
Medical Imaging with Deep Learning – Under Review 2022 Short Paper – MIDL 2022 submission

Energy Efficiency of Quantized Neural Networks in Medical
Imaging

Priyanshu Sinha prisinha@iu.edu

Sai Sreya Tummala tummalas@iu.edu

Saptarshi Purkayastha saptpurk@iupui.edu

Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.

Judy W. Gichoya judywawira@emory.edu

Emory University, Atlanta, GA, USA

Editors: Under Review for MIDL 2022

Abstract

The main goal of this paper is to compare the energy efficiency of quantized neural networks
to perform medical image analysis on different processors and neural network architectures.
Deep neural networks have demonstrated outstanding performance in medical image anal-
ysis but require high computation and power usage. In our work, we review the power
usage and temperature of processors when running Resnet and UNet architectures to per-
form image classification and segmentation respectively. We compare Edge TPU, Jetson
Nano, Apple M1, Nvidia Quadro P6000 and Nvidia A6000 to infer using full-precision FP32
and quantized INT8 models. The results will be useful for designers and implementers of
medical imaging AI on hand-held or edge computing devices.
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1. Introduction

In the realm of medical imaging, image classification and segmentation are important clinical
tasks. However, deploying high-precision models consumes a lot of resources (AskariHem-
mat et al., 2019). Quantization of these deep neural networks reduces both computational
and memory load. As shown in our previous work (Abid et al., 2021; Sinha et al., 2022),
many quantized models demonstrate similar performance metrics compared to full precision
models. However, there is little known evidence, other than advertised peak power usage of
processors (CPU/GPU), about the efficiency of neural networks for medical imaging tasks.

Various strategies for optimizing the energy usage of deep neural networks have been
presented in the literature, including custom hardware designs, or optimizing the type,
arrangement, and hyperparameters of the individual layers in the deep neural network
(Young et al., 2019). To get energy-efficient 3D CNN processing for embedded system action
recognition, systematic quantization can be used (Lee et al., 2018). Energy estimation of
a model can be measured (in joules) once we have estimated the inference in FLOPs for a
range of models and the GFLOPS per Watt for different GPUs (Desislavov et al., 2021).

In this paper, we optimized commonly-used neural network models using quantized
aware training (QAT) and compared the energy efficiency of the models on different hard-
ware through temperature and power consumption. The Jetson Nano and Coral Edge TPU
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are now easy to integrate with handheld devices, and our ultimate goal is to create portable
medical AI support devices that can improve diagnosis at the point-of-care. For this, we
need to reduce the computation for saving energy, cost, and time. The major goal is to
enable medical AI in low-resource contexts.

2. Methods

We review the energy usage of Google Edge TPU, Nvidia Jetson Nano, Apple M1, Nvidia
Quadro P6000, and Nvidia A6000. The Edge TPU is a Google-designed application-specific
integrated circuit (ASIC) for ML inference on low-powered devices. It is capable of 2
TOPS/watt. We run our experiments on the Edge TPU instead of the Vivante GC7000Lite
GPU available on the Coral Dev Board. The Nvidia Jetson Nano contains a Maxwell
architecture GPU with 128 CUDA cores combined with a Quad-core ARM Cortex-A57 CPU
and 4GB RAM. Its GPU is capable of 0.47 TOPS/watt but can perform 32-bit floating-
point operations and not 8-bit int. The Apple M1 is part of the Macbook Air, containing an
A12Z Armv8 CPU and a 7-core GPU. ML acceleration is through a SOC integrated Neural
Engine, capable of 1.1 TOPS/watt. However, our experiments were run using tensorflow-
metal on the M1 GPU, with a max throughput of 2.6 TFlops. The Nvidia Quadro P6000
is a Pascal architecture GPU with 24GB VRAM with 3840 CUDA cores. It has a 250W
peak power draw to produce 12 TFlops with 0.026-0.048 TOPS/watt. The Nvidia A6000 is
an Ampere architecture GPU with 48GB VRAM with 10752 CUDA cores. It has a 300W
peak power draw to produce 38.7 TFlops with 0.096-0.129 TOPS/watt.

While each CPU/GPU is architecturally very different, and comparisons are hard to
make, the objective is to review off-the-shelf products for anyone deploying medical AI mod-
els. The advertised peak performance is in floating-point operations per second (FLOPS)
or trillion operations per second (TOPS). However, in practice, actual performance depends
on various factors such as the ML model architecture, ML framework, power source, envi-
ronmental temperature, OS drivers, and other running processes. We have tried our best
to abstract these factors and report the change in temperature and power draw, keeping
all other factors the same before and after the inference. The QAT training and model
optimization is similar to our previous work reported elsewhere (Sinha et al., 2022). We
capture the power draw using a power meter at the inlet for Edge TPU and Jetson Nano
with only a network cable and no other peripherals connected. For others, we capture power
draw on Nvidia P6000 and A6000 using powertop, and M1 using powermetrics. We capture
the temp using an infrared camera for Edge TPU and Jetson Nano, TGPro for M1, and
powertop for others.

3. Results

The Tables 1 and 2 show the power and temperature usage (difference in post and pre
evaluation values) when running the most relevant models for inference on each platform.

4. Conclusion

The Edge TPU is excellent in accuracy-power performance, but complex models will need
to be quantized to INT8. Jetson Nano does excellent in classification tasks compared to
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Table 1: Model performance
FP32 INT8

Ultrasound Nerve Segmentation (Dice) 0.617 0.646

Brain MRI Segmentation (Dice) 0.96 0.94

Chest X-ray Classification (AUC-ROC) 0.81 0.77

Table 2: Power and Temperature usage across platforms

Measure
Google

Edge TPU
Nvidia

Jetson Nano
Apple
M1

Nvidia
P6000

Nvidia
A6000

Ultrasound Nerve
Segmentation

Temp.(C) 0.9 4.5 21.0 31.0 15.0
Power(mW) 1300 3376 1286 172000 142000

Brain MRI
Segmentation

Temp.(C) 2.5 1.0 8.0 19.0 9.0
Power(mW) 1490 3703 4004 171000 65000

Chest X-ray
Classification

Temp.(C) 3.1 0.5 20.0 18.0 12.0
Power(mW) 780 3520 720 168000 71000

segmentation and likely due to Resnet optimized for CUDA cores. However, the biggest
surprise is Apple M1 with high performance and low power usage with very little heating
and fast cooling with passive cooling.
Source Code: deep models energy consumption.
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