
Kinetics: Rethinking Test-Time Scaling Laws
Ranajoy Sadhukhan

*
, Zhuoming Chen

*
, Haizhong Zheng, Yang Zhou, Emma Strubell, Beidi Chen

∗

Carnegie Mellon University

Pittsburgh, PA, USA

{rsadhukh,zhuominc,haizhonz,yangzho6,estrubel,beidic}@andrew.cmu.edu

(a) Kinetics Scaling Law (b) Kinetics Sparse Scaling

Figure 1: (a) Pareto Frontier for Qwen3 series on AIME24. Previous test-time scaling laws [3, 64, 76] focus solely on compute
optimality, neglecting the significant bottleneck of memory access in long-sequence generation. This leads to suboptimal
resource utilization. By incorporating memory access, the Kinetics Scaling Law reduces resource demands by up to 3× to achieve
the same accuracy. (b) Inspired by the Kinetics Scaling Law, we show that sparse attention models scale significantly better
than dense models, achieving over 50-point improvements in AIME24 in the low-cost regime and consistently outperforming
dense models in the high-cost regime, in addition to substantial efficiency gains. B200 second represents the amount of work
performed by a single B200 at full utilization for one second.

Abstract
We rethink test-time scaling laws from a practical efficiency per-

spective, revealing that the effectiveness of smaller models is signif-

icantly overestimated. Prior work, grounded in compute-optimality,

overlooks critical memory access bottlenecks introduced by inference-

time strategies (e.g., Best-of-𝑁 , long CoTs). Our holistic analysis,

spanning models from 0.6B to 32B parameters, reveals a new Kinet-
ics Scaling Law that better guides resource allocation by incorpo-

rating both computation and memory access costs. Kinetics Scaling
Law suggests that test-time compute is more effective when used

on models above a threshold than smaller ones. A key reason is

that in TTS, attention, rather than parameter count, emerges as the

dominant cost factor. Motivated by this, we propose a new scaling

∗*
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD 2025 Workshop on Inference Optimization for GenAI, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2025/06

https://doi.org/XXXXXXX.XXXXXXX

paradigm centered on sparse attention, which lowers per-token cost

and enables longer generations and more parallel samples within

the same resource budget. Empirically, we show that sparse atten-

tion models consistently outperform dense counterparts, achieving

over 60 points gains in low-cost regimes and over 5 points gains
in high-cost regimes for problem-solving accuracy on AIME, en-
compassing evaluations on state-of-the-art MoEs.. These results

suggest that sparse attention is essential for realizing the full poten-

tial of test-time scaling because, unlike training, where parameter

scaling saturates, test-time accuracy continues to improve through

increased generation.

CCS Concepts
• Computing methodologies→Machine learning.

Keywords
Large Language Model, Scaling Law, Sparse Attention

ACM Reference Format:
Ranajoy Sadhukhan

*
, Zhuoming Chen

*
, Haizhong Zheng, Yang Zhou, Emma

Strubell, Beidi Chen. 2025. Kinetics: Rethinking Test-Time Scaling Laws. In

Proceedings of Make sure to enter the correct conference title from your rights
confirmation email (KDD 2025Workshop on Inference Optimization for GenAI).
ACM, New York, NY, USA, 20 pages. https://doi.org/XXXXXXX.XXXXXXX

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

1 Introduction
Test-time scaling (TTS) has recently emerged as a powerful strategy

(e.g., Best-of-𝑁 , Long-CoT [75]) for enhancing the reasoning capa-

bilities of large language models (LLMs) [27, 33, 72], particularly in

scenarios where agents interact with complex environments, e.g.,

writing code, browsing the web [57, 81] or reinforcement learning

(RL) with LLMs-in-the-loop [7, 18, 31]. These capabilities, how-

ever, introduce substantial inference-time costs, making it critical

to understand performance scaling in this new paradigm. Existing

scaling law studies [3, 64, 76] primarily focus on floating-point

operations (FLOPs) while ignoring memory access costs, which are

often the dominant factor in determining wall-clock latency in TTS

regimes. As shown in Figure 1a, this gap can lead to sub-optimal

deployment decisions.

In Section 3, we introduce the Kinetics Scaling Law for TTS,

derived from a cost model that explicitly incorporates memory

access costs. This new perspective reveals markedly different con-

clusions about Pareto-optimal strategies for allocating test-time

compute (Figure 1a). Specifically, we find that: (1) prior scaling

laws consistently overestimate the effectiveness of small models

enhanced with inference-time strategies; and (2) computational re-

sources are best spent first on increasing model size - up to a critical

threshold (empirically around 14B parameters) - before investing

in test-time strategies, such as Best-of-𝑁 sampling or Long-CoTs.

Guided by the Kinetics Scaling Law, our approach yields up to

a 3× resource demands reduction to reach the same accuracy on

NVIDIA B200 hardware.

Our roofline analysis across a suite of state-of-the-art reasoning

models reveals that the shift in optimal test-time compute strate-

gies arises because test-time strategies (e.g., Best-of-𝑁 , Long-CoTs)

disproportionately increase attention costs rather than parameter

costs (Figure 2a). Our Iso-cost analysis shows that the quadratic

growth of attention with generation length, combined with the

disproportionate scaling of KV memory relative to model param-

eters, drives a preference for scaling up model size over gener-

ations. This imbalance is further exacerbated by MoE architec-

tures [1, 12, 19, 20, 35, 62], which reduce active parameter count

without alleviating attention overhead.

Building on this analysis, in Section 4 we introduce a new scal-

ing paradigm, centered on sparse attention, which fundamentally

reshapes the scaling law and significantly enhances the scalability

of TTS (Figure 1b). According to our Kinetics Sparse Scaling

Law, computational resources are best allocated to test-time strate-

gies rather than reducing sparsity. As more computing is invested

at test time, higher sparsity becomes increasingly critical to fully

leveraging the benefits of these strategies. Guided by this principle,

it increases problem-solving rates by up to 60 points in the low-

cost regime and over 5 points in the high-cost regime on AIME24

and LiveCodeBench, encompassing evaluations on state-of-the-art

MoEs.through massive generated tokens, which is unaffordable for

dense counterparts.

In Section 5, we demonstrate the practicality of the Kinetics

Sparse Scaling Law using a simple block-sparse attention mech-

anism built on top of paged attention. This approach achieves up

to a 25× wall-clock speedup on H200 GPUs. While sparsity has

traditionally been employed either for regularization in small mod-

els [55, 73] or to reduce computation in over-parameterized net-

works [5, 14, 21, 29, 46, 53], our work introduces a fundamentally

different perspective: sparsity as a central enabler of efficient
and scalable test-time inference. In contrast to pretraining –

where scaling laws often exhibit diminishing returns [32] – TTS

continues to benefit from increased token generation and more opti-

mized inference paths. We hope this study can guide and encourage

future co-design of model architectures, test-time strategies, and

hardware systems to fully unlock the next wave of scaling at de-

ployment.

2 Cost Model and eFLOPs
We propose a cost model that captures both compute and memory

access overhead during inference, focusing on realistic deployment

settings (batch size ≫ 1, model parallelism, and shared prompt

cache). Notation is in Table 1.

Computation and Memory. Following [3], the compute cost com-

bines linear layer operations and self-attention:

𝐶comp = 2𝑃𝐿out + 𝑟 (2𝐿in + 𝐿out)𝐿out𝐷
Memory access includes both parameter loading and KV cache

reads:

𝐶mem = 2𝑃𝐿out + 2𝐿in𝐿out𝐷 + 𝐿2

out
𝐷

In practice, parameter loading is amortized across large batches [16],

so we omit that term and share prompt KV cache across 𝑁 trials.

The final per-task compute and memory cost becomes:

𝐶comp (𝑁) = 2𝑃𝑁𝐿out + 2𝑟𝑁𝐿in𝐿out𝐷 + 𝑟𝑁𝐿2

out
𝐷 (1)

𝐶mem (𝑁) = 2𝐿in𝐿out𝐷 + 𝑁𝐿2

out
𝐷 (2)

eFLOPs. We define eFLOPs (equivalent FLOPs) as a linear combi-

nation of compute and memory cost, scaled by hardware intensity

𝐼 to capture the memory and computational operations under the

same scale:

eFLOPs = 𝐶comp +𝐶mem · 𝐼
Analysis. Our key insight is attention-related cost dom-

inates in long CoTs. We show this by estimating the ratio of

attention-related cost to parameter-related cost Φ.

Φ =
2𝑟𝐿𝑖𝑛𝐷 + (𝑟𝐷 + 𝐼𝐷)𝐿𝑜𝑢𝑡

2𝑃

As shown in Figure 2a, in the regime of long CoTs, where the gen-

eration length exceeds 4096 tokens, the cost of attention surpasses

that of model parameters by a factor of 100 ∼ 1000. MLA [45]

reduces KV memory access by a constant factor (similar to 𝑟 in

GQA), it is insufficient for achieving true scalability due to several

limitations: (1) MLA does not reduce attention computation; (2) the

gap between FLOPs and memory bandwidth is expected to widen

in the future; and (3) emerging fine-grained MoEs [1, 12, 65] dras-
tically reduce FLOPs in linear layers by a factor of 10 ∼ 20×, further
increasing the relative cost of attention.

Under the context of Long-CoTs being widely adopted, we can

safely assume generated length 𝐿𝑜𝑢𝑡 ≫ 𝐿𝑖𝑛 or at least proportional
to 𝐿𝑖𝑛 . Hence, the bottleneck of inference is shifted from linear

term 𝐿𝑜𝑢𝑡𝑃 to the quadratic term 𝐿2

𝑜𝑢𝑡𝐷 , motivating our Kinetics

Scaling Law, akin to kinetic energy: 𝐸𝑘 = 1

2
𝑚𝑣2

.

