
Directed Graph Grammars for Sequence-based Learning

Michael Sun 1 Orion Foo 2 Gang Liu 3 Wojciech Matusik 1 Jie Chen 4

Abstract
Directed acyclic graphs (DAGs) are a class of
graphs commonly used in practice, with exam-
ples that include electronic circuits, Bayesian net-
works, and neural architectures. While many ef-
fective encoders exist for DAGs, it remains chal-
lenging to decode them in a principled manner,
because the nodes of a DAG can have many differ-
ent topological orders. In this work, we propose a
grammar-based approach to constructing a princi-
pled, compact and equivalent sequential represen-
tation of a DAG. Specifically, we view a graph as
derivations over an unambiguous grammar, where
the DAG corresponds to a unique sequence of
production rules. Equivalently, the procedure to
construct such a description can be viewed as
a lossless compression of the data. Such a rep-
resentation has many uses, including building a
generative model for graph generation, learning a
latent space for property prediction, and lever-
aging the sequence representational continuity
for Bayesian Optimization over structured data.
Code is available at https://github.com/
shiningsunnyday/induction.

1. Introduction
Directed acyclic graphs (DAGs) underlie many applications
in computer science and engineering, from neural architec-
tures (Hutter et al., 2019), Bayesian networks (Koller, 2009),
analog circuits, financial transactions, to linearized repre-
sentations of molecules (Weininger, 1988). Recently, spe-
cialized generative models for graphs have been proposed
(Li et al., 2018; Simonovsky & Komodakis, 2018; De Cao
& Kipf, 2018; Ma et al., 2018; Jin et al., 2018; Liu et al.,
2018b; You et al., 2018a; Bojchevski et al., 2018), with well-
motivated encoding schemes that respect graph-specific
invariances. However, principled solutions for decoding

1MIT CSAIL 2MIT 3University of Notre Dame 4MIT-IBM
Watson AI Lab, IBM Research. Correspondence to: Michael Sun
<msun415@csail.mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

graphs are still lacking. For example, current methods pro-
pose decoding a graph autoregressively by adding nodes
and edges, or fragments and connections, at every time step
according to some arbitrary ordering (Kusner et al., 2017; Li
et al., 2018; Zhang et al., 2019; Thost & Chen, 2021). How-
ever, these methods lack rigor and suffer from combinatorial
intractability because there can be an exponential number
of possible decoding orders. On the other hand, graph gram-
mars, which represent graphs as derivations over a formal
language that views subgraphs as “words”, have shown en-
hanced modeling (Jin et al., 2018) and data efficiency (Guo
et al., 2022; Sun et al., 2024), but their decoding ability
remains limited, lacking behind the progress of generative
models for sequential data like natural language. The heart
of this issue lies in the absence of a rigorous mapping be-
tween the space of graphs and the space of sequences. Given
an ideal tokenization strategy, graph modeling reduces to
sequence modeling, where innovations like Transformers
(Vaswani, 2017) and generative pretraining (Achiam et al.,
2023) have made significant progress.

In this work, we propose a novel and faithful mapping that
respects several key properties: it is (1) one-to-one and (2)
onto over the observed data, (3) deterministic, (4) valid,
and (5) strives for Occam’s Razor. Our key insight is to
parse graphs according to a context-free graph grammar
that is constrained to exhibit linear parse trees, producing
a sequence of graph rewrite rules that serves as an equiv-
alent, lossless sequential representation for the graph. We
implement this mapping for DAGs, using properties specific
to DAGs to make the realization of this ideal mapping effi-
cient in practice. Our method, DIrected Graph Grammar
Embedded Derivations (DIGGED) seeks to compress a
dataset of given DAGs into parse sequences, incrementally
constructing the underlying graph grammar and invoking
the principle of Minimum Description Length (MDL). Our
contributions include:

• Definitions of the properties for an ideal mapping between
DAGs and sequences;

• Novel grammar induction algorithm which respects these
properties, with theoretical guarantees;

• Integration within an autoencoder framework for genera-
tion, prediction and optimization;

• Comprehensive experiments on real-world applications
in neural architectures, Bayesian Networks, and circuits,

1

https://github.com/shiningsunnyday/induction
https://github.com/shiningsunnyday/induction

Directed Graph Grammars for Sequence-based Learning

demonstrating better performance and representation qual-
ity compared with existing DAG learning frameworks;

• Case studies to interpret and explain our method, high-
lighting built-in advantages of our method.

By establishing a theoretically motivated mapping between
DAGs and sequences, our work offers a new perspective on
graph generative modeling and an opportunity to integrate
graph data natively into natural language models.

2. Related Works
2.1. Learning and Optimization of DAGs

DAGs underlie core problems in computer science, such
as Bayesian Network structure learning and neural archi-
tecture search. Due to the underlying data being discrete
(and the problem often NP-hard (Chickering, 1996)), ex-
isting works can be categorized into at least one of the
following categories: (a) exact search (Singh & Moore,
2005; Yuan et al., 2011; Yuan & Malone, 2013), (b) approx-
imate search (Heckerman et al., 1995; Gao et al., 2017), (c)
continuous relaxation (Liu et al., 2018a; Luo et al., 2018;
Zheng et al., 2018; Yu et al., 2019), (d) Bayesian Opti-
mization (Yackley & Lane, 2012), and (e) autoencoders
(Zhang et al., 2019; Thost & Chen, 2021), with (e) being
a modern approach that we adopt. Autoencoders (Kingma,
2013; Rezende et al., 2014) that build a latent space are
appealing because they naturally support three downstream
tasks: (1) unconditional generation, (2) property predic-
tion from encoded latent embeddings, and (3) optimization
over a smooth, continuous space (Zhang et al., 2019). For
example, the approach of learning surrogates and optimiz-
ing within a smooth continuous space is common in other
domains (Mueller et al., 2017; Gómez-Bombarelli et al.,
2018). Graph autoencoders that use popular message pass-
ing paradigms have gained widespread adoption (Kipf &
Welling, 2016; Hamilton et al., 2017), but graph decoders
have not evolved beyond strategies that incrementally add
atoms/edges or fragments/connections according to an arbi-
trary order (Li et al., 2018; You et al., 2018b; Zhang et al.,
2019; Sun et al., 2024).

2.2. Graph Grammars

Graph Grammars (Engelfriet & Rozenberg, 1997; Janssens
& Rozenberg, 1982) are precise and formal descriptions
of graph transformations. Analogous to string grammars,
graph grammars are formal languages that include a vo-
cabulary of subgraphs and a set of rewrite rules. Recently,
learning substructure-based graph grammars has become
popular for molecules (Jin et al., 2018; Guo et al., 2022; Sun
et al., 2024), as motifs like functional groups provide useful
abstractions for enhanced interpretability and modeling effi-
ciency over string-based representations (Weininger, 1988).

Despite their usefulness, grammars cannot model every lan-
guage (Chomsky, 1959), whereas probabilistic Language
Models can model arbitrary distributions of sentences. We
show how Transformers (Vaswani, 2017) can be adopted for
grammar-based graph decoding, combining the best of both
worlds.

2.3. Concept Induction on Graphs

Concepts, motifs or subgraphs are related ways of express-
ing patterns on graphs. Unsupervised induction of these
patterns takes many forms, but the common theme which
guides these approaches is Minimum Description Length
(MDL), an example of Occam’s Razor. The most common
way to achieve the MDL of graphs is Frequent Subgraph
Mining (FSM) (Holder, 1989; Gonzalez et al., 2000; Bandy-
opadhyay et al., 2002). FSM, combined with graph gram-
mar, has practical uses in graph compression (Maneth & Pe-
ternek, 2018; Peternek, 2018; Busatto et al., 2004; Peshkin,
2007) and concept discovery (Holder et al., 1994; Holder
& Cook, 1993; Cook & Holder, 2000; Djoko et al., 1997;
1995; Cook et al., 1996; 1995; Jonyer et al., 2002), but its
use for building modern generative models is unexplored.

3. Method
3.1. Preliminaries

Directed Graph Grammar. Edge-directed Neighborhood
Controlled Embedding (edNCE) is a family of formal lan-
guages over directed graphs with node labels (and optionally
edge labels). Each grammar G = (Σ, N, T, P, S) contains
a vocabulary of node labels Σ, vocabulary of edge labels T ,
subset of non-terminal node labels N ⊂ Σ, an initial start la-
bel S ∈ N , and a set of production rules P . A node-labeled
directed graph is a tuple H = (V,E, λ) where V is the finite
set of nodes, E ⊆ {(v, γ, w) | v, w ∈ V, v ̸= w, γ ∈ T}
is the set of edges, and λ : V → Σ is the node-labeling
function. We denote nodes and edges of H as VH and
EH . Each rule is a tuple (X,D, I), with “daughter” graph
D, applicable to any “host” graph H containing a node
n, s.t. λ(n) = X ∈ N . Applying the rule removes n
from H , replaces it by a copy of D and embeds it to the
remainder of H by forming edges following instructions in
I . Formally, each instruction is the form (σ, β/γ, x, d/d′)
(σ ∈ Σ, β, γ ∈ T, x ∈ VD, d, d′ ∈ {in, out})) which when
applied to H , has the semantics: “establish a d′-edge labeled
γ to node x from each β-labeled d-neighbor with label σ”.

