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Abstract001

As evaluation designs of large language models002
may shape our trajectory toward artificial gen-003
eral intelligence, comprehensive and forward-004
looking assessment is essential. Existing bench-005
marks primarily assess static knowledge, while006
intelligence also entails the ability to rapidly007
learn from experience. To this end, we advocate008
for the evaluation of Test-time Learning, the009
capacity to improve performance in experience-010
based, reasoning-intensive tasks during test011
time. In this work, we propose semantic games012
as effective testbeds for evaluating test-time013
learning, due to their resistance to saturation014
and inherent demand for strategic reasoning.015
We introduce an objective evaluation frame-016
work that compares model performance under017
both limited and cumulative experience set-018
tings, and contains four forms of experience019
representation. To provide a comparative base-020
line, we recruit eight human participants to021
complete the same task. Results show that022
LLMs exhibit measurable test-time learning023
capabilities; however, their improvements are024
less stable under cumulative experience and025
progress more slowly than those observed in hu-026
mans. These findings underscore the potential027
of LLMs as general-purpose learning machines,028
while also revealing a substantial intellectual029
gap between models and humans, irrespective030
of how well LLMs perform on static bench-031
marks. Code and data are available1.032

"Give a man a fish, and you feed him for a day;033
teach a man to fish, and you feed him for a034
lifetime."035

1 Introduction036

As large language models continue to advance, the037

design of their evaluations becomes increasingly038

important, as it shapes the development priorities039

of the next generation of models and guides the040

broader trajectory toward artificial general intelli-041

gence (Chang et al., 2024). Current benchmarks042

1https://anonymous.4open.science/r/Test-time-Leaning

Figure 1: Test-time Learning Evaluation Pipeline.

predominantly focus on measuring the expertise 043

of language models in performing specific tasks. 044

However, intelligence is not solely defined by the 045

possession of expert knowledge (Krathwohl, 2002; 046

Minsky, 1988). For example, individuals without 047

profound knowledge can still demonstrate intelli- 048

gence through their speed to acquire new skills 049

through experience (Silver and Sutton, 2025). This 050

dimension of intelligence, the capacity for rapid 051

learning, remains largely overlooked in existing 052

evaluation frameworks. 053

Assessing the ability to learn quickly is chal- 054

lenging. Under the current LLM development 055

paradigm, models undergo massive pre-training fol- 056

lowed by domain-specific alignment (Achiam et al., 057

2023; Liu et al., 2024). Models are typically com- 058

pared based on their final performance outcomes, 059

without constraints on the amount of task-relevant 060

training data they utilize. In this paper, we do not 061

argue for altering this training paradigm, as it is 062

the reason of success. Rather, we aim to design an 063

evaluation framework that can directly measure a 064

model’s ability to improve rapidly at test time. 065

The characteristic we aim to evaluate aligns 066

closely with the concept of “Test-time Learning”, 067

which refers to a model’s ability to adapt and im- 068

prove through its own test-time experience. The 069

desirable end-state for artificial intelligence should 070

have the ability to effectively improve its perfor- 071
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mance through a limited number of experiences by072

