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Abstract
We propose a novel randomized quasi-Newton method that scales well with problem dimension by
leveraging a recent randomized low-rank Hessian approximation technique. Our algorithm achieves
the seemingly exclusive benefits of the first-order and second-order methods. The iteration cost of
our algorithm scales linearly with the problem dimension, as with the first-order methods. For non-
convex smooth objectives, our algorithm globally converges to a stationary point with convergence
rate O(n−1/2), matching that of the standard gradient descent with an improved implicit constant.
When the Hessian of the objective near a local minimum has a good low-rank approximation, our
algorithm can leverage such local structure and achieve a linear local convergence with a rate superior
to that of standard gradient descent. If the Hessian is actually low-rank, our algorithm achieves
superlinear local convergence. We verify our theoretical results with various numerical experiments.

1. Introduction

Consider the nonconvex smooth minimization problem θ∗ ∈ argminθ∈RN f(θ), where f : RN → R
is a twice continuously differentiable nonconvex function that is bounded from below. Many classical
optimization algorithms for this problem take the following form of ‘preconditioned gradient descent’:

θn+1 ← θn −B−1n ∇f(θn), (1)

where Bn ∈ RN×N is a suitable preconditioning matrix. If Bn = α−1IN , where α > 0 is
a fixed stepsize and IN is the identity matrix, then (1) becomes the standard gradient descent
(GD). Assuming a gradient oracle, GD has O(N) per-iteration complexity. It has sublinear global
convergence for general nonconvex objectives. Near a local minimizer, GD converges at a linear
rate depending on the condition number of the local landscape (see, e.g., [1, 20]). This can be very
slow when the Hessian of the objective is ill-conditioned. When Bn = ∇2f(θn), provided that the
Hessian is invertible, then (1) becomes the classical Newton’s method (see, e.g., [21, 23]). It has
quadratic local convergence near a local minimum with positive definite Hessian [15, 33]. However,
it has a high per-iteration complexity of O(N3) for inverting the Hessian, and the Newton step has
infeasibility and instability issues when the Hessian is singular or ill-conditioned. In this work, we
use the term Quasi-Newton methods to mean a broad class of optimization algorithms (1) where
Bn is some approximation of the Hessian with a suitable regularization. These methods aim to
remedy the drawbacks of Newton’s methods while maintaining the advantages of using second-order
information. For example, Levenberg-Marquardt (LM) regularization uses the Newton step with
proximal regularization τn

2 ∥θ−θn−1∥2, which reduces to the iterate (1) with Bn = ∇2f(θn)+τnIN ,
where τn ≥ 0 is large enough so that the regularized Hessian is positive definite. The celebrated
cubic-regularized quasi-Newton by Nestrov and Polyak [12] instead uses the cubic proximal term
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τn
2 ∥θ − θn−1∥3. Besides, trust-region methods [7] proceeds by computing θn via minimizing

approximate second-order Taylor expansion of the objective within a ‘trust-region’ ∥θ−θn−1∥ ≤ ∆n

with adaptively chosen radii ∆n [7]. These quasi-Newton methods enjoy global convergence
properties and superlinear local convergence (see Table 1). However, they have a high iteration cost
of at least O(N2). Other quasi-Newton methods such as BFGS [3, 9, 10, 30] and its limited-memory
variant (L-BFGS) [17] have lower per-iteration complexity but they do not enjoy global convergence
to first-order optimal points or superlinear local convergence.
Randomized Low-rank Quasi-Newton. In this work, we propose a new quasi-Newton algo-
rithm based on a randomized low-rank matrix approximation, Randomly Pivoted Cholesky (RPC)
decomposition, developed recently by Chen, Epperly, Tropp, and Webber [6]. Given a positive semi-
definite matrix A and a rank parameter k, RPC obtains a low-rank random Cholesky decomposition
FFT ≈ A, where F is a rank-k random Cholesky factor while only using the diagonal entries and at
most k columns of A. Our key idea is to use RPC to obtain a low-rank approximation of (regularized)
Hessian within the LM framework by only computing O(kN) entries in the Hessian. This method
can be seen as an efficient randomized variant of the quasi-Newton method of Bräuninger [2] that uses
full Cholesky decomposition of the regularized Hessian. A high-level description of our algorithm,
Randomized Low-rank Quasi-Newton (RLQN), is shown below (see Sec. 2 for details):

(RLQN)


FnF

T
n ≈ ∇2f(θn) + τnI (▷ Randomized low-rank Hessian approx.)

Bn ← FnF
T
n + δnIN (▷ Preconditioning matrix)

θn+1 ← θn −B−1n ∇f(θn) (▷ Parameter update).

(2)

Here, τn, δns are the LM regularization coefficients found adaptively by Alg. 1 and Alg. 3.
Notation. For real symmetric matrix A ∈ RN×N and an integer 1 ≤ r ≤ N , let JAKr denote the
best rank-r approximation of A: namely if A =

∑N
i=1 λiuiu

T
i is the spectral decomposition of A

with eigenvalues λ1 ≥ · · · ≥ λN , then JAKr =
∑r

i=1 λiuiu
T
i . Denote log+(x) = max{0, log x}.

Related works and Contribution. An extensive comparison between our method and various
existing methods is given in Table 1.

Methods Global conv. Local convergence per-iter cost iteration
Property Rate complexity

GD[1, 20] ✓
strongly Linear

O(N) O(ϵ−2)convex O((1− µ
L
)n)

Newton [15] ✗ pos. def. quadratic O(N3) NA
Trust Region

✓ pos. def. quadratic O(N3)
O(ε−2)[11, 26] superlinear O(N2)

LM [8] ✓ Error bound (6) quadratic O(N3) O(ε−2)

Cubic regularization [4, 5, 19] ✓ PL (6) quadratic O(N2j) O(ε−3/2)
BFGS [14, 28, 29] ✗ pos. def. superlinear O(N2) NA
L-BFGS [17, 22] ✗ pos. def. linear O(Nm) NA

RLQN (Ours) ✓
low-rank superlinear

O(k2N) O(ϵ−2) (see Thm. 1)approximate Linear
low-rank O((1− µ

Leff )
n)

Table 1: Comparison between the proposed Randomized Low-rank Quasi-Newton (RLQN) method and various bench-
mark methods. j in the cubic regularization row stands for the number of iterations used in the Lanczos
algorithm. Leff denotes the ‘effective’ smoothness parameter that can be much less than L, see Thm. 2.

In this work, we show that our RLQN has the following theoretical properties:

• Nearly first-order per-iteration complexity O(k2N)
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• Global convergence to stationary points with convergence rate that of gradient descent O(n−1/2)
with a possible improvement of the implicit constant. (Thm. 1, Rmk. 13)

• Improved local linear convergence with approximately low-rank local landscape in expectation
(Thm. 2) and high-probability (Cor. 3)

• Superlinear local convergence with low-rank local landscape (Thm. 4).

To the best of our knowledge, our RLQN is the first quasi-Newton method in the literature that
achieves these desirable properties all at once. We also demonstrate the superior numerical perfor-
mance of RLQN for solving regularized matrix factorization against standard gradient descent and
L-BFGS, and for solving large linear systems against state-of-the-art methods such as Randomized
Kaczmarz [31] and conjugate gradient [13].

2. Statement of the algorithm
Below we give details on our RLQN algorithm in (2). An auxiliary algorithm for randomized
low-rank Hessian approximation (Alg. 3) is given in Appendix A.

Algorithm 1 Randomized Low-rank Quasi-Newton (RLQN)
1: Input: θ0 ∈ Θ (initial estimate)
2: Parameters: M (number of iterations); k (lower rank parameter); L (Lipchitz constant of the gradient); LH (Lipchitz constant of

the Hessian)
3: for n = 0, 1, · · · ,M do
4: Fn, Rn ←− output of Algorithm 3 with input (θn, k, L) (▷ RP Cholesky [6] with LM-reg.)
5: δn ← min{L,max{Rn,

√
LH∥∇f(θn)∥}}

6: pn ← −
(
FnFT

n + δnI
)−1∇f(θn)

7: = δ−1
n ∇f(θn)− δ−1

n F(δnIk + FTF)−1FT∇f(θn) (▷ Woodbury identity [32]; Cost O(k2N))
8: set new iterate θn+1 ←− θn + pn
9: output θM+1

3. Main results
We provide both global and local convergence analysis of our RLQN algorithm (2). For both analysis,
we assume that the objective has Lipschitz continuous Hessian as below:
A1 (Smooth objective) The objective f : RN → R is uniformly lower bounded and is twice
continuously differentiable, and for some L,LH > 0,∇f , ∇2f satisfy

∥∇f(θ)−∇f(θ′)∥ ≤ L∥θ − θ′∥, ∥∇2f(θ)−∇2f(θ′)∥ ≤ LH∥θ − θ′∥, (3)

for all θ,θ′ ∈ L, where L is a convex set containing the sublevel set {θ : f(θ) ≤ f(θ0)}.

