How Far Can LLLMs Improve from Experience? Measuring Test-Time
Learning Ability in LLMs with Human Comparison

Anonymous ACL submission

Abstract

As evaluation designs of large language models
may shape our trajectory toward artificial gen-
eral intelligence, comprehensive and forward-
looking assessment is essential. Existing bench-
marks primarily assess static knowledge, while
intelligence also entails the ability to rapidly
learn from experience. To this end, we advocate
for the evaluation of Test-time Learning, the
capacity to improve performance in experience-
based, reasoning-intensive tasks during test
time. In this work, we propose semantic games
as effective testbeds for evaluating test-time
learning, due to their resistance to saturation
and inherent demand for strategic reasoning.
We introduce an objective evaluation frame-
work that compares model performance under
both limited and cumulative experience set-
tings, and contains four forms of experience
representation. To provide a comparative base-
line, we recruit eight human participants to
complete the same task. Results show that
LLMs exhibit measurable test-time learning
capabilities; however, their improvements are
less stable under cumulative experience and
progress more slowly than those observed in hu-
mans. These findings underscore the potential
of LLMs as general-purpose learning machines,
while also revealing a substantial intellectual
gap between models and humans, irrespective
of how well LLMs perform on static bench-
marks. Code and data are available'.

"Give a man a fish, and you feed him for a day;
teach a man to fish, and you feed him for a
lifetime."

1 Introduction

As large language models continue to advance, the
design of their evaluations becomes increasingly
important, as it shapes the development priorities
of the next generation of models and guides the
broader trajectory toward artificial general intelli-
gence (Chang et al., 2024). Current benchmarks

"https://anonymous.4open.science/r/Test-time-Leaning

Testbeds

E.g. Twenty Question Experience

Interactions, Reward, Reflection
Is it a man made object? Yes

LLMs without Experience

Experience

LLMs with Experience

LLMs with Human Knowledge

Humans with Experience

Participants Settings

... used to produce or play music? No

'lal"}V ... typically find indoors? Yes

Is it a whisk? No

[Finished]
You do not get the answer in 20 questions!

[Reflection]
1. Category Elimination Strategy:
2. Question Formulation Issues: ...
3. Better Information Gain: ..

H,

I

Figure 1: Test-time Learning Evaluation Pipeline.

predominantly focus on measuring the expertise
of language models in performing specific tasks.
However, intelligence is not solely defined by the
possession of expert knowledge (Krathwohl, 2002;
Minsky, 1988). For example, individuals without
profound knowledge can still demonstrate intelli-
gence through their speed to acquire new skills
through experience (Silver and Sutton, 2025). This
dimension of intelligence, the capacity for rapid
learning, remains largely overlooked in existing
evaluation frameworks.

Assessing the ability to learn quickly is chal-
lenging. Under the current LLM development
paradigm, models undergo massive pre-training fol-
lowed by domain-specific alignment (Achiam et al.,
2023; Liu et al., 2024). Models are typically com-
pared based on their final performance outcomes,
without constraints on the amount of task-relevant
training data they utilize. In this paper, we do not
argue for altering this training paradigm, as it is
the reason of success. Rather, we aim to design an
evaluation framework that can directly measure a
model’s ability to improve rapidly at test time.

The characteristic we aim to evaluate aligns
closely with the concept of “Test-time Learning”,
which refers to a model’s ability to adapt and im-
prove through its own test-time experience. The
desirable end-state for artificial intelligence should
have the ability to effectively improve its perfor-



mance through a limited number of experiences by
interacting with environments, reflecting on feed-
back and rewards, rapidly acquiring in-context or
in-weight policies, and acting adaptively. More-
over, these test-time improvements should be capa-
ble of accumulating as experience grows, enabling
continual adaptation and learning.

The concept of test-time learning shares con-
ceptual similarities with in-context reinforce-
ment learning (Laskin et al.; Lee et al., 2023;
Grigsby et al.; Lu et al., 2023a) and agent self-
evolution (Tao et al., 2024) to some extent. How-
ever, it is distinguished from these paradigms in
several fundamental ways. (1) Generality of Envi-
ronment: In-context reinforcement learning typi-
cally operates within classical RL domains such as
adversarial bandits (Duan et al., 2016) or the dark
room setting (Laskin et al.), which are character-
ized by constrained environments and limited ac-
tion spaces. In contrast, test-time learning empha-
sizes generalization in open-ended environments,
where the action space spans the full token space
of a language model. (2) Beyond Memorization:
Research on agent self-evolution has largely fo-
cused on tool-use or coding tasks that rely heavily
on rote memorization or repeated exposure to sim-
ilar instances (Qian et al., 2024). These setups
often allow models to improve simply by recall-
ing prior examples. Test-time learning is achieved
in experience-based, reasoning-intensive tasks that
require discovering latent patterns and executing
self-proposed policies beyond surface-level recall.

In this work, we propose an objective frame-
work to evaluate the test-time learning ability of
current large language models. Rather than relying
on static tasks like academic olympiads, we adopt
competitive games, which are dynamic, resistant
to saturation, and embed latent strategies, making
them ideal for studying test-time learning.

Furthermore, we systematically evaluate perfor-
mance across four test-time experience settings:
(1) full experience with interactions, rewards, and
model reflection; (2) model-derived policy based
solely on game rules; (3) model-derived policy in-
formed by both rules and accumulated test-time
experience; and (4) human-authored policy. To
compare LLM performance with human reason-
ing, we also recruit human annotators to perform
the same task. The results reveal a clear gap be-
tween human and model test-time learning capabil-
ities, highlighting promising directions for future
research.

The experiment results show that LLMs demon-
strate measurable test-time learning ability; how-
ever, these gains are not stable and consistent when
experience accumulates. In contrast, human partici-
pants exhibit more stable and rapid learning. These
findings highlight the need for further evaluation
and improved training strategies to enhance the
test-time learning of LLMs.

Importantly, our aim is not to build an elab-
orate framework centered on agentic workflows,
but rather to propose a lightweight and objective
pipeline for assessing whether models can benefit
from test-time experience. We believe that system-
atic evaluation of test-time learning constitutes a
key step toward advancing the capabilities of large
language models.

2 Related Work

2.1 Test-time Learning

The concept "test-time learning" shares certain sim-
ilarity with "test-time training", "in-context rein-
forcement learning" and "self-evolution" but also
adopts key distinctions in its focus and formulation.