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

101 102 103 104

Generated Tokens

10 1

100

101

102

At
te

nt
io

n
m

od
el

Long CoTsQwen3-4B
Qwen3-4B Sparse
Qwen3-32B
Qwen3-32B Sparse

(a) Attention Cost Dominates

10 2 10 1 100 101 102

B200 seconds

0
20000
40000
60000
80000

100000
120000

Ge
ne

ra
te

d
To

ke
ns

Qwen3-4B
Qwen3-4B Sparse
Qwen3-32B
Qwen3-32B Sparse

(b) Tokens v.s. Costs

8.58x

+45%

(c) Block top-𝑘 Attention

Figure 2: (a) Inference cost is dominated by attention, which is 100 ∼ 1000×more than model parameter computation, sparse
attention fundamentally mitigates this bottleneck. (b) Under the same resource constraint, sparse attention can generate
massive tokens out of the reach of dense models, which is proven to enhance the effectiveness of test-time scaling. (c) Simple
block sparse attention yields substantial gains—improving accuracy by 45 points in the low-cost regime and achieving equivalent
accuracy while using 8.58× fewer resources.

(a) (b)

(c) (d)

Figure 3: AIME Pareto Frontier (Long-CoTs). We launch evaluations for Qwen3 series models. We control the inference cost in
eFLOPs (ab for our scaling law) or FLOPs (cd for previous scaling law) and measure the accuracy in AIME24. The optimal model
is marked with different colors in (ac). The optimal generation length is in (bd).

More details are in Appendix A.

2.1 Experimental Setup
Experimental Setup. Tasks. we focus on three challenging rea-

soning benchmarks: AIME24 [50], AIME25 [51], math datasets span-

ning algebra, combinatorics, and geometry, and LiveCodeBench [34]
1
,

which includes complex programming problems from recent cod-

ing competitions. Models. We evaluate performance across var-

ious model sizes of the Qwen3 [78] and DeepSeek-R1-Distilled-

Qwen [27, 79] series. Test-time Strategies. To eliminate the con-

founding effects introduced by the specific implementations of test-

time strategies—such as the quality of reward models, we adopt

two representative yet straightforward approaches: Long-CoTs,

a practical and widely used method in state-of-the-art reasoning

models, and the oracle Best-of-𝑁 (repeated sampling [3]), which

1
For LiveCodeBench, we sample 50 problems from the v5 subset (24 hard, 16 medium,

10 easy).

measures the solving rate for verifiable problems and suggests an

upper bound via TTS. Hardware. We use the specifications of

NVIDIA B200 as hardware reference to study the latest serving

scenarios. Experiments details are presented in Appendix D.

3 Rethinking Test-time Scaling Law
we study the scaling behavior of Qwen3 [78]. In the Long CoTs
setting (single trial per question,𝑁𝑇 = 1), we vary generation length

𝑛𝑇 to evaluate performance across cost levels. Results in Figure 3

reveal two key findings of our Kinetics Scaling Law.

• Efficiency of small models is overestimated.As shown in Fig-
ure 3 (a, c), smaller models like 4B and 8B are outperformed by

the 14B model even at low accuracy levels (e.g., below 40%). The

0.6B model appears on the Pareto frontier only when accuracy is

negligible. In contrast to prior scaling laws, which gave smaller

models more prominence, our results show they are often subop-

timal in practice.

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

• CoT lengthmore effective than parameter size only beyond
a critical model scale (empirically, 14B). The Kinetics Scaling
Law shows that, under limited compute, scaling up the model

yields greater benefits than extending CoT length. As seen in Fig-

ure 3 (b, d), only the 14B and 32B models gain from CoTs longer

than 10K tokens. For smaller models (e.g., 1.7B and 4B), switching

to a larger model is more effective when 𝐿out < 5K. This suggests

compute should primarily be allocated to increasing model size,

not generation length (Figure 3 (d)). In contrast, previous scaling

laws assumed longer CoTs consistently improved performance

across all model sizes and only favored model scaling once those

gains plateaued.

More details are in Appendix B.

4 Sparse Test-time Scaling Law
Based on our findings in Section 3, we propose a new scaling para-

digm centered on sparse attention. Sparse attention fundamentally

reshapes the Kinetics Scaling Law in Section 3 and enhances the

scalability of TTS.

Sparse attention significantly enhances problem-solving
performance. As shown in Figures 4a and 4b, compared to dense

baselines, for both of the inference strategies and models of various

sizes, sparse attention models improve problem-solving rates by up

to 60 points in the low-cost regime and over 5 points in the high-cost

regime. From an efficiency perspective, dense models require over

10× more eFLOPs to match the same solving rate. These findings

underscore sparse attention as a key enabler for unlocking the full

benefits of test-time scaling.

(a) Best-of-𝑁 Scaling

11.21x

+47.5%

(b) Long-CoTs Scaling

Figure 4: Sparse Attention Boosts Test-Time Scaling.We show
that sparse attention models significantly improve the cost-
accuracy trade-off under both inference strategies.

Sparse attention becomes increasingly valuable in high-
cost scenarios. We investigate the tradeoff between KV budget 𝐵

and reasoning trials (𝑁). Our analysis reveals a consistent trend:
allocating additional compute toward generating more tokens is

generally more effective than expanding the KV cache. In Best-of-𝑁
frontier, doubling the cost leads to only a 1.18× increase in KV

budget, compared to a 1.74× increase in total generated tokens.

(Figures 20a to 20d)

Sparse attention reshapes the Kinetics Scaling Law. As
shown in Figure 5, applying sparse attention significantly improves

the efficiency of smaller models (0.6B, 1.7B, 4B), allowing them to

re-emerge on the Pareto frontier across a broader range. Sparse

attention reduces attention cost from a quadratic cost term (𝐿2𝐷)

to a linear one (𝐿𝐵𝐷), making it comparable when compared to the

cost of computing with model parameters (𝐿𝑃).

More details are in Appendices C and D.

Long-COT
(Dense)

Best-of-N
(Sparse)

Long-COT
(Sparse)

Figure 5: Compared to the scaling law for the dense models,
small models are more effective with sparse attention. They
occupy more space in the Pareto Frontier.

5 Experimental Validation
Top-𝑘 attention is theoretically appealing but impractical. We adopt

block top-𝑘 attention as a tractable alternative for two reasons: it

exploits temporal locality to retrieve relevant KV blocks [66], and it

integrates efficiently with hardware-friendly paged attention [39].

Each block is scored via averaged key vectors, and importance

scores are shared across heads via GQA. The implementation details

are provided in Appendix D.2. We evaluate task throughput—the

32
B

14
B 8B 4B 1.7

B
0.6

B

Model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Th
ro

ug
hp

ut

2.38x
3.76x

6.49x
8.42x

18.02x

24.98x

Figure 6: Task throughput with block top-𝑘 attention.

number of correct tasks completed per second—as a measure of test-

time efficiency. On 8×H200 GPUs with batch size 4096, block top-𝑘

significantly improves throughput across models. For Qwen3-0.6B,

throughput improves 12.6× to 25× from 16k to 32k tokens (Figure 6).

Sparse attention mitigates dense attention’s inefficiencies, restoring

small model utility under compute constraints.

6 Conclusion and Discussion
This work introduces the Kinetics Scaling Law based on the insight

that attention costs rather than parameter counts are the dominant

factor in TTS. We demonstrate that sparse attention fundamentally

reshapes the scaling landscape, enabling longer generations and sig-

nificantly higher accuracy. We envision the Kinetics Scaling Law as

a foundational tool for guiding end-to-end design across LLM serv-

ing, agent frameworks, and reinforcement learning environments.

Kinetics Sparse Scalingmay signal a new paradigm, enabling contin-

ued progress even beyond pretraining plateaus. While our analysis

centers on NVIDIA GPUs, the underlying principle that scaling

memory bandwidth is more challenging and costly than scaling

FLOPs applies broadly across hardware platforms. Ultimately, this

study highlights the need for co-designing model architectures, test-

time inference techniques, and hardware infrastructure as a critical

step toward enabling the next wave of scalable LLM deployment.

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

References
[1] AI@Meta. 2025. Llama 4 Model Card. (2025). https://github.com/meta-llama/

llama-models/blob/main/models/llama4/MODEL_CARD.md

[2] Daman Arora and Andrea Zanette. [n. d.]. Training language models to reason

efficiently, 2025. URL https://arxiv. org/abs/2502.04463 ([n. d.]).
[3] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christo-

pher Ré, and Azalia Mirhoseini. 2024. Large language monkeys: Scaling inference

compute with repeated sampling. arXiv preprint arXiv:2407.21787 (2024).

[4] Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. 2024. Lo-

coco: Dropping in convolutions for long context compression. arXiv preprint
arXiv:2406.05317 (2024).

[5] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré.

2021. Scatterbrain: Unifying sparse and low-rank attention. Advances in Neural
Information Processing Systems 34 (2021), 17413–17426.

[6] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Lau-

rent Sifre, and John Jumper. 2023. Accelerating large language model decoding

with speculative sampling. arXiv preprint arXiv:2302.01318 (2023).
[7] Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson

Hamburger, Vladlen Koltun, and Philipp Krähenbühl. 2025. Reinforcement Learn-

ing for Long-Horizon Interactive LLM Agents. arXiv preprint arXiv:2502.01600
(2025).

[8] Mouxiang Chen, Binyuan Hui, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Jianling

Sun, Junyang Lin, and Zhongxin Liu. 2025. Parallel Scaling Law for Language

Models. arXiv preprint arXiv:2505.10475 (2025). arXiv:2505.10475 [cs.LG] https:

//arxiv.org/abs/2505.10475

[9] Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas

Nolte, Yuandong Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. 2024. Mag-

icpig: Lsh sampling for efficient llm generation. arXiv preprint arXiv:2410.16179
(2024).

[10] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating

long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019).
[11] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,

Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,

Lukasz Kaiser, et al. 2020. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794 (2020).

[12] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen,

Jiashi Li, Wangding Zeng, Xingkai Yu, YuWu, et al. 2024. Deepseekmoe: Towards

ultimate expert specialization in mixture-of-experts language models. arXiv
preprint arXiv:2401.06066 (2024).