Under this mild assumption, we establish the following first-order global asymptotic convergence
and convergence rate of the general preconditioned gradient descent (1) in Thm 1 below.
Theorem 1 (Global convergence for preconditioned GD 1) Suppose A1 holds. Let (θn)n≥0 be
outputs generated by (1), with Bn ≽ ∇2f(θn), λmin(Bn) ≥ min{L,

√
CLH∥∇f(θn)∥} for some

C > 1
3 , and sup

n≥0
∥Bn∥ <∞. Then almost surely min0≤k≤n−1 ∥∇f(θk)∥ ≤

(
(f(θ0)−inf f)

A
∑k−1

k=0 ∥Bk∥−1

)1/2

,

where A = 1
2 −

1
6C > 0. And asymptotically lim

n→∞
∥∇f(θn)∥ = 0.

The hypothesis in Theorem 1 is satisfied for the standard GD with constant stepsize (Bn = αI,
α ≥ L) and GD with diminishing step size (Bn =

√
nI when n is sufficiently large). It is also

suitable for algorithms with line search since one can consider the stepsize to be a constant multiplied
by Bn. Most importantly, our RLQN chooses the preconditioning matrices Bn that satisfy the
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hypothesis of Theorem 1. Hence RLQN has asymptotic convergence to stationary points and iteration
complexity as good as the standard GD, but can exhibit much faster convergence if our adaptive
choice of Bn yields a large sum of the inverse spectral norms. See Rmk.13 for more discussion.

Next, we will see that local convergence rates of RLQN have a more direct improvement by
randomized Hessian approximation. Classical analysis of quasi-Newton methods concerns linear
convergence toward a local minimizer within a strongly convex local landscape. In our analysis, we
extend this to ‘rank-deficient flat’ minima, where Hessian near a local minimizer can be rank-deficient
(A2) and satisfy a local curvature condition through the PL inequality (A3). (See Appendix B for
further discussion on our assumptions.)

A2 (Approximately low-rank local landscape) Suppose f : RN → R satisfies A1. For a local
minimizer θ∗, there is an open ball U centered at θ∗ and constants µ > 0, ρ ∈ (0, 1), and 1 ≤ r ≤ N
such that for all θ ∈ U ,∇2f(θ) ⪰ µIN , and tr(∇2f(θ)− J∇2f(θ)Kr) ≤ ρ λmax(∇2f(θ)).

A3 (Second-order accumulated flat local minima) Suppose A1 holds. Fix a local minimizer θ∗
of f and denote S(θ∗) := {θ′∗ : f(θ′∗) = f(θ∗) and θ′∗ is a local minimizer of f}. Then there exists
constants µ > 0, k ≤ N , and an open ball U centered at θ∗ with the following properties:

(i) (Rank-deficiency) For all θ ∈ U ,∇2f(θ) is PSD and has rank at most k.
(ii) (Local-curvature) For any θ′∗ ∈ U ∩ S(θ∗), θ′∗ is µ-PL [25], namely f(θ) − f(θ′∗) ≤

1
2µ∥∇f(θ)∥

2 for all θ ∈ U.

A key benefit of having a low-rank approximation of the Hessian is that the condition number
of the local landscape automatically improves depending on the accuracy of the low-rank Hessian
approximation. We establish this improved local convergence result in Theorem 2 below.

Theorem 2 (Linear local convergence with improved condition number) Suppose A1 holds. and
θ0 is sufficiently close to a local minimizer θ∗ satisfying A2. Let L, µ, ρ, r be constants in A1 and A2.
Let ε0 > 0 be the smallest so that k ≥ r

(
1
ε0

+ 1 + log+

(
2r

ε0

))
, where k is the number of columns

of the Hessian sampled in RLQN (see Alg. 2). Then for all n ≥ 1,

E[∥θn+1 − θ∗∥] ≤
(
1− µ

4µ+ 8(1 + ε0)ρL

)n

∥θ0 − θ∗∥, (4)

where the expectation is taken with respect to all the random choice of pivot columns in the algorithm
up to step n. Furthermore, θn → θ∗ almost surely.

The contraction constant in (4) should be compared with that for GD with fixed stepsize 1/L for µ-
strongly convex and L-smooth objectives, for which we have ∥θn+1−θ∗∥ ≤ (1− µ/L)n/2 ∥θ0−θ∗∥.
Thus our linear local convergence rate in (4) is significantly faster than that for GD for ill-conditioned
(µ≪ L) local landscape with approximately low-rank Hessian as in A2 (r ≪ N and ρ≪ 1).

From Theorem 2, we can also obtain a high-probability local convergence guarantee that we can
reach a local minimizer within distance ε in O(log ε−1) iterations with better implied constant.

Corollary 3 (Local iteration complexity) Suppose A1 and A2 hold, and ∥θ0 − θ∗∥ is sufficiently
small. Let ε0 be the same as in theorem 2, then there is some n ≤ 5(µ+2(1+ε0)ρL

µ log ε−1) so that

∥θn − θ∗∥ ≤ ε with probability at least 1− exp
(
− 1

40µ(log ε
−1∥θ0 − θ∗∥) (µ+ 2(1 + ε0)ρL)

)
.

If the local landscape is in fact low-rank and if the rank parameter k in our RLQN is sufficiently
large, then we obtain superlinear local convergence, as stated in the following result.
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Theorem 4 (Superlinear local convergence with low-rank local landscape) Suppose θ0 is suffi-
ciently close to a local minimum θ∗ of f satisfying A3, then ∥∇f(θn)∥ converges to 0 superlinearly
in n, in particular ∥∇f(θn+1)∥ = O

(
µ−1∥∇f(θn)∥3/2

)
with µ as in A3.

4. Numerical Experiments: Matrix factorization
We test our algorithm on solving an ℓ2 regularized matrix factorization problem. We fixed a matrix
X ∈ Rp×n, and try to find its best rank-r approximation X ≈WH in terms of Frobenius norm,
where W ∈ Rp×r, H ∈ Rr×n. This can be formalized in minimizing the nonconvex objective
f(W,H) = ∥X −WH∥2F + λ

2 (∥W∥
2
F + ∥H∥2F ), where λ > 0 is the ℓ2-regularization penalty.

In our experiments X ∈ R1000×10 is generated by sampling i.i.d. standard normal entries and we
applied rank-2 factorization. Hyperparameters for GD and L-BFGS are chosen by cross-validation
so that they perform competitively.

a b c d

Figure 1: Comparison of RLQN against L-BFGS and GD for matrix factorization. (a)-(b) Objective value vs. iterations and flops with
λ = 10−3; RLQN uses low-rank (k = 5) Hessian approximation until iteration 5 and more precise Hessian approximation
(k = rmin{p, n}+ 1 = 21) after that. (c)-(d) Gradient norm v.s. iterations and flops, respectively, with λ = 5. RLQN
uses constant low-rank Hessian approximation (k = 5). Shaded blow regions indicate one standard deviation over five
random initializations of RLQN.

In Figure 1 we compare our algorithm (RLQN) with respect to L-BFGS and gradient descent
(GD). We find that a practical implementation of RLQN is to use small k for the first few iterations
so that it converges to a stationary point with low per-iteration cost (comparable to GD) and then
later use large k so that we leverage improved local convergence rate of RLQN by good Hessian
approximation (Thm. 4). This two-phase strategy is demonstrated in panels a-b. Even after GD
flattens out in terms of the objective value, RLQN remains a steady linear convergence. L-BFGS
makes good progress in general, but its performance features instability: periods of stagnation and
fluctuation, presumably due to the restarting of the Hessian approximation using limited memory.