The first two concepts involve weight updates.
Test-time training (Sun et al., 2020; Liu et al., 2021;
Gandelsman et al., 2022; Sinha et al., 2023; Sun
et al., 2019) primarily addresses distributional or
domain shifts between training and test data by
adapting model parameters at inference time. In-
context reinforcement studies (LLaskin et al.; Lee
et al., 2023; Grigsby et al.; Lu et al., 2023a) in-
volves training models from scratch to perform
reinforcement learning tasks via in-context tokens.
Self-evolution studies focus on performance im-
provements through in-context interactions with-
out parameter updates (Tao et al., 2024; Lu et al.,
2023b). For instance, Lange et al. (2024) pro-
posed prompting strategies that enhance perfor-
mance through structured interactions, and Yu and
Feng (2025) introduced agentic workflows that in-
tegrate human knowledge to guide model behavior
and maximize gains. Most prior work emphasizes
engineering pipelines to improve in-context perfor-
mance, often in application settings such as web
navigation, tool use, or code generation—domains
where improvements are frequently driven by re-
trieval or surface-level similarity to prior examples,
rather than by the development of general strategies
or deeper reasoning. As noted by Silver and Sutton
(2025), “now is the time of experience,” highlight-
ing the emerging view that future intelligent agents



must learn through interaction to achieve higher-
level of reasoning, rather than rely solely on static
question answering-style evaluations.

In this work, we aim to objectively evaluate
the extent to which LLMs can leverage experi-
ence at test time. Specifically, we quantify models’
test-time gains and compare them against improve-
ments guided by human-authored policies and hu-
man learning trajectories.

2.2 Evaluation Environments

For reasoning-intensive evaluation environments,
in-context reinforcement learning studies have
explored semantic and visual representations
of reinforcement tasks such as the adversarial
bandit (Laskin et al.; Lee et al., 2023), dark
room (Laskin et al.; Lee et al., 2023) and Partially
Observable Process Gym (Morad et al., 2023; Lu
et al., 2023a), a set of simple environments de-
signed to benchmark memory in deep RL. However,
these tasks involve closed-ended environments with
limited action spaces and are often easily solved
by current large language models, as they may al-
ready encode effective policies, e.g., upper con-
fidence bound(Garivier and Moulines, 2011). In
contrast, we focus on open-ended experience-based
reasoning-intensive tasks with token-level action
spaces and moderate difficulty, where the optimal
policy is not readily accessible or encoded in the
model. Regarding the self-evaluation of LL.Ms, re-
cent works have employed web-used (Yao et al.,
2022), tool-assisted (Lu et al., 2023b), or static
benchmarks, including math (Cobbe et al., 2021),
code generation (Jiang et al., 2023; Luo et al.,
2023), and general-purpose benchmarks (Chiang
et al., 2023). However, these static evaluations are
prone to saturation, and observed improvements
may result from memorization or recall rather than
from enhanced reasoning via learned policies.

In this work, we propose competitive game en-
vironments as effective testbeds for evaluating the
test-time learning ability of LLMs. These environ-
ments are dynamic, resistant to saturation, open-
ended, reasoning-intensive, and policy-driven, mak-
ing them well-suited for assessing model ability to
learn and adapt through experience.

3 Test-time Learning

3.1 Testbeds

The optimal environment for evaluating the test-
time learning ability of large language model

should satisfy the following requirements: 1) Mod-
erate Difficulty: The environment should not admit
a readily accessible optimal policy, either due to
the nature of the task or the current limitations of
large language models. 2) Structured Regularity:
Tasks should contain underlying patterns that can
be uncovered and leveraged through interaction
and reasoning to enhance performance. 3) Beyond
Memorization: Success should depend not on re-
calling previous answers, but on identifying gener-
alizable rules or strategies that drive improvement.

These criteria highlight the importance of reason-
ing over purely knowledge-rich contexts. Classic
reinforcement learning settings, such as adversar-
ial bandit (Laskin et al.), have been rendered less
meaningful for test-time learning evaluations, as
many models have already internalized algorithms
like Upper Confidence Bound in their knowledge.
To address this, we adopt three diverse environ-
ments to evaluate test-time learning: a mathematics
benchmark, a single-agent semantic game, and a
multi-agent semantic game.

AIME 2025 (MAA, 2025) refers to the Ameri-
can Invitational Mathematics Examination 2025,
used to identify candidates for the U.S. team in the
International Mathematical Olympiad (IMO). We
leverage this most recent mathematics benchmark
to examine the test-time learning capabilities of
large language models in solving high-level mathe-
matical problems.

Twenty Question (Abdulhai et al., 2023; Zhou
et al., 2024) is a dialogue-based multi-turn sin-
gle agent task in which a large language model
attempts to identify a target word from a fixed set of
157 candidate words by asking up to twenty yes/no
questions. The environment responds with "Yes",
"No", or "Invalid" if the question is not a valid
yes/no query. To ensure consistent understanding
of the questions, the environment is simulated us-
ing the same LLM as the questioning model.

The 157 candidate words, adopted from prior
work (Zhou et al., 2024), span diverse categories
including animals, art, clothes, electronics, fruits,
furniture, garden supplies, jewelry, kitchen tools,
musical instruments, nature, office supplies, sports,
tools, toys, vegetables, and vehicles. The candidate
set remains fixed across the games, providing a
controlled setting to evaluate whether the LLM can
learn effective categorization and formulate increas-
ingly informative dichotomous questions during
test time. Performance is measured by NDCG @20
based on the rank of the correct guess.



Who is undercover (Xu et al., 2023) is a dialogue-
based multi-turn multi-agent task. Each player is
assigned a secret word: one player receives a dis-
tinct word as the undercover, while all others, civil-
ians, share the same word. In each round, players
provide verbal clues related to their secret words.
By analyzing both their own and others’ clues, play-
ers attempt to infer their roles. The objective for
civilians is to identify the undercover, while the un-
dercover aims to conceal their identity. Note we use
the neutral word "difference" and "normal" instead
of "undercover" and "civilian" in task instructions.
This is motivated by the observation that large lan-
guage models often refuse to acknowledge being
the "undercover" due to value misalignment, as fur-
ther discussed in Appendix C. The performance is
evaluated based on the win rate.

3.2 Test-time Learning Setting

It is important to note that our objective is not
to design an elaborate framework for maximizing
task completion rates. Rather, we aim to provide
a lightweight and objective evaluation framework
that assesses a model’s test-time learning, com-
paring its performance with and without prior ex-
perience, as well as against human-authored poli-
cies grounded in human reasoning. To this end,
we adopt a vanilla evaluation setup consisting of
two settings: a fixed number of experience set-
ting (Laskin et al.) and an incremental experience
setting (Suzgun et al., 2025).

