value and category
columns (‘Grouped embeddings’) is compared to
two other methods. The first is separate embed-
dings for each datum, where each value column
datum is separately transformed using the previ-
ously described FNN, while each category column
datum is converted to an embedding using a learn-



Table 2: Benchmark models on the test set described in Section 3 (n = 958). Evaluation is on the findings section
only. Underlined indicates statistical significance between the top two scores (p < 0.05). In the ‘Train samples’
column, ‘images’ means the model generates reports per image, while ‘exams’ means a report generated per exam.

Model Train samples RG CX CB BS C M R-L B4
EMNLI (Miura et al., 2021) 152173 exams 32.8 289 666 244 194 - 28.1 = 8.9
CMN (Chen et al., 2021) 270790 images 253 243 494 19.7 169 151 264 7.6
TranSQ (Kong et al., 2022) 368960 images 29.8 | 304 623 204 149 - 226 | 1.9
RGRG (Tanida et al., 2023) 166512 images 232 228 379 234 7.6 124 21.1 54
CvT2DistilGPT2 (Nicolson et al., 2023) 270790 images 25.8 | 293 59.8 248 209 | 160 273 | 88
RaDialog (Pellegrini et al., 2023) 276778 images  26.8 [US8M@N 60.7 262 146 147 254 6.9
MedXChat (Yang et al., 2023) 270790 images 22.6 13.1 213 193 98 143 232 7.0
CXR-LLaVA-v2 (Lee et al., 2024) 193513 images 20.7  20.7 44.1 23.6 5.2 11.3 199 2.7
CXRMate (Nicolson et al., 2024a) 125395 exams = 28.8 71.3 730557 22.4 7N 28.1
CXRMate-RRG24 (Nicolson et al., 2024b) 550395 exams = 30.4 58.2 20.6 | 16.7 | 27.5
Ours 76,398 exams 33.7 . 79.1 - 241 J19AN 30.6 .
Indication: Hypoxia. Case study

Radiologist findings: A portable frontal chest radiograph demonstrate an unchanged cardiomediastinal
silhouette, which is top-normal in size. Bilateral opacities are consistent with moderate pulmonary edema. No
definite focal consolidation or pneumothorax is identified. There are likely trace bilateral pleural effusions.
Radiologist impression: Moderate pulmonary edema.

Triage:

temperature | heartrate

resprate

o2sat | sbp | dbp | pain | acuity [ chiefcomplaint

100.3 93 24

83 175 74 Null 1 ILI, Fever

Image (Model: Images from Table 1)

effusion. There is no significant pleural effusion.
Generated impression: No acute cardiopulmonary process.

Generated findings: Cardiomediastinal silhouette is normal. There is no focal consolidation. There is no pneumothorax or pleural

Image + Indication + Triage (Model: Images + effective sources (h=0) - medicine reconciliation from Table 1)

Generated findings: There is moderate pulmonary edema. No definite focal consolidation is identified. There are probable small bilateral
pleural effusions. The cardiac silhouette is mildly enlarged. There is no pneumothorax.

L Generated impression: Moderate pulmonary edema and small bilateral pleural effusions.

J

Figure 4: Case study demonstrating how incorporating a diverse set of patient data can aid with report generation.

able weight matrix, akin to how token embeddings
are produced (‘Separate embeddings’). The sec-
ond method modifies ‘Separate embeddings’ by
instead converting the value column data to text
and using the decoder’s tokenizer and token em-
beddings (‘Values-to-text, categories-to-tokens’).
The results indicate that the grouped embeddings
method generally works best and is useful for en-
coding heterogeneous patient data for multimodal
models.

6 Conclusion

This paper demonstrates the value of incorporat-
ing diverse patient data into automated CXR re-
port generation. By integrating patient data from
the MIMIC-CXR and MIMIC-IV-ED datasets, we
have shown significant improvements in the diag-
nostic accuracy of generated radiology reports. Our
empirical evaluation uncovers new sources of pa-
tient information that enhance CXR report genera-
tion, including data from ED stays, triaging infor-
mation, aperiodic vital signs, medications, and the
history section of radiology reports. We present

Table 3: Formatting strategies for the value-category
columns. Four training runs were used (n =
3832; exams 958 x 4 runs). Underlined indicates a
stat. sig. difference to ‘Baseline’ (p < 0.05).