interacting with environments, reflecting on feed-073

back and rewards, rapidly acquiring in-context or074

in-weight policies, and acting adaptively. More-075

over, these test-time improvements should be capa-076

ble of accumulating as experience grows, enabling077

continual adaptation and learning.078

The concept of test-time learning shares con-079

ceptual similarities with in-context reinforce-080

ment learning (Laskin et al.; Lee et al., 2023;081

Grigsby et al.; Lu et al., 2023a) and agent self-082

evolution (Tao et al., 2024) to some extent. How-083

ever, it is distinguished from these paradigms in084

several fundamental ways. (1) Generality of Envi-085

ronment: In-context reinforcement learning typi-086

cally operates within classical RL domains such as087

adversarial bandits (Duan et al., 2016) or the dark088

room setting (Laskin et al.), which are character-089

ized by constrained environments and limited ac-090

tion spaces. In contrast, test-time learning empha-091

sizes generalization in open-ended environments,092

where the action space spans the full token space093

of a language model. (2) Beyond Memorization:094

Research on agent self-evolution has largely fo-095

cused on tool-use or coding tasks that rely heavily096

on rote memorization or repeated exposure to sim-097

ilar instances (Qian et al., 2024). These setups098

often allow models to improve simply by recall-099

ing prior examples. Test-time learning is achieved100

in experience-based, reasoning-intensive tasks that101

require discovering latent patterns and executing102

self-proposed policies beyond surface-level recall.103

In this work, we propose an objective frame-104

work to evaluate the test-time learning ability of105

current large language models. Rather than relying106

on static tasks like academic olympiads, we adopt107

competitive games, which are dynamic, resistant108

to saturation, and embed latent strategies, making109

them ideal for studying test-time learning.110

Furthermore, we systematically evaluate perfor-111

mance across four test-time experience settings:112

(1) full experience with interactions, rewards, and113

model reflection; (2) model-derived policy based114

solely on game rules; (3) model-derived policy in-115

formed by both rules and accumulated test-time116

experience; and (4) human-authored policy. To117

compare LLM performance with human reason-118

ing, we also recruit human annotators to perform119

the same task. The results reveal a clear gap be-120

tween human and model test-time learning capabil-121

ities, highlighting promising directions for future122

research.123

The experiment results show that LLMs demon- 124

strate measurable test-time learning ability; how- 125

ever, these gains are not stable and consistent when 126

experience accumulates. In contrast, human partici- 127

pants exhibit more stable and rapid learning. These 128

findings highlight the need for further evaluation 129

and improved training strategies to enhance the 130

test-time learning of LLMs. 131

Importantly, our aim is not to build an elab- 132

orate framework centered on agentic workflows, 133

but rather to propose a lightweight and objective 134

pipeline for assessing whether models can benefit 135

from test-time experience. We believe that system- 136

atic evaluation of test-time learning constitutes a 137

key step toward advancing the capabilities of large 138

language models. 139

2 Related Work 140

2.1 Test-time Learning 141

The concept "test-time learning" shares certain sim- 142

ilarity with "test-time training", "in-context rein- 143

forcement learning" and "self-evolution" but also 144

adopts key distinctions in its focus and formulation. 145

The first two concepts involve weight updates. 146

Test-time training (Sun et al., 2020; Liu et al., 2021; 147

Gandelsman et al., 2022; Sinha et al., 2023; Sun 148

et al., 2019) primarily addresses distributional or 149

domain shifts between training and test data by 150

adapting model parameters at inference time. In- 151

context reinforcement studies (Laskin et al.; Lee 152

et al., 2023; Grigsby et al.; Lu et al., 2023a) in- 153

volves training models from scratch to perform 154

reinforcement learning tasks via in-context tokens. 155

Self-evolution studies focus on performance im- 156

provements through in-context interactions with- 157

out parameter updates (Tao et al., 2024; Lu et al., 158

2023b). For instance, Lange et al. (2024) pro- 159

posed prompting strategies that enhance perfor- 160

mance through structured interactions, and Yu and 161

Feng (2025) introduced agentic workflows that in- 162

tegrate human knowledge to guide model behavior 163

and maximize gains. Most prior work emphasizes 164

engineering pipelines to improve in-context perfor- 165

mance, often in application settings such as web 166

navigation, tool use, or code generation—domains 167

where improvements are frequently driven by re- 168

trieval or surface-level similarity to prior examples, 169

rather than by the development of general strategies 170

or deeper reasoning. As noted by Silver and Sutton 171

(2025), “now is the time of experience,” highlight- 172

ing the emerging view that future intelligent agents 173
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must learn through interaction to achieve higher-174

level of reasoning, rather than rely solely on static175

question answering-style evaluations.176

In this work, we aim to objectively evaluate177

the extent to which LLMs can leverage experi-178

ence at test time. Specifically, we quantify models’179

test-time gains and compare them against improve-180

ments guided by human-authored policies and hu-181

man learning trajectories.182

2.2 Evaluation Environments183

For reasoning-intensive evaluation environments,184

in-context reinforcement learning studies have185

explored semantic and visual representations186

of reinforcement tasks such as the adversarial187

bandit (Laskin et al.; Lee et al., 2023), dark188

room (Laskin et al.; Lee et al., 2023) and Partially189

Observable Process Gym (Morad et al., 2023; Lu190

et al., 2023a), a set of simple environments de-191

signed to benchmark memory in deep RL. However,192

these tasks involve closed-ended environments with193

limited action spaces and are often easily solved194

by current large language models, as they may al-195

ready encode effective policies, e.g., upper con-196

fidence bound(Garivier and Moulines, 2011). In197

contrast, we focus on open-ended experience-based198

reasoning-intensive tasks with token-level action199

spaces and moderate difficulty, where the optimal200

policy is not readily accessible or encoded in the201

model. Regarding the self-evaluation of LLMs, re-202

cent works have employed web-used (Yao et al.,203

2022), tool-assisted (Lu et al., 2023b), or static204

benchmarks, including math (Cobbe et al., 2021),205

code generation (Jiang et al., 2023; Luo et al.,206

2023), and general-purpose benchmarks (Chiang207

et al., 2023). However, these static evaluations are208

prone to saturation, and observed improvements209

may result from memorization or recall rather than210

from enhanced reasoning via learned policies.211

In this work, we propose competitive game en-212

vironments as effective testbeds for evaluating the213

test-time learning ability of LLMs. These environ-214

ments are dynamic, resistant to saturation, open-215

ended, reasoning-intensive, and policy-driven, mak-216

ing them well-suited for assessing model ability to217

learn and adapt through experience.218

3 Test-time Learning219

3.1 Testbeds220

The optimal environment for evaluating the test-221

time learning ability of large language model222

should satisfy the following requirements: 1) Mod- 223

erate Difficulty: The environment should not admit 224

a readily accessible optimal policy, either due to 225

the nature of the task or the current limitations of 226

large language models. 2) Structured Regularity: 227

Tasks should contain underlying patterns that can 228

be uncovered and leveraged through interaction 229

and reasoning to enhance performance. 3) Beyond 230

Memorization: Success should depend not on re- 231

calling previous answers, but on identifying gener- 232

alizable rules or strategies that drive improvement. 233

These criteria highlight the importance of reason- 234

ing over purely knowledge-rich contexts. Classic 235

reinforcement learning settings, such as adversar- 236

ial bandit (Laskin et al.), have been rendered less 237

meaningful for test-time learning evaluations, as 238

many models have already internalized algorithms 239

like Upper Confidence Bound in their knowledge. 240

To address this, we adopt three diverse environ- 241

ments to evaluate test-time learning: a mathematics 242

benchmark, a single-agent semantic game, and a 243

multi-agent semantic game. 244

AIME 2025 (MAA, 2025) refers to the Ameri- 245

can Invitational Mathematics Examination 2025, 246

used to identify candidates for the U.S. team in the 247

International Mathematical Olympiad (IMO). We 248

leverage this most recent mathematics benchmark 249

to examine the test-time learning capabilities of 250

large language models in solving high-level mathe- 251

matical problems. 252

Twenty Question (Abdulhai et al., 2023; Zhou 253

et al., 2024) is a dialogue-based multi-turn sin- 254

gle agent task in which a large language model 255

attempts to identify a target word from a fixed set of 256

157 candidate words by asking up to twenty yes/no 257

questions. The environment responds with "Yes", 258

"No", or "Invalid" if the question is not a valid 259

yes/no query. To ensure consistent understanding 260

of the questions, the environment is simulated us- 261

ing the same LLM as the questioning model. 262

The 157 candidate words, adopted from prior 263

work (Zhou et al., 2024), span diverse categories 264

including animals, art, clothes, electronics, fruits, 265

furniture, garden supplies, jewelry, kitchen tools, 266

musical instruments, nature, office supplies, sports, 267

tools, toys, vegetables, and vehicles. The candidate 268

set remains fixed across the games, providing a 269

controlled setting to evaluate whether the LLM can 270

learn effective categorization and formulate increas- 271

ingly informative dichotomous questions during 272

test time. Performance is measured by NDCG@20 273

based on the rank of the correct guess. 274
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Who is undercover (Xu et al., 2023) is a dialogue-275