3.2.1 Evaluation with Experience

Table 1: Token Lengths of Context

Instruction Experience Policy
Twenty Question 463 1011 243
Who is Undercover 341 2356 261

We aim to qualitatively assess whether current
large language models exhibit test-time learning
capabilities and the extent to which they improve.
To this end, we encode historical experience and
compare model performance with and without it.

We investigate efficient and objective methods
to encode this historical experience. Table 1 re-
ports the average context lengths for instruction,
experience, and derived policy. To fully leverage
past experience, the experience includes dialogue
interactions, rewards, and model’s self-reflections
on interactions and rewards. The strategy is derived
by the model itself based on all past experience.

In pilot studies, we experiment with two ap-
proaches: incorporating the full history experi-
ence directly, and self-derived policy from the full
history. We fix the number of experience to five
rounds, leading to context lengths of approximately
5k and 12k for Twenty Questions and Who is Un-
dercover, respectively, while the derived policy
contexts average 243 and 261 tokens. Although
the first approach provides complete information,
it incurs higher computational costs and under-
performs compared to the second. Therefore, we
adopt policy-based representations of past expe-
rience for further evaluation. This setup is illus-
trated in the left panel of Figure 2. To further
isolate the influence of the model’s self-derived
policy pipeline, we include a rule-based policy as a
baseline for comparison with the experience-based
policy, in which strategies are derived from both
rules and accumulated experience. This compari-
son helps ensure that observed improvements can
be attributed to the incorporation of experience.

3.2.2 Evaluation with Incremental Experience

The previous setting evaluates the test-time learn-
ing given limit amounts of prior experience. If
a model demonstrates performance gains from
such experience, it becomes essential to investigate
whether these test-time improvements persist and
accumulate as additional experience is acquired.

This motivates an incremental evaluation setting
that requires efficient management of past expe-
rience. To support dynamic policy updates with
growing experience, we adopt the memory man-
agement pipeline (Suzgun et al., 2025). As illus-
trated in the right panel of Figure 2, the agent with-
out experience performs k independent test rounds,
while the agent with experience conducts the same
k rounds with a continuously updated policy pool
based on accumulating experience. To ensure ro-
bust evaluation, we sample each setting (with and
without experience) three times and compute the
cumulative average reward. Let r_base(¢, 7) denote
the reward obtained by the agent without experi-
ence at test round ¢ in sample 7, and r_exp(t, 1)
denote the corresponding reward for the agent with
experience. The cumulative average reward for the
agent with experience up to round ¢ is denoted by
R_his(t). The computation of Rpis(¢) is provided
below; Rpase(t) is computed analogously.



Evaluation of Test Time Learning with Fixed Number of Experience

Evaluation of Test Time Learning
with Incremental Experience

Agent without Experience
Round 1 @ Agent Environment @ Agent Environment Round 1
~ - Agent Environment h " d
Is it a man made object? Yes i[1 - (Interaction 1, Reward 1) 1 Exp(1)
i ... used to produce or play music? No SOLUTIONS, AND IMPLEMENTATION PATTERNS, AND
Interaction ¢ typically find indoors? Yes Round 1Interaction —» Reward PSEUDOCODES
. <memory_item>
L b Independent Evaluate M times <description>
Is it a whisk? No Binary Search Strategy (Reference: R1)
o . : The most efficient approach is to use questions that divide
Reward [Finished] Agent with Experience the remaining possibilities roughly in half each time. Start Policy(1)
You do not get the answer in 20 questions! with broad categories and progressively narrow down.
4 [Reflecti Agent Environment </description>
ection] <example>
Reflection | 1- Category Elimination Strategy: ...
2. Question Formulation Issues: ... . </example>
= Exp(1) | 3.Better Information Gain: Round N+1Interaction - Reward </memory_item>
: - Independent Evaluate M times GENERAL META-REASONING STRATEGIES
Round 2 Agent
1. Core Question Structure Agent Round 2
\ - Always start with “'Is it a man-made object?'"
H . N - h - Follow with major category splits like ,
Exp(2) :(Imeracnon 2, Reward 2, Reflection 2)=Exp(2) H E\ec(\ro{mc vs. non-electronic; Indoor vs. outdoor use; Portable 1Policy(1) - (Interaction 2, Reward 2) 1 Exp(2)
vs. stationary : :
...... a‘i‘faﬁf‘f;h‘:‘”;;yp;::‘;“ with “rather than” comparisons to 1Policy(1); (Interaction 2, Reward 2) - Policy(2)! Policy(2)
2. Category Hierarchy (in order) k !
Exp(1), ..., A. Man-made vs. Natural
Round N [Exp(1) Agent B.Ifman-made: b aeeses
Exp(N-1)] Electronic/Electrical vs. Non-electronic; Indoor vs. Outdoor use
C. Major categories:
H : : H El Devices; F ; Clothing/Acc q
Exp(N) i(Interaction N, Reward N, Reflection N)=Exp(N): e EWES,, ‘umwe s items Agent Round T
b : 3. Question Formulation Rules
[Exp(1), - Exp)] J 4 Strategic Principles iPolicy(T-1) > (Interaction T, Reward T) 1 Bxp(T)
Cummulative Experience N N . N
Self-derived Policy Cumulative Updated Policy

After N rounds

Figure 2: Test-time Learning Evaluation Settings with Fixed Amount and Incremental Experience.

Zi T'base(ovi)+zi 7"exp(oai)

t=1
_ |7’base(07')‘+|7’e)<p(0:')| ’
TeXp(t) = i”‘exp(t,i (1)
Trep(61] t>1
D 1<i<t Texp 1)
Rexp(t) = Kﬁ% )

4 [Experiments

In the experiments, we aim to answer the following
questions:

(Q1) Do current large language models exhibit the
ability to learn at test time?

(Q2) Can large language models achieve stable
and consistent improvements when experience
accumulates?

(Q3) How do humans adapt and improve their
performance through experience?

(Q4) How do thinking models perform in test-time
learning scenarios?

4.1 Experimental Setup

We aim to evaluate whether the current top-tier
large language models have the ability to improve
at the test time. Specifically, we evaluate gpt-
40 (Hurst et al., 2024), Claude 3.5 Sonnet (An-
thropic, 2024) and DeepSeek-V3 (Liu et al., 2024).
We set the temperature to 1 to support the dynamic
testbeds. For overall performance evaluations, we
set prior interactions N=5, test cases M=32, which

we find to yield stable results. In the cumulative
setting, we extend the evaluation t=50 rounds.