In panels c-d, we numerically verify the improved iteration complexity of RLQN over GD in
terms of the gradient norm (Thm. 1), which does not require low-rank local landscape assumption
(A2). For this, we used large ℓ2-regularization (λ = 5) to make the problem is relatively well-
conditioned. This favors GD as we see a steady linear convergence. One can clearly see from
panel c that RLQN shows a much-improved iteration complexity over GD. The improvement is still
significant but a bit degraded if we measure the progress of the gradient norm w.r.t. flops. This is due
to the relatively higher per-iteration computational cost of RLQN over GD.

5. Numerical experimental: Large linear inverse problems

Here we test our algorithm on solving linear system Ax = b, where A ∈ Rp×N and b ∈ Rp with
p ≫ N . This can be reformulated as minx∈RN

[
f(x) := 1

2∥Ax− b∥2
]
. While this problem is

convex with constant Hessian, it has a wide range of applications especially in scientific computing.
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Also, since we can control the Hessian of the objective through the singular value profile of A,
it provides a nice class of problems to test our improved local linear convergence rate (Thm. 4),
which operates under the assumption of approximate low-rank local landscape (A2). We present
experimental results with both synthetic and real data. We compare our algorithm with two widely
used linear problem solvers of randomized Kaczmarz [31] and conjugate gradient least squares
(CGLS) [13]. We plot the least square error as a function of flops. Since the randomized Kacmarz
and our RLQN are stochastic, we repeated the experiments 10 times and plotted the mean and shaded
the region in between the running maximum and minimum.

Figure 2: Plots of singular values distributions of four matrices and the result of solving Ax = b is plotted as least square error vs.
flops used by the algorithms. Part a, the left hand side, are the experiments on synthesized data. Part b, the right hand side,
is the experiment on matrix Maragal2 in the SuiteSparse Matrix Collection [16].

In Figure 2 part a, we present three synthetic experiments with matrices A1,A2,A3 ∈ R500×100.
We first sample A ∈ R500×100,b ∈ R500 from i.i.d. standard normal. Then we perform a singular
value decomposition on matrix A and get A = UΣVT . We perturb the singular values in Σ to
create A1,A2,A3 with singular value profiles depicted in Figure 2 top left. Going from A1 to A3,
the singular values decay slower and hence the parameter ρ in A2 becomes larger. And we use rank
parameter k = 20 in this set of experiments.

In Figure 2 part b we also test our algorithm on matrix Maragal2 in the SuiteSparse Matrix
Collection [16]. This matrix has 555 rows, 350 columns, and has significant rank deficiency as
seen in its singular value distribution in Figure 2 top right. We used k = 171 for this experiment.
Although k = 171 is a relatively large rank, capturing that part of the curvature structure helps
our algorithm to converge very fast. It only takes 5-10 iterations for our algorithm to reach 10−10

error. We observe a superior convergence rate with our RLQN algorithm in comparison to the other
benchmark methods. This highlights that our RLQN algorithm leverages low-rank structure in the
landscape of the problem and yields faster convergence than other methods that do not leverage such
geometric information.
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A fast and efficient randomized quasi-Newton method
Supplementary Material

Appendix A. Details on the Algorithm

In this section, we give details for the randomized Hessian approximation algorithm that we use as
part of Algorithm 1.

Algorithm 2 Random Pivoted Cholesky Factorization (RPC) [6]
1: Input: A ∈ RN×N ; k ≤ N (number of columns to be sampled);
2: Set F← O ∈ RN×k, d← diagonals and selected columns of A ;
3: for n = 1, · · · , k do
4: pick s ∈ {1, ..., N} according to distribution |d|/∥d∥1
5: col←− A[:, s]
6: g←− col− F[:, 1 : n− 1]F[s, 1 : n− 1]T

7: if g[s] ≤ 0
8: output None (▷ Algorithm failed!)
9: else

10: F[:, n]←− g/
√
g[s]

11: d←− d− F[:, n] ∗ F[:, n]
12: R← ∥d∥1 (▷ Trace norm approx. error)
13: λ←− λmax(F

TF) (▷ Same as the largest eigenvalue of FFT , cost O(k3) )
14: output F, R, λ

Remark 5 We list the matrix A ∈ RN×N for the ease of notation. In fact, this randomized
factorization only requires the reading of (k+1)N − k entries of A coming from k column of A and
its diagonal. When the input A is PSD, the output λ is at most ∥A∥ (see Thm 5.3 in [34]). But when
input A is not PSD, the factorization might fail to go through; or the low rank factorization might
go through despite the fact that A is not PSD, which could result in λ > ∥A∥. Since our objective
function f(θ) could be nonconvex, the input matrices A = ∇2f(θ) are not necessarily PSD. And
we deal with this subtlety using the next algorithm.

Algorithm 3 RPC of LM-regularized Hessian
1: Input: θ (parameter state); k ≤ N (number of columns for RPC); L (smoothness parameter)
2: F, R, λ←− output of Alg. 2 with input (A = diagonals and selected columns of∇2f(θ), k)
3: if (F, R, λ) is None or λ > L: (▷ Encounter∇2f(θ) that is not PSD )
4: F, R, λ←− output of Alg. 2 with input (A = ∇2f(θ) + LI, k)
5: output F, R
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Remark 6 The key implementation detail is to ‘try’ RPC (Alg. 2) with no regularization; if RPC
fails to go through or if RPC gives an output F with λmax(FF

T ) > L (line 3 of Alg.3), then we know
the current Hessian is not PSD. In this case we follow up with another RPC factorization with the
Hessian regularized by the smoothness parameter L, namely∇2f(θ) + LI, where θ is the current
iterate. The second factorization will certainly go though because ∇2f(θ) + LI is PSD. In addition,
if we use F to denote the new output of the RPC factorization, λmax(FF

T ) ≤ ∥∇2f(θ)+LI∥ ≤ 2L.
After the factorization, we choose the preconditioning matrix Bn (2) to be the obtained Cholesky
decomposition plus additional LM-regularization δnIN , where δn is chosen adaptively in line 5 of
Alg.1. This choice can be easily computed, and guarantees the hypothesis in Thm. 1 as well as
λmax(Bn) ≤ 3L.

Remark 7 (Matrix-vector product) In line 7 of Alg. 1, by using Woodbury identity [32], we can
use the following trick to calculate the search direction

(FnFn
T + δnIN )−1∇f(θn) = δ−1n ∇f(θn)− δ−1n F(δnIk + FTF)−1FT∇f(θn). (5)

The dominating computation above are N × k matrices multiplying vectors of dimension k, k ×
N matrices multiplying vectors of dimension N , and inverting a k × k matrix. Therefore the
computational cost of each iteration is indeed O(k2N).

Appendix B. Discussion on assumptions

(A1) This is a standard assumption on smoothness of the objective.

(A2) Classical convergence results for (quasi-)Newton methods assume that the target local min-
imizer θ∗ has positive definite Hessian and the algorithm is initialized sufficiently close to
θ∗. Our first local convergence analysis (Thm. 2) operates under a similar assumption but
additionally exploits the ‘approximately low-rank’ structure of the Hessian.

(A3) Our local convergence analysis (Thm. 4) concerns the challenging case when the local minima
are ‘flat’, meaning that the Hessian is positive semi-definite with some zero eigenvalues, and
that they are accumulated. One simple objective function f that satisfies A3 is a quadratic
that only depends on a few coordinates upon a linear transformation. Consider the low rank
quadratic example, f(θ) = 2−1θTAθ, where matrix A is symmetric PSD and has rank k.
And our assumption A3 generalizes such simple examples: we allow the range of the Hessian
of the objective to be non-constant, and we only require a mild curvature condition (µ-PL) at
the local minimum. We list some common assumptions to incorporate degenerate Hessian.
Three commonly used such assumptions are Polyak-Lojasiewicz (PL), error bound (EB), and
quadratic growth (QG). We briefly recall the three definitions below:

µ-PL near θ∗ : f(θ)− f(θ∗) ≤ µ∥∇f(θ)∥2; (6)

µ-EB near θ∗ : dist(θ, S(θ∗)) ≤ ∥∇f(θ)∥;

µ-QG near θ∗ : f(θ)− f(θ∗) ≥
µ

2
dist(θ, S(θ∗))2.