based multi-turn multi-agent task. Each player is276

assigned a secret word: one player receives a dis-277

tinct word as the undercover, while all others, civil-278

ians, share the same word. In each round, players279

provide verbal clues related to their secret words.280

By analyzing both their own and others’ clues, play-281

ers attempt to infer their roles. The objective for282

civilians is to identify the undercover, while the un-283

dercover aims to conceal their identity. Note we use284

the neutral word "difference" and "normal" instead285

of "undercover" and "civilian" in task instructions.286

This is motivated by the observation that large lan-287

guage models often refuse to acknowledge being288

the "undercover" due to value misalignment, as fur-289

ther discussed in Appendix C. The performance is290

evaluated based on the win rate.291

3.2 Test-time Learning Setting292

It is important to note that our objective is not293

to design an elaborate framework for maximizing294

task completion rates. Rather, we aim to provide295

a lightweight and objective evaluation framework296

that assesses a model’s test-time learning, com-297

paring its performance with and without prior ex-298

perience, as well as against human-authored poli-299

cies grounded in human reasoning. To this end,300

we adopt a vanilla evaluation setup consisting of301

two settings: a fixed number of experience set-302

ting (Laskin et al.) and an incremental experience303

setting (Suzgun et al., 2025).304

3.2.1 Evaluation with Experience305

Table 1: Token Lengths of Context

Instruction Experience Policy
Twenty Question 463 1011 243
Who is Undercover 341 2356 261

We aim to qualitatively assess whether current306

large language models exhibit test-time learning307

capabilities and the extent to which they improve.308

To this end, we encode historical experience and309

compare model performance with and without it.310

We investigate efficient and objective methods311

to encode this historical experience. Table 1 re-312

ports the average context lengths for instruction,313

experience, and derived policy. To fully leverage314

past experience, the experience includes dialogue315

interactions, rewards, and model’s self-reflections316

on interactions and rewards. The strategy is derived317

by the model itself based on all past experience.318

In pilot studies, we experiment with two ap- 319

proaches: incorporating the full history experi- 320

ence directly, and self-derived policy from the full 321

history. We fix the number of experience to five 322

rounds, leading to context lengths of approximately 323

5k and 12k for Twenty Questions and Who is Un- 324

dercover, respectively, while the derived policy 325

contexts average 243 and 261 tokens. Although 326

the first approach provides complete information, 327

it incurs higher computational costs and under- 328

performs compared to the second. Therefore, we 329

adopt policy-based representations of past expe- 330

rience for further evaluation. This setup is illus- 331

trated in the left panel of Figure 2. To further 332

isolate the influence of the model’s self-derived 333

policy pipeline, we include a rule-based policy as a 334

baseline for comparison with the experience-based 335

policy, in which strategies are derived from both 336

rules and accumulated experience. This compari- 337

son helps ensure that observed improvements can 338

be attributed to the incorporation of experience. 339

3.2.2 Evaluation with Incremental Experience 340

The previous setting evaluates the test-time learn- 341

ing given limit amounts of prior experience. If 342

a model demonstrates performance gains from 343

such experience, it becomes essential to investigate 344

whether these test-time improvements persist and 345

accumulate as additional experience is acquired. 346

This motivates an incremental evaluation setting 347

that requires efficient management of past expe- 348

rience. To support dynamic policy updates with 349

growing experience, we adopt the memory man- 350

agement pipeline (Suzgun et al., 2025). As illus- 351

trated in the right panel of Figure 2, the agent with- 352

out experience performs k independent test rounds, 353

while the agent with experience conducts the same 354

k rounds with a continuously updated policy pool 355

based on accumulating experience. To ensure ro- 356

bust evaluation, we sample each setting (with and 357

without experience) three times and compute the 358

cumulative average reward. Let r_base(t, i) denote 359

the reward obtained by the agent without experi- 360

ence at test round t in sample i, and r_exp(t, i) 361

denote the corresponding reward for the agent with 362

experience. The cumulative average reward for the 363

agent with experience up to round t is denoted by 364

R_his(t). The computation of Rhis(t) is provided 365

below; Rbase(t) is computed analogously. 366
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Figure 2: Test-time Learning Evaluation Settings with Fixed Amount and Incremental Experience.

rexp(t) =

{∑
i rbase(0,i)+

∑
i rexp(0,i)

|rbase(0,·)|+|rexp(0,·)| , t = 1∑
i rexp(t,i)

|rexp(t,·)| , t > 1
(1)367

Rexp(t) =

∑
1≤i≤t rexp(i)