Embeddings CX RG CB BS
Images
Baseline 25.81 29.00 59.04 23.85
Images + triage + medicine reconciliation
Grouped embeddings 2672 31.69 64.01 24.38
Separate embeddings 2532 2528 46.29 2351
Values-to-text, categories- 26.46 30.70 58.62 24.58

to-embeddings

specific methods to convert multimodal patient data
into embeddings for a language model, encompass-
ing numerical, categorical, textual, temporal, and
image data. We encourage further research and
experimentation using our released dataset splits,
code, and model checkpoints to explore innovative
methods for multimodal patient data integration,
with the ultimate goal of enhancing diagnostic ac-
curacy and patient care.



7 Limitations

Despite the promising results demonstrated in this
study, several limitations must be acknowledged.
Firstly, the generalisability of our findings may be
constrained by the datasets utilised, specifically
MIMIC-CXR and MIMIC-IV-ED, which are de-
rived from a single institution, the Beth Israel Dea-
coness Medical Center. This could introduce biases
unique to the demographic and clinical practices of
this institution, potentially limiting the applicabil-
ity of our model to other healthcare settings with
different patient populations or clinical workflows.
Our reliance on these datasets is due to the fact that
they are the only publicly available sources that
link CXR exams with ED records.

Another limitation pertains to the completeness
and quality of the patient data. Despite incorporat-
ing a wide range of data sources, the datasets still
contain missing or incomplete information, which
can affect model performance. For example, not
all exams include a history section, and not all ED
patient records have medicine administration de-
tails, leading to potential gaps in the data that the
model can utilise. However, this reflects the nature
of real patient records where issues of data quality
and completeness are to be expected.

Our model’s architecture, while effective, has
certain limitations. It struggles with large input
sizes, especially when incorporating multiple prior
exams, likely due to attention dilution. Future work
should explore advanced attention mechanisms or
hierarchical models to better manage large input
sequences.

The interpretability of the model also poses a
challenge. While our model shows improved di-
agnostic accuracy, the decision-making process
within the multimodal language model remains a
black box. Developing methods to enhance the
interpretability and explainability of the model’s
outputs would be beneficial, especially in clinical
settings where understanding the rationale behind
a diagnosis is critical.

Finally, while we provide a comprehensive set of
metrics to evaluate our model’s performance, these
metrics focus primarily on the diagnostic accuracy
and quality of the generated reports. Broader eval-
uations considering clinical outcomes, such as the
impact on patient management or reduction in ra-
diologist workload, would offer a more holistic
view of the benefits and limitations of CXR report
generation models in general. Conducting such

assessments could help to better understand the
practical implications of deploying these models in
a clinical setting.

In summary, while our study provides valuable
insights into the integration of multimodal patient
data for CXR report generation, addressing these
limitations will be crucial for further advancements
and broader adoption of such models in clinical
practice. Future research should explore alternative
architectures and training strategies, find alternative
datasets to evaluate generalisability, improve model
interpretability, and comprehensively assess the
practical impact on patient care and radiologist
workflow.

8 [Ethical Considerations

In this research, we used real-world patient data
from the MIMIC-CXR and MIMIC-IV-ED datasets.
Since these datasets are de-identified, we consider
privacy leakage risks to be minimal. Our method
employs a language model to generate medical re-
ports from patient data. However, we acknowledge
that language models can exhibit bias and produce
hallucinations, which may result in incorrect con-
tent in the generated reports.
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A Prior exam embeddings

The images, findings section, and impression sec-
tion from previous exams were considered. For
prior exams, the time delta was positive, calculated
by subtracting the time of the prior exam from the
current exam. The images, findings section, and
impression section from prior exams were given
distinct source embeddings, separate from the cur-
rent exam, to enhance differentiation. The com-
parison section from the current exam was also
investigated, anticipating that references to prior
exams in this section would prompt the decoder to
reflect this in the generated report. We explored
prior exams with a history size h of up to three.

B Table column determination

The columns from the tables described in Figure 1
were given the following designations:

* For the ED stay table, the patients ‘intime’
was used as the event time. Gender (e.g., ‘F’),
race (e.g., ‘HISPANIC OR LATINO’), and
arrival transport (e.g., ‘AMBULANCE’) were
designated as category columns. The disposi-
tion column was not considered.