Rebjock and Boumal [27] showed that the three conditions above are ‘essentially equivalent’
if the objective f is C2. Here, ‘essentially’ means that the constant and the neighborhood can
degrade when one deduces one condition from another.

10
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Appendix C. Preliminary lemmas

The following classical lemma is useful for deriving iteration complexity and global convergence
guarantees.

Lemma 8 Let (an)n≥0 and (bn)n≥0 be sequences of non-negative real numbers such that
∑∞

n=0 anbn <
∞. Then the following hold.

(i) min
1≤k≤n

bk ≤
∑∞

k=0 akbk∑n
k=0 ak

= O

( n∑
k=0

ak

)−1.

(ii) Further assume
∑∞

n=0 an =∞ and |bn+1 − bn| = O(an). Then limn→∞ bn = 0.

Proof (i) follows from noting that(
n∑

k=1

ak

)
min

1≤k≤n
bk ≤

n∑
k=1

akbk ≤
∞∑
k=1

akbk <∞. (7)

The proof of (ii) is omitted and can be found in [18, Lem. A.5].

If the function f exhibits lower rank Hessian near a local minimum, and the number of piv-
oting columns, k, used in the RPC process exceeds the actual rank, then the lower rank Hessian
approximation is exact. This is helpful for establishing the superlinear convergence in Theorem 4.

Lemma 9 For any symmetric A ≽ 0, if the rank of A is at most k ≤ N , then after k loops of RPC
factorization the output F satisfies FFT = A.

Proof This is a direct consequence of [6, Lem. 3.4].

Theorem 10 (Error bound for RPC; Thm. 5.1 in [6]) Let A be a positive semi-definite matrix.
Fix r ∈ N and ε > 0. The column Nyström approximation Â(k) produced by k steps of RPC (Alg. 2)
attains the bound

E
[
tr(A− Â(k))

]
≤ (1 + ε) · tr(A− JAKr),

provided that the number k of sampled columns satisfies

k ≥ r

ε
+min

{
r log

(
1

εη

)
, r + r log+

(
2r

ε

)}
.

The relative error η is defined by η := tr(A−JAKr)
tr(A) . log+(x) := max{log x, 0} for x > 0, and the

logarithm has base e.

11



A RANDOMIZED QUASI-NEWTON METHOD

Appendix D. Global convergence analysis for general preconditioned GD

First let’s show that the smallest eigenvalue of Bn is lower bounded by a linear factor of the parameter
difference rn := ∥θn+1 − θn∥.

Lemma 11 For any n ≥ 0, let θn be the current iterate and θn+1 = θn −B−1n ∇f(θn) be the next
iterate found by (1), with Bn ≽

√
CLH∥∇f(θn)∥ for some C > 1/3. Then almost surely

λmin(Bn) ≥ CLHrn. (8)

Proof By the requirements on Bn, λmin(Bn) ≥
√
CLH∥∇f(θn)∥. Thus

rn = ∥θn+1 − θn∥ = ∥B−1n ∇f(θn)∥

≤ 1

λmin(Bn)
∥∇f(θn)∥

≤ 1

λmin(Bn)

λmin(Bn)
2

CLH
.

Rearrange we get λmin(Bn) ≥ CLHrn.

To the end of showing the global convergence, below we prove a lower bound for per-iteration
improvement in objective value.

Lemma 12 Suppose A1 holds. For any n ≥ 0, let θn be the current iterate and θn+1 = θn −
B−1n ∇f(θn) be the next iterate generated by (1), with λmin(Bn) ≥ min{L,

√
CLH∥∇f(θn)∥}

and Bn ≽ ∇2f(θn) for some C > 1/3. Then almost surely

f(θn)− f(θn+1) ≥ A ⟨Bn(θn+1 − θn),θn+1 − θn⟩ , (9)

where A = 1
2 −

1
6C > 0

Proof First consider the easier case where min{L,
√
CLH∥∇f(θn)∥} = L. Then we can use the

first order Taylor expansion and the update rule θn+1 = θn − B−1n ∇f(θn) to lower bound the
per-iteration progress by

f(θn)− f(θn+1)

≥ −⟨∇f(θn),θn+1 − θn⟩ −
L

2
r2n

= ⟨Bn(θn+1 − θn),θn+1 − θn⟩ −
L

2
r2n

=
1

2
⟨Bn(θn+1 − θn),θn+1 − θn⟩+

1

2
⟨Bn(θn+1 − θn),θn+1 − θn⟩ −

L

2
r2n

≥ 1

2
⟨Bn(θn+1 − θn),θn+1 − θn⟩ , (10)

where the last line follows from the assumption that λmin(Bn) ≥ L. Next consider the other
case where min{L,

√
CLH∥∇f(θn)∥} =

√
CLH∥∇f(θn)∥. Then by a second order Taylor’s

expansion (see [19] for a detailed derivation), we have

f(θn)− f(θn+1)

≥ −⟨∇f(θn),θn+1 − θn⟩ −
1

2

〈
∇2f(θn)(θn+1 − θn),θn+1 − θn

〉
− LH

6
r3n.

12
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By the update rule θn+1 = θn −B−1n ∇f(θn), we can write −∇f(θn) = Bn(θn+1 − θn), thus

f(θn)− f(θn+1)

= ⟨Bn(θn+1 − θn),θn+1 − θn⟩ −
1

2

〈
∇2f(θn)(θn+1 − θn),θn+1 − θn

〉
− LH

6
r3n

=
1

2
⟨Bn(θn+1 − θn),θn+1 − θn⟩+

1

2

〈
(Bn −∇2f(θn))(θn+1 − θn),θn+1 − θn

〉
− LH

6
r3n

≥ 1

2
⟨Bn(θn+1 − θn),θn+1 − θn⟩ −

LH

6
r3n,

where the last line follows from the assumption that Bn ≽ ∇2f(θn). Continuing the computation
we have

f(θn)− f(θn+1)

≥ 1

2
⟨Bn(θn+1 − θn),θn+1 − θn⟩ −

1

6
r3n

= (
1

2
− 1

6C
) ⟨Bn(θn+1 − θn),θn+1 − θn⟩+

1

6C
⟨Bn(θn+1 − θn),θn+1 − θn⟩ −

1

6
r3n

≥ (
1

2
− 1

6C
) ⟨Bn(θn+1 − θn),θn+1 − θn⟩ , (11)

where the last line is a consequence of (8). Indeed, by (8), λmin(Bn) ≥ CLHrn, thus

1

6C
⟨Bn(θn+1 − θn),θn+1 − θn⟩ ≥

1

6C
λmin(Bn)r

2
n ≥

LH

6
r3n.

Since C > 1
3 , 0 < 1

2 −
1
6C < 1

2 . Thus, combining the results of two cases (10) and (11), we can
conclude (9).

Proof [of Thm. 1] Denote A = 1
2 −

LH
6C > 0, by (9)

f(θk)− f(θk+1) ≥ A ⟨Bn(θk+1 − θk),θk+1 − θk⟩
= A

〈
∇f(θk),B

−1
k ∇f(θk)

〉
≥ A∥∇f(θk)∥2

∥Bk∥
.

Sum them up from k = 0 to n− 1 we have

n−1∑
k=0

A∥∇f(θk)∥2∥Bk∥−1 ≤ f(θ0)− f(θn) ≤ f(θ0)− inf f. (12)

Thus

min
0≤k≤n−1

∥∇f(θk)∥2
n−1∑
k=0

∥Bk∥−1 ≤
f(θ0)− inf f

A
.

13
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That is

min
0≤k≤n−1

∥∇f(θk)∥ ≤

(
(f(θ0)− inf f)

A
∑n−1

k=0 ∥Bk∥−1

)1/2

. (13)

To show that asymptotically the gradient norm converges to zero, we first take n to infinity in (12)
and get

∞∑
k=0

A∥∇f(θk)∥2∥Bk∥−1 ≤ f(θ0)− inf f <∞.