t
(2)368

4 Experiments369

In the experiments, we aim to answer the following370

questions:371

(Q1) Do current large language models exhibit the372

ability to learn at test time?373

(Q2) Can large language models achieve stable374

and consistent improvements when experience375

accumulates?376

(Q3) How do humans adapt and improve their377

performance through experience?378

(Q4) How do thinking models perform in test-time379

learning scenarios?380

381

4.1 Experimental Setup382

We aim to evaluate whether the current top-tier383

large language models have the ability to improve384

at the test time. Specifically, we evaluate gpt-385

4o (Hurst et al., 2024), Claude 3.5 Sonnet (An-386

thropic, 2024) and DeepSeek-V3 (Liu et al., 2024).387

We set the temperature to 1 to support the dynamic388

testbeds. For overall performance evaluations, we389

set prior interactions N=5, test cases M=32, which390

we find to yield stable results. In the cumulative 391

setting, we extend the evaluation t=50 rounds. 392

During each interaction, the model is instructed 393

to first perform explicit reasoning before generating 394

its final output. The final response (a question, 395

reflection, or policy in Twenty Questions; a speech, 396

vote, reflection, or policy in Who is Undercover) is 397

enclosed within <answer></answer> tags to ensure 398

clarity and facilitate objective evaluation of both 399

reasoning quality and task performance. 400

In the single-agent setting, the environment is 401

simulated using the same model under evaluation 402

to ensure alignment in question understanding and 403

knowledge base. In the multi-agent setting, all 404

other agents are instantiated with the same back- 405

bone LLM as the test agent to isolate test-time 406

improvements from potential gains due to mere fa- 407

miliarity with another model’s behavior. For each 408

evaluation setting, the order of test rounds is fixed 409

to ensure consistency across trials. 410

4.2 Overall Test-time Learning 411

Performance (Q1) 412

We begin by investigating whether top-performing 413

large language models exhibit measurable improve- 414

ments at test time when provided with prior ex- 415

perience. Table 2 summarizes the overall perfor- 416

mance across three environments under four eval- 417

uation settings: (1) without any policy, (2) with 418

model-derived policy based solely on rules, (3) 419

with model-derived policy based on both rules and 420
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Table 2: Evaluation of Test-time Learning Ability of LLMs. "w/o Policy" denotes the baseline setting where the
model is provided only with task rules. "w/ Rule Policy" indicates that the model receives both the rules and a
test-time policy based only on rules. "w/ Exp. Policy" refers to having both rules and test-time policy from rules
and model five rounds of experience containing interactions, rewards and reflections. "w/ Human Policy" indicates
that the model is given rules along with a human-authored policy based on human understanding of the task. The
best results are shown in bold and the second best are underlined.

Task Setting GPT-4o Claude 3.5 Sonnet DeepSeek-V3

AIME 2025
Single-Turn Math Problem

w/o Policy 0.0000 0.0333 0.4333
w/ Exp. Policy 0.0667 0.0667 0.3333

Improve (%) NA 100.00 -23.08

Twenty Question
Multi-turn Single-agent

w/o Policy 0.2422 0.2640 0.2641
w/ Rule Policy 0.2199 0.1368 0.2033

Improve (%) -9.21 -48.18 -23.02
w/ Exp. Policy 0.2563 0.2807 0.2746

Improve (%) 5.80 6.33 3.97
w/ Human Policy 0.2709 0.2624 0.2758

Improve (%) 11.84 -0.61 4.41

Who is Undercover
Multi-turn Multi-agent

w/o Policy 0.1563 0.1250 0.2500
w/ Rule Policy 0.0625 0.3125 0.1250

Improve (%) -60.01 150.00 -50.00
w/ Exp. Policy 0.1719 0.1563 0.2813

Improve (%) 10.02 25.04 12.50
w/ Human Policy 0.1875 0.3438 0.4063

Improve (%) 20.00 175.04 62.50

test-time experience, and (4) with human-authored421

policy. The inclusion of the human policy serves422

to assess the potentials of models.423

In the Twenty Questions setting, we observe424

consistent performance gains when models are425

equipped with self-derived policies based on prior426

experience. In contrast, rule-based policies result427

in significant performance drops across all mod-428

els, likely due to a misalignment between human-429

designed heuristics and model reasoning patterns,430

as further discussed in Section 4.6. Experience-431

based policies, however, lead to clear improve-432

ments, with Claude achieving the highest gain from433

its own test-time experience.434

Interestingly, GPT-4o and DeepSeek-V3 both435

outperform their self-derived policies when pro-436

vided with human-authored policies. This high-437

lights a gap between the models’ current test-time438

learning capabilities and their full potential, sug-439

gesting that either the quantity of experience or440

the quality of derived policies remains subopti-441

mal. These limitations are further examined in442

Section 4.3 and Section 4.6. Claude performs443

marginally worse with human-authored policy, also444

indicating a possible misalignment between its in-445

ternal reasoning and externally imposed guidance.446

In Who is Undercover, test-time learning yields 447

more substantial improvements. Claude again 448

achieves the highest gain from experience-based 449

policy, reinforcing its ability to leverage self- 450

acquired strategies. Unlike other settings, the rule- 451

based policy ranks as the second-best for some 452

models, highlighting a divergent pattern in this 453

multi-agent context. Additionally, human-authored 454

policies consistently lead to the highest perfor- 455

mance across all models, further underscoring the 456

latent potential of test-time learning when guided 457

by effective strategies. It is important to note that 458

direct comparisons across models in this environ- 459

ment are not meaningful, as all agents in the multi- 460

agent setting are instantiated using the same LLM 461

that is being evaluated. This design ensures an 462

objective assessment of test-time learning by iso- 463

lating gains attributable to experience and strategic 464

adaptation, rather than confounding effects such 465

as familiarity with another model’s behavior. Full 466

instances of model-generated and human-authored 467

policies are provided in Appendix B and analyzed 468

in Section 4.6. 469

Finding 1: Policies derived from past experience 470

at test time yield measurable improvements across 471

models and tasks. 472
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Finding 2: The superior performance under473

