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Abstract

Machine learning models for 3D molecular property prediction typically rely on
atom-based representations, which may overlook subtle physical information. Elec-
tron density maps—the direct output of X-ray crystallography and cryo-electron
microscopy—offer a continuous, physically grounded alternative. We compare
three voxel-based input types for 3D convolutional neural networks (CNNs): atom
types, raw electron density, and density gradient magnitude, across two molecular
tasks—protein–ligand binding affinity prediction (PDBbind) and quantum property
prediction (QM9). We focus on voxel-based CNNs because electron density is in-
herently volumetric, and voxel grids provide the most natural representation for both
experimental and computed densities. On PDBbind, all representations perform
similarly with full data, but in low-data regimes, density-based inputs outperform
atom types, while a shape-based baseline performs comparably—suggesting that
spatial occupancy dominates this task. On QM9, where labels are derived from
Density Functional Theory (DFT) but input densities from a lower-level method
(XTB), density-based inputs still outperform atom-based ones at scale, reflecting
the rich structural and electronic information encoded in density. Overall, these
results highlight the task- and regime-dependent strengths of density-derived inputs,
improving data efficiency in affinity prediction and accuracy in quantum property
modeling.

1 Introduction

Machine learning (ML) has become an essential component of structure-based small molecule
discovery, supporting tasks such as virtual screening, lead optimization, and protein–ligand binding
affinity prediction [1, 2]. A critical challenge in these applications is selecting a representation
that effectively captures the physical and chemical complexity of molecular systems. Most current
methods rely on atom-based features, using atomic coordinates and element types extracted from
experimentally resolved or computationally modeled structures.

Although widely used, atom-based representations abstract away important physical details. Atomic
coordinates are not measured directly; they are inferred by fitting an atomistic model to experimental
electron density maps obtained from X-ray crystallography or cryo-electron microscopy. This model-
building process depends on expert interpretation and heuristic refinement procedures, introducing
potential bias and error. Structural inaccuracies in public databases such as the Protein Data Bank
(PDB) [3] are well documented [4, 5]. Moreover, by discretizing molecules into point-like atoms,
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these representations ignore the continuous distribution of electron density that governs molecular
interactions.

Electron density maps, the direct output of X-ray crystallography and cryo-electron microscopy
(cryo-EM), offer a more direct and physically grounded alternative. These maps represent a 3D scalar
field describing the spatial distribution of electrons. Unlike fitted atomistic models, they encode both
the extent and overlap of electron clouds and inherently capture features such as conformational
heterogeneity and structural uncertainty, which manifest as diffuse or mixed density in flexible
regions.

Electron density has several properties that make it appealing for ML applications:

• Directly derived from experiment: Density maps are obtained directly from physical
measurements, bypassing the lossy step of atomic model fitting [6].

• Continuous encoding of interactions: Because molecular forces arise from electron
distribution, density may enable more physically faithful modeling of interaction strength
and geometry.

• Implicit representation of flexibility and uncertainty: Conformational variability appears
naturally in the map, without additional modeling assumptions.

These characteristics suggest that density-based representations may offer a richer signal for learning
molecular properties—particularly those governed by electronic structure and interactions, such
as binding affinity and quantum mechanical properties. Intuitively, one might expect this richer
information to translate into improved model performance, especially under data-limited conditions.

At the same time, atom-type representations provide strong chemical priors by explicitly labeling
atoms with their identities (e.g., C, N, O). These priors embed known chemical patterns and may be
especially useful in high-data or chemically diverse regimes. This raises a central question: when do
density-based representations offer an advantage over atom-based ones?

To address this, we compare three voxel-based representations for 3D convolutional neural networks
(CNNs): atom-type channels, raw electron density, and the gradient magnitude of density. The
gradient captures rapid spatial changes in density and may highlight features relevant to chemical
interactions, such as bonding regions or non-covalent contacts [7]. We use 3D CNNs because they
are well suited for volumetric data, as electron density forms a continuous field in three-dimensional
space. Although computed densities (e.g., from XTB or DFT) can be expressed in alternative
bases, voxelization provides a unified spatial framework for both experimental and theoretical
sources. Because our objective is to benchmark different voxel representations rather than optimize
architectures, we focus on CNNs, which can directly process volumetric data, whereas graph- or
transformer-based networks [8–11] cannot natively represent continuous 3D density fields. This
makes 3D CNNs a natural architectural choice for evaluating volumetric representations.