During each interaction, the model is instructed
to first perform explicit reasoning before generating
its final output. The final response (a question,
reflection, or policy in Twenty Questions; a speech,
vote, reflection, or policy in Who is Undercover) is
enclosed within <answer></answer> tags to ensure
clarity and facilitate objective evaluation of both
reasoning quality and task performance.

In the single-agent setting, the environment is
simulated using the same model under evaluation
to ensure alignment in question understanding and
knowledge base. In the multi-agent setting, all
other agents are instantiated with the same back-
bone LLM as the test agent to isolate test-time
improvements from potential gains due to mere fa-
miliarity with another model’s behavior. For each
evaluation setting, the order of test rounds is fixed
to ensure consistency across trials.

4.2 Overall Test-time Learning
Performance (Q1)

We begin by investigating whether top-performing
large language models exhibit measurable improve-
ments at test time when provided with prior ex-
perience. Table 2 summarizes the overall perfor-
mance across three environments under four eval-
uation settings: (1) without any policy, (2) with
model-derived policy based solely on rules, (3)
with model-derived policy based on both rules and



Table 2: Evaluation of Test-time Learning Ability of LLMs. "w/o Policy" denotes the baseline setting where the
model is provided only with task rules. "w/ Rule Policy" indicates that the model receives both the rules and a
test-time policy based only on rules. "w/ Exp. Policy" refers to having both rules and test-time policy from rules
and model five rounds of experience containing interactions, rewards and reflections. "w/ Human Policy" indicates
that the model is given rules along with a human-authored policy based on human understanding of the task. The
best results are shown in bold and the second best are underlined.

Task Setting GPT-40 Claude 3.5 Sonnet DeepSeek-V3
w/o Policy 0.0000 0.0333 0.4333
158;11\/[15—;?13: Math Problem w/ Exp. Policy 0.0667 0.0667 0.3333
& Improve (%) NA 100.00 -23.08
w/o Policy 0.2422 0.2640 0.2641
w/ Rule Policy 0.2199 0.1368 0.2033
. Improve (%) -9.21 -48.18 -23.02
;ﬁf::‘tyur()nusej“l’:a L. W Exp.Policy 02563 0.2807 0.2746
gle-ag Improve (%) 5.80 6.33 3.97
w/ Human Policy 0.2709 0.2624 0.2758
Improve (%) 11.84 -0.61 4.41
w/o Policy 0.1563 0.1250 0.2500
w/ Rule Policy 0.0625 0.3125 0.1250
. Improve (%) -60.01 150.00 -50.00
I\V/Ylll‘l‘t’iffugl“f/ﬁfftz’fzm w/ Exp. Policy  0.1719 0.1563 0.2813
& Improve (%) 10.02 25.04 12.50
w/ Human Policy  0.1875 0.3438 0.4063
Improve (%) 20.00 175.04 62.50

test-time experience, and (4) with human-authored
policy. The inclusion of the human policy serves
to assess the potentials of models.

In the Twenty Questions setting, we observe
consistent performance gains when models are
equipped with self-derived policies based on prior
experience. In contrast, rule-based policies result
in significant performance drops across all mod-
els, likely due to a misalignment between human-
designed heuristics and model reasoning patterns,
as further discussed in Section 4.6. Experience-
based policies, however, lead to clear improve-
ments, with Claude achieving the highest gain from
its own test-time experience.

Interestingly, GPT-40 and DeepSeek-V3 both
outperform their self-derived policies when pro-
vided with human-authored policies. This high-
lights a gap between the models’ current test-time
learning capabilities and their full potential, sug-
gesting that either the quantity of experience or
the quality of derived policies remains subopti-
mal. These limitations are further examined in
Section 4.3 and Section 4.6. Claude performs
marginally worse with human-authored policy, also
indicating a possible misalignment between its in-
ternal reasoning and externally imposed guidance.

In Who is Undercover, test-time learning yields
more substantial improvements. Claude again
achieves the highest gain from experience-based
policy, reinforcing its ability to leverage self-
acquired strategies. Unlike other settings, the rule-
based policy ranks as the second-best for some
models, highlighting a divergent pattern in this
multi-agent context. Additionally, human-authored
policies consistently lead to the highest perfor-
mance across all models, further underscoring the
latent potential of test-time learning when guided
by effective strategies. It is important to note that
direct comparisons across models in this environ-
ment are not meaningful, as all agents in the multi-
agent setting are instantiated using the same LLM
that is being evaluated. This design ensures an
objective assessment of test-time learning by iso-
lating gains attributable to experience and strategic
adaptation, rather than confounding effects such
as familiarity with another model’s behavior. Full
instances of model-generated and human-authored
policies are provided in Appendix B and analyzed
in Section 4.6.

Finding 1: Policies derived from past experience
at test time yield measurable improvements across
models and tasks.



Finding 2: The superior performance under
human-authored policies reveals the untapped po-
tential for enhancing models’ test-time learning
capabilities.

4.3 Cumulative Improvement (Q2)

The above results demonstrate that large language
models possess the ability to improve at test time.
We next examine whether this improvement is con-
sistent as experience accumulates. To this end, we
adopt the cumulative evaluation setting described
in Section 3.2.2. Figure 3 presents cumulative re-
wards over 50 rounds in the Twenty Questions task,
comparing model performance with and without
test-time policies derived from past experience.

Model performances vary. Claude successfully
leverages cumulative experience, whereas other
models struggle to maintain or improve perfor-
mance as experience accumulates. For Claude,
the experience-enabled setting consistently outper-
forms the baseline, particularly within the first five
rounds, indicating effective strategy accumulation.
However, the performance gap narrows in later
rounds, suggesting diminishing returns from addi-
tional experience. GPT and DeepSeek show min-
imal gains from the accumulation of experience
at test time. For GPT-40, both curves overlap in
the early rounds, with the experience-enabled set-
ting beginning to slightly outperform the baseline
around rounds 15-20. In contrast, DeepSeek-V3
shows a decline in performance after five rounds
of accumulated experience, while the baseline re-
mains stable. This suggests that its policy refine-
ment process may introduce noise or compounding
errors, limiting its ability to leverage experience
effectively.

Finding 3: Results reveal substantial differences
in the consistency and effectiveness of test-time
learning across models as experience grows.

4.4 Human Study (Q3)

In the previous experiments, we demonstrate that
certain large language models exhibit the ability to
learn at test time through cumulative experience.
To further understand the rate of improvement, we
compare model learning speed with human.

We recruited eight human participants (under-
graduate and PHD students) to perform the same
Twenty Question task, playing 20 rounds cumu-
latively. Their results are summarized in Table 4,
and their cumulative rewards are plotted alongside
those of the best-performing model, Claude. Par-

ticipants are divided into two groups based on per-
formance variance across rounds.