human-authored policies reveals the untapped po-474

tential for enhancing models’ test-time learning475

capabilities.476

4.3 Cumulative Improvement (Q2)477

The above results demonstrate that large language478

models possess the ability to improve at test time.479

We next examine whether this improvement is con-480

sistent as experience accumulates. To this end, we481

adopt the cumulative evaluation setting described482

in Section 3.2.2. Figure 3 presents cumulative re-483

wards over 50 rounds in the Twenty Questions task,484

comparing model performance with and without485

test-time policies derived from past experience.486

Model performances vary. Claude successfully487

leverages cumulative experience, whereas other488

models struggle to maintain or improve perfor-489

mance as experience accumulates. For Claude,490

the experience-enabled setting consistently outper-491

forms the baseline, particularly within the first five492

rounds, indicating effective strategy accumulation.493

However, the performance gap narrows in later494

rounds, suggesting diminishing returns from addi-495

tional experience. GPT and DeepSeek show min-496

imal gains from the accumulation of experience497

at test time. For GPT-4o, both curves overlap in498

the early rounds, with the experience-enabled set-499

ting beginning to slightly outperform the baseline500

around rounds 15–20. In contrast, DeepSeek-V3501

shows a decline in performance after five rounds502

of accumulated experience, while the baseline re-503

mains stable. This suggests that its policy refine-504

ment process may introduce noise or compounding505

errors, limiting its ability to leverage experience506

effectively.507

Finding 3: Results reveal substantial differences508

in the consistency and effectiveness of test-time509

learning across models as experience grows.510

4.4 Human Study (Q3)511

In the previous experiments, we demonstrate that512

certain large language models exhibit the ability to513

learn at test time through cumulative experience.514

To further understand the rate of improvement, we515

compare model learning speed with human.516

We recruited eight human participants (under-517

graduate and PHD students) to perform the same518

Twenty Question task, playing 20 rounds cumu-519

latively. Their results are summarized in Table 4,520

and their cumulative rewards are plotted alongside521

those of the best-performing model, Claude. Par-522

ticipants are divided into two groups based on per- 523

formance variance across rounds. 524

The upper figure shows that all humans in this 525

group achieve greater cumulative gains than Claude 526

after 20 rounds, approaching near-optimal perfor- 527

mance (represented by the black dotted line indi- 528

cating the reward of perfect binary questioning). 529

The lower figure includes participants with higher 530

performance variability; nevertheless, their final 531

cumulative rewards still exceed those of the LLM. 532

Finding 4: Current top-tier large language mod- 533

els exhibit slower test-time learning speed com- 534

pared to the learning efficiency of humans in the 535

experience-based reasoning-intensive task. 536

4.5 Performance of Thinking Models (Q4) 537

Table 3: Test-time Learning Performance of Thinking
Models in Who is Undercover environment.

Setting o1 DeepSeek-R1
w/o Test-time Policy 0.3000 0.2500
w/ Test-time Policy 0.2000 0.0000
w/ Human Policy 0.4000 0.2000

In pervious experiments, we evaluate large lan- 538

guage models without explicit thinking mode. In 539

this section, we examine the performance of think- 540

ing model: o1 (Jaech et al., 2024) and Deepseek- 541

r1 (Guo et al., 2025), as reported in Table 3. 542

As shown in the table, test-time learning im- 543

provements are not observed for either thinking 544

model when provided with self-derived policies. 545

For o1, the test-time performance with self pol- 546

icy decrease and the test-time performance with 547

human policy increase. For o1, performance de- 548

creases when incorporate test-time policy but im- 549

proves when guided by a human policy, suggest- 550

ing potential limitations in its ability to generate 551

effective strategies autonomously, while still be- 552

ing capable of leveraging prior experience. For 553

DeepSeek-R1, performance declines under both 554

self-derived and human-authored policy conditions, 555

compared to its baseline with no prior experience. 556

This aligns with the findings reported in its orig- 557

inal paper, which notes that few-shot prompting 558

consistently degrades R1’s performance. The au- 559

thors explicitly recommend presenting tasks in a 560

zero-shot format for optimal outcomes, suggesting 561

that R1’s internal reasoning is optimized for direct 562

problem descriptions rather than for accumulating 563

and adapting to test-time experience. 564
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Figure 3: Cumulative Test-Time Learning Performance on Twenty Question.

Figure 4: Human Performance on Twenty Question.

Finding 5: Test-time learning is not observed565

in thinking models, consistent with the findings566

reported in R1’s original paper that CoT in few-567

shot cases may degrade model performance.568

4.6 Further Analyses569

In the Twenty Questions environment, test-time570

improvements (w/ Exp. Policy vs. w/o Policy in571

Table 2) primarily stem from earlier identification572

of item categories. Test-time policies such as “Be-573

gin with high-level distinctions” and “Identify the574

category of the answer word within the first five575

questions” help the model avoid overly specific576

guesses early on. We also analyze the failure of the577

w/ Rule Policy setting in this environment, which578

we attribute to a misalignment between model be-579

havior and human preference. Model-generated580

questions often include specific examples (e.g., “Is581

it a living thing (animal, plant)?” or “Is it a ball 582

(like basketball, baseball, football) rather than other 583

sports equipment (like bats or rackets)?”), whereas 584

questions in human-authored policies are general 585

and abstract (e.g., “Is it a living thing?”, “Does it 586

use electricity?”, “Is it commonly found indoors?”). 587

These examples lead to the model adopt this for- 588

mat throughout the questioning process, which con- 589

tributes to the performance decline. For humans, 590

we observed more rapid test-time learning, with 591

noticeable improvement after just a single game. 592

In the Who is Undercover environment, both 593

DeepSeek and human demonstrate a key policy, 594

"Deduce the opposing secret word". This is based 595

on the observation that the undercover and normal 596

players’ words are typically semantically related. 597

Recognizing this pattern allows participants to re- 598

fine their clues and identities more effectively. 599

5 Conclusion 600

In this work, we advocate for evaluations of large 601

language models’ test-time learning ability, de- 602

fined as the capacity to improve at test time in 603

experience-based, reasoning-intensive tasks. Com- 604

petitive games serve as effective testbeds due to 605

their dynamic nature, resistance to saturation, and 606

reliance on reasoning. We present an objective 607

framework to access test-time learning under both 608

static and cumulative experience settings, and eval- 609

uate models with different policies. We also com- 610

pare the improvements of models to humans. Ex- 611

perimental results demonstrate that LLMs exhibit 612

measurable test-time learning; however, these gains 613

are often unstable and inconsistent across cumula- 614

tive settings. In contrast, human participants show 615

more stable and rapid learning. We highlight the 616

need for greater emphasis on evaluation and train- 617

ing strategies to improve LLMs’ test-time learning 618

as a step toward artificial general intelligence. 619
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Limitations620