Terminologies. Given a dataset D of node-labeled directed
graphs, induction is the task of constructing G from data;
parsing is the task of finding the derivation, for example,
the sequence of rules, which produces a given H . G is am-
biguous if there is some data Hambiguous with two distinct
derivations, and H itself is labeled as ambiguous accord-

2

Directed Graph Grammars for Sequence-based Learning

c

g

1

2

e

b d

2

1 a

f

c

e

1 a

2

1 2a*

a*

g d

g c

cd d

f

f

e

eb a* b

old edge

1. Identify candidate motif
2. Compute possible

edge redirections21

4. Extract optimal grammar rule

3. Check for rule compatibility
among all occurrences

1 2?

? ?

?

new edge RHS instructionLHS edge

non-terminal
node daughter graph

(LHS RHS)

*For each out-neighbor of ,

add out-edges to both nodes of

..

 d 2

d 2

Redirections

Figure 1. We adopt the edNCE grammar formalism. (Top): Dataset D = {H1, H2, H3}; (Middle): Step 1 (Sec 3.2.1). Our approximate
frequent subgraph mining library finds candidate subgraphs. As an example, the induced subgraph from nodes 1 & 2 in all three DAGs
is considered. Its occurrences in H1, H2, H3 are grounded. Step 2 (Sec 3.2.2). For each possible assignment of gray edge directions,
bounds on the set of instructions are deduced. For example, the subgraph occurrence in H1 includes into I , “for each green in-neighbor
(gray), add out-edge (black) from node 2”, and excludes from I , ”for each green in-neighbor, add out-edge (black) from node 1”. H2

includes into I: “for each green out-neighbor, add out-edges from both nodes 1 and 2”. Suppose we had reversed the gray arrow in H1.
Then, the exclusion set of case H1 conflicts with the inclusion set of H2, since it’s unclear if we should add out-edges from both 1 & 2
to each green out-neighbor, or just node 2. Intuitively, cases that differ in the precondition of edge direction are labeled with separate
letters (e.g. a vs b), inducing different but non-conflicting instructions. Step 3 (Sec 3.2.2). Given bounds on the instruction set for each
motif occurrence, the final set of instructions is deduced from the (approximate) solution of a max clique problem. Each node is a (motif
occurrence, edge redirections) realization. Each edge indicates compatibility. Step 4 (Sec 3.2.3). The candidate motif and the associated
solution to Step 3 which minimizes the total data description length is chosen to define a grammar rule. Then, Steps 1-4 are repeated until
convergence. (Bottom): A grammar rule consists of a subgraph (gray) and instructions to connect it to the neighborhood. Instructions are
grouped by letters, identifying the node label and its directional relationship to the parent gray node.

ing to G. A ⇒ B represents one rewriting step, and ∗⇒
the transitive relation, i.e. derivation. The language of
G, denoted as L(G), is the set of non-isomorphic directed
graphs {H | S ∗⇒ H}. Two directed graphs H1, H2 are
isomorphic if there is some bijective mapping f of nodes,
f : VH1 → VH2 s.t. (u, v) ∈ EH1 ⇔ (f(u), f(v)) ∈ EH2 .
A subgraph H ′ of H = (V,E, λ) is a tuple (V ′, E′, λ′) s.t.
V ′ ⊆ V,E′ = {(v, γ, w) ∈ E | v, w ∈ V ′}, λ′ : V ′ → Σ
and λ′ is λ restricted to V ′.

3.2. Unsupervised Grammar Induction

Given a dataset D = {Hi | i = 1, . . . , |D|}, we create
the composite graph H = (

⋃
i VHi

,
⋃

i EHi
) with |D| con-

nected components. Through an iterative lossless compres-
sion algorithm, the description for H is refined to only |D|

isolated nodes (each with label S) and |D| parses according
to its induced grammar GD. We describe the main compu-
tation steps of each iteration, emphasizing ideas rather than
notation. Further details and pseudocode are in App. B.

3.2.1. FREQUENT SUBGRAPH MINING

The first step is to discover common motifs, that is, repeti-
tive instances of the same subgraph, within the current H .
We adopt the fast, approximate FSM library Subdue (Holder,
1989) on H to obtain a list of common motifs. Our key inno-
vation is to process FSM outputs as follows: for components
containing a non-terminal node, only subgraphs with that
non-terminal node are considered. This simplifies the parse
tree to a rooted path. For each motif, we then ground the
occurrences by running subgraph isomorphism, parallelized

3

Directed Graph Grammars for Sequence-based Learning

across connected components of H , resulting in a list of
occurrences D1, D2, . . . , DK , for each common motif D.

3.2.2. COMPATIBILITY MAXIMIZATION SOLVER

The second step is to, for each motif, find the maximal sub-
set of occurrences that can be consistent with the same set of
connection instructions. In Figure 1, we see each occurrence
of the candidate motif includes an incoming edge to node
1 from a red neighbor, so instruction (c) states: “establish
an in-edge to node 1 from each in-neighbor with label red”.
From the second DAG, it appears the same instruction but
for node 2 is needed. However, adding such an instruction
would create a conflict with the motif’s occurrences in DAGs
H2 and H3, as the red neighbor doesn’t connect to node 2
in those instances. Instead, our compatibility solver finds
a different set of instructions (two instructions with group
label (d)) for which all three occurrences are compatible.
Formally, the solver finds the optimal assignment to the vari-
ables

⋃K
k=1{(dy, βy) | ∃x ∈ Dk s.t. x neighbors y} where

dy ∈ {in, out}, βy ∈ T , representing the direction and edge
labels (if any) of the gray edges. The solver is formulated as
a maximum-clique problem, where each node represents a
possible assignment to {(dy, βy)} for a specific occurrence
k, and an edge is created between two nodes if the variable
assignments they contain are not in conflict with each other.
At a high level, each node v carries with it an “inset” and
“outset”, representing the set of instructions that must be
present and the set of instructions that must not be present,
as deduced from the redirection assignments. Determining
whether a node exists equates to checking vinset ∩ voutset = ∅
and whether an edge exists for u and v equates to checking
(uinset ∪ vinset)∩ (uoutset ∪ voutset) = ∅ (with some additional
minor considerations). After obtaining the clique solution
C := {v}, an or-reduction

⋃
v∈C vinset yields the minimal

instruction set to include in a rule compatible with all oc-
currences, and similarly

⋃
v∈C voutset yields the minimal

instruction set to exclude. Any instruction set in-between
is permissible, and we apply dataset-specific heuristics in
selecting the final instruction set for inducing a rule.

3.2.3. MINIMUM DESCRIPTION LENGTH

The third step follows after the previous step is repeated
over all candidate motifs. We select the solution and its
accompanying maximally compatible rule, based on the
greedy objective: max |C|(|D| − 1). The contraction is the
reverse operation of a rule application: for each k, remove
Dk, replace it by a non-terminal node nk, and add edges
according to the solution’s assignment for {(dy, βy)}. This
step is motivated by prior work that uses MDL as the princi-
ple behind unsupervised objectives for graph compression.
Assuming the rule has size O(1), the greedy objective is
the difference in description length (∆|H|). The algorithm
terminates when |C| < 2 over all clique solutions.

3.2.4. DISAMBIGUATION PROCEDURE

The final step of grammar induction is to resolve ambigu-
ity in G over D by modifying G → G′. Preventing this
in general is impossible because determining whether a
given graph grammar G is ambiguous is undecidable (see
App. C). Nevertheless, we can find all derivations for a
given graph Hi ∈ D. This problem, in general, is NP-hard
(Engelfriet & Rozenberg, 1997). We present a dynamic
parsing programming algorithm that is the DAG counterpart
to the well-known CYK algorithm (Cocke, 1969; Younger,
1967; Kasami, 1966) and takes advantage of two proper-
ties specific to DAGs and our grammar. The first exploits
the theoretical insight that DAGs have canonical string rep-
resentations (more in App. D), enabling hashing-based
memoization. The second prunes intermediate graphs that
become disconnected or cyclic, as those are not valid in-
termediate results (Deterministic property). After finding
all derivations, we find the minimal set of rules that, when
removed from G, leaves the largest subset of D with one
unique derivation over G′. The formulation is in terms of
the maximum hitting set problem. The algorithmic details
are in App. C.

3.3. Properties

We elaborate on how DIGGED addresses the limitations of
existing methods (Table 1). We will analyze two broad cate-
gories of methods: autoregressive generation (AG), which
builds up a graph incrementally, tracking the intermediate
graph to decide the next action, and sequential decoding
(SD), which directly generate descriptors that encode the
adjacency information of the graph using some permutation
of the nodes.

Table 1. DIGGED offers comprehensive guarantees that existing
methods fail to or partially address.
Methods One-to-one? Onto? Deterministic? Valid? Stateless?