Let ak = A∥Bk∥−1, and bk = ∥∇f(θk)∥2. Since A > 0 and ∥Bk∥ is uniformly bounded from
above, there is c > 0 so that ak = A∥Bk∥−1 ≥ c for all k. Thus,

∑∞
k=0 ak = ∞. Then by the

second part of the Lemma 8, the asymptotic convergence of ∥∇f(θn)∥ to zero would follow from
∥∇f(θn)∥ = O(1). Indeed, as a result of (9), we have θ0 ≥ θ1 ≥ ... ≥ θn, thus the sequence of
iterates generated by our algorithm (θn)

∞
n=0 ⊂ {θ : f(θ) ≤ f(θ0)}. Since f is bounded from below,

the sublevel set {θ : f(θ) ≤ f(θ0)} is compact, then ∥∇f(θn)∥ is uniformly bounded for all n ≥ 0.

Remark 13 In standard GD, the preconditioning matrix Bk = 1
LI for all k ≥ 0, in which case we

have 1∑n−1
k=0 ∥Bk∥−1

= L
n . So applying our general result (13) to standard GD gives the rate

min
0≤k≤n−1

∥∇f(θk)∥ = O

(√
L(f(θ0)− inf f)

n

)
,

which recovers exactly the rate of global convergence of GD for non-convex objective function.
In particular, in the course of our algorithm RLQN, ∥Bn∥ ≤ 3L from the construction of Alg. 1
and Alg. 3. Thus the global convergence rate RLQN for a nonconvex function matches that of
GD. And heuristically ∥Bk∥ ≈ ∥∇2f(θk)∥ should be in general much smaller than L, the uniform
upper-bound of the spectrum norm of the Hessian. So it is likely that in general 1∑n−1

k=0 ∥Bk∥−1
would

be significantly smaller than L
n .

Appendix E. Proof of local linear convergence with improved rate

In this section, we prove Theorems 2, 4, and Corollary 3. Throughout this section, we use the
following notations:

• An := FnF
T
n : random Cholesky factorization of the LM-regularized Hessian∇2f(θn) + τnIN ;

• En := ∇2f(θn) + τnI−An: the error matrix between the input and output of the RPC factoriza-
tion;

• Bn := An + δnIN : the the final preconditioning matrix of the gradient at step n.

Lemma 14 (Local contraction lemma) Suppose A1 holds. and θn is sufficiently close to a local
minimizer θ∗ of f , then almost surely,

∥θn+1 − θ∗∥ ≤
(
1− µ− LH∥θn − θ∗∥

δn + µ

)
∥θn − θ∗∥. (14)

14
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Above lemma is the key ingredient for local convergence. It states that when θn is sufficiently close
to θ∗, the parameter estimation error contracts at rate ∼ 1− µ

δn+µ , which does not depend on the
smoothness parameter L.
Proof Since θn is sufficiently close to θ∗,∇2f(θn) is PSD. We can then write∇2f(θn) = An+En.
Since Bn = An + δnI, we can write Bn = ∇2f(θn) − En + δnI. Then we have the following
update:

θn+1 − θ∗ = θn − θ∗ −B−1n ∇f(θn)

= B−1n Bn(θn − θ∗)−B−1n

∫ 1

0
∇2f(θ∗ + t(θn − θ∗)) dt(θn − θ∗)

= B−1n

(
∇2f(θn)−En + δnI

)
(θn − θ∗)

−B−1n

∫ 1

0
∇2f(θ∗ + t(θn − θ∗)) dt(θn − θ∗)

= B−1n (δnI−En)(θn − θ∗)

−B−1n

∫ 1

0
∇2f(θn)−∇2f(θ∗ + t(θn − θ∗)) dt(θn − θ∗).

(15)

For the quadratic term we have the 2-norm estimate by the LH -Lipschitz continuity of the Hessian,∥∥∥∥B−1n

∫ 1

0
∇2f(θn)−∇2f(θ∗ + t(θn − θ∗))dt(θn − θ∗)

∥∥∥∥
≤
∥∥∥∥B−1n

∫ 1

0
∇2f(θn)−∇2f(θ∗ + t(θn − θ∗)) dt

∥∥∥∥
op

∥θn − θ∗∥

≤ LH

2δn
∥θn − θ∗∥2

≤ LH

µ+ δn
∥θn − θ∗∥2,

where the last line follows from the µ ≤ ∥En∥op, to see this pick any unit vector v in the orthogonal
complement of span(An), then

µ ≤
〈
v,∇2f(θn)v

〉
= ⟨v,Anv⟩+ ⟨v,Env⟩ = 0 + ⟨v,Env⟩ ≤ ∥En∥op.

For the linear part we have

∥B−1n (δnI−En)(θn − θ∗)∥

= ∥
(
∇2f(θn) + δnI−En

)−1
(δnI−En)(θn − θ∗)∥

≤ ∥
(
∇2f(θn) + δnI−En

)−1
(µI+ δnI−En)∥op · ∥ (µI+ δnI−En)

−1 (δnI−En)(θn − θ∗)∥.

Notice that ∥
(
∇2f(θn) + δnI−En

)−1
(µI+ δnI−En)∥op ≤ 1. To see this, let X be positive

definite and Y be positive semidefinite, then

∥(X+Y)−1X∥op = ∥
(
X(I+X−1Y)

)−1
X∥op

= ∥
(
I+X−1Y

)−1
X−1X∥op

= ∥
(
I+X−1Y

)−1∥op
= ∥
(
I+X−1Y

)
∥−1op ≤ 1,

15
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where the last inequality follows from the fact that X−1Y ≽ 0. Then by taking X = µI+ δnI−En

and Y = ∇2f(θn)− µI, we arrive at the claim

∥
(
∇2f(θn) + δnI−En

)−1
(µI+ δnI−En)∥op ≤ 1.

Now let v be any unit eigenvector of En with eigenvalue ν ≥ 0, then v is also an eigenvector of
δnI−En and ((µ+ δn)I−En)

−1 with eigenvalues δn − ν and (µ+ δn − ν)−1. Therefore

∥ ((µ+ δn)I−En)
−1 (δnI−En)v∥ =

δn − ν

µ+ δn − ν
≤ δn

µ+ δn
,

where the last inequality follows from δn ≥ tr(En) ≥ ∥En∥op ≥ ν (recall that En is PSD).
Combining the results above, we have

∥θn+1 − θ∗∥

≤ ∥B−1n (δnI−En)(θn − θ∗)∥+
∥∥∥∥B−1n

∫ 1

0
∇2f(θn)−∇2f(θ∗ + t(θn − θ∗)) dt

∥∥∥∥
op

∥θn − θ∗∥

≤ δn
δn + µ

∥(θn − θ∗)∥+
LH

µ+ δn
∥θn − θ∗∥2

=

(
1− µ− LH∥θn − θ∗∥

δn + µ

)
∥θn − θ∗∥.

This shows the assertion.

Now we show Theorem 2.
Proof [Proof of Theorem 2] For each n ≥ 0, letFn denote the σ-algebra generated by all randomness
up to step n of the algorithm. Let U denote the open ball centered at θ∗ in A2. Suppose that θ0 ∈ U
and ∥θ0 − θ∗∥ ≤ µ/(2LH). Then by Lemma 14, it holds that ∥θn+1 − θ∗∥ ≤ ∥θn − θ∗∥ almost
surely. Thus, provided that θ0 is sufficiently close to θ∗, we have∇2f(θn) is PSD for all n ≥ 0, and
thus En = ∇2f(θn) −An for all n. Since all θn’s are sufficiently close to θ∗, the regularization
δn = tr(En) from the constructions of Alg.1 and Alg.2.

By Theorem 10, for our choice of k, at any n ≥ 0,

E
[
tr(∇2f(θn)−An) | Fn−1

]
≤ (1 + ε0)

(
tr
(
∇2f(θn)− J∇2f(θn)Kr

))
,

where the expectation in taken over the random choice of pivots in RPC algorithm at time step n. For
any t > 0, we say step n is a ‘t-good step’ if

tr(∇2f(θn)−An) ≤ (1 + t)(1 + ε0)
(
tr
(
∇2f(θn)− J∇2f(θn)Kr

))
.

And by Markov’s inequality,

P
{

tr(∇2f(θn)−An) ≥ (1 + ε0)(1 + t)
(
tr
(
∇2f(θn)− J∇2f(θn)Kr

))
| Fn−1

}
≤ 1

1 + t
.