We evaluate these representations on two tasks: (1) protein–ligand binding affinity prediction using
the PDBbind dataset, and (2) quantum property prediction for small molecules using QM9. These
tasks differ in physical scale, label origin, and modeling assumptions, providing complementary
perspectives. Specifically, we ask: Do density-based inputs improve model performance in low-data
settings? Do these benefits persist at scale, even when the input densities are approximate or noisy?
By analyzing how representation interacts with data regime and model capacity, we aim to clarify the
conditions under which density-derived inputs improve 3D molecular learning.

2 Related Work

Structure-Based Learning with Atomic Coordinates. Most machine learning models for
structure-based molecular discovery rely on atomic coordinate–based representations. Graph neural
networks (GNNs) encode molecules as graphs with atom and bond features, often extended to include
3D geometric information [8, 9, 12]. Point-cloud models treat molecules as unordered sets of atomic
coordinates, requiring networks that are invariant or equivariant to rotation and translation [11, 10].
Voxel-based 3D CNNs, which are directly relevant to this work, project atomic features onto a 3D
grid and have been widely applied to pose prediction and binding-affinity scoring in docking pipelines
[13, 2, 1]. Unlike graph or point-based models that operate on discrete atomic representations, 3D
CNNs can directly process continuous volumetric data such as electron density maps. Because our
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goal is to compare representational domains rather than model architectures, we adopt voxel-based
CNNs as a consistent framework for learning from density fields. In contrast, GNNs and related
architectures are designed for atom- and bond-level inputs and cannot directly handle volumetric
electron-density data without new formulations that incorporate such information.

Electron Density in Structural Biology. Electron density maps are not merely alternative inputs for
ML but are the fundamental data products of experimental techniques such as X-ray crystallography
and cryo-EM, representing the time- and ensemble-averaged spatial distribution of electrons. Struc-
tural biologists interpret these maps to build and refine atomic models that best explain the observed
density [6]. This process involves fitting atomic templates, often requiring expert knowledge, and
can be subjective—particularly in regions of lower resolution or higher flexibility. While essential
for generating interpretable models, this step inherently involves assumptions and may lose subtle
information present in the raw density. Using the density directly for ML bypasses this modeling step
and can preserve more of the original experimental signal.

Machine Learning on Electron Density. Although less common than atom-based approaches,
applying machine learning directly to electron density is an emerging area of research. Recent
work has explored density maps for generative modeling—for example, Wang et al. [7] introduced
a diffusion model that generates ligands conditioned on the electron density of protein pockets
and showed that regions of rapid density change may correspond to non-covalent interactions.
These findings motivate our use of both raw electron density and its gradient magnitude, which
highlight complementary aspects of the electronic environment. However, few controlled studies
have systematically compared density-based and atom-based representations across 3D molecular
prediction tasks. Our work addresses this gap by directly evaluating both input types on two
benchmark molecular prediction tasks.

3 Experiments and Methods

3.1 Binding Affinity Prediction

We assess model performance using the PDBbind v2021 dataset [14], a widely used benchmark for
protein-ligand binding affinity prediction, which includes ∼20,000 complexes with experimentally
measured pK values. Following Pinheiro et al. [15], we voxelize the ligand and its surrounding
protein pocket into separate 3D grids, both centered on the ligand’s center of mass, and pass them as
input to the model (See Supplement A.1 for details).

To ensure proper generalization and avoid data leakage, we split the data using both receptor sequence
and ligand similarity. Two complexes are assigned to the same split only if: (1) their receptor
sequence identity exceeds 50%, or (2) their receptor sequence identity exceeds 40% and their ligand
Tanimoto similarity is above 0.9. To further diversify the test set, all targets similar to those in the
DEKOIS 2.0 benchmark [16]—which spans a wide range of protein families—are reserved for the
test set. The final split includes approximately 14,258 complexes for training, 1,171 for validation,
and 5,554 for testing.

We report Spearman correlation (ρ) on the test set as the primary evaluation metric. This choice
reflects real-world applications of binding models, where compound ranking is often more critical
than absolute value prediction.

3.1.1 Input Feature Representations

All inputs are voxelized into a 64×64×64 grid at 0.25 Å resolution. For density-based representations,
we first resample all experimental electron density maps to a uniform resolution of 0.25 Å, as raw
maps vary in resolution across structures. We compare the following four input types:

• Atom-Type: A multichannel representation where atom types are encoded as 3D Gaussians
centered at atomic coordinates [15]. Ligands use 7 channels (C, O, N, S, F, Cl, P), and
protein pockets use 4 channels (C, O, N, S).