AG ✗ ✓ ✗ ✓ ✗
SD ✗ ✓ ✓ ✗ ✓
DIGGED ✓ ✓ ✓ ✓ ✓

1. One-to-one (over D). For every H ∈ D, our unambigu-
ous procedure assures there is only one way to parse it.
AG methods can generate the same graph in many (up
to exponential) ways. SD methods rely on an arbitrary
ordering of the nodes.

2. Onto (over D). The proof in the appendix shows that
the grammar induction algorithm is a concurrent parsing
algorithm for each H ∈ D, so D ⊆ L(G). Both AG and
SD can generate any graph.

3. Deterministic. That reconstruction is deterministic fol-
lows immediately from properties of the grammar. We
also show additional desiderata, namely that each inter-

4

Directed Graph Grammars for Sequence-based Learning

mediate graph is always an unambiguous DAG, respect-
ing the properties of L(G). AG methods can take many
action trajectories to arrive at the same final state.

4. Validity. edNCE grammars are context-free, so an ar-
bitrary derivation still produces a valid directed graph.
An arbitrary adjacency string (SD) is not guaranteed to
encode a valid graph.

5. Stateless. Context-free grammars are stateless. Genera-
tion terminates when a selected rule contains no further
non-terminals. AG methods require tracking the interme-
diate graph as the state, to filter out invalid actions.

See App. A for full proofs of above properties 1-4 and more
remarks. DIGGED also meets two soft desiderata that are
appealing to downstream use cases.

• Controllable. Due to a context-free, sequential represen-
tation, it is easy to add context-sensitive constraints at
each step to enforce domain-specific validity. We use a
real-world example in Section 3.4.

• Compositional. Each DAG is a compact program com-
posed from reusable primitives learned for efficient loss-
less compression. Compositionality provides a lens to
understand generalization on downstream tasks, as elabo-
rated on in App. G.

3.4. Sequence-based Learning

Once we have converted each H ∈ D into a sequential
description, we jointly train an encoder and decoder within
an autoencoder framework. As visualized in Figure 2, we
decode a sequence of individual rules, which, when con-
catenated together, reconstructs the input. Standard to VAE
training, we maximize the evidence lower bound. See App.
I for hyperparameters used.

Graph Encoder (Option 1). We support using DAGNN
(Thost & Chen, 2021) as an encoder from DAG to latent
space. This combines existing SOTA architectures for DAG-
specific encoding, while supporting the additional use case
of parsing DAGs ̸∈ L(G) to a similar DAG ∈ L(G).

Rule Sequence Encoder (Option 2). We also support
a Transformer encoder with full attention to encode a se-
quence of rule tokens to latent space. Simultaneously, we
learn a dictionary of embeddings, one for each rule, as is
standard for generative pretraining (Achiam et al., 2023).

We include comparisons between these two options in our
experiments, where we show a GNN encoder constructs a
richer latent space for unconditional generation and property
prediction. Therefore, we use a GNN encoder for obtaining
the final results and analyses. Analogous to progress in
language modeling, we believe a full attention Transformer
encoder is the natural and scalable approach. For instance,
we show rule token frequency also follows Zipf’s Law (Zipf,
2013). Please refer to App. H for an illuminating discussion.

Rule Sequence Decoder. We adopt a Transformer decoder
with causal attention masking to autoregressively decode
a sequence of rule tokens from latent space. Due to the
one-to-one guarantee, reconstruction equates to exact match
of the sequence. During training, we pad each rule sequence
to the maximum length in the batch and do batched cross-
entropy loss. We jointly train the encoder and decoder using
standard reconstruction and KL divergence loss.

Inference. Our edNCE grammar is context-free (Engelfriet
& Rozenberg, 1997), so each rule can be independently ap-
plied one after another. On the first step, we mask out all
rules whose LHS is not S. On subsequent steps, we mask
out all rules whose LHS label is not the same as the current
non-terminal node. The sampling terminates when there
are no more non-terminals. Facilitated by deterministic de-
coding, we can constrain the sampling to guarantee validity.
For example, in analog circuits, we can ensure only valid
op-amps are decoded, because the stabilization constraint
(each +gm- and -gm- transconductance unit must be in par-
allel with a resistor and capacitor) can be translated into a
predicate over the set of new nodes and edges that would be
introduced by each rule. These incremental validity checks
ensure inference remains efficient, while showcasing our
context-free grammar’s flexibility for domain-specific cus-
tomization (see Sec. 6.4 for a case study).

4. Experiments
4.1. Datasets

1. Neural Architectures (ENAS). The ENAS dataset con-
tains 19,020 neural architectures from the ENAS soft-
ware and their weight-sharing accuracy (WS-Acc) on
CIFAR10 (Pham et al., 2018). We compare with the
same baselines reported in Thost & Chen (2021).

2. Bayesian Networks (BN). The BN dataset contains
200,000 random, 8-node Bayesian networks from the
R package bnlearn (Scutari, 2009) and their Bayesian
Information Criterion (BIC) score for fitting the Asia
dataset (Lauritzen & Spiegelhalter, 1988). We compare
with the same baselines as for ENAS.

3. Analog Circuits (CKT). The CKT dataset contains
10000 operational amplifiers (op-amps) released by
Dong et al. (2023) and their simulated metrics: gain,
bandwidth (BW), phase margin (PM), and figure of merit
(FoM). We compare with the same baselines reported in
Dong et al. (2023).

4.2. Task Setup

1. Unconditional Generation. For unconditional genera-
tion, we sample from a Gaussian prior. For each latent
point, we perform constrained decoding of a sequence of
rules, then derive the DAG. For all datasets, we evaluate

5

Directed Graph Grammars for Sequence-based Learning

...and more rules...

input
[102]

-gm+
[17.0] C [20.0]

C [63.0] +gm+
[45.0]

-gm+
[84.0]

C [39.0] +gm+
[87.0]

output
[102.0]

input
[102]

-gm+
[17.0] C [20.0]

C [63.0] +gm+
[45.0]

+gm+
[87.0]

output
[102.0]

input
[102]

C [20.0]

C [63.0]

+gm+
[87.0]

output
[102.0]

input
[102]

C [20.0]

output
[102.0]

input
[102]

output
[102.0]

Grammar Induction

Sequence Representation

1

95

Initial Symbol

input

output

95

C...a

...b

...a

77

C

+gm+

...a ...a

...c

...c

b

52

-gm+

+gm+

...a

...b

...c

...c ...d e

15

-gm+

C

...a b

...c

...d

1

7795 52 15

Em
be

dd
in

g
D

ic
tio

na
ry

Grammar

Transformer
Decoder 1

7795 52 15 1

Transformer Encoder

Latent Space
(Option 1)

...a b

...c d

...a

...c

b

...a

...b

...a c

...b d e

...
...

77

52

15

 (= Learnable)

input
[102]

-gm+
[17.0] C [20.0]

C [63.0] +gm+
[45.0]

-gm+
[84.0]

C [39.0] +gm+
[87.0]

output
[102.0]

B0=S

B1

B2

B3

B4=T

DAGNN Encoder Latent Space
(Option 2)

Figure 2. (Top) Our grammar induction framework iteratively minimizes the total description length of D, contracting common and
compatible motifs, producing grammar rules while parsing the input according to the grammar. (Bottom-left) Our induction algorithm
builds the token dictionary, where individual rules are the tokens used in a faithful sequential representation of the DAG. (Bottom-right)
We experiment with two ways to encode the DAG: 1) using a full attention Transformer encoder vs 2) using a GNN tailored to DAGs
(Thost & Chen, 2021); in both cases, we use causal, autoregressive Transformer decoder within an autoencoder framework, while jointly
learning the embedding dictionary.

the reconstruction, validity and novelty. For circuits, we
also evaluate circuit validity, defined in the same way as
Dong et al. (2023).

2. Predictive Performance. For property prediction, we
train a Sparse Gaussian Process (SGP) regressor, follow-
ing the same setup and hyperparameters as Zhang et al.
(2019); Thost & Chen (2021); Dong et al. (2023).

3. Bayesian Optimization. We run batched Bayesian Op-
timization based on the SGP model for 10 rounds with
50 acquisition samples per round. We follow the same
setup as Zhang et al. (2019) for ENAS and BN and Dong
et al. (2023) for CKT, reproducing the same Cadence
SPECTRE simulation environment, adopting the same
DAG-to-netlist conversion logic, and run the same simu-
lation script.

4.3. Baselines.

We compare with prior AG methods and SD methods (see
Sec. 3.3 for descriptions). Methods under both categories
can be analyzed by how nodes are ordered: S-VAE, D-VAE
and DAGNN use topological order; PACE uses canonical
order; GraphRNN uses BFS order; CktGNN defines a total
order on a basis of subcircuits. Transformer-based methods
(Graphormer and PACE) rely on a well-chosen ordering
and use positional encoding to improve encoding efficiency.
These baselines choose various ordering criteria to meet the
one-to-one property, via a traversal algorithm or canonical-
ization. We hypothesize these steps do not overcome inher-
ent limitations in the representation. We show DIGGED’s
theoretically sound and compact sequential descriptions
translate into practical performance advantages.