[13] Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Parallelism and

Work Partitioning. CoRR abs/2307.08691 (2023). doi:10.48550/ARXIV.2307.08691

arXiv:2307.08691

[14] Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and

Christopher Ré. 2021. Pixelated Butterfly: Simple and Efficient Sparse Training for

Neural Network Models. In International Conference on Learning Representations
(ICLR). https://arxiv.org/abs/2112.00029

[15] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.

FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.

In Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle

Belgrave, K. Cho, and A. Oh (Eds.).

[16] DeepSeek-AI. 2025. DeepSeek Open Infra Index. (2025). https://github.com/

deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/day_6_one_

more_thing_deepseekV3R1_inference_system_overview.md

[17] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. Gpt3.

int8 (): 8-bit matrix multiplication for transformers at scale. Advances in neural
information processing systems 35 (2022), 30318–30332.

[18] Danny Driess, Minh Nguyen, Fei Xia, et al. 2023. PaLM-E: An embodied multi-

modal language model. arXiv preprint arXiv:2303.03378 (2023).
[19] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin,

Yuanzhong Xu, Dehao Chen, Yonghui Wu, and Jeff Dean. 2021. GLaM: Ef-

ficient Scaling of Language Models with Mixture-of-Experts. arXiv preprint
arXiv:2112.06905 (2021).

[20] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Transformers:

Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. Journal
of Machine Learning Research 23, 1 (2022), 5232–5270.

[21] Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Massive language models can be

accurately pruned in one-shot. In International Conference on Machine Learning.
PMLR, 10323–10337.

[22] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq:

Accurate post-training quantization for generative pre-trained transformers.

arXiv preprint arXiv:2210.17323 (2022).
[23] Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao,

and Hao Zhang. 2024. Efficiently Serving LLM Reasoning Programs with Cer-

taindex. arXiv preprint arXiv:2412.20993 (2024).

[24] AaronGrattafiori, AbhimanyuDubey, Abhinav Jauhri, Abhinav Pandey, Abhishek

Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex

Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
(2024).

[25] Albert Gu and Tri Dao. 2023. Mamba: Linear-Time Sequence Modeling with

Selective State Spaces. CoRR abs/2312.00752 (2023). doi:10.48550/ARXIV.2312.

00752 arXiv:2312.00752

[26] Albert Gu, Karan Goel, and Christopher Ré. 2022. Efficiently Modeling Long

Sequences with Structured State Spaces. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net. https://openreview.net/forum?id=uYLFoz1vlAC

[27] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin

Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:

Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[28] ShiboHao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, ZhitingHu, JasonWeston, and

Yuandong Tian. 2024. Training large language models to reason in a continuous

latent space. arXiv preprint arXiv:2412.06769 (2024).
[29] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.

2021. Sparsity in Deep Learning: Pruning and Growth for Efficient Inference

and Training in Neural Networks. Journal of Machine Learning Research 22, 241

(2021), 1–124.

[30] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney,

Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. 2024. KVQuant: Towards

10 Million Context Length LLM Inference with KV Cache Quantization. In Ad-
vances in Neural Information Processing Systems, A. Globerson, L. Mackey, D. Bel-

grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (Eds.), Vol. 37. Curran Asso-

ciates, Inc., 1270–1303. https://proceedings.neurips.cc/paper_files/paper/2024/

file/028fcbcf85435d39a40c4d61b42c99a4-Paper-Conference.pdf

[31] Wenlong Huang, Fei Fei, and Chelsea Finn. 2022. Language models as zero-shot

planners: Extracting actionable knowledge for embodied agents. arXiv preprint
arXiv:2201.07207 (2022).

[32] Sutskever Ilya. [n. d.]. Ilya Sutskever: “Sequence to sequence learning with neural

networks: what a decade”. https://www.youtube.com/watch?v=1yvBqasHLZs

[33] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,

Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. 2024.

Openai o1 system card. arXiv preprint arXiv:2412.16720 (2024).
[34] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang,

Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. 2024. Live-

CodeBench: Holistic and Contamination Free Evaluation of Large Language

Models for Code. arXiv preprint arXiv:2403.07974 (2024).
[35] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche

Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou

Hanna, Florian Bressand, et al. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088 (2024).

[36] Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and

Azalia Mirhoseini. 2024. Hydragen: High-throughput llm inference with shared

prefixes. arXiv preprint arXiv:2402.05099 (2024).
[37] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.

2020. Transformers are RNNs: Fast Autoregressive Transformers with Linear

Attention. In Proceedings of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine Learn-
ing Research, Vol. 119). PMLR, 5156–5165. http://proceedings.mlr.press/v119/

katharopoulos20a.html

[38] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient

Transformer. In The International Conference on Machine Learning (ICML).
[39] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,

Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient

Memory Management for Large Language Model Serving with PagedAttention.

arXiv:2309.06180 [cs.LG] https://arxiv.org/abs/2309.06180

[40] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast inference from

transformers via speculative decoding. In International Conference on Machine
Learning. PMLR, 19274–19286.

[41] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli,

Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. 2024. SnapKV: LLM

Knows What You are Looking for Before Generation. arXiv:2404.14469 [cs.CL]

https://arxiv.org/abs/2404.14469

[42] Chaofan Lin, Jiaming Tang, Shuo Yang, HanshuoWang, Tian Tang, Boyu Tian, Ion

Stoica, Song Han, and Mingyu Gao. 2025. Twilight: Adaptive Attention Sparsity

with Hierarchical Top-𝑝 Pruning. arXiv preprint arXiv:2502.02770 (2025).
[43] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen

Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. 2024. Awq:

Activation-aware weight quantization for on-device llm compression and accel-

eration. Proceedings of Machine Learning and Systems 6 (2024), 87–100.
[44] Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang

Gan, and Song Han. 2024. Qserve: W4a8kv4 quantization and system co-design

for efficient llm serving. arXiv preprint arXiv:2405.04532 (2024).

https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md
https://arxiv.org/abs/2505.10475
https://arxiv.org/abs/2505.10475
https://arxiv.org/abs/2505.10475
https://doi.org/10.48550/ARXIV.2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2112.00029
https://github.com/deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/day_6_one_more_thing_deepseekV3R1_inference_system_overview.md
https://github.com/deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/day_6_one_more_thing_deepseekV3R1_inference_system_overview.md
https://github.com/deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/day_6_one_more_thing_deepseekV3R1_inference_system_overview.md
https://doi.org/10.48550/ARXIV.2312.00752
https://doi.org/10.48550/ARXIV.2312.00752
https://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=uYLFoz1vlAC
https://proceedings.neurips.cc/paper_files/paper/2024/file/028fcbcf85435d39a40c4d61b42c99a4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/028fcbcf85435d39a40c4d61b42c99a4-Paper-Conference.pdf
https://www.youtube.com/watch?v=1yvBqasHLZs
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

[45] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao,

Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, et al. 2024. Deepseek-

v2: A strong, economical, and efficient mixture-of-experts language model. arXiv
preprint arXiv:2405.04434 (2024).

[46] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshu-

mali Shrivastava, Ce Zhang, Yuandong Tian, Christopher Re, et al. 2023. Deja vu:

Contextual sparsity for efficient llms at inference time. In International Conference
on Machine Learning. PMLR, 22137–22176.

[47] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir

Braverman, Beidi Chen, and Xia Hu. 2024. Kivi: A tuning-free asymmetric 2bit

quantization for kv cache. arXiv preprint arXiv:2402.02750 (2024).
[48] Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei

Zaharia. 2025. Reasoning Models Can Be Effective Without Thinking. arXiv
preprint arXiv:2504.09858 (2025).

[49] Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang.

2025. CoT-Valve: Length-Compressible Chain-of-Thought Tuning. arXiv preprint
arXiv:2502.09601 (2025).

[50] MAA. 2024. American Invitational Mathematics Exami-

nation 2024. https://artofproblemsolving.com/wiki/index.

php/American_Invitational_Mathematics_Examination?srsltid=

AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt

[51] MAA. 2025. American Invitational Mathematics Exami-

nation 2025. https://artofproblemsolving.com/wiki/index.

php/American_Invitational_Mathematics_Examination?srsltid=

AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt

[52] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang,

Zhengxin Zhang, Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi,

et al. 2023. Specinfer: Accelerating generative large language model serving with

tree-based speculative inference and verification. arXiv preprint arXiv:2305.09781
(2023).

[53] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh

Venkatesh, Chong Yu, and Paulius Micikevicius. 2021. Accelerating sparse deep

neural networks. arXiv preprint arXiv:2104.08378 (2021).
[54] Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. 2023. CoTFormer:

A Chain-of-Thought Driven Architecture with Budget-Adaptive Computation

Cost at Inference. arXiv preprint arXiv:2310.10845 (2023).
[55] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. 2017. Variational

Dropout Sparsifies Deep Neural Networks. In Proceedings of the 34th International
Conference on Machine Learning. PMLR, 2498–2507.

[56] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh

Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori

Hashimoto. 2025. s1: Simple test-time scaling. arXiv preprint arXiv:2501.19393
(2025).

[57] Reiichiro Nakano, Jacob Hilton, JeffreyWu, et al. 2021. WebGPT: Browser-assisted

question-answeringwith human feedback. arXiv preprint arXiv:2112.09332 (2021).
[58] Piotr Nawrot, Robert Li, Renjie Huang, Sebastian Ruder, Kelly Marchisio, and

Edoardo M Ponti. 2025. The Sparse Frontier: Sparse Attention Trade-offs in

Transformer LLMs. arXiv preprint arXiv:2504.17768 (2025).
[59] Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang.

2023. Skeleton-of-thought: Prompting llms for efficient parallel generation. arXiv
preprint arXiv:2307.15337 (2023).

[60] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Brad-

bury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. 2023. Efficiently

scaling transformer inference. Proceedings of Machine Learning and Systems 5
(2023), 606–624.