• Shape-Only: A single-channel baseline where all atoms are treated as carbon, removing
chemical identity to focus on shape.
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• Density: A single-channel grid of experimental 2mFo–DFc electron density values, ex-
tracted from crystallographic MTZ files using Phenix [6].

• GradMag: A single-channel grid encoding the spatial gradient magnitude of the 2mFo–DFc
map, highlighting regions of rapid density change, which may correlate with interaction
sites [7].

3.1.2 Model Architectures and Training

To isolate the effect of input representation, we use a consistent family of 3D convolutional networks
across experiments. Models are evaluated at three capacity levels:

• Tiny (∼0.4M parameters): Based on GNINA’s Default2018Affinity architecture [17].

• Small (∼4M) and Default (∼58M): Use the encoder half of the VoxBind 3D U-Net
architecture [15], followed by a multi-layer perceptron (MLP) for affinity prediction.

See Supplement A.1 for detailed architectural descriptions.

All models are trained using the Adam optimizer (learning rate 1× 10−5), batch size 32, and mean
squared error (MSE) loss, for 1000 epochs. Random 3D rotations are applied to voxel inputs during
training to promote rotational invariance. Reported results are averaged over three random seeds.

3.1.3 Data Efficiency Evaluation

To assess data efficiency, we train models on increasingly larger subsets of the training set: 1%,
5%, 10%, 25%, 50%, and 100%. This allows us to compare performance trends across input
representations and model sizes as data availability increases.

3.2 Quantum Property Prediction

We evaluate our models on the QM9 dataset [18], which contains approximately 134,000 small organic
molecules (each with up to 9 heavy atoms), along with quantum chemical properties computed using
Density Functional Theory (DFT). We train separate models to predict four scalar regression targets:
dipole moment (µ), isotropic polarizability (α), energy of the highest occupied molecular orbital
(EHOMO), and energy of the lowest unoccupied molecular orbital (ELUMO). The dataset is randomly
split into 80% training, 10% validation, and 10% test sets.

Unlike the PDBbind task, which leverages experimental electron density maps derived from crystallo-
graphic data, the QM9 dataset does not contain any experimental structural or density measurements.
As a result, we generate approximate electron density maps using the GFN2-xTB semiempirical
method via the XTB package [19], based on the molecular geometries provided in the dataset. These
computed densities are used as input for our density-based voxel representations.

We use mean absolute error (MAE) as the evaluation metric, following standard practice in prior
work [9, 12]. Our goal is not to achieve state-of-the-art accuracy, but to evaluate how different
representations affect predictive performance.

3.2.1 Input Representations

QM9 molecules are voxelized into 32× 32× 32 grids at 0.25 Å resolution, centered on the molecular
center of mass. We use the same four input types as in the binding affinity task (Section 3.1):
Atom-Type, Shape-Only, Density, and GradMag. The only difference lies in the atom-type
representation: for QM9, we use five channels corresponding to C, H, O, N, and F. All other
representations use a single channel.

3.2.2 Model Architectures and Training

To study the effect of model capacity, we use three versions of a 3D CNN architecture adapted from
VoxMol [20], varying in size: Tiny (∼4M parameters), Small (∼15M), and Default (∼58M). For
architectural details, see Supplement A.2.
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Figure 1: Test Spearman correlation for binding affinity prediction on the PDBbind test set across train-
ing set sizes (1%–100%) and model capacities (∼0.4M, ∼4M, ∼58M parameters). We compare four
voxel-based input representations: atom types (Atom-Type), atoms mapped to carbon (Shape-Only),
electron density values (Density), and electron density gradient magnitude (GradMag). Performance
generally improves with training data size but plateaus beyond 10%. With the full training set, all
representations perform similarly across model sizes. In the low-data regime (1%), density-based
inputs outperform Atom-Type, and the Shape-Only baseline—despite discarding chemical iden-
tity—performs comparably to density-based inputs. This counterintuitive result suggests that simple
spatial occupancy alone may be highly predictive in this dataset, potentially due to biases in the
benchmark or the use of static, bound structures. Insets show performance at 100% training data,
with stars marking best-performing models within standard deviation.

All models are trained using the Adam optimizer with a learning rate of 1× 10−5, batch size 128, and
Mean Squared Error (MSE) loss. To improve invariance to molecular orientation, we apply random
3D rotations to voxelized inputs during training.