Therefore at step n, conditional on Fn−1, with probability at least t
1+t the step n is a t-good step,

and on this event, we have

δn = tr(∇2f(θn)−An)

≤ (1 + ε0)(1 + t) tr
(
∇2f(θn)− J∇2f(θn)Kr

)
≤ (1 + ε0)(1 + t)ρL,
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where the first inequality uses the hypothesis A2 that ∇2f(θ) is PSD near θ∗ and the last inequality
uses A2 and that θn ∈ U . Then with probability at least t

1+t , noting that ∥θn − θ∗∥ ≤ µ/(2LH), by
Lemma 14,

∥θn+1 − θ∗∥ ≤
(
1− µ− LH∥θn − θ∗∥

δn + µ

)
∥θn − θ∗∥

≤
(
1− µ/2

µ+ (1 + ε0)(1 + t)ρL

)
∥θn − θ∗∥.

(16)

Taking conditional expectation with respect to the filtration Fn consisting of all randomness up to
step n, we get

E[∥θn+1 − θ∗∥ |Fn] ≤
t

1 + t

(
1− µ/2

µ+ (1 + ε0)(1 + t)ρL

)
∥θn − θ∗∥+

1

1 + t
∥θn − θ∗∥

=

(
t

1 + t

µ/2 + (1 + ε0)(1 + t)ρL

µ+ (1 + ε0)(1 + t)ρL
+

1

1 + t

)
∥θn − θ∗∥.

By taking the total expectation and recursively using the resulting inequality, we get

E[∥θn − θ∗∥] ≤
(

t

1 + t

µ/2 + (1 + ε0)(1 + t)ρL

µ+ (1 + ε0)(1 + t)ρL
+

1

1 + t

)n

∥θ0 − θ∗∥.

We can optimize the contraction factor by minimizing over t > 0. Temporarily we denote u = µ/2,
and c = (1 + ε0)ρL, then we wish to find

min
t>0

ct2 + (2c+ u)t+ 2u+ c

ct2 + (2c+ 2u)t+ 2u+ c
.

Denote g(t) = ct2 + (2c+ u)t+ 2u+ c, then we wish to find

min
t>0

g(t)

g(t) + ut
. (17)

Take derivative we get

g′(t)(g(t) + ut)− g(t)(g′(t) + u)

(g(t) + ut)2
=

g′(t)ut− u

(g(t) + ut)2
=

cut2 − (2u+ c)u

(g(t) + ut)2
.

So the contraction factor achieves it minimum in t > 0 at

t =

√
2u+ c

c
≈ 1,

because c = (1 + ε0)ρL ≥ tr(En)≫ µ = 2u.
Take t = 1 in (17) we have

min
t>0

g(t)

g(t) + ut
≤ 3u+ 4c

4u+ 4c

= 1− 2u

8u+ 8c

= 1− µ

4µ+ 8(1 + ε0)ρL
.

17
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So we have in expectation

E[∥θn − θ∗∥] ≤
(
1− µ

4µ+ 8(1 + ε0)ρL

)n

∥θ0 − θ∗∥.

If we let M be the smallest integer that(
1− µ

4µ+ 8(1 + ε0)ρL

)M

≤ 1

2
,

then we have for all ℓ ≥ 1

E∥θℓM − θ∗∥ ≤
1

2ℓ
∥θ0 − θ∗∥.

And by Markov’s inequality we have

P
(
∥θℓM − θ∗∥ ≥

1

2
∥θ0 − θ∗∥

)
≤ 1

2ℓ−1
,

which is summable, which by Borel-Cantelli tells us that with probability 1, ∥θn−θ∗∥ ≤ 1
2∥θ0−θ∗∥

for some almost surely finite n. Recursively applying this, we deduce that θn → θ∗ almost surely.

Proof [Proof of Corollary 3] In (16) take t = 1, we have with probability at least 1
2 , at step i ≥ 1

∥θi − θ∗∥ ≤
(
1− 1

2

µ

µ+ 2(1 + ε0)ρL

)
∥θi−1 − θ∗∥. (18)

Let us call such a step good step. Let Xi denote the random variable with Xi = 0 if step i is good,
and Xi = 1 if the step is bad. Then Sn = X1 + ... + Xn counts the number of bad steps upto
iteration n. Denote

pi = E[Xi|Fi−1] ≤
1

2
almost surely,

the expected value of Xi provided all the information of previous choices of pivots in random
factorization. Let Mn = Sn − p1 − ...− pn be the centered random variable of Sn. We claim Mn is
a martingale. Indeed

E[Mn|Fn−1] = E[Mn−1 +Xn − pn|Fn−1]

= Mn−1 − pn + E[Xn|Fn−1]

= Mn−1 − pn + pn = Mn−1,

where the second line follows from the fact that Mn−1 and pn are measurable with respect to Fn−1,
and the last line follows from the definition of pn. Also notice that Mn has bounded increment

|Mn −Mn−1| = |Xn − pn| ≤ 1.

So by Azuma-Hoeffding Inequality for any α > 0,

P (Mn ≥ α) ≤ exp

(
−α2

2n

)

18
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Since pi ≤ 1
2 for all i, in particular take α = n/10 we have

P
(
Sn ≥

n

10
+

n

2

)
≤ P

(
Sn ≥

n

10
+ p1 + ...+ pn

)
= P

(
Mn ≥

n

10

)
≤ exp

(
− n

200

)
So with probability at most exp (−n/200) , the number of bad steps upto iteration n is at most 3n

5 .
Or equivalently, with probability at least 1− exp (−n/200) , the number of good steps is more than
2n
5 . Fix a constant 0 < β < 1, for any integer K > 1 let MK denote the number of good steps

needed to shrink the parameter distance from βK−1∥θ0 − θ∗∥ to βK∥θ0 − θ∗∥. Setting(
1− 1

2

µ

µ+ 2(1 + ε0)ρL

)M1

= β,

we get

M1 ≤ 2| log β|µ+ 2(1 + ε0)ρL

µ
+ 1.

After that the shrinkage rate of each good step becomes

1− µ− βµ/2

µ+ 2(1 + ε0)ρL
= 1−

(
1− β

2

)
µ

µ+ 2(1 + ε0)ρL
.

Then we have

M2 ≤
(
1− β

2

)−1
| log β|µ+ 2(1 + ε0)ρL

µ
+ 1.

And in general we have

MK ≤
(
1− βK−1

2

)−1
| log β|µ+ 2(1 + ε0)ρL

µ
+ 1.

Therefore to shrink the parameter distance to βK∥θ0−θ∗∥ ≤ ε∥θ0−θ∗∥, the number of good steps
needed is bounded by

K∑
k=1

MK = K + | log β|µ+ 2(1 + ε0)ρL

µ

K∑
k=1

(
1− βK−1

2

)−1

≤ K + | log β|µ+ 2(1 + ε0)ρL

µ

K∑
k=1

(
1 +

∞∑
m=1

(
βK−1

2

)m
)

≤ K + | log β|µ+ 2(1 + ε0)ρL

µ

K∑
k=1

(
1 + βK−1)

= K + | log β|
(
K +

1− βK

1− β

)
µ+ 2(1 + ε0)ρL

µ

= K +

(
| log βK |+ | log β|1− βK

1− β

)
µ+ 2(1 + ε0)ρL

µ

≤ | log ε|
| log β|

+

(
| log ε|+ | log β|

1− β

)
µ+ 2(1 + ε0)ρL

µ
=: Mε.
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Provided ε is small, there is an appropriate β ∈ (0, 1) so that

Mε ≤ 2(log ε−1)
µ+ 2(1 + ε0)ρL

µ
.

Therefore with probability at least

1− exp

(
−(log ε−1) (µ+ 2(1 + ε0)ρL)

40µ

)
,

we have for n = 5
2Mε = 5(log ε−1) (µ+ 2(1 + ε0)ρL) /µ

∥θn − θ∗∥ ≤ ε∥θ0 − θ∗∥.

Appendix F. Proof of local superlinear convergence

In this section, we prove Theorem 4. Throughout this section, we assume A1 holds and θ∗ will
denote a local minimizer of f satisfying A3 and let S := S(θ∗) as in A3. U will denote the open
ball centered at θ∗ in A3. Unless otherwise mentioned, we will assume θ0 ∈ U and is sufficiently
close to θ∗.