For the triage table, the ‘intime’ from the
ED stay table was used. Temperature (e.g.,
‘100.6°), heart rate (e.g., ‘93”), respiratory rate
(e.g., ‘167), O2 saturation (e.g., ‘94’), systolic
blood pressure (SBP) (e.g., ‘110’), diastolic
blood pressure (DBP) (e.g., ‘56’), and acuity
(e.g., ‘2’) were designated as value columns.
Pain (e.g., ‘6-9’ and ‘yes.’) and the chief
complaint (e.g., ‘BILATERAL FOOT PAIN’)
were designated as text columns.

* The column designations for the vital sign
table were identical to the triage table, except



for the rhythm column (e.g., ‘Normal Sinus
Rhythm’), which was treated as a category
column. The vital signs table also had no
chief complaint column and the ‘charttime’
column was used as the event time.

For the medicine reconciliation table, the ‘in-
time’ from the ED stay table was used as
the event time, as it pertains to the patient’s
medication history prior to the ED stay. The
name column was designated as a text col-
umn, while the gsn, ndc, etc_rn, and etccode
columns were designated as category columns.
The etcdescription column was not consid-
ered, as it is a descriprion of the etccode col-
umn.

For the medicine administration (pyxis) table,
‘charttime’ was used as the event time. The
med_rn, name, gsn_rn, and gsn columns were
all treated as category columns. The name col-
umn for the medicine reconciliation column
did not have as high of a cardinality as the
name column from the medicine reconcilia-
tion column, allowing it to be considered as a
category column.

For the metadata table, the ‘PerformedProce-
dureStepDescription’, ‘ViewPosition’, ‘Proce-
dureCodeSequence_CodeMeaning’, ‘View-
CodeSequence_CodeMeaning’, and ‘Patien-
tOrientationCodeSequence_CodeMeaning’
columns were considered, and designated as
category columns.

C

C1

CheXbert-F1 (Smit et al., 2020), RadGraph-
F1 (Delbrouck et al., 2022), BLEU-4 (Pa-
pineni et al, 2001), and BERTScore-F1
(roberta-large_L17_no-idf_rescaled)

(Zhang et al., 2020) have been found to correlate
with radiologists’ assessment of reporting (Yu
et al., 2023) and were a part of our evaluation.
Additionally, we include CXR-BERT (Boecking
et al., 2022; Nicolson et al., 2024a), CIDEr
(Vedantam et al., 2015), METEOR (Banerjee
and Lavie, 2005), and ROUGE-L (Lin and Hovy,
2003) as part of our evaluation. CheXbert-F1,
RadGraph-F1, and CXR-BERT were intended to
capture the clinical semantic similarity between
the generated and radiologist reports, while

Experiment setup

Metrics
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BERTSscore-F1 was intended to capture general
semantic similarity. Finally, CIDEr, METEOR
ROUGE-L, and BLEU-4 were intended to capture
the syntactic similarity between the generated and
radiologist reports.

For the models in Table 2 that generate a report
for each image in an exam, the average score was
taken across all reports for an exam. Following
this, the final average score was computed across
all exams for both models that generate a report per
image and those that generate a report per exam.

For CheXbert, the macro-averaged F1 was com-
puted between the 14 CheXbert observations ex-
tracted from the generated and radiologist reports.
“No mention”, “negative”, and “uncertain” were
considered negative, while “positive” was consid-
ered positive. Here, the true positives, false posi-
tives, and false negatives were averaged over the
reports of each exam for the models that generate a
report per image.

We also perform statistical testing; first, a Lev-
ene’s test was conducted to reveal if the variances
across model scores was homogeneous or not. If
the assumption of equal variances was upheld, a
one-way ANOVA was conducted to determine if
there was a significant difference between mod-
els. Finally, pairwise Tukey-HSD post-hoc tests
were used for pairwise testing. If the assumption of
equal variances was violated, a one-way Welch’s
ANOVA was conducted to determine if there was
a significant difference between models. Finally,
Games-Howell post hoc tests were used for pair-
wise testing. A p-value of 0.05 was used for all
significance testing. Statistical testing was not per-
formed for CheXbert, as it is a classification metric.