The upper figure shows that all humans in this
group achieve greater cumulative gains than Claude
after 20 rounds, approaching near-optimal perfor-
mance (represented by the black dotted line indi-
cating the reward of perfect binary questioning).
The lower figure includes participants with higher
performance variability; nevertheless, their final
cumulative rewards still exceed those of the LLM.

Finding 4: Current top-tier large language mod-
els exhibit slower test-time learning speed com-
pared to the learning efficiency of humans in the
experience-based reasoning-intensive task.

4.5 Performance of Thinking Models (Q4)

Table 3: Test-time Learning Performance of Thinking
Models in Who is Undercover environment.

Setting ol DeepSeek-R1
w/o Test-time Policy 0.3000 0.2500
w/ Test-time Policy 0.2000 0.0000
w/ Human Policy 0.4000 0.2000

In pervious experiments, we evaluate large lan-
guage models without explicit thinking mode. In
this section, we examine the performance of think-
ing model: ol (Jaech et al., 2024) and Deepseek-
rl (Guo et al., 2025), as reported in Table 3.

As shown in the table, test-time learning im-
provements are not observed for either thinking
model when provided with self-derived policies.
For ol, the test-time performance with self pol-
icy decrease and the test-time performance with
human policy increase. For ol, performance de-
creases when incorporate test-time policy but im-
proves when guided by a human policy, suggest-
ing potential limitations in its ability to generate
effective strategies autonomously, while still be-
ing capable of leveraging prior experience. For
DeepSeek-R1, performance declines under both
self-derived and human-authored policy conditions,
compared to its baseline with no prior experience.
This aligns with the findings reported in its orig-
inal paper, which notes that few-shot prompting
consistently degrades R1’s performance. The au-
thors explicitly recommend presenting tasks in a
zero-shot format for optimal outcomes, suggesting
that R1’s internal reasoning is optimized for direct
problem descriptions rather than for accumulating
and adapting to test-time experience.



GPT-40

Claude 3.5 Sonnet

Deepseek-v3

—— W/O Experience
—— W/ Experience

—— W/O Experience
—— W/ Experience

—— W/O Experience
—— W/ Experience

o
a
o

o
o
o

o
=)
&

0.25 1 4
ool | \Wz

e——

Cumulative Reward (NDCG@20)

=4
o
S

0 _;: 1‘0 15 2‘0 2’5 Eb 35 40 4‘5 5‘0 0 _;: 1‘0 1‘5
#Round

25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
#Round

#Round

Figure 3: Cumulative Test-Time Learning Performance on Twenty Question.

Human Group 1

0.25

Cumulative Reward (NDCG@20)

°
o
&

—e— Human 3
—¥— Human 4

Human 1
—#— Human 2

Claude W/O Experience
®- Claude W/ Experience

--- Optimal

°
o
8

2 4 6 8 10 12 14 16 18 20
#Round

Human Group 2

°
=
8

i\
i)

°
w
8

$ o -)/;L;",g,,w?l %

o-® w—s\e °

>—

o-6-6-6-9

Cumulative Reward (NDCG@20)

°
o
&

Human5 —e— Human 7
#- Human 6 —¥— Human 8

Claude W/O Experience
®- Claude W/ Experience

--- Optimal

0.00
2 4 6 8 10 12 14 16 18 20

#Round

Figure 4: Human Performance on Twenty Question.

Finding 5: Test-time learning is not observed
in thinking models, consistent with the findings
reported in R1’s original paper that CoT in few-
shot cases may degrade model performance.

4.6 Further Analyses

In the Twenty Questions environment, test-time
improvements (w/ Exp. Policy vs. w/o Policy in
Table 2) primarily stem from earlier identification
of item categories. Test-time policies such as ‘“Be-
gin with high-level distinctions” and “Identify the
category of the answer word within the first five
questions” help the model avoid overly specific
guesses early on. We also analyze the failure of the
w/ Rule Policy setting in this environment, which
we attribute to a misalignment between model be-
havior and human preference. Model-generated
questions often include specific examples (e.g., “Is

it a living thing (animal, plant)?” or “Is it a ball
(like basketball, baseball, football) rather than other
sports equipment (like bats or rackets)?”’), whereas
questions in human-authored policies are general
and abstract (e.g., “Is it a living thing?”, “Does it
use electricity?”, “Is it commonly found indoors?”).
These examples lead to the model adopt this for-
mat throughout the questioning process, which con-
tributes to the performance decline. For humans,
we observed more rapid test-time learning, with
noticeable improvement after just a single game.
In the Who is Undercover environment, both
DeepSeek and human demonstrate a key policy,
"Deduce the opposing secret word". This is based
on the observation that the undercover and normal
players’ words are typically semantically related.
Recognizing this pattern allows participants to re-
fine their clues and identities more effectively.

5 Conclusion

In this work, we advocate for evaluations of large
language models’ test-time learning ability, de-
fined as the capacity to improve at test time in
experience-based, reasoning-intensive tasks. Com-
petitive games serve as effective testbeds due to
their dynamic nature, resistance to saturation, and
reliance on reasoning. We present an objective
framework to access test-time learning under both
static and cumulative experience settings, and eval-
uate models with different policies. We also com-
pare the improvements of models to humans. Ex-
perimental results demonstrate that LLMs exhibit
measurable test-time learning; however, these gains
are often unstable and inconsistent across cumula-
tive settings. In contrast, human participants show
more stable and rapid learning. We highlight the
need for greater emphasis on evaluation and train-
ing strategies to improve LLMs’ test-time learning
as a step toward artificial general intelligence.



Limitations

This work aims to evaluate the test-time learning
capabilities of large language models and compare
their gains with humans. We employ one math
benchmark and two semantic game environments
as representative testbeds. While these settings
provide meaningful insights, a broader range of
evaluation environments is necessary for more com-
prehensive measurement of test-time learning.

Each experimental condition is run for thirty two
to fifty rounds to ensure result stability. We exam-
ine five settings: no experience, rule-based policy
without experience, full experience, experience-
based policy, and human-authored policy, to pro-
vide a more thorough understanding of how LLMs
benefit from test-time experience.

For the human studies, we recruit eight partic-
ipants, each compensated $10 for completing 20
rounds of the Twenty Questions task, which typi-
cally takes 1 to 2 hours. While these participants
offer a stable and useful baseline, involving more
individuals across diverse environments would fur-
ther strengthen the generalizability of our findings.