[61] Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai,

Jinyuan Shi, Ian En-Hsu Yen, Avner May, Tianqi Chen, and Beidi Chen. 2024.

Magicdec: Breaking the latency-throughput tradeoff for long context generation

with speculative decoding. arXiv preprint arXiv:2408.11049 (2024).
[62] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,

Geoffrey Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks: The

Sparsely-Gated Mixture-of-Experts Layer. arXiv preprint arXiv:1701.06538 (2017).
[63] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi

Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:

High-throughput generative inference of large language models with a single

gpu. In International Conference on Machine Learning. PMLR, 31094–31116.

[64] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling llm test-

time compute optimally can be more effective than scaling model parameters.

arXiv preprint arXiv:2408.03314 (2024).
[65] Snowflake-Team. 2024. Snowflake Arctic. https://github.com/Snowflake-Labs/

snowflake-arctic. Apache 2.0 License.

[66] Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. 2024.

TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical

Speculative Decoding. arXiv:2404.11912 [cs.CL] https://arxiv.org/abs/2404.11912

[67] Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin,

Mengdi Wang, Peter Bartlett, and Andrea Zanette. 2024. Fast best-of-n decoding

via speculative rejection. arXiv preprint arXiv:2410.20290 (2024).

[68] Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and

Max Ryabinin. 2024. Specexec: Massively parallel speculative decoding for

interactive llm inference on consumer devices. Advances in Neural Information
Processing Systems 37 (2024), 16342–16368.

[69] Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan,

Shibo Hao, Yuandong Tian, Jason Weston, and Xian Li. 2025. LLM Pretraining

with Continuous Concepts. arXiv preprint arXiv:2502.08524 (2025).
[70] Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song

Han. 2024. Quest: Query-aware sparsity for efficient long-context llm inference.

arXiv preprint arXiv:2406.10774 (2024).
[71] NovaSky Team. 2025. Sky-T1: Train your own O1 preview model within $450.

https://novasky-ai.github.io/posts/sky-t1. Accessed: 2025-01-09.

[72] Qwen Team. 2025. QwQ-32B: Embracing the Power of Reinforcement Learning.

https://qwenlm.github.io/blog/qwq-32b/

[73] Robert Tibshirani. 1996. Regression Shrinkage and Selection via the Lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[74] Ajay Tirumala and Raymond Wong. 2024. Nvidia blackwell platform: Advancing

generative ai and accelerated computing. In 2024 IEEE Hot Chips 36 Symposium
(HCS). IEEE Computer Society, 1–33.

[75] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning

in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[76] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. 2024.

Inference scaling laws: An empirical analysis of compute-optimal inference for

problem-solving with language models. arXiv preprint arXiv:2408.00724 (2024).
[77] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike

Lewis. 2024. Efficient Streaming Language Models with Attention Sinks.

arXiv:2309.17453 [cs.CL] https://arxiv.org/abs/2309.17453

[78] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,

Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng

Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong

Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou,

Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao

Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui

Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,

Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su,

Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui,

Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. 2025. Qwen3 Technical Report.

arXiv:2505.09388 [cs.CL] https://arxiv.org/abs/2505.09388

[79] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,

Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang,

Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang

Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,

Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang

Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu,

Zeyu Cui, Zhenru Zhang, and Zihan Qiu. 2024. Qwen2.5 Technical Report. arXiv
preprint arXiv:2412.15115 (2024).

[80] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and

Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with

large language models. Advances in neural information processing systems 36
(2023), 11809–11822.

[81] Shinn Yao, Jiaming Zhao, Dian Yu, et al. 2023. ReAct: Synergizing reasoning and

acting in language models. Advances in Neural Information Processing Systems
(NeurIPS) (2023).

[82] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang,

Tianqi Chen, Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze.

2025. FlashInfer: Efficient and Customizable Attention Engine for LLM Inference

Serving. arXiv preprint arXiv:2501.01005 (2025). https://arxiv.org/abs/2501.01005

[83] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-

Gon Chun. 2022. Orca: A Distributed Serving System for Transformer-Based

Generative Models. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 521–538. https:

//www.usenix.org/conference/osdi22/presentation/yu

[84] Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan

Zhang, Zhenda Xie, YX Wei, Lean Wang, Zhiping Xiao, et al. 2025. Native

sparse attention: Hardware-aligned and natively trainable sparse attention. arXiv
preprint arXiv:2502.11089 (2025).

[85] Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao

Xue, Bingzhe Wu, Zhikai Li, Qingyi Gu, Yong Jae Lee, et al. 2024. Llm inference

unveiled: Survey and roofline model insights. arXiv preprint arXiv:2402.16363
(2024).

[86] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. 2023. Kdeformer: Ac-

celerating transformers via kernel density estimation. In International Conference
on Machine Learning. PMLR, 40605–40623.

[87] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui

Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:

Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068

https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://github.com/Snowflake-Labs/snowflake-arctic
https://github.com/Snowflake-Labs/snowflake-arctic
https://arxiv.org/abs/2404.11912
https://arxiv.org/abs/2404.11912
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2501.01005
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

(2022).

[88] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi

Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. 2023. H2o:

Heavy-hitter oracle for efficient generative inference of large language models.

Advances in Neural Information Processing Systems 36 (2023), 34661–34710.
[89] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang,

Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez,

et al. 2024. Sglang: Efficient execution of structured language model programs.

Advances in Neural Information Processing Systems 37 (2024), 62557–62583.

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

Table of Contents
– Cost Model . 8

• Full Formulations of Cost Model . 8

• Max Cost Model v.s. Additive Cost Model . 9

• Details about Sparse Attention Cost Model . 10

– Dense Scaling Law . 11

• Best-of-𝑁 AIME24 . 11

• Iso-Cost Study . 11

• Additional Benchmarks . 12

• Additional Reasoning Models . 13

– Sparse Scaling Law . 15

• Optimal Resource Allocation with Sparse Attention Models . 15

• Greedy Algorithm for Optimal Resource Allocation . 16

• Additional Benchmarks . 16

• Additional Analysis . 18

– Experimental Details . 18

• Estimate Cost, Accuracy and Solving Rate . 18

• Top-𝐾 Attention and Block Top-𝐾 Attention . 18

– Related Work . 19

– Limitations, Future Scope, and Broader Impact . 20

Table 1: Notation Used throughout the Paper.

Symbol Description Symbol Description

𝑇,T Task (set) 𝐿𝑜𝑢𝑡 # Gen tokens

𝑀 Model 𝑁, 𝑁𝑇 Reasoning trials

𝐶,𝐶TTS (·) Cost function 𝑛, 𝑛𝑇 Max # tokens

A Algorithm 𝐵, 𝐵𝑇 KV budget

𝐿𝑖𝑛 Prompt length 𝑃 Parameters

𝐷 KV size / token 𝑟 GQA ratio

A Cost Model
In this section, we delve into the cost models used in the Kinetics Scaling Law. We show empirically that adopting a max cost model does not

alter the scaling behavior and outline methods for calculating the cost of sparse attention models. Notation is in Table 1.

A.1 Full Formulations of Cost Model
We first calculate the inference cost for the cases where the batch size is 1, and then extend to a more general case in TTS. Finally, we propose

our cost model using equivalent FLOPs.

Computation. As discussed in [3], the computation consists of two parts: linear modules and self-attention, which is (we assume the

model is served in BFloat16.)

𝐶comp = 2𝑃𝐿𝑜𝑢𝑡︸ ︷︷ ︸
model parameters computation

+ 𝑟 (2𝐿𝑖𝑛 + 𝐿𝑜𝑢𝑡)𝐿𝑜𝑢𝑡𝐷︸ ︷︷ ︸
self-attention

Memory Access. Memory access also consists of two parts: model parameters and KV cache.

𝐶mem = 2𝑃𝐿𝑜𝑢𝑡︸ ︷︷ ︸
model parameter access

+ 2𝐿𝑖𝑛𝐿𝑜𝑢𝑡𝐷︸ ︷︷ ︸
prompt KV cache

+ 𝐿2

𝑜𝑢𝑡𝐷︸︷︷︸
decoding KV cache

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

In real serving scenarios, a large batch size will be used [16] with growing GPU VRAM [74] and model parallelism [60]. The access to the

model parameter will be amortized across requests in a batch shows parameter access time is negligible when the batch size is large). Thus,

we only consider the second term (i.e., KV cache loading) in our cost function. Furthermore, in the cases that we have 𝑁 reasoning trials, the

prompt cache access [36, 89] is also shared across these 𝑁 trials. Thus,

𝐶comp (𝑁) = 2𝑃𝑁𝐿𝑜𝑢𝑡 + 2𝑟𝑁𝐿𝑖𝑛𝐿𝑜𝑢𝑡𝐷 + 𝑟𝑁𝐿2

𝑜𝑢𝑡𝐷 (3)

𝐶mem (𝑁) = 2𝐿𝑖𝑛𝐿𝑜𝑢𝑡𝐷 + 𝑁𝐿2

𝑜𝑢𝑡𝐷 (4)

eFLOPs. We propose eFLOPs (equivalent FLOPs) to capture both compute and memory access cost,

eFLOPs = 𝐶comp +𝐶mem × 𝐼 (5)

where 𝐼 is the arithmetic intensity of hardware, which reflects that modern accelerators usually have a much larger computation capacity

over memory bandwidth, and the gap is growing over the years [61]. In this work, we use 𝐼 = 562.5 (unit: FLOPs × s / GB) from NVIDIA

B200 [74].

With Equations (3) to (5), we obtain the final cost model.

𝐶TTS = 2𝑁𝑃𝐿𝑜𝑢𝑡︸ ︷︷ ︸
linear modules computation

+ 2𝑟𝑁𝐿𝑖𝑛𝐷𝐿𝑜𝑢𝑡 + 𝑟𝑁𝐷𝐿2

𝑜𝑢𝑡︸ ︷︷ ︸
self-attention computation

+ 2𝐼𝐿𝑖𝑛𝐷𝐿𝑜𝑢𝑡 + 𝐼𝑁𝐷𝐿2

𝑜𝑢𝑡︸ ︷︷ ︸
KV access

(6)

where 𝑃, 𝑟, 𝐷 are hyper-parameters determined by model𝑀2
.