C.2 Model

Our model is illustrated in Figure 2; following
(Nicolson et al., 2024b), we utilised UniFormer
as the image encoder (in particular, the 384 x 384
base model warm started with its token labelling
fine-tuned checkpoint) (Li et al., 2023). The image
embeddings are formed by processing each image
in the exam separately with the image encoder and
then projecting its last hidden state to match the
decoder’s hidden size using a learnable weight ma-
trix. Each image was resized using bicubic inter-
polation so that its smallest side had a length of
384 and its largest side maintained the aspect ratio.
Next, the resized image was cropped to a size of
R3x384x384 'The crop location was random during
training and centred during testing. Following (El-



gendi et al., 2021), the image was rotated around its
centre during training, where the angle of rotation
was sampled from /[—5°, 5°]. Finally, the image
was standardised using the statistics provided with
the UniFormer checkpoint. A maximum of five
images per exam were used during training. If
more were available, five were randomly sampled
uniformly without replacement from the exam.

Again following (Nicolson et al., 2024b), we
employed the Llama architecture for the decoder,
which is notable for features such as its rotary po-
sitional encoding (RoPE), root mean square nor-
malisation (RMSNorm), and SwiGLU activation
function (Touvron et al., 2023). A byte-level byte
pair encoding tokenizer (Wang et al., 2020) was
trained with a vocabulary size of 30000. It was
trained on the findings, impression, indication, and
history sections (not the comparison section) of
the entire MIMIC-CXR training set, as well as the
‘pain’ and ‘chiefcomplaint’ columns from the triage
table, the ‘name’ column of the medicine reconcil-
iation table, and the ‘pain’ column from the vital
signs table (from the entire MIMIC-IV-ED dataset).
Newline, tab, repeated whitespaces, and leading
and trailing whitespaces were removed from any
text before tokenization.

The hyperparameters of the Llama decoder were
six hidden layers, a hidden size of 768, 12 attention
heads per layer, and an intermediate size of 3 072.
The maximum number of position embeddings was
set to 2048 to accommodate all the patient data
embeddings and the report tokens. The maximum
number of tokens that could be generated was set
to 256, which was also the limit for the radiologist
reports during training. During testing, a beam size
of four was utilised. The Llama decoder allows a
custom attention mask to be provided in current im-
plementations.* This enabled non-causal masking
to be utilised for the prompt and causal masking for
the report token embeddings, as shown in Figure
5. This ensured that the self-attention heads were
able to attend to all of the patient data embeddings
at each position.

C.3 Training

Three stages of training were performed. Each
stage used AdamW (Loshchilov and Hutter, 2022)
for mini-batch gradient descent optimisation,
where training and evaluation was performed on a
94GB NVIDIA H100 GPU. The three stages were

*https://huggingface.co/blog/poedator/4d-masks
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Figure 5: Attention mask for the decoder. Non-causal
masking was used for the patient data embeddings and
causal masking for the report token embeddings.

as follows:

1. Teacher forcing (TF) (Williams and Zipser,
1989) was performed on the MIMIC-CXR
dataset with only the images for an exam as
input, and exams that contained both a find-
ings and impression section. This gave a train-
ing/validation split of 232 853/1 837 images,
125416/991 exams, and 57 101/436 patients.
Training was performed with an initial learn-
ing rate of Se-5, a mini-batch size of 8, a maxi-
mum of 32 epochs, and with float16 automatic
mixed precision. All model parameters were
trainable during this stage. The validation
macro-averaged CheXbert-F1 was the mon-
itored metric for checkpoint selection. This
stage was necessary, as the language model
struggled to generate reports from multiple
sources without prior learning.

TF on the dataset described in Section 3 with
the inputs described in Table 1. The training
strategy was identical to the previous stage,
except that a maximum of 16 epochs was per-
formed, and the image encoder’s parameters
were frozen (except for its projection). The
models featured in Table 1 were trained using
only the first two stages.

. Reinforcement learning using self-critical se-
quence training (SCST) (Rennie et al., 2017)
with CXR-BERT and BERTScore as the re-
ward (each weighted with 0.5) was performed
in the final stage of training. The sample re-
port for SCST was generated with top-k sam-
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Figure 6: Fl-score for each CheXbert label. (n = 9 580 exams; 958 x 10 runs for ‘Images’ and ‘Images + effective
sources (h = 0) - medicine reconciliation’ and n = 2874 exams; 958 x 3 runs for ‘Images + effective sources
(h = 0) - medicine reconciliation + SCST (CXR-BERT + BERTScore reward)’.)