This work aims to evaluate the test-time learning621

capabilities of large language models and compare622

their gains with humans. We employ one math623

benchmark and two semantic game environments624

as representative testbeds. While these settings625

provide meaningful insights, a broader range of626

evaluation environments is necessary for more com-627

prehensive measurement of test-time learning.628

Each experimental condition is run for thirty two629

to fifty rounds to ensure result stability. We exam-630

ine five settings: no experience, rule-based policy631

without experience, full experience, experience-632

based policy, and human-authored policy, to pro-633

vide a more thorough understanding of how LLMs634

benefit from test-time experience.635

For the human studies, we recruit eight partic-636

ipants, each compensated $10 for completing 20637

rounds of the Twenty Questions task, which typi-638

cally takes 1 to 2 hours. While these participants639

offer a stable and useful baseline, involving more640

individuals across diverse environments would fur-641

ther strengthen the generalizability of our findings.642

Finally, this paper currently does not incorporate643

test-time training, where a model’s parameters are644

updated based on a small amount of test-time expe-645

rience. This is due to two main reasons: the closed-646

source nature of the models evaluated, which pre-647

cludes parameter access; and the current lack of648

effective in-parameter test-time learning methods649

tailored for reasoning-intensive tasks. Future work650

may explore this direction to further advance the651

understanding of test-time learning capabilities in652

LLMs.653

Ethical Considerations654

In this study, we recruited eight human participants655

to complete twenty rounds of the Twenty Ques-656

tions task. The task environment is non-sensitive657

and does not pose any potential risks or negative658

impacts to participants. All participants were fully659

informed that their interactions would be recorded660

and used for research purposes, and their consent661

was obtained prior to participation. In this paper,662

we used an AI assistant (GPT-4o) to check for gram-663

matical errors. It was not used to directly generate664

any of the paper’s content.665
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Appendix831