Lemma 15 Assume f and a minimum θ∗ satisfy A3, then for any θn ∈ U sufficiently close to θ∗,
there is θn,∗ ∈ S ∩ U so that

i θn,∗ is the most efficient reference local minimum to θn in the sense that

θn − θn,∗ = Pn(θn − θn,∗), (19)

where the operator Pn is defined by

Pn := the projection operator onto the range of∇2f(θn,∗), (20)

(See Figure 3 for illustration.)

ii For any v ∈ Range(∇2f(θn,∗)),
〈
v,∇2f(θn,∗)v

〉
≥ µ∥v∥2, where µ is the PL constant in A3.
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Figure 3: Example of flat local minimum θ∗. Contour represents the level curve of the objective.

Proof By Lemma 1.4, 1.5 and Corollary 2.7 of [27], our hypothesis A3 implies that
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(a) The set projS∩U (θn) := argminθ′
∗∈S∩U ∥θn − θ′∗∥ is not empty.

(b) For any θ′∗ ∈ projS∩U (θn), θn − θn,∗ ∈ (Tθn,∗S)
⊥, where Tθn,∗S is the tangent space of S at

θn,∗.

(c) Ker(∇2f(θn,∗)) = Tθn,∗S, and for any v ∈ Range(∇2f(θn,∗)),
〈
v,∇2f(θn,∗)v

〉
≥ µ∥v∥2.

Thus we can fix one such θ′∗ ∈ projS∩U (θn) and call it θn,∗. Then by point (b) and (c),

θn − θn,∗ ∈ (Tθn,∗S)
⊥ = Ker(∇2f(θn,∗))

⊥ = Range(∇2f(θn,∗)),

which translates to our first assertion, θn − θn,∗ = Pn(θn − θn,∗). And the second part of point (c)
is exactly the second assertion.

One difficulty of the local convergence analysis comes from the fact that the gradient at θn does
not lie in the range of the Hessian at the local minimum θ∗. We overcome this by choosing a proper
reference local minimum θn,∗ given by lemma 15,∇f(θn) ’almost’ lie in the range of ∇2f(θn,∗),
where the exact meaning of ’almost’ is spelled in the lemma 16 below.

Lemma 16 Suppose A1 holds. Let θn be close enough to θ∗ satisfying A3. Let θn,∗ and Pn be as
before (see (19)), and let Qn be the projection operator onto Ker(∇2f(θn,∗)). Then

∥Pn∇f(θn)∥ ≥ µ∥θn − θn,∗∥ −
LH

2
∥θn − θn,∗∥2, (21)

∥Qn∇f(θn)∥ ≤
LH

2
∥θn − θn,∗∥2. (22)

In particular if µ∥θn − θn,∗∥ ≥ LH
2 ∥θn − θn,∗∥2, then we have

∥Qn∇f(θn)∥ ≤
LH

2

(
µ− LH

2
∥θn − θn,∗∥

)−2
∥Pn∇f(θn)∥2, (23)

∥B−1n ∇f(θn)∥ ≤
(
1− LH∥θn − θn,∗∥

δn

)−1( 1

µ+ δn
+

Cn∥Pn(∇f(θn))∥
δn

)
∥Pn(∇f(θn))∥,

(24)

where Cn = LH
2

(
µ− LH

2 ∥θn − θn,∗∥
)−2

.

Proof By Taylor’s theorem,

∇f(θn) = ∇f(θn)−∇f(θn,∗) =

∫ 1

0
∇2f(θn,∗ + t(θn − θn,∗))dt (θn − θn,∗).

Denote

R(n, t) := ∇2f(θn,∗ + t(θn − θn,∗))−∇2f(θn,∗).
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Its operator norm has bound as ∥R(n, t)∥op ≤ tLH∥θn − θn,∗∥ by Lipschitz-continuity of the
Hessian. Then we have

Pn∇f(θn) = Pn∇2f(θn,∗)(θn − θn,∗) +Pn

∫ 1

0
R(n, t)dt (θn − θn,∗)

= ∇2f(θn,∗)Pn(θn − θn,∗) +Pn

∫ 1

0
R(n, t)dt (θn − θn,∗)

= ∇2f(θn,∗)(θn − θn,∗) +Pn

∫ 1

0
R(n, t)dt (θn − θn,∗)

where the last line holds from the first part of Lemma 15, and the previous line holds because
∇2f(θn,∗) and Pn commutes since they share the same frame of orthogonal eigenvectors. Now
apply the norm on both sides and use the second part of Lemma 15, we get the estimate

∥Pn∇f(θn)∥ ≥ µ∥θn − θn,∗∥ −
LH

2
∥θn − θn,∗∥2. (25)

Similarly we have

∥Qn∇f(θn)∥ =
∥∥∥∥∇2f(θn,∗)Qn(θn − θn,∗) +Qn

∫ 1

0
R(n, t)dt (θn − θn,∗)

∥∥∥∥
=

∥∥∥∥Qn

∫ 1

0
R(n, t)dt (θn − θn,∗)∥

∥∥∥∥
≤ LH

2
∥θn − θn,∗∥2

(26)

where the second line follows because Range(Qn) = Ker(∇2f(θn,∗)). Since µ∥θn − θ′∗∥ ≥
LH
2 ∥θn − θ′∗∥2, squaring both sides of (25) we have

∥Pn∇f(θn)∥2 ≥ ∥θn − θn,∗∥2
(
µ− LH

2
∥θn − θn,∗∥

)2

.

Plug this into (26) we have

∥Qn∇f(θn)∥ ≤
LH

2

(
µ− LH

2
∥θn − θn,∗∥

)−2
∥Pn∇f(θn)∥2,

Another difficulty of the local convergence analysis comes from the fact that when θn close to
some θ∗ satisfying assumption A3, the preconditioning matrix Bn is very ill-conditioned. This is
because under the assumption A3, the RPC factorization of the Hessian∇2f(θn) is exact by lemma
9. Therefore, if θn is close to θ∗, ∥∇f(θn)∥ is close to zero, so λmin(Bn) = δn =

√
LH∥∇f(θn)∥

can be arbitrarily small.
In the next lemma, we show that despite λmin(Bn) approaching zero, the size of ∥B−1n ∇f(θn)∥

is well controlled thanks to the special geometrical alignment of∇f(θn) shown in lemma 16.
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Lemma 17 Suppose A1 holds. Let θn be sufficiently close to θ∗ satisfying A3. Define βn to be the
number so that ∥B−1n ∇f(θn)∥ = βn∥Pn∇f(θn)∥, then

βn ≤ 2

(
1

µ
+

2
√
LH∥Pn(∇f(θn))∥

µ2

)
. (27)

In particular, βn = O(µ−1) is uniformly bounded.

Proof Let θn,∗ be the reference local minimum found by lemma 15. As in lemma 16, we denote

R(n, t) := ∇2f(θn,∗ + t(θn − θn,∗))−∇2f(θn,∗).

Recall now Bn = ∇2f(θn) + δnI due to the exact factorization, we can write

B−1n ∇f(θn)

=
(
∇2f(θn,∗) + δnI−R(n, 1)

)−1
(Pn∇f(θn) +Qn∇f(θn))

=
(
I−

(
∇2f(θn,∗) + δnI

)−1
R(n, 1)

)−1 (
∇2f(θn,∗) + δnI

)−1
(Pn∇f(θn) +Qn∇f(θn))

=
(
I−

(
∇2f(θn,∗) + δnI

)−1
R(n, 1)

)−1 (
∇2f(θn,∗) + δnI

)−1
Pn∇f(θn)

+
(
I−

(
∇2f(θn,∗) + δnI

)−1
R(n, 1)

)−1 (
∇2f(θn,∗) + δnI

)−1
Qn∇f(θn)

(28)

Now we bound the different parts of (28) individually. First part we have∥∥∥∥(I− (∇2f(θn,∗) + δnI
)−1

R(n, 1)
)−1∥∥∥∥

op

≤
(
1− ∥R(n, 1)∥op

δn

)−1
≤
(
1− LH∥θn − θn,∗∥

δn

)−1
.