Finally, this paper currently does not incorporate
test-time training, where a model’s parameters are
updated based on a small amount of test-time expe-
rience. This is due to two main reasons: the closed-
source nature of the models evaluated, which pre-
cludes parameter access; and the current lack of
effective in-parameter test-time learning methods
tailored for reasoning-intensive tasks. Future work
may explore this direction to further advance the
understanding of test-time learning capabilities in
LLMs.

Ethical Considerations

In this study, we recruited eight human participants
to complete twenty rounds of the Twenty Ques-
tions task. The task environment is non-sensitive
and does not pose any potential risks or negative
impacts to participants. All participants were fully
informed that their interactions would be recorded
and used for research purposes, and their consent
was obtained prior to participation. In this paper,
we used an Al assistant (GPT-40) to check for gram-
matical errors. It was not used to directly generate
any of the paper’s content.

References

Marwa Abdulhai, Isadora White, Charlie Snell, Charles
Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu, and
Sergey Levine. 2023. Lmrl gym: Benchmarks
for multi-turn reinforcement learning with language
models. arXiv preprint arXiv:2311.18232.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Claude 3.5 sonnet.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, and 1 others. 2024.
A survey on evaluation of large language models.
ACM transactions on intelligent systems and technol-

ogy, 15(3):1-45.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett,
Ilya Sutskever, and Pieter Abbeel. 2016. RI2: Fast re-
inforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779.

Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei
Efros. 2022. Test-time training with masked autoen-
coders. Advances in Neural Information Processing
Systems, 35:29374-29385.

Aurélien Garivier and Eric Moulines. 2011. On upper-
confidence bound policies for switching bandit prob-
lems. In International conference on algorithmic
learning theory, pages 174—188. Springer.

Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scal-
able in-context reinforcement learning for adaptive
agents. In The Twelfth International Conference on
Learning Representations.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,


https://www.anthropic.com/news/claude-3-5-sonnet
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. Self-
evolve: A code evolution framework via large lan-
guage models. arXiv preprint arXiv:2306.02907.

David R Krathwohl. 2002. A revision of bloom’s taxon-
omy: An overview. Theory into practice, 41(4):212—
218.

Robert Lange, Yingtao Tian, and Yujin Tang. 2024.
Large language models as evolution strategies. In
Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pages 579-582.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio
Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos,
Ethan Brooks, and 1 others. In-context reinforcement
learning with algorithm distillation. In The Eleventh
International Conference on Learning Representa-
tions.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chan-
dak, Chelsea Finn, Ofir Nachum, and Emma Brun-
skill. 2023. Supervised pretraining can learn in-
context reinforcement learning. Advances in Neural
Information Processing Systems, 36:43057-43083.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi.
2021. Ttt++: When does self-supervised test-time
training fail or thrive? Advances in Neural Informa-
tion Processing Systems, 34:21808-21820.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio
Parisotto, Jakob Foerster, Satinder Singh, and Fer-
yal Behbahani. 2023a. Structured state space models
for in-context reinforcement learning. Advances in
Neural Information Processing Systems, 36:47016—
47031.

Jiangiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng
Shang, and Qun Liu. 2023b. Self: Language-driven
self-evolution for large language model.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

10

MAA. 2025. American invitational mathematics exami-
nation (aime).

Marvin Minsky. 1988. Society of mind. Simon and
Schuster.

Steven Morad, Ryan Kortvelesy, Matteo Bettini,
Stephan Liwicki, and Amanda Prorok. 2023. Pop-
gym: Benchmarking partially observable reinforce-
ment learning. arXiv preprint arXiv:2303.01859.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin
Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu, and
Maosong Sun. 2024. Investigate-consolidate-exploit:
A general strategy for inter-task agent self-evolution.
arXiv preprint arXiv:2401.13996.

David Silver and Richard S Sutton. 2025. Welcome to
the era of experience. Google Al.

Samarth Sinha, Peter Gehler, Francesco Locatello, and
Bernt Schiele. 2023. Test: Test-time self-training
under distribution shift. In Proceedings of the
IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2759-2769.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller,
Alexei Efros, and Moritz Hardt. 2020. Test-time
training with self-supervision for generalization un-
der distribution shifts. In International conference
on machine learning, pages 9229-9248. PMLR.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller,
Alexei A Efros, and Moritz Hardt. 2019. Test-time
training for out-of-distribution generalization.

Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi,
Dan Jurafsky, and James Zou. 2025. Dynamic cheat-
sheet: Test-time learning with adaptive memory.
arXiv preprint arXiv:2504.07952.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. 2024. A survey
on self-evolution of large language models. arXiv
preprint arXiv:2404.14387.

Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren,
Zhen Dong, Kurt Keutzer, See Kiong Ng, and Ji-
ashi Feng. 2023. Magic: Investigation of large lan-
guage model powered multi-agent in cognition, adapt-
ability, rationality and collaboration. arXiv preprint
arXiv:2311.08562.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,

35:20744-20757.

Yajie Yu and Yue Feng. 2025. Policyevol-agent: Evolv-
ing policy via environment perception and self-
awareness with theory of mind. arXiv preprint
arXiv:2504.15313.


https://maa.org/
https://maa.org/
https://maa.org/

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine,
and Aviral Kumar. 2024. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv
preprint arXiv:2402.19446.

Appendix
A Game Rule
A.1 Twenty Question

You are playing the game Twenty Questions.

In this game, there are 157 candidate words: Air-
plane, Apple, Banana, Baseball, Baseball bat,
Basketball, Battery, Bear, Bed, Belt, Blender,
Boat, Bookcase, Boots, Bowl, Bracelet, Broccoli,
Brooch, Bus, Bush, Cactus, Calculator, Calendar,
Camera, Cantaloupe, Canvas, Car, Carrot, Cat, Cel-
ery, Chair, Chopstick, Clarinet, Computer, Com-
puter keyboard, Cooking pot, Corn, Couch, Cow,
Cucumber, Cup, Desk, Diary, Dog, Doll, Dress,
Dresser, Drill, Drum, Earring, Elephant, Eraser,
Flute, Football, Forest, Fork, Gloves, Glue, Golf
ball, Grape, Guitar, Hairclip, Hammer, Harp, Hat,
Headphone, Helicopter, Helmet, Horse, Jacket,
Key, Kite, Knife, Lake, Lawn mower, Lego, Lion,
Locket, Mango, Marker, Mattress, Meteorite, Mi-
crowave, Monitor, Motorcycle, Mountain, Neck-
lace, Nightstand, Ocean, Onion, Orange, Paint-
brush, Painting, Pan, Pants, Paper, Peach, Peas,
Pen, Pencil, Pendant, Piano, Pillow, Pineapple,
Plate, Pliers, Potato, Printer, Puzzle, Rabbit, Rake,
Refrigerator, Ring, River, Rock, Saw, Saxophone,
Scarf, Scissors, Scooter, Screwdriver, Sculpture,
Sea, Sharpie, Sheep, Ship, Shirt, Shoes, Shovel,
Skirt, Smartphone, Soccer ball, Socks, Spinach,
Spoon, Stapler, Strawberry, Table, Television, Ten-
nis ball, Tennis racket, Tiger, Tomato, Toothbrush,
Toothpaste, Train, Tree, Trombone, Truck, Trum-
pet, Violin, Volleyball, Watch, Watering can, Wa-
termelon, Whisk, Wrench.