A.2 Max Cost Model v.s. Additive Cost Model
Max cost model is widely used in performance modeling [85]. It assumes that computation and memory operations can be fully overlapped

with each other and only considers the bottleneck operation for cost measurement.

𝐶max-cost = max(𝐶comp, 𝐶mem × 𝐼)
where 𝐶comp denotes the compute cost, 𝐶mem the memory cost per access, and 𝐼 the memory intensity.

In this section, we analyze the Kinetics Scaling Law using the max cost model. For clarity, we refer to the cost model 𝐶comp +𝐶mem × 𝐼 ,
which is used in the main paper, as the additive cost model.

We draw two conclusions from empirical results under the max cost model:

(a) (b)

(c) (d)

Figure 7: AIME Pareto Frontier (Long-CoTs) with Max Cost Models. (a)(b) is the original plot with the additive cost model. (c)(d)
is the corresponding plot using max cost models. Compared to the original plots, the overall trend is similar except that larger
models span a slightly broader region on the Pareto frontier. For example, the 14B model now consistently outperforms the 4B
model with a noticeable gap around accuracy 0.3 and maintains dominance thereafter. In contrast, under the additive cost
model in Figure 3(a), the two models alternate in performance until accuracy exceeds 0.4. This suggests that, when evaluated
using a max cost model, larger models appear slightly more efficient relative to their performance under additive cost models.

2
Since 𝐿𝑜𝑢𝑡 might differ across reasoning trials, we take the expectation for E[𝐿𝑜𝑢𝑡] and E[𝐿2

𝑜𝑢𝑡].

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

103 104 105 106

Tera-eFLOPs

0.0

0.2

0.4

0.6

0.8

So
lv

in
g

Ra
te

Qwen3-32B
Qwen3-14B
Qwen3-8B
Qwen3-4B
Qwen3-1.7B
Qwen3-0.6B

Figure 8: AIME Pareto Frontier (Best-of-𝑁) with Max Cost Models. We re-plot Figure 10a using max cost models. The Pareto
Frontier is very similar under different cost models.

15.71x

+52.8%

(a) Long-CoTs

19.64x

+69.4%

(b) Best-of-𝑁

Figure 9: Sparse attention scales significantly better under max cost models. We re-plot Figures 4a and 4b using max cost models.
Compared to the original plots, the performance and efficiency gaps between sparse attention models and dense models become
more pronounced. In Long-CoTs, the accuracy and efficiency gaps increase from 47.5 points and 11.21× to 52.8 points and 15.71×,
respectively. In Best-of-𝑁 , the gaps widen from 65 points and 10.67× to 69.4 points and 19.64×.

• Kinetics scaling law for dense models still holds.We re-plot Figure 3(a)(b) and Figure 10a under the measurement of max cost models

in Figures 7 and 8. We find except that in Long-CoTs scenarios, large models become slightly more effective in low-cost regime (with

accuracy∼0.3), the overall trends are very close to the plots with additive cost models.

• Sparse attention solves problems more cost-effectively.We re-plot Figures 4a and 4b in Figures 9a and 9b. Under the max cost models,

in Long-CoTs, the accuracy and efficiency gaps increase from 47.5 points and 11.21× to 52.8 points and 15.71×, respectively. In Best-of-𝑁 ,

the gaps widen from 65 points and 10.67× to 69.4 points and 19.64×. These results indicate that under the max cost model, our claim that

sparse attention can enhance problem-solving performance is strengthen. Compared to dense attention models, sparse attention models

tend to have more balanced memory and compute costs. Thus omitting one of them via a max cost model will favor sparse attention

models.

A.3 Details about Sparse Attention Cost Model
Sparse attention models follow different cost functions due to the sparsification of KV memory access. In this paper, we focus on algorithms

that impose a uniform KV budget (denoted as 𝐵) per attention head for each decoded token. We consider 𝐿𝑖𝑛 ≥ 𝐵 for the sake of simplicity.

Under this setting, the cost model for sparse attention is given by:

𝐶sparse = 2𝑁𝑃𝐿out + 2𝑟𝑁𝐷𝐵𝐿out︸ ︷︷ ︸
compute

+ 2𝐼𝑁𝐷𝐵𝐿out︸ ︷︷ ︸
memory

. (7)

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

103 104 105 106

Tera-eFLOPs

0.0

0.2

0.4

0.6

0.8

So
lv

in
g

Ra
te

Qwen3-32B
Qwen3-14B
Qwen3-8B
Qwen3-4B
Qwen3-1.7B
Qwen3-0.6B

(a) Accuracy (eFLOPs)

101 102 103 104

Tera-FLOPs

0.0

0.2

0.4

0.6

0.8

So
lv

in
g

Ra
te

Qwen3-32B
Qwen3-14B
Qwen3-8B
Qwen3-4B
Qwen3-1.7B
Qwen3-0.6B

(b) Accuracy (FLOPs)

0.0 0.2 0.4 0.6 0.8
Solving Rate

0
5

10
15
20
25
30

M
od

el
 S

ize
 (B

)

Kinetics Scaling Law
Previous Scaling Law

(c) Optimal Models

Figure 10: AIME24 Score Curve Envelope (Best-of-𝑁). We control the incurred inference cost in eFLOPs (a) or FLOPs (b) and
measure the solving rate (Coverage) in AIME24 for various models by varying the maximum allowed number of reasoning
trials. By taking the curve envelopes, we can project the optimal models in (c).

In practical implementations, we must also account for the overhead associated with retrieving or searching KV memory, denoted as

𝐶
search

, which depends on the specific sparse attention algorithm A. For example, in block top-𝑘 selection, the search cost is:

𝐶
search

=
2𝑁𝐿in𝐷𝐿out + 𝑟𝑁𝐷𝐿2

out

2Block-Size︸ ︷︷ ︸
compute

+
2𝐼𝐿in𝐷𝐿out + 𝐼𝑁𝐷𝐿2

out

2Block-Size︸ ︷︷ ︸
memory

. (8)

In our work, we choose the Block-Size in such a way that 𝐶sparse and 𝐶search are roughly balanced, so that the sparse attention cost

increases sub-linearly with generation length.

For local attention and oracle top-𝑘 attention, we assume no search overhead, i.e., 𝐶
search

= 0.

Many sparse attention algorithms skip the first layer [9, 70, 88], resulting in only a minor increase in total cost. For the Qwen3 series, this

additional overhead is bounded by 3.57% for the 0.6B model and by 1.56% for the 32B model.

B Dense Scaling Law
In this section, we further verify Kinetics Scaling Law for densemodels proposed in Section 3 with Iso-Cost analysis and extended experimental

results of different benchmarks and model series.

B.1 Best-of-𝑁 AIME24
In the Best-of-𝑁 setting, we fix the maximum number of generated tokens at 𝑛𝑇 , and vary the number of reasoning trials 𝑁 to evaluate the

problem-solving rate (i.e., the probability that at least one trial produces a correct answer). We have similar observations in Figures 10a

to 10c. Under the previous scaling laws (Figure 10b), the most cost-effective strategy to achieve high accuracy is to apply repeated sampling

using smaller models. Kinetics Scaling Law Figure 10a reveals that deploying a 14B model with fewer reasoning trials is more efficient.

We also observe a critical size of 14B. For models smaller than 14B, increasing compute is best allocated toward model scaling rather than

additional trials. For models at or above 14B, however, further computation is more effectively spent on increasing the number of reasoning

trials, up to diminishing returns.

B.2 Iso-Cost Study
We attribute the above divergence between Kinetics and previous scaling laws to two reasons.

Disproportionation between KV memory size 𝐷 and model parameters 𝑃 . Smaller models tend to require significantly more KV cache

relative to their parameter size. For example, Qwen3-0.6B demands 3.5GB of KV cache to store 32K tokens, despite the model itself occupying

only 1.2GB. In contrast, Qwen3-32B uses just 8GB of KV cache for the same sequence length. Empirically, doubling model parameters results

in only a 1.18× increase in KV cache size. As shown in Figure 11a, this phenomenon is consistently observed across model families such as

OPT [87] (1.55×), Qwen2.5 [79] (1.46×), and LLaMA3 [24] (1.27×).

Shift from linear to quadratic cost model. Under this revised model, increasing generation length incurs a substantially higher cost than

scaling model size; consequently, the tradeoff between model capacity and token budget shifts meaningfully. For instance, under the linear

𝐿𝑃 model, the cost of generating 8K tokens with a 14B model (which is usually insufficient to solve complex tasks) is treated as equivalent to

generating 24K tokens with a 4B model (sufficient to complete most tasks). However, under the 𝐿2𝐷 model, the same 14B@8K generation is

only comparable in cost to a 4B@9K generation. This tighter bound makes it much harder for smaller models to compensate for their limited

capacity through extended generation alone. Thus, only if the gap in model capacities is small enough (e.g., 32B only improves the accuracy

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

109 1010 1011 1012

Model Size (bytes)
104

105

106

KV
 m

em
or

y
Pe

r T
ok

en
 (b

yt
es

) Qwen3
Qwen2.5
LLaMA 3
OPT

(a) KV v.s. Parameters (b) Iso-eFLOPs (c) Iso-FLOPs

Figure 11: Explanation of the New Scaling Law. Left: Analysis across four LLM families reveals a consistent trend of dispropor-
tionately slower KV memory growth relative to model size. For the Qwen3 series in particular, doubling model parameters
results in only a 1.18× increase in KV cache size. Middle and Right: We compare the Iso-Cost landscapes under the proposed
cost model (b) and the traditional model (c).

Figure 12: AIME25 Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 3.

by 3% on AIME24 compared to 14B), the benefits of extending generation length might be more effective than directly enlarging model

parameters.