By A3, θn,∗ is µ-PL, that is ∥∇f(θn)∥2 ≥ 2µ(f(θn)− f(θn,∗)). By [24], θn,∗ is also µ-QG, that
is f(θn)− f(θn,∗) ≥ µ

2∥θn − θn,∗∥2. Combine the two inequalities above we have

∥∇f(θn)∥ ≥ µ∥θn − θn,∗∥.

Recall now the regularization δn =
√

LH∥∇f(θn)∥, in which case we have,

(
1− LH∥θn − θn,∗∥

δn

)−1
=

(
1− LH∥θn − θn,∗∥√

LH∥∇f(θn)∥

)−1
≤

(
1−

√
LH∥θn − θn,∗∥

µ

)−1
.

Since θn is sufficiently close to θ∗, and by the construction of θn,∗ in lemma 15, ∥θn − θn,∗∥ ≤

∥θn − θ∗∥, we may assume
(
1− LH∥θn−θn,∗∥

δn

)−1
≤ 2. Then the first part of (27) has upper bound∥∥∥∥(I− (∇2f(θn,∗) + δnI
)−1

R(n, 1)
)−1∥∥∥∥

op

≤ 2 (29)
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Using lemma 15, the second part of (27) can be easily bounded by

∥(∇2f(θn,∗) + δnI)
−1Pn∇f(θn)∥ ≤

1

µ+ δn
∥Pn∇f(θn)∥ ≤

1

µ
∥Pn∇f(θn)∥. (30)

The third part is the key part that uses the lemma 16, according to which,∥∥∥(∇2f(θn,∗) + δnI
)−1

Qn∇f(θn)
∥∥∥
2
≤ Cn

δn
∥Pn∇f(θn)∥2,

where Cn = LH
2

(
µ− LH

2 ∥θn − θn,∗∥
)−2

. Since θn is sufficiently close to θ∗, we may assume

Cn ≤ 2LH
µ2 , then

Cn

δn
≤ 2LH

µ2

1√
LH∥∇f(θn)∥

≤ 2
√
LH

µ2
√
∥Pn∇f(θn)∥

.

Thus we have ∥∥∥(∇2f(θn,∗) + δnI
)−1

Qn∇f(θn)
∥∥∥
2
≤ 2
√
LH

µ2
∥Pn(∇f(θn))∥3/2. (31)

Then combine (29), (30), and (31) into (27), we have

∥B−1n ∇f(θn)∥ ≤ 2

(
1

µ
+

2
√
LH

µ2

√
∥Pn∇f(θn)∥

)
∥Pn∇f(θn)∥.

Since βn is the number so that ∥B−1n ∇f(θn)∥ = βn∥Pn∇f(θn)∥, then

βn ≤ 2

(
1

µ
+

2
√

LH∥Pn∇f(θn)∥
µ2

)
.

Lemma 18 Under the same assumptions as lemma 17

∥∇f(θn+1)∥ ≤
(
δnβn +

LH

2
β2
n∥Pn∇f(θn)∥)

)
∥Pn∇f(θn)∥. (32)

In particular, for any θn in a small enough neighborhood of θ∗, ∥∇f(θn+1)∥ ≤ c∥∇f(θn)∥ for
some 0 < c < 1.

Proof Recall the next iteration is given by

θn+1 = θn −B−1n ∇f(θn.)
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Then by Taylor’s theorem we can compute gradient at θn+1

∇f(θn+1) = ∇f(θn −B−1n ∇f(θn))

= ∇f(θn)−
∫ 1

0
∇2f(θn − tB−1n ∇f(θn))dt B

−1
n ∇f(θn)

= BnB
−1
n ∇f(θn)−

∫ 1

0
∇2f(θn − tB−1n ∇f(θn))dt B

−1
n ∇f(θn)

= ∇2f(θn)B
−1
n ∇f(θn) + δnB

−1
n ∇f(θn)

−
∫ 1

0
∇2f(θn − tB−1n ∇f(θn))dt B

−1
n ∇f(θn)

= δnB
−1
n ∇f(θn)−

∫ 1

0

[
∇2f(θn)−∇2f(θn − tB−1n ∇f(θn))

]
dt B−1n ∇f(θn).

Apply norm to both sides above we have

∥∇f(θn+1)∥ ≤ δn∥B−1n ∇f(θn)∥+
LH

2
∥B−1n ∇f(θn)∥2. (33)

Plug ∥B−1n ∇f(θn)∥ = βn∥P∇f(θn)∥ into (33) we get

∥∇f(θn+1)∥ ≤
(
δnβn +

LHβ2
n

2
∥P∇f(θn)∥

)
∥P∇f(θn)∥.

And the last assertion follows from the fact that βn is bounded from above by lemma 17 and that as
θn approaches θ∗, δnβn + LHβ2

n
2 ∥P∇f(θn)∥ =

√
LH∥∇f(θn)∥βn + LHβ2

n
2 ∥P∇f(θn)∥ goes to

zero.

Having good one step update, to get a local convergence result, it suffices to know that once one
of the iterate is close enough to θ∗, then we can apply the per-iteration improvement (32) above for
all future iterates. And this is shown to be true using Lyapunov stability from [27].

Definition 19 (Vanishing Steps) An algorithm has Vanishing Steps property on set Θ is there is
an open neighborhood U ⊇ Θ and a continuous function η : RN → [0,∞) so that η|Θ = 0 and if
θn ∈ U , then the next iterate θn+1 satisfies

∥θn+1 − θn∥ ≤ η(θn)

Definition 20 (Bounded Path Length) An algorithm has Bounded Path Length property on set
Θ is there is an open neighborhood U ⊇ Θ and a continuous function γ : RN → [0,∞) so that
γ|Θ = 0 and if consecutive iterates θn, ...,θn+m ∈ U , then

n+m−1∑
i=n

∥θi+1 − θi∥ ≤ γ(θn)

Lemma 21 (Lyapunov stability, Prop. 3.5 in [27]) Suppose the algorithm satisfies definition 19
and 20 at θ∗ ∈ RN . Given a neighborhood U of θ∗, there is a neighborhood V of θ∗ so that once
θn ∈ V , then all θn+i ∈ U for all i ≥ 1.
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Proof [Proof of Theorem 4] First let us show that if one iterate θn is in a sufficiently small
neighborhood of θ∗, then all the future iterates will also stay in that neighborhood. By lemma 18,
there is 0 < c < 1 so that

∥∇f(θn+1)∥ ≤ c∥∇f(θn)∥

provided θn is in a sufficiently small neighborhood of θ∗. Suppose for some θn, ...,θn+m in this
neighborhood, then

n+m−1∑
i=n

∥θi+1 − θi∥ =
n+m−1∑
i=n

∥B−1i ∇f(θi)∥

≤
n+m−1∑
i=n

βic
i−n∥∇f(θn)∥

≤ (max
i≥n

βi)
1

1− c
∥∇f(θn)∥.

Therefore our algorithm satisfies the definition 20 at local min θ∗. And by lemma 21, there is
neighborhood U, V of θ∗ so that θn ∈ V implies θn+i ∈ U for all i ≥ 1. And in neighborhood U
we have per-iteration improvement (32), from which we have

∥∇f(θn+1)∥
∥∇f(θn)∥

≤
(
δnβn +

LHβ2
n

2
∥∇f(θn)∥

)
,

which goes to zero as n→∞. So ∥∇f(θn)∥ converges to 0 superlinearly. More explicitly, we have

∥∇f(θn+1)∥ ≤
(
δnβn∥∇f(θn)∥+

LHβ2
n

2
∥∇f(θn)∥2

)
.

Recall that by lemma 17, β = O(1/µ), and that δn =
√

LH∥∇f(θn)∥. Thus

∥∇f(θn+1)∥ ≤ C∥∇f(θn)∥3/2,

for some C = O(1/µ), where µ is the PL constant of defined in A3.

Remark 22 We note that unlike other recent results giving superlinear convergence rate for classical
quasi-Newton methods [14, 28, 29], our result requires θ0 to be sufficiently close to a local minimizer
θ∗ satisfying A3. This is likely due to the fact that we do not require the objective function to be
strongly convex and that the Hessian of our objective function has many flat directions near θ∗.
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