One of the 157 words is the answer word. You
can ask up to 20 yes/no questions to identify the
answer word. You will get a Yes, No, or Invalid
feedback for each question. Note that you cannot
ask questions about the letters of the answer word.
Questions can only be asked around semantics.

A.2 Who is Undercover

Game Rules of Who is the Difference
1. Game Setup
Roles:
Among all players, only one player is the differ-
ence one. All others are normal players.

11

Secret Words:

All normal players receive the same secret word.
The difference receives a related but different word.
Initial Information:

Each player knows only their own word, not their
role or others” words.

2. Game Phases
The game starts with three rounds of speaking
phase, followed by one round of voting. After that,
the game alternates between one round of speaking
and one round of voting until it ends. Game ends
when the difference is voted out, or the number of
remaining players drops to three or fewer.
Speaking Phase
All players speak in turn, each giving one sentence
as a clue about their word.
Forbidden actions include saying the word directly,
hinting at letters, repeating clues from previous
players. You do not have to describe your own
word. The difference may pretend to match the
regular players’ word to avoid detection.
Voting Phase
All players vote for one player (cannot be yourself)
at the same time. Regular players vote for who
they think is the difference; the difference votes
strategically.
The player with the most votes is eliminated. In
case of a tie, no one is eliminated that round.
Victory Conditions
If the difference is voted out: regular players win
If the difference survives until only three players
remain: difference wins

3. Strategy Tips
1. Identify your role early:
If more than one player’s clue doesn’t match your
word, you are likely the difference. If only one
clue differs, you may be a regular player or the
difference. Do not jump to conclusions.

B Learnt Policy

B.1 Twenty Question

GPT Test-time Policy from Experience

To consistently improve performance in Twenty Ques-
tions, begin by asking broad, high-level questions that
eliminate major categories (e.g., "Is it living?" or "Is
it commonly found inside a house?"). Gradually re-
fine with mid-game questions that target functional
properties (purpose, interaction, context) rather than
overly specific traits. Avoid semantic overload by




keeping questions clear, concise, and focused on one
characteristic at a time. If progress stalls, pivot to
regroup broader ideas rather than fixating on nar-
row assumptions. Ultimately, efficient grouping and
elimination of related possibilities will maximize the
chances of identifying the answer within 20 ques-
tions.

\. J

Claude Test-time Policy from Experience

1. Core Question Structure

- Always start with “Is it a man-made object?”

- Follow with major category splits like:

* Electronic vs. non-electronic

* Indoor vs. outdoor use

* Portable vs. stationary

- Use clear binary choices with ‘“rather than”
comparisons to avoid invalid responses

2. Category Hierarchy (in order)
A. Man-made vs. Natural

B. If man-made:

- Electronic/Electrical vs. Non-electronic
- Indoor vs. Outdoor use

- Major categories:

* Electronics/Devices

* Furniture

* Clothing/Accessories

* Tools/Equipment

* Sports/Recreation

* Kitchen/Household items

3. Question Formulation Rules

- Use clear yes/no format

- Avoid questions about letters or spelling

- Include comparison elements (e.g., “rather than”)
- Focus on physical characteristics and use cases

- Avoid ambiguous or overlapping categories

4. Strategic Principles

- Each question should aim to eliminate roughly half
of remaining possibilities

- Track eliminated categories carefully

- Move from general to specific progressively

- Don’t get too specific too early

- Save direct object identification for final questions

. J

DeepSeek Test-time Policy from Experi-
ence

1. Start Broad, Then Narrow:

Begin with high-level categories (living/non-living,
household/outdoor) to eliminate large groups quickly.
Prioritize binary splits to maximize information gain
early.

2. Focus on Function and Context:

For household items, drill down by room
(kitchen/bathroom) or usage (cleaning, recreation,
grooming). Ask about *how* or *where* the item
is used (e.g., "Is it for cutting?" or "Found in the
bathroom?").

3. Avoid Invalid Questions:

Use clear, single-focus questions (e.g., "Is it jew-
elry?" not "Is it worn on hands or neck?"). Split
compound queries to prevent ambiguity.

4. Guess Strategically in Small Pools:

Once candidates are under 5, guess high-
probability words (e.g., "spoon" after "kitchen uten-
sil") instead of further elimination.

5. Adapt and Pivot:

If a category yields "No," immediately switch to
the next most likely group (e.g., from "tools" to "dec-
orative items"). Leverage feedback (e.g., "Invalid")
to refine questioning.

Key Principle:

Each question should halve the remaining candi-
dates, balancing systematic elimination with timely
guessing.

\.

Human Policy

1. Start Board: Begin with high-level distinctions to
quickly eliminate large groups of items. Useful splits
include:

- Is it a living thing?

- Does it use electoricity?

- Is it commonly found indoors?

2. Identify the category early: Aim to determine
the category of the answer word within the first 5
questions. Avoid overly specific guesses at this stage.
- Major categories among the 157 words include: fruit,
vegetable, animal, transportation, sports equipment,
musical instrument, electronic product, office equip-
ment, furniture, kitchenware (for food preparing, eat-
ing), tools, entertainment items, clothing, and acces-
sories, daily necessity, etc.

3. Refine with category traits: Once the category
is identified, filter the candidate words accordingly.
Then continue binary questioning using finer distinc-
tions within that group.

4. Guess when narrowed down: If only 3 or fewer
candidates remain, direct guessing becomes viable.
Otherwise, continue using binary splits for efficiency.
5. Your question should always be clear: Avoid
compound questions that can lead to invalid re-
sponses.

B.2 Who is Undercover

GPT test-time Policy

1. Identify Your Role as Early as Possible: If the
descriptions given by more than one player do not
match your secret word, then you are the "different
one." If only one player’s statements conflict with
yours, you might be an ordinary player or the "differ-
ent one," but you cannot determine this immediately.
2. Make Your Statements Ambiguous to Avoid
Revealing Core Characteristics: Regardless of
whether you are an ordinary player or the "differ-
ent one," try to use broad and ambiguous descriptions
during the game. Avoid directly mentioning distinc-
tive or obvious characteristics of the secret word to
reduce the risk of being suspected.