Figures 11b and 11c show an Iso-Cost analysis comparing two cost models. Under Kinetics Scaling Law, the cost grows quadratically

with 𝐿𝑜𝑢𝑡 , while the KV cache scales sublinearly with model parameters 𝑃 . As a result, when total budget is low, the Iso-eFLOPs contours

tend to stretch horizontally, favoring larger model sizes over longer generation lengths. This implies that increasing model size is a more

efficient use of resources than generating longer outputs. In contrast, the traditional FLOPs-based model leads to steeply vertical contours,

encouraging longer generation before increasing model size.

B.3 Additional Benchmarks
We evaluate on AIME25 in Figures 12 and 13a to 13c and LiveCodeBench

3
in Figures 14 and 15a to 15c (excluding the 0.6B model), following

the setting described in Section 3. The empirical results support the Kinetics Scaling Law: across both benchmarks, the 0.6B and 1.7B models

are consistently less effective, and the Pareto frontier is almost always dominated by the 14B models.

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

103 104 105 106

Tera-eFLOPs
0.0

0.2

0.4

0.6

0.8

So
lv

in
g

Ra
te

Qwen3-32B
Qwen3-14B
Qwen3-8B
Qwen3-4B
Qwen3-1.7B
Qwen3-0.6B

(a) Accuracy (eFLOPs)

101 102 103 104

Tera-FLOPs

0.2

0.4

0.6

0.8

So
lv

in
g

Ra
te

Qwen3-32B
Qwen3-14B
Qwen3-8B
Qwen3-4B
Qwen3-1.7B
Qwen3-0.6B

(b) Accuracy (FLOPs)

0.0 0.2 0.4 0.6 0.8
Solving Rate

0
5

10
15
20
25
30

M
od

el
 S

ize
 (B

)

Kinetics Scaling Law
Previous Scaling Law

(c) Optimal Models

Figure 13: AIME25 Score Curve (Best-of-𝑁). We conduct the same experiments as Figures 10a to 10c.

Figure 14: LiveCodeBench Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 3.

102 103 104 105 106

Tera-eFLOPs
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

So
lv

in
g

Ra
te

Qwen3-32B
Qwen3-14B
Qwen3-8B
Qwen3-4B
Qwen3-1.7B

(a) Accuracy (eFLOPs)

101 102 103 104

Tera-FLOPs
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

So
lv

in
g

Ra
te

Qwen3-32B
Qwen3-14B
Qwen3-8B
Qwen3-4B
Qwen3-1.7B

(b) Accuracy (FLOPs)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Solving Rate

5
10
15
20
25
30

M
od

el
 S

ize
 (B

)

Kinetics Scaling Law
Previous Scaling Law

(c) Optimal Models

Figure 15: LiveCodeBench Score Curve (Best-of-𝑁). We conduct the same experiments as Figures 10a to 10c.

B.4 Additional Reasoning Models
In Figures 16 and 17a to 17c, we evaluate DeepSeek-R1 Distilled Qwen models (abbreviated as DS models) [27] on AIME24. The DeepSeek

series models further demonstrate that previous scaling laws—those based on FLOPs—significantly overestimate the effectiveness of the 1.5B

model. As predicted by the Kinetics Scaling Law, increasing the number of generated tokens for the 1.5B model is less effective than scaling

up the model size, such as using the 7B or larger variants.

3
For LiveCodeBench dataset, we have sampled 50 examples from the v5 subset consisting 167 examples. Our subset comprises 24 hard, 16 medium and 10 easy examples respectively.

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

Figure 16: AIME24 Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 3 on DeepSeek Distilled Qwen
series.

102 103 104 105

Tera-eFLOPs

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

So
lv

in
g

Ra
te

DS-32B
DS-14B
DS-7B
DS-1.5B

(a) Accuracy (eFLOPs)

101 102 103 104

Tera-FLOPs
0.0

0.2

0.4

0.6

0.8

So
lv

in
g

Ra
te

DS-32B
DS-14B
DS-7B
DS-1.5B

(b) Accuracy (FLOPs)

0.0 0.2 0.4 0.6 0.8
Solving Rate

5
10
15
20
25
30

M
od

el
 S

ize
 (B

)

Kinetics Scaling Law
Previous Scaling Law

(c) Optimal Models

Figure 17: AIME24 Score Curve Envelope (Best-of-𝑁). We conduct the same experiments as Figures 10a to 10c on DeepSeek
Distilled Qwen series.

Interestingly, we observe a shift in the emerging model size: unlike Qwen3, where the 14B model dominates, the 7B model becomes the

dominant choice in the DeepSeek series. In Figures 16, 17a and 17c, the 7B model spans most of the Pareto frontier, and Figure 16 shows that

7B models with long CoTs are more efficient and effective than 14B models with short generations. We attribute this to an architectural outlier

in the DeepSeek-R1 (Qwen2.5) model series. As shown in Table 2, the DeepSeek-R1 7B model is significantly more KV memory-efficient than

the Qwen3-8B model. Unlike most model series illustrated in Figure 11a, where KV cache size typically grows sublinearly with respect to

model parameters, DeepSeek-R1 shows a deviation from this trend: the 14B model has approximately 3.4× more KV memory than the 7B

model, while having only 2× more parameters.

Table 2: KV memory Size for Qwen3 and DeepSeek-R1 Distilled models (per 32K tokens, unit: GB).

Qwen3 Qwen3-1.7B Qwen3-8B Qwen3-14B Qwen3-32B

3.5 4.5 6 8

DeepSeek DS-1.5B DS-7B DS-14B DS-32B

0.875 1.75 6 8

This finding highlights the importance of concrete model architecture design, rather than focusing solely on the number of model

parameters. Whether KV memory size is directly related to reasoning performance remains an open question, which we leave for future

investigation.

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

102 103 104 105

Tera-eFLOPs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

So
lv

in
g

Ra
te

dense
topk
block_topk

(a) Best-of-𝑁 Scaling Comparison

10.8x

+42.8%

(b) Best-of-𝑁 Top-𝐾 Sparse Scaling

6.8x

+36.7%

(c) Best-of-𝑁 Block Top-𝐾 Scaling

103 104

Tera-eflops
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

So
lv

in
g

Ra
te

dense
topk
block_topk

(d) Long-CoTs Scaling Comparison

9.4x

+38%

(e) Long-CoTs Top-𝐾 Sparse Scaling

5.6x

+37.6%

(f) Long-CoTs Block Top-𝐾 Scaling

10.0x

+69.1%

(g) Best-of-𝑁 Scaling (Easy)

6.9x

+72.9%

(h) Best-of-𝑁 Scaling (Medium)

9.5x

+30.6%

(i) Best-of-𝑁 Scaling (Hard)

Figure 18: LiveCodeBench Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle top-𝑘 and block-
top-𝑘 attention on the LiveCodeBench dataset. (a)(d) compare block-top-𝑘 and oracle top-𝑘 with dense scaling under Best-of-N
and long-CoT TTS settings. (b)(e) show cost-accuracy trade-offs for top-𝑘 attention. (c)(f) show trade-offs for block-top-𝑘
attention. (g)(h)(i) compare the oracle top-𝑘 scaling for easy, medium and hard difficulty questions.

C Sparse Scaling Law
We present how we find the Pareto frontier of sparse attention models through an optimal resource allocation, which demonstrates the

upper bound of scalability of a certain sparse attention algorithms. Then we present additional results supporting the kinetics sparse scaling

law across multiple tasks and demonstrate how these insights enable scalable test-time scaling with sparse attention.

C.1 Optimal Resource Allocation with Sparse Attention Models
Problem statement. LetA denote the corresponding sparsity patterns (e.g., top-𝑘 , block sparse and local. Our goal is to explore the optimal

tradeoff among three factors: model𝑀 , KV budget 𝐵, and number of trials, and the maximum generation length (𝑁,𝑛). Specifically,

(𝑁,𝑛)∗, 𝑀∗, 𝐵∗ = arg max

(𝑁,𝑛),𝑀,𝐵
Acc(𝑁,𝑛, 𝐵,A, 𝑀 ;𝑇)

s.t. 𝐶TTS (𝑁,𝑛, 𝐵,A, 𝑀 ;𝑇) ≤ 𝐶 (9)

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

103 104 105

Tera-eFLOPs

0.0

0.2

0.4

0.6

0.8

So
lv

in
g

Ra
te

dense
topk
block_topk

(a) Best-of-N Scaling Comparison

10.8x

+53.2%

(b) Best-of-N Top-𝐾 Sparse Scaling

5.8x

+41.2%

(c) Best-of-N Block Top-𝐾 Scaling

102 103 104

Tera-eflops

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

So
lv

in
g

Ra
te

dense
topk
block_topk

(d) Long-CoTs Scaling Comparison

15.3x

+41.8%

(e) Long-CoTs Top-𝐾 Sparse Scaling

5.4x

+33.0%

(f) Long-CoTs Block Top-𝐾 Scaling

Figure 19: AIME25 Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle top-𝑘 and block-top-𝑘
attention on the AIME25 dataset. (a)(d) compare block-top-𝑘 and oracle top-𝑘 with dense scaling under Best-of-N and long-CoT
settings. (b)(e) show cost-accuracy trade-offs for oracle top-𝑘 attention. (c)(f) show trade-offs for block-top-𝑘 attention.