6

Directed Graph Grammars for Sequence-based Learning

5. Results

Table 2. Prior validity, uniqueness and novelty (%). We follow the
same settings as Zhang et al. (2019).
Methods Neural architectures Bayesian networks

Accuracy Validity Uniqueness Novelty Accuracy Validity Uniqueness Novelty

D-VAE 99.96 100.00 37.26 100.00 99.94 98.84 38.98 98.01
S-VAE 99.98 100.00 37.03 99.99 99.99 100.00 35.51 99.70
GraphRNN 99.85 99.84 29.77 100.00 96.71 100.00 27.30 98.57
GCN 98.70 99.53 34.00 100.00 99.81 99.02 32.84 99.40
DeepGMG 94.98 98.66 46.37 99.93 47.74 98.86 57.27 98.49

DIGGED (GNN) 100 100 98.7 99.9 100 100 97.6 100
DIGGED (TOKEN) 100 100 25.4 37.8 100 100 98.67 26.67

Table 3. Effectiveness in real-world electronic circuit design.
Training data is CktBench101 (Dong et al., 2023) for all baselines
except top group. CktGNN also has an option to use CktBench301
as pivots in the BO. We also include top 90/95/max designs from
CktBench101 and CktBench301.

Methods Valid DAGs (%) ↑ Valid circuits (%) ↑ Novel circuits (%) ↑ BO (FoM) ↑
PACE 83.12 75.52 97.14 33.2742
DAGNN 83.10 74.21 97.19 33.2742
D-VAE 82.12 73.93 97.15 32.3778

GCN 81.02 72.03 97.01 31.6244
GIN 80.92 73.17 96.88 31.6244
NGNN 82.17 73.22 95.29 32.2827
Graphormer 82.81 72.70 94.80 32.2827

CktGNN 98.92 98.92 92.29 33.4364
CktGNN (CktBench301) — — — 190.2354

CktBench101 (90%, 95%, max) 100 100 0
186.3870
233.1829
326.6657

CktBench301 (90%, 95%, max) 100 100 100
90.8379

119.9001
197.2296

DIGGED (GNN) 100 100 78.80 310.2635
DIGGED (TOKEN) 92.2 92.2 60.7 —

5.1. Unconditional Generation

ENAS & BN. Shown in Table 2, DIGGED ensures Validity
and achieves near 100% Uniqueness on ENAS and BN,
> 50% and > 40% higher than the second best method. On
BNs, it’s the only method achieving 100% Novelty, showing
ability to sample diverse, combinatorial structures.

CKT. Shown in Table 3, DIGGED ensures 100% Validity
both at the syntax (DAG) and semantic (circuit) level, serv-
ing as a powerful complement to synthetic data generation
pipelines.

5.2. Predictive Performance

CKT. As shown in Table 4, DIGGED produces discrimina-
tive latent representations when combining a dedicated DAG
encoder with sequence-based decoding with Transformers.
It achieves 26.5% lower RMSE and 60% higher Pearson r
on the holistic metric, FoM, over the next best (CktGNN),
which is a domain-specific GNN that uses hand-selected
motifs to form a subgraph basis.

ENAS. As shown in Table 5, DIGGED slightly underper-
forms the best generative model encoder (DAGNN). We
suspect that this is due to the large number of rules (7504)
in grammar, making dictionary learning cumbersome.

BN. We observe an interesting case of high Pearson r but
a more modest RMSE. We conduct a closer, visual, and
quantitative investigation of this result in App. F, showing
a global, linear trend. We believe this to be a consequence
of our sequence learning framework, where there is rep-
resentation continuity in the latent space. This showcases
the downstream representation learning advantages of train-
ing a modern Transformer architecture on a principled and
congruous sequence representation.

5.3. Bayesian Optimization

(a) ENAS (WS-Acc:
74.8, 74.9)

A

T

E

DX

S

L

B

(b) BN (Ground-truth)

input

-gm+

R -gm+

output

(c) CKT (FoM:
306.32)

Figure 3. We visualize the best discovered designs from BO. We
reproduce the same BO and evaluation setup as Zhang et al. (2019);
Pham et al. (2018); Dong et al. (2023).

In Figure 3, we visualize the best, novel designs found
during BO.

CKT. DIGGED generated novel designs that exceeded the
best design in CktBench301, with the best one only 5%
lower in FoM than the best design in CktBench101. Visu-
alized in Fig. 3, we see a simple but effective double-stage
amplifier, with a parallel resistor configuration, with a FoM
of 306.32. We visualize additional designs in App. E, and
observe that they all have short derivation lengths, implicitly
capturing simplicity, an essential requirement for real-world
circuit design. More details on baselines are in App. E.3.

ENAS. In Fig. 3, we see a novel architecture that combines
the overall topology of the best designs found by Zhang
et al. (2019) with the consecutive avg. pooling layer design
found by Bowman et al. (2015). We also recover one of the
best (top 1%) designs in the dataset, with a weight-sharing
accuracy of 74.9. This shows the model is versatile, able to
reconstruct existing designs and combine aspects of designs
found by different previous models.

BN. In Fig. 3, we were able to recover all the dependen-
cies in the ground-truth model ((Lauritzen & Spiegelhalter,
1988)). This is impressive considering that DIGGED dis-
covered it on the 5th round of BO.

7

Directed Graph Grammars for Sequence-based Learning

Table 4. Predictive Performance of Latent Representations on CktBench101. We follow the same settings as Dong et al. (2023).

Evaluation Metric Gain BW PM FoM

RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑
PACE 0.644 ± 0.003 0.762 ± 0.002 0.896 ± 0.003 0.442 ± 0.001 0.970 ± 0.003 0.226 ± 0.001 0.889 ± 0.003 0.423 ± 0.001
DAGNN 0.695 ± 0.002 0.707 ± 0.001 0.881 ± 0.002 0.453 ± 0.001 0.969 ± 0.003 0.231 ± 0.002 0.877 ± 0.003 0.442 ± 0.001
D-VAE 0.681 ± 0.003 0.739 ± 0.001 0.914 ± 0.002 0.394 ± 0.001 0.956 ± 0.003 0.301 ± 0.002 0.897 ± 0.003 0.374 ± 0.001

GCN 0.976 ± 0.003 0.140 ± 0.002 0.970 ± 0.003 0.236 ± 0.001 0.993 ± 0.002 0.171 ± 0.001 0.974 ± 0.003 0.217 ± 0.001
GIN 0.890 ± 0.003 0.352 ± 0.001 0.926 ± 0.003 0.251 ± 0.001 0.985 ± 0.004 0.187 ± 0.002 0.910 ± 0.003 0.284 ± 0.001
NGNN 0.882 ± 0.004 0.433 ± 0.001 0.933 ± 0.003 0.247 ± 0.001 0.984 ± 0.004 0.196 ± 0.002 0.926 ± 0.002 0.267 ± 0.001
Pathformer 0.816 ± 0.003 0.529 ± 0.001 0.895 ± 0.003 0.410 ± 0.001 0.967 ± 0.002 0.297 ± 0.001 0.887 ± 0.002 0.391 ± 0.001

CktGNN 0.607 ± 0.003 0.791 ± 0.001 0.873 ± 0.003 0.479 ± 0.001 0.973 ± 0.002 0.217 ± 0.001 0.854 ± 0.003 0.491 ± 0.002
DIGGED (GNN) 0.630 ± 0.005 0.771 ± 0.004 0.635 ± 0.006 0.784 ± 0.001 0.990 ± 0.001 0.314 ± 0.001 0.627 ± 0.002 0.787 ± 0.001
DIGGED (TOKEN) — — — — — — 1.005 ± 0.0002 0.199 ± 0.001

Table 5. Predictive performance of latent representation on ENAS
& BN test set. We follow same settings as Zhang et al. (2019).

Model ENAS BN

RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑
S-VAE 0.644 ± 0.003 0.762 ± 0.002 0.896 ± 0.003 0.442 ± 0.001
GraphRNN 0.695 ± 0.002 0.707 ± 0.001 0.881 ± 0.002 0.453 ± 0.001
GCN 0.681 ± 0.003 0.739 ± 0.001 0.914 ± 0.002 0.394 ± 0.001

DeepGMG 0.976 ± 0.003 0.140 ± 0.002 0.970 ± 0.003 0.236 ± 0.001
D-VAE 0.890 ± 0.003 0.352 ± 0.001 0.926 ± 0.003 0.251 ± 0.001
DAGNN 0.882 ± 0.004 0.433 ± 0.001 0.933 ± 0.003 0.247 ± 0.001
DIGGED (GNN) 0.912 ± 0.001 0.386 ± 0.001 0.953 ± 0.052 0.712 ± 0.013
DIGGED (TOKEN) 0.987 ± 0.001 0.049 ± 0.006 0.989 ± 0.0001 0.129 ± 0.002

6. Discussion
6.1. Ablation Study on Simpler Sequential Descriptions.

We perform a controlled ablation in Table 6 fixing DAGNN
as the encoder and the same Transformer decoder architec-
ture used to train DIGGED. We vary various node-order
encodings as the output targets to test whether simpler SD
encodings suffice. We target three node-orderings – default
order (that is, the order provided by the data, normally a
topological order with domain-specific criteria), BFS from
a randomly chosen seed node (as in You et al. (2018b)),
or a random order – for comparison. We see the default
order is unique in most cases, but its unguaranteed validity
results in lower BO optimization results (following Zhang
et al. (2019) to deal with invalid samples). BFS or random
ordering destroys the decoder’s ability to generate valid
examples. BFS is do-able for mostly linear path graphs
in ENAS but is entirely infeasible for BNs, due to dense
dependencies making the order unpredictable. Imposing
position on inherently position-invariant graphs causes de-
coding failures – even DAGs can admit exponentially many
valid orders. DIGGED instead is position-less; it learns
a unique, position-free sequential “change-of-basis” that
encodes a graph as its construction steps. Each token in-
cludes a set of instructions to recreate the graph. For further
explanations and deeper analysis, please refer to App. G.