A Game Rule832

A.1 Twenty Question833

You are playing the game Twenty Questions.834

In this game, there are 157 candidate words: Air-835

plane, Apple, Banana, Baseball, Baseball bat,836

Basketball, Battery, Bear, Bed, Belt, Blender,837

Boat, Bookcase, Boots, Bowl, Bracelet, Broccoli,838

Brooch, Bus, Bush, Cactus, Calculator, Calendar,839

Camera, Cantaloupe, Canvas, Car, Carrot, Cat, Cel-840

ery, Chair, Chopstick, Clarinet, Computer, Com-841

puter keyboard, Cooking pot, Corn, Couch, Cow,842

Cucumber, Cup, Desk, Diary, Dog, Doll, Dress,843

Dresser, Drill, Drum, Earring, Elephant, Eraser,844

Flute, Football, Forest, Fork, Gloves, Glue, Golf845

ball, Grape, Guitar, Hairclip, Hammer, Harp, Hat,846

Headphone, Helicopter, Helmet, Horse, Jacket,847

Key, Kite, Knife, Lake, Lawn mower, Lego, Lion,848

Locket, Mango, Marker, Mattress, Meteorite, Mi-849

crowave, Monitor, Motorcycle, Mountain, Neck-850

lace, Nightstand, Ocean, Onion, Orange, Paint-851

brush, Painting, Pan, Pants, Paper, Peach, Peas,852

Pen, Pencil, Pendant, Piano, Pillow, Pineapple,853

Plate, Pliers, Potato, Printer, Puzzle, Rabbit, Rake,854

Refrigerator, Ring, River, Rock, Saw, Saxophone,855

Scarf, Scissors, Scooter, Screwdriver, Sculpture,856

Sea, Sharpie, Sheep, Ship, Shirt, Shoes, Shovel,857

Skirt, Smartphone, Soccer ball, Socks, Spinach,858

Spoon, Stapler, Strawberry, Table, Television, Ten-859

nis ball, Tennis racket, Tiger, Tomato, Toothbrush,860

Toothpaste, Train, Tree, Trombone, Truck, Trum-861

pet, Violin, Volleyball, Watch, Watering can, Wa-862

termelon, Whisk, Wrench.863

One of the 157 words is the answer word. You864

can ask up to 20 yes/no questions to identify the865

answer word. You will get a Yes, No, or Invalid866

feedback for each question. Note that you cannot867

ask questions about the letters of the answer word.868

Questions can only be asked around semantics.869

A.2 Who is Undercover870

Game Rules of Who is the Difference871

1. Game Setup872

Roles:873

Among all players, only one player is the differ-874

ence one. All others are normal players.875

Secret Words: 876

All normal players receive the same secret word. 877

The difference receives a related but different word. 878

Initial Information: 879

Each player knows only their own word, not their 880

role or others’ words. 881

882

2. Game Phases 883

The game starts with three rounds of speaking 884

phase, followed by one round of voting. After that, 885

the game alternates between one round of speaking 886

and one round of voting until it ends. Game ends 887

when the difference is voted out, or the number of 888

remaining players drops to three or fewer. 889

Speaking Phase 890

All players speak in turn, each giving one sentence 891

as a clue about their word. 892

Forbidden actions include saying the word directly, 893

hinting at letters, repeating clues from previous 894

players. You do not have to describe your own 895

word. The difference may pretend to match the 896

regular players’ word to avoid detection. 897

Voting Phase 898

All players vote for one player (cannot be yourself) 899

at the same time. Regular players vote for who 900

they think is the difference; the difference votes 901

strategically. 902

The player with the most votes is eliminated. In 903

case of a tie, no one is eliminated that round. 904

Victory Conditions 905

If the difference is voted out: regular players win 906

If the difference survives until only three players 907

remain: difference wins 908

909

3. Strategy Tips 910

1. Identify your role early: 911

If more than one player’s clue doesn’t match your 912

word, you are likely the difference. If only one 913

clue differs, you may be a regular player or the 914

difference. Do not jump to conclusions. 915

B Learnt Policy 916

B.1 Twenty Question 917

GPT Test-time Policy from Experience

To consistently improve performance in Twenty Ques-
tions, begin by asking broad, high-level questions that
eliminate major categories (e.g., "Is it living?" or "Is
it commonly found inside a house?"). Gradually re-
fine with mid-game questions that target functional
properties (purpose, interaction, context) rather than
overly specific traits. Avoid semantic overload by

918

11



keeping questions clear, concise, and focused on one
characteristic at a time. If progress stalls, pivot to
regroup broader ideas rather than fixating on nar-
row assumptions. Ultimately, efficient grouping and
elimination of related possibilities will maximize the
chances of identifying the answer within 20 ques-
tions.

919

Claude Test-time Policy from Experience

1. Core Question Structure
- Always start with “Is it a man-made object?”
- Follow with major category splits like:
∗ Electronic vs. non-electronic
∗ Indoor vs. outdoor use
∗ Portable vs. stationary
- Use clear binary choices with “rather than”
comparisons to avoid invalid responses

2. Category Hierarchy (in order)
A. Man-made vs. Natural
B. If man-made:
- Electronic/Electrical vs. Non-electronic
- Indoor vs. Outdoor use
- Major categories:
∗ Electronics/Devices
∗ Furniture
∗ Clothing/Accessories
∗ Tools/Equipment
∗ Sports/Recreation
∗ Kitchen/Household items

3. Question Formulation Rules
- Use clear yes/no format
- Avoid questions about letters or spelling
- Include comparison elements (e.g., “rather than”)
- Focus on physical characteristics and use cases
- Avoid ambiguous or overlapping categories

4. Strategic Principles
- Each question should aim to eliminate roughly half
of remaining possibilities
- Track eliminated categories carefully
- Move from general to specific progressively
- Don’t get too specific too early
- Save direct object identification for final questions

920

DeepSeek Test-time Policy from Experi-
ence

1. Start Broad, Then Narrow:
Begin with high-level categories (living/non-living,

household/outdoor) to eliminate large groups quickly.
Prioritize binary splits to maximize information gain
early.
2. Focus on Function and Context:

For household items, drill down by room
(kitchen/bathroom) or usage (cleaning, recreation,
grooming). Ask about *how* or *where* the item
is used (e.g., "Is it for cutting?" or "Found in the
bathroom?").
3. Avoid Invalid Questions:

Use clear, single-focus questions (e.g., "Is it jew-
elry?" not "Is it worn on hands or neck?"). Split
compound queries to prevent ambiguity.

921

4. Guess Strategically in Small Pools:
Once candidates are under 5, guess high-

probability words (e.g., "spoon" after "kitchen uten-
sil") instead of further elimination.
5. Adapt and Pivot:

If a category yields "No," immediately switch to
the next most likely group (e.g., from "tools" to "dec-
orative items"). Leverage feedback (e.g., "Invalid")
to refine questioning.
Key Principle:

Each question should halve the remaining candi-
dates, balancing systematic elimination with timely
guessing.

922

Human Policy

1. Start Board: Begin with high-level distinctions to
quickly eliminate large groups of items. Useful splits
include:
- Is it a living thing?
- Does it use electoricity?
- Is it commonly found indoors?
2. Identify the category early: Aim to determine
the category of the answer word within the first 5
questions. Avoid overly specific guesses at this stage.
- Major categories among the 157 words include: fruit,
vegetable, animal, transportation, sports equipment,
musical instrument, electronic product, office equip-
ment, furniture, kitchenware (for food preparing, eat-
ing), tools, entertainment items, clothing, and acces-
sories, daily necessity, etc.
3. Refine with category traits: Once the category
is identified, filter the candidate words accordingly.
Then continue binary questioning using finer distinc-
tions within that group.
4. Guess when narrowed down: If only 3 or fewer
candidates remain, direct guessing becomes viable.
Otherwise, continue using binary splits for efficiency.
5. Your question should always be clear: Avoid
compound questions that can lead to invalid re-
sponses.

923

B.2 Who is Undercover 924

GPT test-time Policy

1. Identify Your Role as Early as Possible: If the
descriptions given by more than one player do not
match your secret word, then you are the "different
one." If only one player’s statements conflict with
yours, you might be an ordinary player or the "differ-
ent one," but you cannot determine this immediately.
2. Make Your Statements Ambiguous to Avoid
Revealing Core Characteristics: Regardless of
whether you are an ordinary player or the "differ-
ent one," try to use broad and ambiguous descriptions
during the game. Avoid directly mentioning distinc-
tive or obvious characteristics of the secret word to
reduce the risk of being suspected.
3. Spot Deviations and Pinpoint Suspicious Tar-
gets: Over multiple rounds of statements, focus on
characteristics that significantly deviate from the ma-
jority of players. Identify semantic inconsistencies.
The "different one" usually struggles to fully match
the clues provided by ordinary players, which may
reveal their identity. Use these deviations to precisely

925

12



target your voting.
4. Skillfully Imitate and Blend Into Group Clues:
If you are the "different one," observe the speaking
style of the ordinary players and provide vague but
relevant supplementary clues based on their descrip-
tions. This will help align yourself with the group
and make your statements appear "reasonable" and
"credible," minimizing suspicion.
5. Adapt Dynamically and Respond Flexibly: Ad-
just your speaking strategy according to changes in
the game’s dynamics. If your statements are overly
suspected, try to further obscure your clues and em-
phasize common characteristics to divert suspicion.