C.2 Greedy Algorithm for Optimal Resource Allocation
We present a method to optimally schedule generation parameters (𝑁,𝑛) and the KV budget 𝐵 for each task, establishing an upper bound on

achievable performance and enabling analysis of the core tradeoff between TTS strategies and sparsity. We begin by solving the subproblem

for each individual task 𝑇 4
:

max Acc(𝑁𝑇 , 𝑛𝑇 , 𝐵𝑇 ,A, 𝑀 ;𝑇) s.t. 𝐶TTS (𝑁𝑇 , 𝑛𝑇 , 𝐵𝑇 ,A, 𝑀 ;𝑇) ≤ 𝐶 (10)

Empirically, we discretize the searching space. For instance, in Best-of-𝑁 , we discretize the space of 𝑁 and 𝐵 by producing a search grid:

𝐺 = {𝑁0, 𝑁1, . . . , 𝑁𝑖 } ⊗ {𝐵0, 𝐵1, . . . , 𝐵 𝑗 }

For each pair (𝑁𝑎, 𝐵𝑏) ∈ 𝐺 , we compute the corresponding cost 𝐶𝑇,(𝑎,𝑏) and accuracy Acc𝑇,(𝑎,𝑏) . We use (𝑁𝑇 , 𝐵𝑇) ∈ 𝐺 which maximizes

the accuracy under the cost constraint 𝐶 as an approximation for Equation (10). By combining the optimal configurations (𝑁𝑇 , 𝐵𝑇) for all
tasks 𝑇 , we obtain a solution to the overall problem in Equation (9). Similar discretizations also applies for Long-CoTs. Thus we find the

optimal resource allocation.

We describe the procedure for identifying optimal resource allocations and establishing the Pareto frontier for sparse attention models

in Algorithms 1 and 2, as a supplement to Appendix C.1. Given a fixed cost constraint 𝐶 , we perform a grid search over key parameters: KV

budgets and either reasoning trials or maximum generation lengths.

Empirically, we sweep over KV budgets {32, 64, 128, 256, 512, 1024}; reasoning trials {1, 2, 4, 8, 16, 32} (with a reduced upper limit for the

14B and 32B models to save computation time); and generation lengths {2k, 4k, 6k, 8k, 10k, 12k, 14k, 16k, 18k, 20k, 22k, 24k, 26k, 28k, 30k,

32k}.

It is important to note that we do not consider inter-request resource scheduling strategies, such as early stopping or dynamic reallocation

across requests [23], since we aim to ensure fairness across all inputs. Instead, the cost constraint 𝐶 is interpreted as the maximum allowable

cost per request (not the average), even if some requests achieve saturated accuracy below that threshold.

C.3 Additional Benchmarks
Beyond AIME24, we evaluate our approach on LiveCodeBench [34] and AIME25 [51]. LiveCodeBench features complex programming

problems from recent coding contests, while AIME25 consists of challenging math problems. In both cases, sparse attention—particularly

4
For fairness, we do not schedule resources across tasks, but consider a resource upper bound for all the tasks.

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

Algorithm 1: Best-of-𝑁 optimal resource allocation under cost 𝐶

Data: Tasks T , KV budgets {𝐵1, . . . , 𝐵 𝑗 }, trial counts {𝑁1, . . . , 𝑁𝑖 }, cost limit 𝐶

Result: Average of maximum accuracy per task under cost 𝐶

1 AccumBestAcc← 0 Count← 0;

2 for task 𝑇 in T do
3 for KV budget 𝐵𝑏 do
4 Generate 𝑆 ≥ max{𝑁1, .., 𝑁𝑖 } responses using 𝐵𝑏 for task 𝑇 ;

5 for trial count 𝑁𝑎 do
6 compute cost 𝑐

(𝑇)
𝑏,𝑎

;

7 if 𝑐 (𝑇)
𝑏,𝑎
≤ 𝐶 then

8 Compute accuracy Acc
(𝑇)
𝑏,𝑎

= Pass@𝑁𝑎 ;

9 if Acc(𝑇)
𝑏,𝑎

> BestAcc then

10 BestAcc← Acc
(𝑇)
𝑏,𝑎

;

11 end if
12 end if
13 end for
14 end for
15 AccumBestAcc += BestAcc; Count += 1;

16 end for
17 AvgBestAcc = AccumBestAcc/Count;
18 return AvgBestAcc;

Algorithm 2: Long-CoTs optimal resource allocation under cost 𝐶

Data: Tasks T , KV budgets {𝐵1, . . . , 𝐵 𝑗 }, gen. lengths {𝑛1, . . . , 𝑛𝑖 }, samples 𝑆 , cost limit 𝐶

Result: Average of maximum accuracy per task under cost 𝐶

1 AccumBestAcc← 0 Count← 0;

2 for task 𝑇 in T do
3 BestAcc← 0;

4 for gen. length 𝑛𝑎 do
5 for KV budget 𝐵𝑏 do
6 Generate 𝑆 responses using (𝐵𝑏 , 𝑛𝑎); compute cost 𝑐

(𝑇)
𝑏,𝑎

;

7 if 𝑐 (𝑇)
𝑏,𝑎
≤ 𝐶 then

8 Compute accuracy Acc
(𝑇)
𝑏,𝑎

= Pass@1;

9 if Acc(𝑇)
𝑏,𝑎

> BestAcc then

10 BestAcc← Acc
(𝑇)
𝑏,𝑎

;

11 end if
12 end if
13 end for
14 end for
15 AccumBestAcc += BestAcc; Count += 1;

16 end for
17 AvgBestAcc = AccumBestAcc/Count;
18 return AvgBestAcc;

oracle top-𝑘—consistently outperforms dense attention. Block top-𝑘 attention, a tractable alternative, closely matches the performance of the

oracle.

For LiveCodeBench, we sample 50 problems from the v5 subset (24 hard, 16 medium, 10 easy). As shown in Figure 18, oracle top-𝑘

attention can achieve ∼ 10× speedup in high-accuracy regimes and improves coverage by 40–50% in low-cost regimes. Conversely, the

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

102 103 104 105

Tera-eFLOPs

104

105

106

Op
tim

al
 G

en
er

at
io

n
To

ke
ns

Fit: y = 213.58·x^0.74

(a) AIME25 Gen.

102 103 104 105

Tera-eFLOPs

102

103

Op
tim

al
 K

V
Bu

dg
et

s

Fit: y = 140.92·x^0.17 - 212

(b) AIME25 Budget

102 103 104 105

Tera-eFLOPs

103

104

105

106

Op
tim

al
 G

en
er

at
io

n
To

ke
ns

Fit: y = 22.08·x^0.92

(c) LiveCodeBench Gen.

102 103 104 105

Tera-eFLOPs

103

Op
tim

al
 K

V
Bu

dg
et

s

Fit: y = 161.83·x^0.19 - 212

(d) LiveCodeBench Budget

Figure 20: Tradeoff Between Generated Tokens and KV Budget. We empirically characterize the tradeoff between increasing
generation length and allocating a larger KV cache budget using Qwen3-8B. For AIME25 ((a)(b)) and LiveCodeBench ((c)(d)),
we identify the optimal KV budget and generated tokens (defined as number of reasoning trials times the average generated
tokens per trial) to achieve the highest problem-solving rate under every cost constraint 𝐶.

tractable alternative, Block top-𝑘 yields 5–6× speedup and 30–40% coverage gains. We further show how the benefits of sparse attention

scale with problem difficulty (Figures 18g to 18i).

Figure 19 confirms similar trends for AIME25, with substantial gains in both accuracy and efficiency under sparse attention.

C.4 Additional Analysis
Fixing a model (e.g., Qwen3-8B), we investigate the tradeoff between generating more tokens through Best-of-𝑁 and increasing the KV

budget in Figures 20a to 20d. As the figures suggest, on AIME25, each doubling of total compute cost increases the optimal KV budget by

1.13×, while generated tokens grow by 1.67×; on LiveCodeBench, these factors are 1.14× and 1.89×, respectively. We find that although

the concrete numbers depend on the types of tasks, the overall results confirm our suggestions in the main paper that allocating compute

toward generating more responses is generally more effective than expanding KV budget, highlighting the scalability of sparse attention.

D Experimental Details
In this section, we explain the details about our experiments.

D.1 Estimate Cost, Accuracy and Solving Rate
When empirically measuring cost, one major challenge is the difficulty of controlling the actual generation length. Although it is possible to

set an upper bound on the number of generated tokens, there is no guarantee that the model will utilize the full budget. For instance, in our

Best-of-𝑁 experiments, we set the maximum number of generated tokens to 32,768, yet the average generation length was only 14K–16K

tokens.

Furthermore, it is important to model the relationship between actual inference cost and performance metrics, such as accuracy in

Long-CoTs or solving rate in Best-of-𝑁 . Relying solely on the maximum allowed generation length to estimate cost can substantially

underestimate the efficiency of models that solve problems with much shorter responses—an ability thatmay reflect higher capability.

To address this challenge, we first sample 𝑆 independent reasoning traces 𝑟1, 𝑟2, . . . , 𝑟𝑆 from model 𝑀 on task 𝑇 , with the maximum

allowed number of tokens set to 𝑛. We slightly generalize Equation (6) as:

𝐶TTS = 2𝑁𝑃E[𝐿out] + 2𝑟𝑁𝐿in𝐷E[𝐿out] + 𝑟𝑁𝐷E[𝐿2

out
]

+ 2𝐼𝐿in𝐷E[𝐿out] + 𝐼𝑁𝐷E[𝐿2

out
]

= 𝑎E[𝐿out] + 𝑏E[𝐿2

out
] + 𝑐, (11)

where 𝑎, 𝑏, and 𝑐 are constants determined by the model architecture and test-time strategies (e.g., the value of 𝑛). The expectations are

estimated from the sampled traces, whose distribution is influenced by the model𝑀 , the token limit 𝑛, and the task 𝑇 .

For Long-CoTs, we fix 𝑁 = 1 in Equation (11) and vary 𝑛. From the sampled traces, we estimate the accuracy (Pass@1), and compute the

corresponding cost by substituting the empirical values of E[𝐿out] and E[𝐿2

out
] measured under each 𝑛.

For Best-of-𝑁 , we fix𝑛 = 32,768, and estimate the solving rate (Pass@𝐾) following the methodology of Brown et al. [3]. The corresponding

cost is then computed by substituting 𝑁 = 𝐾 into Equation (11).

Similarly, we can estimate the cost for sparse attention models using Equations (7) and (8).

Advanced control of generation lengths is an active area of research [48, 56, 78], but it is beyond the scope of this paper.