3. Spot Deviations and Pinpoint Suspicious Tar-
gets: Over multiple rounds of statements, focus on
characteristics that significantly deviate from the ma-
jority of players. Identify semantic inconsistencies.
The "different one" usually struggles to fully match
the clues provided by ordinary players, which may
reveal their identity. Use these deviations to precisely

12



target your voting.

4. Skillfully Imitate and Blend Into Group Clues:
If you are the "different one," observe the speaking
style of the ordinary players and provide vague but
relevant supplementary clues based on their descrip-
tions. This will help align yourself with the group
and make your statements appear "reasonable" and
"credible," minimizing suspicion.

5. Adapt Dynamically and Respond Flexibly: Ad-
just your speaking strategy according to changes in
the game’s dynamics. If your statements are overly
suspected, try to further obscure your clues and em-
phasize common characteristics to divert suspicion.

. J

Claude Test-time Policy

1. Identify Identity Early: If more than one player’s
description does not match your secret word, then
you are likely the different one. If only one player’s
statement contradicts yours, you could be an ordinary
player or the different one, and you cannot make an
immediate judgment.

2. Pay Attention to Consistency and Subtle Dif-
ferences: During the game, closely observe the state-
ments of other players and note their subtle differ-
ences. If a player’s description is significantly incon-
sistent with the majority, it may indicate they are the
different one.

3. Use Vague Descriptions: Try to provide vague
descriptions and avoid being too specific about your
secret word. Choose characteristics that can apply to
multiple items.

4. Strategic Voting: In critical voting rounds, do not
always follow the majority. Sometimes strategically
scattering votes can help you achieve your victory
conditions, especially if you are the different one.

5. Adjust Identity Judgments Timely: Adjust your
identity judgment based on other players’ statements.
If you find that other players’ descriptions do not
match your secret word, consider that you might be
the different one and adjust your speaking strategy
accordingly to avoid revealing your identity.

6. Provide Unique Clues: When speaking, try to
provide unique clues that differ from those of other
players. Avoid repeating characteristics that have
already been mentioned to prevent exposing your
secret word.

\

DeepSeek Test-time Policy

1. Identify your role as early as possible: If more
than one player’s description does not match your
secret word, then you are the differentiator. If only
one player’s statement contradicts yours, you could
be either a regular player or the differentiator, and
cannot determine your role immediately.

2. Deduce the opposing secret word: Regular play-
ers and differentiators have different secret words,
but there is a certain connection between them. Both
regular players and differentiators should deduce the
opposing secret word based on their own word and
previous players’ statements as quickly as possible.
3. Speaking strategy: When uncertain about your
role, provide relevant but broad clues to avoid state-
ments that directly reveal your secret word. Ideally,
these clues should align with the main characteris-

13

tics of both your secret word and the opposing secret
word. Once your role is confirmed, the differentia-
tor should immediately begin describing the regular
players’ secret word while mimicking their speak-
ing style to avoid suspicion. Regular players, on the
other hand, should identify and highlight the most
divergent player to pinpoint the sole differentiator.

. v

Human Policy

1. Analyze comprehensively: other people’s state-
ments may apply not only to their own secret word,
but to other words as well, and they need to be ana-
lyzed and stated in a way that takes into account the
scope of application of the description.

2. Guessing and targeting the opponent’s secret
word: The secret words of normal players and differ-
ent people are related, but different. It is possible to
guess the opponent’s secret word for your own secret
word, and to narrow down and target the opponent’s
secret word after someone else has spoken.

3. Identify yourself as early as possible: If >1
player’s description does not match your own se-
cret word, then you are a different person. If only
1 player’s statement currently contradicts your own,
you may be either a regular player or a dissenter and
cannot be immediately recognized.

4. Speaking with caution. In the early stages of the
game, when you cannot identify yourself, you need
to speak very carefully. Do not reveal the unique
clues to your secret word in your speech; choose a
description that is broader and applies to a class of
words (including your own and your opponent’s se-
cret word) to prevent being too specific and revealing
your secret word in the first place, as well as avoiding
speeches that might cause conflict.

Later in the game, after clarifying their identity, the
regular player continues to describe their secret word
and the Dissenter describes the regular player’s se-
cret word. Statements can be chosen for the popular
attributes of the words to be described, avoiding de-
scribing overly niche clues that could trigger concern
and suspicion.

\

C Value Alignment

In Table 4, we present that the importance to use
neutral expressions as the role names with nega-
tive connotations can create confusion and lead to
denial when agent are assessing their identity.



Table 4: Deepseek-r1’s thinking content about its gaming role identity. Using role names with negative connotations
can create confusion and lead to denial when assessing whether it is "undercover". By using neutral role names, it
can quickly and directly recognize its identity.

Role Thinking Context
Name
Undercover| Based on the above analysis, the other four agents’ statements are all
more on the side of soymilk, and my word is milk, so maybe I’'m the
undercover agent? But according to the rules, there is only one under-
cover agent, while all the other civilians should be milk, but apparently
their descriptions are more consistent with soy milk. This suggests
that I might be the undercover agent, and it seems contradictory
that my secret word is actually soymilk, but the system tells me my
word is milk. Or maybe there are other players who are undercover
and their descriptions are misleading. But according to the game
settings, the word for civilians is the same and the word for un-
dercover agents is different but related. If my word is milk, and
the other civilians’ word should be milk, but they speak like soy
milk, that means they might all be undercover? That can’t be true
because there is only one undercover agent. So maybe my judg-
ment is wrong, or the undercover agent is among the others
and  their  descriptions are trying to  confuse ...
So as a civilian, I should point out their anomalies.

Difference | Taken together, the descriptions of the other players seem to point to
soymilk, whereas my secret word is milk, so I may be the Different
One. As the Different One, I need to make the statement fit the secret
word of the regular player (i.e. soy milk).

14



	Introduction
	Related Work
	Test-time Learning
	Evaluation Environments

	Test-time Learning
	Testbeds
	Test-time Learning Setting
	Evaluation with Experience
	Evaluation with Incremental Experience


	Experiments
	Experimental Setup
	Overall Test-time Learning Performance (Q1)
	Cumulative Improvement (Q2)
	Human Study (Q3)
	Performance of Thinking Models (Q4)
	Further Analyses

	Conclusion
	Game Rule
	Twenty Question
	Who is Undercover

	Learnt Policy
	Twenty Question
	Who is Undercover

	Value Alignment