6.2. Ablation Study on Speed-Accuracy Elasticity.

For each solver module for the sub-problems in Sec. 3, we
offer brute force, approximation, and heuristic algorithms.

Table 6. Results of our controlled study comparing with simpler
node-order encodings. Only FoM is reported for CKT.

Valid Unique Novel RMSE Pearson’s r 1st 2nd 3rd

Graph2NS-Default ENAS 96.1 99.17 100 0.746 0.656 0.746 0.744 0.743
BN 95.8 96.4 94.8 0.498 0.869 -11590 -11685 -11991
CKT 80.2 71.0 96.8 0.695 0.738 220.96 177.29 148.92

Graph2NS-BFS ENAS 40.8 100 100 0.806 0.595 0.746 0.746 0.745
BN 2.2 100 100 0.591 0.819 -11601 -11892 -11950
CKT 0.1% 100 100 0.676 0.751 - - -

Graph2NS-Random ENAS 0% - - 0.859 0.508 - - -
BN 8.4 100 100 0.535 0.857 -11523 -11624 -11909
CKT 0% - - 0.680 0.760 - - -

DIGGED ENAS 100 98.7 99.9 0.912 0.386 0.749 0.748 0.748
BN 100 97.6 100 0.953 0.712 -11110 -11250 -11293
CKT 100 100 78.8 0.627 0.787 306.32 296.82 265.53

Since subgraph isomorphism, max clique, and hitting set
are all NP-hard, we toggle between brute, approximate or
heuristic solvers based on problem size. We state our choice
of approximation and heuristic variants, along with any hy-
perparameters to control solution quality, in App. B. We an-
ticipate the setting of larger data sizes, where faster solvers
must be chosen out of necessity. Our main results on CKT
(the smallest dataset) already reflect exact solutions or high-
quality approximations, so we use this dataset to benchmark
the performance & efficiency impact of using coarser ap-
proximations. We separately conduct four possible changes
to the DIGGED algorithm: (1) For Subdue (FSM), we use
beam width = 3 instead of 4; (2) for max clique, we use the
greedy algorithm with K = 10 random starting nodes; (3)
for hitting set, we do beam search with beam width = 10
instead of exact; (4) we skip disambiguation for early con-
vergence. We find Ablation 3 did not introduce meaningful
changes, as beam search equates to an exact procedure for
small input sizes. Table 7 shows Ablations 1, 2, 4 speed up
execution with minimal quality loss; max clique offers the
best accuracy/speed trade-off. Latent space quality and top
3 results benefit slightly from more accurate FSM and max
clique solutions, but results are still reasonably close.

6.3. Case Study on Lossless Compression Rate.

We empirically analyze how much the total size |H| is com-
pressed relative to the number of rules. We see in Fig. 4
that DIGGED achieves 2.2%, 2.6%, 1.56% compression
ratio (initial |H| to pre-termination |H|, when every initial

8

Directed Graph Grammars for Sequence-based Learning

Table 7. Results of ablation study, quantifying speed-accuracy
tradeoffs for each module. RMSE ↓ (left) and Pearson r ↑ (right)
is reported for FoM. Compress ratio is defined in Sec. 6.3.

Unique Novel FoM 1st 2nd 3rd %Faster Compress Ratio

Abl.1 65.6 69.1 0.624 0.786 267.55 253.61 246.78 562% 2.04
Abl.2 91.3 85.1 0.617 0.797 278.93 278.93 267.61 1844% 2.13
Abl.3 97.3 100 0.625 0.785 306.32 290.42 260.97 ∼300% 2.32

DIGGED 98.7 99.9 0.627 0.787 306.32 296.82 265.53 0% 2.18

Figure 4. We show M := |H| as a function of iteration (same as
the number of rules induced). Axes are scaled to 1.0 for standard-
ization across datasets. The lower legend follows the format initial
|H| → pre-termination |H| → post-termination |H| (=|D|).

connected component is contracted to a single node). For
convenience, we only show compression for the initial call
to Algo. 2 (iter = 0 in Algo. 1), prior to disambiguation. We
observe the trend: linear structures tend to achieve greater
total compression ratio at the tradeoff of higher grammar
complexity. For example, ENAS DAGs are linear path-like
graphs (with a few skip connections), whereas BN DAGs
are graphical models with highly interconnected topologies.
CKT DAGs are somewhere in between, with main stages
lined up consecutively but also intricate, parallel configu-
rations. Thus, we see compression ratio from highest to
lowest: ENAS, CKT, BN. For BN, we see a small (845)
number of rules relative to its total size (200k) responsible
for a large compression ratio. Intuitively, DIGGED uses
the neighborhood topology to deduce a maximally compati-
ble instruction set, so simpler neighborhood topologies like
those found in ENAS graphs makes achieving compatibil-
ity across occurrences easier, resulting in much more rules
(7504). Meanwhile, complex neighborhood topologies in
BN may be inherently incompatible with any rule, so there
exists some limit on how much compression is possible.

6.4. Case study on Real-World Use Case.

DIGGED successfully generates high-performing analog
circuit designs by inducing a data-driven grammar, balanc-
ing generalization with domain specificity. The case study
(App. E) shows its ability to optimize op-amp topologies,
where traditional methods focus on device sizing for fixed

Figure 5. We stratify the test error distribution across the parse
length. For reference, we also include a count of the number of
test set examples of each parse length.

topologies, and existing graph-based approaches rely on
predefined substructures. DIGGED constructs designs step-
by-step, enforcing meaningful constraints that ensure stabil-
ity and explainability (App. E.1). Expert evaluation of the
highest-performing circuits confirms the validity of many
designs while highlighting areas for refinement (App. E.2).
Compared to standard black-box optimization baselines,
DIGGED’s grammar-guided search provides interpretable
solutions with improved structural integrity (App. E.3).

6.5. Case study on Representation Continuity.

We also use BN as a case study for the relationship be-
tween per-sample compression, i.e. the length of its rule
sequence, and downstream predictive performance, i.e. the
error from a fitted SGP regressor. In Fig. 5, we find that
longer rule sequences are more informative, resulting in
an inverse relationship between the description length and
the test error. By viewing grammar induction as lossless
compression (Section 6), we can use the length as a rough
estimate of per-sample compression ratio. The BN dataset
is also apt for this study because every DAG has a fixed
set of nodes, so we don’t need to normalize for the initial
size |H|. We find in Fig. 5 that the representations, in gen-
eral, become more discriminative with longer parses. We
believe this is attributed to compression being an explicit
form of information bottleneck (Tishby et al., 2000), where
our MDL-guided compression explicitly optimizes for rep-
resentation compactness, via compositionality, to form a
richer representation space amenable for downstream tasks.

7. Conclusion
We introduce DIGGED, a principled and efficient mapping
from DAGs to sequences via graph grammar parsing. The
resulting compact, unambiguous derivations enable a one-to-
one problem mapping to sequence modeling. Experiments
on real-world optimization problems demonstrate superior
performance. An exciting direction is to explore composi-
tional reasoning capabilities with DIGGED representations.

9

Directed Graph Grammars for Sequence-based Learning

Acknowledgements
Michael and Gang completed internships at the MIT-IBM
Watson AI Lab. Gang is supported by the IBM Fellowship.
The authors thank Dr. Xin Zhang from IBM Research for
helpful discussions on circuit design use case.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Bandyopadhyay, S., Maulik, U., Cook, D. J., Holder, L. B.,
and Ajmerwala, Y. Enhancing structure discovery for
data mining in graphical databases using evolutionary
programming. In FLAIRS, pp. 232–236, 2002.

Blockeel, H. and Nijssen, S. Induction of node label con-
trolled graph grammar rules. In Proceedings of 6th Inter-
national Workshop on Mining and Learning with Graphs,
2008.

Bojchevski, A., Shchur, O., Zügner, D., and Günnemann,
S. Netgan: Generating graphs via random walks. In
International conference on machine learning, pp. 610–
619. PMLR, 2018.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating sentences from
a continuous space. arXiv preprint arXiv:1511.06349,
2015.

Brabrand, C., Giegerich, R., and Møller, A. Analyzing am-
biguity of context-free grammars. Science of Computer
Programming, 75(3):176–191, 2010.