D.2 Top-𝐾 Attention and Block Top-𝐾 Attention
In this section, we explain the sparse attention algorithms discussed in the main paper, namely Top-𝐾 Attention and Block Top-𝐾 Attention.

Kinetics: Rethinking Test-Time Scaling Laws KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada

During the decoding phase of a large language model (LLM), the self-attention mechanism computes a weighted average of past values as

follows:

𝑜 = Softmax

(
𝑞𝐾⊤
√
𝑑

)
𝑉 = 𝑤𝑉, 𝑞 ∈ R1×𝑑 , 𝐾,𝑉 ∈ R𝑛×𝑑 , 𝑤 ∈ R1×𝑛, (12)

where 𝑑 is the head dimension and 𝑛 is the context length. The key and value matrices are given by 𝐾 = [𝑘1, 𝑘2, . . . , 𝑘𝑛], 𝑉 = [𝑣1, 𝑣2, . . . , 𝑣𝑛],
where each 𝑘𝑖 , 𝑣𝑖 ∈ R1×𝑑

are cached from previous decoding steps.

Top-𝐾 Attention. Top-𝐾 Attention is a sparsification method where only the 𝐾 most relevant tokens (i.e., those with the highest attention

scores) are selected to compute the output. Formally, instead of computing the full softmax, we define a sparse attention weight vector:

𝑤𝑖 =


exp(𝑠𝑖)∑

𝑗 ∈I𝐾 exp(𝑠 𝑗) if 𝑖 ∈ I𝐾 ,

0 otherwise,
where 𝑠𝑖 =

𝑞𝑘⊤
𝑖√
𝑑
, I𝐾 = TopK𝐾 (𝑠), (13)

Here, I𝐾 denotes the indices of the top 𝐾 attention scores 𝑠𝑖 . By masking out the less important positions, this approach reduces the

computational and memory cost of attention from O(𝑛) to O(𝐾), where 𝐾 ≪ 𝑛.

Block Top-𝐾 . Block Top-𝐾 Attention is a block-level sparse attention mechanism. Instead of selecting individual tokens based on attention

scores, this method selects entire blocks of tokens, thereby reducing the number of attention computations.

Specifically, assume the full sequence of 𝑛 keys is divided into𝑚 = 𝑛
BLOCK_SIZE consecutive blocks, each of size BLOCK_SIZE:

𝐾 = [𝑘1, . . . , 𝑘𝑛] → {𝐾1, 𝐾2, . . . , 𝐾𝑚}, 𝐾𝑖 ∈ RBLOCK_SIZE×𝑑

For each block 𝐾𝑖 , we first compute the average key vector:

¯𝑘𝑖 =
1

BLOCK_SIZE

BLOCK_SIZE∑︁
𝑗=1

𝑘𝑖, 𝑗

Next, we compute the attention score between the query 𝑞 and each block’s average key:

𝑠𝑖 =
𝑞 ¯𝑘⊤
𝑖√
𝑑
, for 𝑖 = 1, 2, . . . ,𝑚

We then select the top 𝐾 ′ = 𝐾
BLOCK_SIZE blocks based on the scores 𝑠𝑖 , denoted by the index set J𝐾 ′ = TopK𝐾 ′ (𝑠). Attention is computed

only over the tokens within the selected blocks. The sparse attention weights are defined as:

𝑤𝑖 =


exp(𝑠𝑖)∑

𝑗 ∈I𝐾 exp(𝑠 𝑗) if 𝑖 ∈ I𝐾 ⊆ tokens in selected blocks,

0 otherwise

For both algorithms, 𝐾 is the KV budget. For GQA, we conduct an average pooling across all the query heads in a group, ensuring that the

total number of retrieved key-value vectors does not exceed the allocated KV budget.

Implementation. Here we provide details of our block top-𝑘 attention implementation. We build our inference backend on Flashinfer [82],

incorporating support for paged attention [39] and continuous batching [83]. Alongside the paged KV cache, we introduce an auxiliary data

structure to store block-level average key vectors. The KV block size is chosen such that the memory load from the block-average vectors

and the selected top-𝑘 KV blocks remains balanced. This design enables sub-quadratic KV loading cost as the number of reasoning tokens

increases.

E Related Work
Efficient Attention. Sparse attention [4, 5, 9, 10, 38, 41, 58, 77, 84, 86, 88] has been comprehensively studied to reduce the attention cost

when processing long sequeces. In parallel, approaches like FlashAttention [13, 15] accelerate attention by maximizing hardware efficiency.

To address the quadratic complexity of standard attention, researchers have also explored linear attention architectures [11, 25, 26, 37].

Additionally, quantization and low-precision methods [30, 44, 47] have been broadly applied for improving inference efficiency.

Efficient Inference. Orca [83], vLLM [39], and SGLang [89] are widely adopted to enhance the efficiency of LLM serving. Our analysis

builds on the practical designs and implementations of these systems. In parallel, speculative decoding [6, 40, 52, 61] has been proposed

to mitigate the memory-bandwidth bottleneck during LLM decoding. Additionally, model compression and offloading [17, 22, 43, 63, 68]

techniques are playing a crucial role in democratizing LLM deployment.

Efficient Test-time Strategies. Optimizing reasoning models to generate fewer tokens has been shown to directly reduce inference-time

cost [2, 49, 71]. Recent work such as CoCoNut [28] and CoCoMix [69] explores conducting reasoning in a latent space, thereby reducing

decoding time. Methods like ParScale [8], Tree-of-Thoughts [80], and Skeleton-of-Thoughts [59] aim to improve efficiency by enabling

parallel reasoning. Architectural innovations such as CoTFormer [54] further enhance efficiency by adaptively allocating computational

resources across tokens. Efficient reward-model-based [64, 67, 76] test-time scaling algorithms are also comprehensively studied.

KDD 2025 Workshop on Inference Optimization for GenAI, August 03–07, 2025, Toronto, ON, Canada Sadhukhan et al.

8192 16384 32768
median generation length

1

2

4

8

16

32
tri

al

(a) gen length vs 𝑁𝑜𝑝𝑡 correlation
(top-𝑘 attention)

8192 16384 32768
median generation length

1

2

4

8

16

32

tri
al

(b) gen length vs 𝑁𝑜𝑝𝑡 correlation
(block top-𝑘 attention)

Figure 21: Correlation between Generation Length and Number of Trials. Longer generations correlate strongly with the optimal
number of trials (𝑁𝑜𝑝𝑡), serving as a proxy for problem difficulty. (a) shows this trend for top-𝑘 and block top-𝑘 attention on the
AIME24 dataset using the Qwen3-8B model.

F Limitations, Future Scope, and Broader Impact
Limitations. Our experiments primarily focus on Qwen3 [78] and DeepSeek-R1-Distilled-Qwen [27], two state-of-the-art pretrained

reasoning model series, evaluated from the inference perspective. However, the effects of training and post-training strategies are not fully

explored and may influence the performance gaps and robustness to sparse attention mechanisms. In addition, our cost analysis assumes a

cloud-based serving environment, where computational resources are typically sufficient and large batch sizes are feasible. In contrast, local

deployment scenarios, such as those using Ollama
5
, often face limited VRAM where access to model parameters can dominate inference

costs. Smaller models may be more appropriate in such settings, and our findings may not fully extend to these use cases.

Future Scope. Our sparse scaling law offers valuable insights for enriching the applications of sparse attention algorithms and the design

space of test-time scaling strategies. On one hand, except for top-𝑘 , currently we only discuss a simple variant, i.e., block top-𝑘 , and have

already demonstrated strong scalability. More advanced sparse attention algorithms [9, 42, 70, 84] are emerging these days. We do believe

they can eventually push the scalability of test-time scaling to a much higher boundary. On the other hand, test-time scaling algorithms are

proposed to adaptively allocate computation to tasks, or even to tokens [2, 48, 49, 54]. Extending them towards to new resource allocation

problems in sparse attention is critical to reach the limit of Kinetics sparse scaling law. For instance, since generation length strongly

correlates with the optimal number of trials under sparse attention (as shown in Figure 21), it can be used as a dynamic signal to adjust the

number of trials and KV budget. Moreover, sparse attention drastically reduces inference cost, enabling more reasoning trials and longer

generations. This unlocks greater flexibility in configuring TTS strategies within a fixed resource budget.

Broader Impact. This work aims to contribute to the understanding of efficiency and scalability challenges in the test-time scaling era,

spanning model architecture, system-level implementation, and hardware design. We highlight the central role of sparsity in addressing

these challenges. Our study is algorithmic in nature and does not target specific applications. While large language models can be misused in

harmful ways, this work does not introduce new capabilities or risks beyond those already present in existing systems. Test-time scaling can

consume a substantial amount of energy, raising concerns about the environmental sustainability of widespread deployment. By promoting

sparse attention, our work hopes to help to reduce the carbon footprint and energy consumption of inference systems and support the

broader goal of sustainable AI.

5
https://github.com/ollama/ollama

https://github.com/ollama/ollama

	Abstract
	1 Introduction
	2 Cost Model and eFLOPs
	2.1 Experimental Setup

	3 Rethinking Test-time Scaling Law
	4 Sparse Test-time Scaling Law
	5 Experimental Validation
	6 Conclusion and Discussion
	References
	A Cost Model
	A.1 Full Formulations of Cost Model
	A.2 Max Cost Model v.s. Additive Cost Model
	A.3 Details about Sparse Attention Cost Model

	B Dense Scaling Law
	B.1 Best-of-N AIME24
	B.2 Iso-Cost Study
	B.3 Additional Benchmarks
	B.4 Additional Reasoning Models

	C Sparse Scaling Law
	C.1 Optimal Resource Allocation with Sparse Attention Models
	C.2 Greedy Algorithm for Optimal Resource Allocation
	C.3 Additional Benchmarks
	C.4 Additional Analysis

	D Experimental Details
	D.1 Estimate Cost, Accuracy and Solving Rate
	D.2 Top-K Attention and Block Top-K Attention

	E Related Work
	F Limitations, Future Scope, and Broader Impact