C4

pling (k = 50). Training was performed with
an initial learning rate of 5e-6, a mini-batch
size of 32, a maximum of 24 epochs, and with
float32 precision. The image encoder’s param-
eters were frozen during this stage (except for
its projection). The validation BERTScore-F1
was the monitored metric for checkpoint se-
lection, as it helped to select checkpoints less
prone to repetitions. This stage of training was
only applied to the best model from Table 1,
‘Images + effective sources (h = 0) - medicine
reconciliation’, with the results presented in
Table 2. This model had 161 185 728 parame-
ters.

Comparison Models

The generated reports for the models in Table 2
were attained as follows:

EMNLI reports were generated follow-
ing https://github.com/ysmiura/ifcc
(Miura et al., 2021).

CMN reports were generated follow-
ing https://github.com/zhjohnchan/
R2GenCMN (Chen et al., 2021).

TranSQ reports were kindly provided by the
authors (Kong et al., 2022).

RGRG reports were generated follow-
ing https://github.com/ttanida/rgrg
(Tanida et al., 2023).
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* CvT2DistilGPT2 reports were generated
following https://github.com/aehrc/
cvt2distilgpt2 (Nicolson et al., 2023).

» RaDialog reports were kindly provided by the
authors (Pellegrini et al., 2023).

* MedXChat reports were kindly provided by
the authors (Yang et al., 2023).

* CXR-LLaVA-v2 reports were generated fol-
lowing https://huggingface.co/ECOFRI/
CXR-LLAVA-v2 (Lee et al., 2024).

* CXRMate reports were generated following
https://huggingface.co/aehrc/cxrmate
(Nicolson et al., 2024a).

* CXRMate-RRG24 reports were generated fol-

lowing https://huggingface.co/aehrc/
cxrmate-rrg24 (Nicolson et al., 2024b).

CXRMate-RRG24 was trained on five datasets, in-
cluding MIMIC-CXR. RGRG was trained on the
ImaGenome dataset derived from MIMIC-CXR —
which may have some overlap with our test set.

D Ancillary results

In Figure 6, the Fl-scores for each CheXbert la-
bel are shown. The ‘Images + effective sources
(h = 0) - medicine reconciliation’ model from Ta-
ble 1 improves performance across all labels com-
pared to the ‘Images’ model. This suggests that


https://github.com/ysmiura/ifcc
https://github.com/zhjohnchan/R2GenCMN
https://github.com/zhjohnchan/R2GenCMN
https://github.com/zhjohnchan/R2GenCMN
https://github.com/ttanida/rgrg
https://github.com/aehrc/cvt2distilgpt2
https://github.com/aehrc/cvt2distilgpt2
https://github.com/aehrc/cvt2distilgpt2
https://huggingface.co/ECOFRI/CXR-LLAVA-v2
https://huggingface.co/ECOFRI/CXR-LLAVA-v2
https://huggingface.co/ECOFRI/CXR-LLAVA-v2
https://huggingface.co/aehrc/cxrmate
https://huggingface.co/aehrc/cxrmate-rrg24
https://huggingface.co/aehrc/cxrmate-rrg24
https://huggingface.co/aehrc/cxrmate-rrg24

Table 4: Results for exams that have a medicine ad-
ministration table (n = 3520; studies 352 x 10 runs).
Underlined scores indicate a significant difference to
the scores of ‘Images’ (p < 0.05).

Inputs RG CX CB BS

Images 26.24 2836 57.17 24.33
Images + medicine ad- 26.95 28.53 58.94 24.93

ministration

incorporating ancillary data from MIMIC-IV-ED
and MIMIC-CXR provides a general improvement,
rather than benefiting any specific pathology.

Further improvements are seen when training the
‘Images + effective sources (h = 0) - medicine rec-
onciliation’ model with SCST (i.e., our model from
Table 2) for most pathologies. However, there are
performance decreases for ‘enlarged cardiomedi-
astinum’, ‘lung lesion’, ‘pneumothorax’, and ‘frac-
ture’. This might be due to these pathologies be-
ing underrepresented in the MIMIC-CXR dataset,
leading the model to optimise for more common
pathologies during SCST.

The results for exams that include a medicine
administration table are show in Table 4. Adding
the medicine administration table produced a sig-
nificant improvement in the scores, indicating that
it should be considered if available.
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