Busatto, G., Lohrey, M., and Maneth, S. Grammar-based
tree compression. 2004.

Chickering, D. M. Learning bayesian networks is np-
complete. Learning from data: Artificial intelligence
and statistics V, pp. 121–130, 1996.

Chomsky, N. On certain formal properties of grammars.
Information and control, 2(2):137–167, 1959.

Cocke, J. Programming languages and their compilers:
Preliminary notes. New York University, 1969.

Cook, D. J. and Holder, L. B. Graph-based data mining.
IEEE Intelligent Systems and Their Applications, 15(2):
32–41, 2000.

Cook, D. J., Holder, L. B., and Djoko, S. Knowledge dis-
covery from structural data. Journal of Intelligent Infor-
mation Systems, 5:229–248, 1995.

Cook, D. J., Holder, L. B., and Djokok, S. Scalable dis-
covery of informative structural concepts using domain
knowledge. IEEE expert, 11(5):59–68, 1996.

De Cao, N. and Kipf, T. Molgan: An implicit genera-
tive model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Djoko, S., Cook, D. J., and Holder, L. B. Analyzing the
benefits of domain knowledge in substructure discovery.
In KDD, pp. 75–80, 1995.

Djoko, S., Cook, D. J., and Holder, L. B. An empirical study
of domain knowledge and its benefits to substructure
discovery. IEEE Transactions on Knowledge and Data
Engineering, 9(4):575–586, 1997.

Dong, Z., Cao, W., Zhang, M., Tao, D., Chen, Y., and Zhang,
X. Cktgnn: Circuit graph neural network for electronic
design automation. arXiv preprint arXiv:2308.16406,
2023.

Engelfriet, J. and Rozenberg, G. Node replacement graph
grammars. In Handbook Of Graph Grammars And Com-
puting By Graph Transformation: Volume 1: Foundations,
pp. 1–94. World Scientific, 1997.

Gao, T., Fadnis, K., and Campbell, M. Local-to-global
bayesian network structure learning. In International Con-
ference on Machine Learning, pp. 1193–1202. PMLR,
2017.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Gonzalez, J., Jonyer, I., Holder, L. B., and Cook, D. J.
Efficient mining of graph-based data. In Proceedings of
the AAAI Workshop on Learning Statistical Models from
Relational Data, pp. 21–28, 2000.

Guo, M., Thost, V., Li, B., Das, P., Chen, J., and Matusik,
W. Data-efficient graph grammar learning for molecular
generation. arXiv preprint arXiv:2203.08031, 2022.

10

Directed Graph Grammars for Sequence-based Learning

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Heckerman, D., Chickering, D., and Geiger, D. Learning
bayesian networks: Search methods and experimental
results. In Proceedings of Fifth Conference on Artificial
Intelligence and Statistics, volume 112, pp. 128, 1995.

Helbling, C. Directed graph hashing. arXiv preprint
arXiv:2002.06653, 2020.

Holder, L. B. Empirical substructure discovery. In Pro-
ceedings of the sixth international workshop on Machine
learning, pp. 133–136. Elsevier, 1989.

Holder, L. B. and Cook, D. J. Discovery of inexact concepts
from structural data. IEEE Transactions on Knowledge
and Data Engineering, 5(6):992–994, 1993.

Holder, L. B., Cook, D. J., Djoko, S., et al. Substucture
discovery in the subdue system. In KDD workshop, pp.
169–180. Washington, DC, USA, 1994.

Hutter, F., Kotthoff, L., and Vanschoren, J. Automated ma-
chine learning: methods, systems, challenges. Springer
Nature, 2019.

Janssens, D. and Rozenberg, G. Graph grammars with
neighbourhood-controlled embedding. Theoretical Com-
puter Science, 21(1):55–74, 1982.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International conference on machine learning, pp. 2323–
2332. PMLR, 2018.

Jonyer, I., Holder, L., and Cook, D. Concept formation using
graph grammars. In Proceedings of the KDD Workshop
on Multi-Relational Data Mining, volume 2, pp. 19–43.
Citeseer, 2002.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kasami, T. An efficient recognition and syntax-analysis al-
gorithm for context-free languages. Coordinated Science
Laboratory Report no. R-257, 1966.

Kingma, D. P. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Koller, D. Probabilistic graphical models: Principles and
techniques, 2009.

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M.
Grammar variational autoencoder. In International con-
ference on machine learning, pp. 1945–1954. PMLR,
2017.

Lauritzen, S. L. and Spiegelhalter, D. J. Local computa-
tions with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statis-
tical Society: Series B (Methodological), 50(2):157–194,
1988.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018a.

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A.
Constrained graph variational autoencoders for molecule
design. Advances in neural information processing sys-
tems, 31, 2018b.

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. Neural ar-
chitecture optimization. Advances in neural information
processing systems, 31, 2018.

Ma, T., Chen, J., and Xiao, C. Constrained generation of
semantically valid graphs via regularizing variational au-
toencoders. Advances in Neural Information Processing
Systems, 31, 2018.

Maneth, S. and Peternek, F. Grammar-based graph com-
pression. Information Systems, 76:19–45, 2018.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

Mueller, J., Gifford, D., and Jaakkola, T. Sequence to better
sequence: continuous revision of combinatorial structures.
In International Conference on Machine Learning, pp.
2536–2544. PMLR, 2017.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.

Peshkin, L. Structure induction by lossless graph compres-
sion. In 2007 Data Compression Conference (DCC’07),
pp. 53–62. IEEE, 2007.

Peternek, F. H. A. Graph compression using graph gram-
mars. 2018.

11

Directed Graph Grammars for Sequence-based Learning

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Efficient
neural architecture search via parameters sharing. In
International conference on machine learning, pp. 4095–
4104. PMLR, 2018.

Powers, D. M. Applications and explanations of zipf’s law.
In New methods in language processing and computa-
tional natural language learning, 1998.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pp. 1278–1286. PMLR, 2014.

Scutari, M. Learning bayesian networks with the bnlearn r
package. arXiv preprint arXiv:0908.3817, 2009.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Singh, A. P. and Moore, A. W. Finding optimal Bayesian
networks by dynamic programming. Carnegie Mellon
University. Center for Automated Learning and Discov-
ery, 2005.

Sun, M., Guo, M., Yuan, W., Thost, V., Owens, C. E., Grosz,
A. F., Selvan, S., Zhou, K., Mohiuddin, H., Pedretti, B. J.,
Smith, Z. P., Chen, J., and Matusik, W. Representing
molecules as random walks over interpretable grammars.
In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 46988–47016. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/sun24c.html.

Thost, V. and Chen, J. Directed acyclic graph neural net-
works. arXiv preprint arXiv:2101.07965, 2021.

Tishby, N., Pereira, F. C., and Bialek, W. The informa-
tion bottleneck method. arXiv preprint physics/0004057,
2000.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Weininger, D. Smiles, a chemical language and information
system. 1. introduction to methodology and encoding
rules. Journal of chemical information and computer
sciences, 28(1):31–36, 1988.

Yackley, B. and Lane, T. Smoothness and structure learning
by proxy. In Proceedings of the... International Confer-
ence on Machine Learning. International Conference on
Machine Learning, volume 2012, pp. 1663. NIH Public
Access, 2012.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecu-
lar graph generation. Advances in neural information
processing systems, 31, 2018a.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708–5717. PMLR, 2018b.

Younger, D. H. Recognition and parsing of context-free
languages in time n3. Information and control, 10(2):
189–208, 1967.

Yu, Y., Chen, J., Gao, T., and Yu, M. Dag-gnn: Dag structure
learning with graph neural networks. In International
conference on machine learning, pp. 7154–7163. PMLR,
2019.

Yuan, C. and Malone, B. Learning optimal bayesian net-
works: A shortest path perspective. Journal of Artificial
Intelligence Research, 48:23–65, 2013.

Yuan, C., Malone, B., and Wu, X. Learning optimal
bayesian networks using a* search. In Twenty-second
international joint conference on artificial intelligence,
2011.

Zhang, M., Jiang, S., Cui, Z., Garnett, R., and Chen, Y. D-
vae: A variational autoencoder for directed acyclic graphs.
Advances in neural information processing systems, 32,
2019.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
Dags with no tears: Continuous optimization for structure
learning. Advances in neural information processing
systems, 31, 2018.

Zipf, G. K. The psycho-biology of language: An introduc-
tion to dynamic philology. Routledge, 2013.

12

https://proceedings.mlr.press/v235/sun24c.html
https://proceedings.mlr.press/v235/sun24c.html

Directed Graph Grammars for Sequence-based Learning

A. Grammar Properties
In this section, we discuss, at a high-level, the nice properties of our grammar-induced sequence representation for DAGs.

One-to-one. Theorem C.2 shows that testing if a grammar is one-to-one is, in general, undecidable. Instead, we resort to
using the data itself as “test cases” for ambiguity. If there exists two derivations for some H ∈ D, we can use Algorithm 4
to disambiguate the grammar by removing a minimal set of rules that leaves H unambiguous.

Proof. in App. C.