Prior to training, all target labels are normalized to zero mean and unit variance. Predictions are
rescaled during evaluation to report metrics in the original units. Each model is initially trained for
1500 epochs. Training continues for up to 5000 epochs if the validation loss has not converged, using
early stopping with a patience of 50 epochs. Final results are reported as the mean and standard
deviation of the MAE across three runs with different random seeds.

3.2.3 Data Efficiency Evaluation

To evaluate data efficiency, we train the models on subsets of the training data: 0.15%, 1%, 10%, and
100%. Performance across these subsets helps assess how each input representation scales with data
availability.

4 Results

4.1 Binding Affinity Prediction (PDBbind)

Figure 1 shows the Spearman correlation on the PDBbind test set across training set sizes and model
capacities. We observe that increasing model size has little effect on performance. The Tiny model
(∼0.4M parameters) performs similarly to the largest model (Default, ∼58M), consistent with
previous findings that small architectures can perform well in structure-based docking and virtual
screening tasks [17].

Model performance improves with more training data but plateaus after 10%. At full data scale, all
four input representations—Atom-Type, Shape-Only, Density, and GradMag—perform similarly
within error margins.

Interestingly, in the low-data regime (1% of the training set, or ∼100 complexes), the density-
based inputs (Density and GradMag) already achieved relatively strong performance—close to their
performance when trained on the full dataset—and outperformed the atom-type input (Atom-Type)
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across all models. Even more surprisingly, the Shape-Only input, which treats all atoms as carbon
and discards atomic identity, performed comparably to the density-based inputs at this data size
(except for the Tiny model). This result is counter-intuitive: one might expect Shape-Only to
perform the worst as we removing the atom types. However, these findings suggest that in this
dataset—where we use experimentally resolved structures in their bound, low-energy conformations—
spatial occupancy alone (i.e., how well the ligand fills the binding pocket) may be a strong predictive
signal. Prior work has noted that hydrophobic and shape-complementary interactions are often the
dominant contributors to binding affinity, while atom-type–specific interactions (e.g., hydrogen bonds,
salt bridges) tend to govern binding specificity [21].

The small difference between 10% and 100% training data further supports this: models may already
extract most of the relevant information early on. In contrast, the Atom-Type input performs worse
in low-data settings, likely due to its higher dimensionality (7 channels for ligand atoms and 4 for
protein atoms), leading to sparser inputs and greater risk of overfitting.

4.2 Quantum Property Prediction

Figure 2 shows test MAE across training set sizes for QM9 target properties. As expected, per-
formance improves consistently with more training data, regardless of model size, input type, or
prediction target. This contrasts with the PDBbind results, where performance plateaus after 10%,
and highlights QM9’s greater sensitivity to data quantity.

Figure 3 summarizes results at 100% training data. Accuracy improves steadily with model
size—from Tiny (∼4M) to Small (∼15M) and Default (∼58M)—unlike the binding task, where
model size had little effect. Atom-type information plays a more important role here: removing
atomic identity (Shape-Only) consistently reduces performance across all models and data sizes, in
line with the expectation that quantum properties are driven by electronic structure, not just shape.

In low-data regimes, performance varies across input types with no clear winner. However, at full data
scale, density-based inputs (Density, GradMag) consistently outperform atom-type representations.
These densities are generated using the semiempirical XTB method, which is significantly less
computationally expensive—but also less accurate—than the DFT calculations used to derive the
target molecular properties. This mismatch in the level of theory introduces a potential source of
error; for example, XTB tends to systematically overestimate dipole moments relative to DFT (see
Supplement, Figure 4).

Additional approximation error comes from voxelizing continuous densities. The supplemental
figure reports error based on continuous basis-function densities, whereas our models use discretized
voxel inputs, which add further discrepancy. Despite these limitations, Density and GradMag
outperform both Atom-Type and Shape-Only (Figure 3), suggesting that voxelized density still
captures important aspects of electronic structure not present in other representations.

Note on external comparisons. We do not compare to prior PDBbind models, as published results
use different data splits and are not directly comparable without retraining. Moreover, recent work
has shown that the splits used in previous studies may suffer from data leakage due to high sequence
similarity between training and test proteins [22, 23]. Our experiments use controlled splits with
minimal train-test overlap to fairly assess the effect of input representations (see Section 3.1). For
QM9, we include SchNet [9] performance (Figure 2) only as a sanity check to verify that our 3D
CNN benchmarks produce results within a reasonable error range. Our CNN models were not further
tuned or optimized for performance, as the goal is to compare voxel-based representations under
consistent training conditions, rather than to outperform graph-based or other state-of-the-art methods
published in the literature. Because SchNet operates on graph-based atomic representations rather
than volumetric grids, its results are not directly comparable to our voxel-based models.