926

Claude Test-time Policy

1. Identify Identity Early: If more than one player’s
description does not match your secret word, then
you are likely the different one. If only one player’s
statement contradicts yours, you could be an ordinary
player or the different one, and you cannot make an
immediate judgment.
2. Pay Attention to Consistency and Subtle Dif-
ferences: During the game, closely observe the state-
ments of other players and note their subtle differ-
ences. If a player’s description is significantly incon-
sistent with the majority, it may indicate they are the
different one.
3. Use Vague Descriptions: Try to provide vague
descriptions and avoid being too specific about your
secret word. Choose characteristics that can apply to
multiple items.
4. Strategic Voting: In critical voting rounds, do not
always follow the majority. Sometimes strategically
scattering votes can help you achieve your victory
conditions, especially if you are the different one.
5. Adjust Identity Judgments Timely: Adjust your
identity judgment based on other players’ statements.
If you find that other players’ descriptions do not
match your secret word, consider that you might be
the different one and adjust your speaking strategy
accordingly to avoid revealing your identity.
6. Provide Unique Clues: When speaking, try to
provide unique clues that differ from those of other
players. Avoid repeating characteristics that have
already been mentioned to prevent exposing your
secret word.

927

DeepSeek Test-time Policy

1. Identify your role as early as possible: If more
than one player’s description does not match your
secret word, then you are the differentiator. If only
one player’s statement contradicts yours, you could
be either a regular player or the differentiator, and
cannot determine your role immediately.
2. Deduce the opposing secret word: Regular play-
ers and differentiators have different secret words,
but there is a certain connection between them. Both
regular players and differentiators should deduce the
opposing secret word based on their own word and
previous players’ statements as quickly as possible.
3. Speaking strategy: When uncertain about your
role, provide relevant but broad clues to avoid state-
ments that directly reveal your secret word. Ideally,
these clues should align with the main characteris-

928

tics of both your secret word and the opposing secret
word. Once your role is confirmed, the differentia-
tor should immediately begin describing the regular
players’ secret word while mimicking their speak-
ing style to avoid suspicion. Regular players, on the
other hand, should identify and highlight the most
divergent player to pinpoint the sole differentiator.

929

Human Policy

1. Analyze comprehensively: other people’s state-
ments may apply not only to their own secret word,
but to other words as well, and they need to be ana-
lyzed and stated in a way that takes into account the
scope of application of the description.
2. Guessing and targeting the opponent’s secret
word: The secret words of normal players and differ-
ent people are related, but different. It is possible to
guess the opponent’s secret word for your own secret
word, and to narrow down and target the opponent’s
secret word after someone else has spoken.
3. Identify yourself as early as possible: If >1
player’s description does not match your own se-
cret word, then you are a different person. If only
1 player’s statement currently contradicts your own,
you may be either a regular player or a dissenter and
cannot be immediately recognized.
4. Speaking with caution. In the early stages of the
game, when you cannot identify yourself, you need
to speak very carefully. Do not reveal the unique
clues to your secret word in your speech; choose a
description that is broader and applies to a class of
words (including your own and your opponent’s se-
cret word) to prevent being too specific and revealing
your secret word in the first place, as well as avoiding
speeches that might cause conflict.
Later in the game, after clarifying their identity, the
regular player continues to describe their secret word
and the Dissenter describes the regular player’s se-
cret word. Statements can be chosen for the popular
attributes of the words to be described, avoiding de-
scribing overly niche clues that could trigger concern
and suspicion.

930

C Value Alignment 931

In Table 4, we present that the importance to use 932

neutral expressions as the role names with nega- 933

tive connotations can create confusion and lead to 934

denial when agent are assessing their identity. 935
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Table 4: Deepseek-r1’s thinking content about its gaming role identity. Using role names with negative connotations
can create confusion and lead to denial when assessing whether it is "undercover". By using neutral role names, it
can quickly and directly recognize its identity.

Role
Name

Thinking Context

Undercover Based on the above analysis, the other four agents’ statements are all
more on the side of soymilk, and my word is milk, so maybe I’m the
undercover agent? But according to the rules, there is only one under-
cover agent, while all the other civilians should be milk, but apparently
their descriptions are more consistent with soy milk. This suggests
that I might be the undercover agent, and it seems contradictory
that my secret word is actually soymilk, but the system tells me my
word is milk. Or maybe there are other players who are undercover
and their descriptions are misleading. But according to the game
settings, the word for civilians is the same and the word for un-
dercover agents is different but related. If my word is milk, and
the other civilians’ word should be milk, but they speak like soy
milk, that means they might all be undercover? That can’t be true
because there is only one undercover agent. So maybe my judg-
ment is wrong, or the undercover agent is among the others
and their descriptions are trying to confuse ......
So as a civilian, I should point out their anomalies.

Difference Taken together, the descriptions of the other players seem to point to
soymilk, whereas my secret word is milk, so I may be the Different
One. As the Different One, I need to make the statement fit the secret
word of the regular player (i.e. soy milk).

14


	Introduction
	Related Work
	Test-time Learning
	Evaluation Environments

	Test-time Learning
	Testbeds
	Test-time Learning Setting
	Evaluation with Experience
	Evaluation with Incremental Experience


	Experiments
	Experimental Setup
	Overall Test-time Learning Performance (Q1)
	Cumulative Improvement (Q2)
	Human Study (Q3)
	Performance of Thinking Models (Q4)
	Further Analyses

	Conclusion
	Game Rule
	Twenty Question
	Who is Undercover

	Learnt Policy
	Twenty Question
	Who is Undercover

	Value Alignment