Onto. Our mapping is onto D by construction because our unsupervised grammar induction algorithm simultaneously
outputs a parse of each H ∈ D. This parse is equivalent to lossless compressed representation of D. Details are in App. B.

Deterministic. In addition to ensuring H ∈ D being onto and one-to-one w.r.t. to its parse, grammar also, by definition
ensures that each intermediate graph can be reconstructed. i.e. H ′ s.t. S ∗⇒ H ′ ∗⇒ H ∈ D is also one-to-one and onto over
D. Furthermore, we show the following.

Lemma. It is possible to restrict each intermediate graph, i.e. H ′ s.t. S ∗⇒ H ′ ∗⇒ H to be unambiguous.

Proof. I claim that given a parse for H ∈ D of the form S . . .
pt⇒ H(t) . . .⇒ H , H(t). If H(t) was ambiguous, then clearly

H is ambiguous too because the first t − 1 steps can be replaced with a different parse. This is a contradiction to the
one-to-one property.

Lemma. It is possible to restrict each intermediate graph, i.e. H ′ s.t. S ∗⇒ H ′ ∗⇒ H to be a DAG during grammar induction.

Proof. We proceed by induction.

Denote H as H(T), where T is the number of steps in the derivation. H(T) ∈ D is by assumption a DAG.

Suppose H(t) is a DAG during Algorithm 1. Then, we show H(t−1) can also be constrained to be a DAG, based on the
redirections chosen. Let S be the subgraph we contract. Since S is a subgraph, it is also a DAG. There can also be no cycles
in H(t)(VH(t) \ VS). Then, we can choose choose every redirection to be “out” or every redirection to be “in” relative to the
neighborhood of S. This way, a cycle cannot form using both nodes in S and in V

(t)
H .

Remarks. In practice, we don’t restrict every redirection to be the same (either “out” or “in”). We compute a “precedence
graph” using the nodes in the neighborhood of S, based on reachability without S, i.e. a path finding algorithm with S as
the obstacles. Then, we ensure the redirections don’t violate this precedence graph. Intuitively, the precedence graph itself is
a DAG (otherwise there’s a cycle), so there are many permissable redirection sets.

B. Grammar Induction Algorithm
We delve deeper into the key computation steps of Algorithm 2. The first subsection discusses our implementation choices
for the approximate and heuristic variants of the frequent subgraph mining (“fast subgraph isomorphism”), max clique
(“approx max clique”), and hitting set (“quick hitting set”) problems. The second and third subsections elaborate further on
the insets and outsets and find iso functions. They are non-standard problems that we formulated so we feel they require
further elaboration.

B.1. Solver Options

1. Frequent subgraph mining

(a) Approximate: We use the Subdue library. It has various options for pruning the search. Parameter: beam width
(used for subgraph expansion).

2. Max clique

(a) Exact (O(exp(n))): networkx’s cliques library
(b) Approximate (O(poly(n))): We use networkx’s O(|V |/(log |V |)2) approximation algorithm.
(c) Heuristic (O(n)): (Repeat K times) Initialize a random node, iterate over all remaining nodes in random order,

adding any that satisfies clique condition. Parameters: K

3. Hitting set problem during disambiguation

13

Directed Graph Grammars for Sequence-based Learning

(a) Exact: our own implementation
(b) Approximate: Beam search. Parameters: beam width

Our datasets have variable sizes from 47877 (CKT), 152160 (ENAS), to 2,000,000 nodes (BN), which span the range of
real-world use cases. We use the size of the input to toggle between different options, trading off accuracy and efficiency.
Roughly speaking, CKT mostly uses exact/approximate solutions, ENAS approximate/heuristic solutions and BN heuristic
solutions.

B.2. Compute Insets and Outsets

To understand why Algorithm 1 losslessly compresses D, we must understand what the function insets and outsets does in
the logic of Algorithm 3. The concept of insets and outsets were introduced in (Blockeel & Nijssen, 2008) for a simpler
grammar formalism, but we extend it to general edNCE grammars. Here, we restate it here for completeness. Given a
subgraph S in a graph G, we need to infer I , the set of instructions that can induce a grammar rule while ensuring G can be
reconstructed. Recall that each instruction in I is of the form (σ, β/γ, x, d/d′) which has the semantics “if a neighbor has
edge direction d, edge label β, and label σ, form an edge with direction d′ labeled γ to node x ∈ VS” during a one-step
derivation. Thus, each instruction carries a precondition (d, β, σ) and postcondition (d′, γ, x). Given G, S, and a possible
realization G′ (G but with S replaced with a non-terminal), we can immediately deduce which (precondition, postcondition)
pairs are respected and which are not. Due to mutual exclusivity of the preconditions, we can deduce which rules must be
in I from the respected pairs and which rules must not be in I from the disrespected pairs. These form the lower bound
and upper bound of I and are defined as the insets and outsets, respectively. The function insets and outsets therefore
enumerates all possible realizations G′ (the product over all edge directions for each adjacent neighbor of VS in G), then
computes the inset and outset for each realization.

Algorithm 1: function grammar induction(dataset)
Input: D = [(Hi, λi) | i = 1, . . . , |D|]; Σ; // dataset of DAGs labeled by λ, vocabulary of labels

1 N ← {}; T ← {black}; P ← {}
2 G := (Σ, N, T, P, black); // initialize grammar

3 S ← [[], i ∈ {1, . . . , |D|}];
4 iter← 0;
5 while len(D) > 0 do
6 G iter← learn grammar(D);
7 G iter,D, S iter← disambiguate(G iter,D);
8 for i ∈ S iter do
9 S[i]← S iter[i];

10 for (X,D, I) ∈ G iter.P do
11 G.P ← G.P ∪ {(X : iter, D, I)};
12 iter+ = 1;

13 while iter > 0 do
14 iter− = 1;
15 G.P ← G.P ∪ {black, black : iter, {}}; // abbrev: graph with single node labeled black:iter

16 Out: G,S

B.3. Find Compatible Isomorphisms

Given a way to compute the insets and outsets for a given subgraph occurrence S and potential edge redirection, we need
a way to reconcile different such instances [Si,j | subgraph occurrence i, redirections j] using their inset and outset. We
introduce the notion of a isomorphism compatibility graph, where each node represents a specific occurrence, and edges
indicate compatibility, i.e. there exists an instruction set I that is compatible with both. We can define compatibility between
Si,j and Si′,j′ as: “there exists some set Ii,j which includes insets of Si,j and Si′,j′ and excludes outset of Si,j and Si′,j′”,
as on line 29 of 3. Given S, we also determine whether Si,j should be added to ism graph for the case i = j. Once we have

14

Directed Graph Grammars for Sequence-based Learning

Algorithm 2: function learn grammar(dataset)
Input: D = [(Hi, λi) | i = 1, . . . , |D|]; Σ; // dataset of DAGs labeled by λ, vocabulary of labels

1 H = disjoint union of D;
2 N ← {gray, black}; T ← {black}; P ← {}
3 G := (Σ, N, T, P, black); // initialize grammar

4 M = |H|+ 1; t← 0;
5 while |H| < M do
6 M ← |H|;
7 m← |H|+ 1;
8 while |H| < m do
9 m← |H|;

10 best clique← [];
11 best← H;
12 for (X,D, I) in P do
13 ism graph← find iso(H,D, I);
14 max clique← approx best clique(ism graph);
15 if |max clique| · |D| > |best clique| · |best| then
16 best clique← max clique;
17 best← D;

18 for d ∈ best clique do
19 rewire(H, d);

20 motifs← frequent subgraph mining(H);
21 best clique← [];
22 best← H;
23 for D ∈ motifs do
24 ism graph← find iso(H,D);
25 max clique← approx best clique(ism graph);
26 if |max clique| · |D| > |best clique| · |best| then
27 best clique← max clique;
28 best← D;

29 I ←
⋃

d∈best clique d.inset;
30 P ← P ∪ {(gray, best, I)};
31 for d ∈ best clique do
32 rewire(H, d);

33 t← t+ 1;

34 for D ∈ connected components(H) do
35 P ← P ∪ {(black, D, {})};
36 Out: G

ism graph, we extract the maximum clique of this graph, as that maximizes the compression for this given isomorphism
equivalence class.

C. Disambiguation Algorithm and Analysis
C.1. Pseudocode

In Algo. 4, we give the pseudocode of the disambiguation algorithm.

15

Directed Graph Grammars for Sequence-based Learning

Algorithm 3: function find iso(H,D,I=None)
Input: H; (D,λD); // background graph, subgraph

1 isms← fast subgraph isomorphism(H,D);
2 term only← all(λD(x) ∈ N, ∀x ∈ D);
3 isms allowed← [];
4 for ism ∈ isms do
5 D ism, λism ← ism;
6 if !term only then
7 isms allowed += [ism];
8 continue;

9 has nt← any(λism(x) ∈ N, ∀x ∈ D ism);
10 if !has nt then
11 isms allowed += [ism];
12 continue;

13 V ← {};E ← {}; // undirected graph

14 for ism ∈ isms allowed do
15 redirections← insets and outsets(H, ism);
16 for inset, outset, dirs ∈ redirections do
17 if I! = None then
18 if !empty(inset− I) then
19 continue;

20 if !empty(outset ∩ I) then
21 continue;

22 else
23 if inset ∩ outset then
24 continue;

25 new node← {ins = inset, out = outset, ism = ism, dirs = dirs};
26 V ← V ∪ {new node};

27 for i ∈ V do
28 for j ∈ V do
29 overlap← (i.inset ∪ j.inset) ∩ (i.outset ∪ j.outset);
30 if !overlap then
31 E ← E ∪ {(i, j)};

32 Out: V,E

C.2. Proof of Correctness

Lemma. The output G of Algorithm 4 is unambiguous w.r.t. D ∩ L(G).