5 Conclusion

This study systematically evaluated voxel-based molecular representations—Atom-Type, electron
density (Density), and density gradient magnitude (GradMag)—as inputs to 3D convolutional
neural networks for molecular property prediction. Motivated by the hypothesis that density-derived
representations offer a richer, more physically grounded encoding than discrete atom-type models,
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Figure 2: Test MAE across training set sizes for QM9 target properties. Each row corresponds to a
different model size (Tiny ∼4M, Small ∼15M, Default ∼58M), and each column to a regression
target (Dipole Moment, Polarizability, HOMO Energy, LUMO Energy). Lower MAE indicates
better performance. Across all settings, increasing training data consistently reduces error. Density-
based inputs (Density, GradMag) outperform atom-based ones at full data scale, while the poor
performance of Shape-Only (orange) highlights the value of chemically informative features. Red
dashed lines mark reported SchNet [9] results, shown only as a sanity check to confirm that our
3D CNN benchmarks yield reasonable error ranges. Our models were not tuned for state-of-the-
art performance—the goal is to compare voxel-based representations under consistent conditions.
Because SchNet is a graph neural network operating on atom-level graphs, it cannot directly represent
volumetric density data without substantial reformulation, and its results are therefore not directly
comparable to ours.

we benchmarked these approaches across two prediction tasks: 3D binding affinity prediction using
experimental protein–ligand structures (PDBbind) [14], and quantum property prediction of small
molecules (QM9) [18].

For 3D binding affinity prediction, increasing model size—from ∼0.4M to ∼58M parameters—had
minimal impact on performance, consistent with prior work showing the effectiveness of compact
architectures (e.g., GNINA [17]) for structure-based drug discovery. Model accuracy improved with
additional training data but plateaued beyond ∼10%, indicating that most predictive information is
captured early. In the low-data regime (1%), density-based inputs (Density, GradMag) outperformed
atom-type inputs and achieved near-peak performance. Interestingly, a simplified input that removes
atom-type information (Shape-Only) performed comparably to density-based inputs. These findings
suggest that in this setup—using bound-state experimental structures where ligand poses and steric
complementarity are already resolved—geometric occupancy alone may provide a strong predictive
signal. In such cases, atom-type information may add limited benefit and can increase overfitting risk
in low-data settings due to higher input sparsity.

In contrast, the quantum property prediction task on QM9 exhibited markedly different behavior.
Performance improved consistently with both model capacity and data scale, with larger networks
yielding better accuracy, indicating a greater need for representational expressiveness in this setting.
Atom-type information also played a more critical role: removing atom identity (Shape-Only)
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Figure 3: Test MAE at 100% training set size for all input types, targets, and model sizes. Each
row shows results for a different model size, and each column corresponds to one of the QM9
target properties. Bars show mean test MAE with standard deviation across three seeds. Density-
based inputs (Density, GradMag) consistently yield the lowest errors across all targets and model
sizes. Shape-Only inputs perform worst overall, highlighting the value of chemically meaningful
information in voxel inputs.

substantially degraded performance across all targets and model sizes, reflecting the importance
of chemical specificity in quantum behavior. While no representation was consistently superior in
low-data settings, density-based inputs (Density, GradMag) consistently outperformed atom-type
inputs when trained on the full dataset. These densities were computed using the semiempirical
XTB method, which is significantly less computationally expensive—but also less accurate—than the
DFT methods used to generate the QM9 target properties. This introduces two distinct sources of
approximation: (1) differences in the level of theory—e.g., XTB systematically overestimates dipole
moments relative to DFT (see Supplement, Figure 4)—and (2) discretization error from voxelizing
continuous densities. Despite these limitations, density-based inputs yielded the best performance
overall, suggesting that electron density captures essential information about electronic structure that
is not easily recovered from atom types or spatial geometry alone.

While these findings highlight the strengths of density-based voxel representations, several limitations
and opportunities remain. This study focuses on 3D CNNs because they are the most natural choice
for processing volumetric electron density data from both experimental and computed sources.
Extending these ideas to graph-based or equivariant architectures would require new formulations
capable of representing density within their atom-centric frameworks. Moreover, voxel-based
representations are computationally intensive—storing and training on high-resolution volumetric
grids can be prohibitively expensive for large datasets. Developing more compact or adaptive
encodings could make density-based learning more practical at scale. It would also be valuable
to explore hybrid approaches that combine atom-type specificity with density-derived features,
potentially capturing complementary geometric and electronic information. Ultimately, the optimal
molecular representation depends on the prediction task, data regime, and underlying physical
principles most relevant to the property being modeled.
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A Model Architectures

A.1 Binding Affinity Model Architecture (PDBbind)

We evaluate three 3D CNN architectures for predicting protein–ligand binding affinity using the
PDBbind v2021 dataset [14]. Each complex is voxelized into two separate 643 grids—one for the
ligand and one for the protein pocket—centered on the ligand’s center of mass and resampled to
0.25 Å resolution.

Input Representations. Channel dimensions vary based on the representation:

• Atom-Type: 7 channels for ligand atoms (C, O, N, S, F, Cl, P), 4 channels for protein pocket
atoms (C, O, N, S).

• Shape-Only, Density, GradMag: 1 channel each for ligand and protein pocket atoms.

Ligand and Pocket Encoders. The ligand and pocket are processed independently using identical
3D CNN encoders adapted from VoxBind [15]. Each encoder consists of a single residual block
comprising two padded 3×3×3 convolutional layers with 16 channels, followed by SiLU activations
[24]. Each produces an output of shape 16 × 643. The two outputs are summed element-wise to
produce a fused embedding.

Fused Representation Encoder. The fused representation is then processed by one of the following
architectures depending on model capacity:

• Tiny (∼0.4M parameters): The fused embedding is passed through the GNINA
Default2018 CNN architecture [17]. This consists of five 3D convolutional layers with
interleaved average pooling and ReLU activations [25], followed by a fully connected linear
layer to produce a scalar affinity prediction.

• Small (∼4M parameters): The fused embedding is passed through the encoder portion of
the 3D U-Net from VoxBind [15]. This U-Net encoder follows the original VoxBind design,
using four resolution levels with channel multipliers [1, 2, 2, 4] and base channel width
nch = 8. Each resolution level contains two residual blocks, and each residual block consists
of two padded 3× 3× 3 convolutions with 16 channels followed by SiLU activations [24].
Group normalization [26] with 4 groups is applied throughout. The encoder outputs a
bottleneck feature map of shape 128× 83.

• Default (∼58M parameters): Same as Small, but with nch = 32, yielding a bottleneck of
512× 83. Group normalization uses 16 groups.

MLP Prediction Head (Small and Default only). The bottleneck feature map is passed through a
shared multi-layer perceptron (MLP) head to produce the final affinity prediction. This consists of:

• AvgPool3d(8)

• Linear layers with LayerNorm, SiLU, and Tanhshrink activations:

Small: 128 → 128 → 64 → 1

Default: 512 → 512 → 64 → 1

A.2 Quantum Property Prediction Model Architecture (QM9)

We use a 3D CNN encoder adapted from VoxMol [20] for scalar regression on voxelized QM9
molecules [18]. Each molecule is represented as a 323 grid.

Input Representations.

• Atom-Type: 5 channels (H, C, N, O, F)

• Shape-Only, Density, GradMag: 1 channel each
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Encoder. The input is first projected to nch base channels using a 3 × 3 × 3 convolution. The
encoder applies four downsampling stages using channel multipliers [1, 2, 2, 4], resulting in
a final output of size 16nch × 43. Each stage contains two residual blocks with 3D convolution,
GroupNorm, and SiLU activations. Self-attention is used in the final two stages.

MLP Prediction Head. The encoder output is passed to a multi-layer perceptron for scalar quantum
property prediction:

16nch → 64 → 32 → 1

Each layer includes LayerNorm, SiLU, and Tanhshrink activations.

Model Variants. The QM9 models share this architecture but vary in channel width and normaliza-
tion:

• Tiny (∼4M): nch = 8, ngroups = 4

• Small (∼15M): nch = 16, ngroups = 8

• Default (∼58M): nch = 32, ngroups = 16

B Distribution of Dipole Moment Errors: XTB vs DFT

Figure 4: Distribution of Dipole Moment Errors: XTB vs DFT. Histogram of dipole moment
errors (XTB − DFT) across the QM9 dataset. The red solid line shows a Gaussian fit to the full
error distribution (µ = 1.63, σ = 3.60 Debye), while the dashed red line indicates zero error. The
inset shows the distribution with outliers removed (5th–95th percentile), highlighting the skew and
overprediction tendency of XTB. XTB overpredicts dipole moments in 88.8% of cases.
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