Proof. To see this, we work backwards from the definition of minimal rule set selection, which is assumed to solve the
problem in Theorem C.3. Therefore, elim rules will be a superset of at least one element in elim rule sets for each i. Each
element of elim rule sets is a set consisting of all rules which should be eliminated to ensure Hi becomes unambiguous. This
is ensured by construction because for each derivation whose set of rules is unique, we try excluding all other derivations.
Consider two derivations A and B with rule sets set(A) and set(B), where we want to keep A valid but invalidate B. Then,
we can eliminate rules set(B) \ set(A). This is possible because there does not exist two derivations where one’s rule set is
a subset of the other’s rule set. This is because each rule application adds a positive number of nodes, since the RHS of
any rule contains at least two nodes. Therefore, we construct elim sets, a set of rule set differences for keeping keep deriv.
We then find a hitting set of elim sets (rules which invalidates other derivations but keeps the current derivation valid).
Therefore, the solution from minimal rule set selection will be the minimal set of rules which disambiguates all Hi which

16

Directed Graph Grammars for Sequence-based Learning

can be made unambiguous.

Theorem. The output G of Algorithm 1 is unambiguous w.r.t. D.

Proof. Algorithm 1 constructs a compound grammar which make consist of multiple sub-grammars that each guarantees
unambiguity for a partition of D. Each sub-grammar’s non-terminals are identified by iter so any derivation over G
stays strictly within one sub-grammar. Thus, showing ̸ ∃Hi ∈ D s.t. Hi is ambiguous w.r.t. G, reduces to showing
̸ ∃Hi ∈ L(G iter) ∩ D which is ambiguous w.r.t. G iter for a given iteration.

C.3. Undecidability of Detecting Ambiguity

Theorem. Given edNCE grammar G = (Σ, N, T, P, S), testing if it is ambiguous is undecidable.

Proof. Suppose determining whether G is ambiguous is decidable. Then we can reduce determining whether a string
grammar is ambiguous is decidable by reducing it to an equivalent edNCE grammar (Engelfriet & Rozenberg, 1997).
However, determining whether a string grammar is undecidable (Brabrand et al., 2010), which is a contradiction.

C.4. Formulation of Disambiguation

Theorem. Given a universe U and a collection of sets of subsets, S = {S1, S2, . . . , SM}, Si ∈ 22
U

. Let k be an integer.
Determining whether ∃H ⊆ U such that |H| ≤ k and

∀i ∈ {1, 2, . . . ,M},∃T ∈ Si s.t. T ⊆ H (1)

is NP-complete.

Proof. Let HSS := {(U,S, k)} s.t. |H| ≤ k and 1 is satisfied.

HSS is in NP: For each Si ∈ S, non-deterministically guess a Ti ∈ Si. Let H :=
⋃

i Ti. If |H| ≤ k, accept, else reject.

HSS is NP-hard: Let HS := {(U,S, k)} s.t. ∃H ⊆ U s.t. |H| ≤ k and H ∩ Si ̸= ∅ for every Si ∈ S be the Hitting Set
problem, which is known to be NP-complete. We will show HS ≤m HSS. Given an instance of the HS problem, let f
be the computable mapping f((U,S, k)) = (U, {{{s},∀s ∈ Si},∀Si ∈ S}, k). If (U,S, k) ∈ HS, then we can choose
si ∈ Si ∈ H ∩ Si to be Ti for each i. Then we can choose H ′ = {si} so 1 is satisfied by construction, and since si ∈ H for
each i, H ′ ⊆ H so |H ′| ≤ k. If f((U,S, k)) ∈ HSS, then let H ′ satisfy |H ′| ≤ k and 1. Then Ti ⊆ H ′ where |Ti| = 1 is
equivalent to ∃si ∈ H ′ for each i, or H ′ ∩ Si ̸= ∅, so since |H ′| ≤ k, (U,S, k) ∈ HS.

Corollary. The problem minimal rule set selection is solving is NP-Complete.

D. Grammar Enumeration Algorithm
It is well-known node-labeled DAGs can be hashed by recursively aggregating hashes of children. We use a simple approach
in our implementation (Algo. 5). Note that edge-labeled DAGs can be polynomial-time reduced to node-labeled DAGs, so
our approach works in the general edNCE case. For a recent discussion of hashing directed graphs, refer to Helbling (2020).

D.1. Dynamic Programming with Memoization.

We use memoization to make the brute force enumeration tractable, along with efficient pruning. In our implementation
(Algo. 7), intermediate derivations are pruned if a) they are not DAGs, or b) are not node-induced subgraphs of the desired
DAG. mem stores all derivations “to-go” for a given intermediate, so the given intermediate is memoized.

D.2. Computational Efficiency.

The worse-case complexity is, in the general case, NP-hard, because parsing edNCE grammars are NP-hard (Engelfriet
& Rozenberg, 1997). Intuitively, there can be an exponential number of connected subgraphs for a given DAG (tight for
the case of star graphs), though isomorphisms and sparsity means the actual number is lower. In our practical experiments
of path-like structures, the algorithm is very efficient (the multi-process version of Algo. 7 takes a few minutes per DAG
for BN and CKT). For ENAS, the much larger number of rules creates a large branching factor, but the sparser, path-like
structures enables more pruning, still making the algorithm tractable. We also run Algo. 7 in order from the smallest to
largest DAGs, as smaller DAGs likely have shorter derivations that enable more rules to be pruned before enumerating

17

Directed Graph Grammars for Sequence-based Learning

derivations for the larger DAGs.

D.3. Remarks on Scalability

Our datasets BN, CKT, ENAS are all upper-bounded in the number of nodes, which makes the brute force approach tractable.
Further optimizations are required for variable-size DAGs, where domain knowledge can further prune intermediates.

In cases where brute-force approaches are not feasible, we have the following suggestions:

1. If the issue lies in the large |D|, we suggest partitioning D based on some semantic criterion, then running Algo. 1 on
those individual partitions, then aggregating the individual grammars into a compound grammar much like how we did
for Algo. 1. The drawback is this pre-partitioning scheme loses the injectivity property when viewing D as a whole,
but retains injectivity for the individual “sub-datasets”.

2. In cases where individual graphs in D are too large, we suggest increasing the “motif size” for Subdue, as larger
candidate motifs produce shorter derivations. The ideal derivation length is somewhere between 2-8, in our empirical
experience. The drawback is this may result in lower compression ratios, depending on the characteristics of the data.
We encourage future work to explore this further.

E. Case Study: Analog Circuits
Background. Operational amplifiers (op-amps) are a DAG generation and optimization problem because their circuit
topologies inherently form DAG structures. The design of op-amps involves both topology selection and device parameter
optimization, making it a highly complex, combinatorial problem. Traditionally, op-amp optimization has focused primarily
on device sizing (component-wise parameters) given a fixed topology, but recently graph generative models have shown
promise in optimizing the DAG topology. (Dong et al., 2023) However, general methods that navigate the combinatorial
search space without domain-specifc knowledge is challenging, whereas specialized methods will not generalize to other
problem domains. For example, Dong et al. (2023) used a two-level GNN on top of a predefined basis of circuit subgraphs,
facilitating domain-specific representation learning. DIGGED, by contrast, combines the flexbility of a general method with
data-driven grammar induction. Essentially, DIGGED infers the expert knowledge indirectly, through its unsupervised MDL
objective.

E.1. Case Study Example

We visualize the novel design with highest simulated FoM generated by DIGGED during BO in Fig. 6. Shown in 6a,
DIGGED derives this design by decoding three tokens. In the first step, it decodes one of the common initial rules to
initialize the input and output, leaving the middle as a placeholder. In the second step, it decodes a rule which adds a
resistor, a stabilizing mechanism for the yet-to-be decoded structure. In the final step, it decodes the rule which contains
two -gm+ op-amp stages. This is interesting, because the final token decoded is inspired by its previous token. Using a
parallel resistor configuration is one of the common ways to provide stability to a two-stage op-amp. In Fig. 6c, we visualize
the instruction set I for Rule 56, which controls what neighborhood topology should surround the two -gm+ cells. This
instruction set is the solution to the compatibility maximization (Section B), so it contains some redundancy in the context
of this specific example. For example, both -gm+ cells in Fig. 6c have preconditions for connecting to input and output
nodes, but in the context of any specific derivation, at most one will be active. However, only the upper -gm+ cell has
preconditions for resistor, capacitor and other gm nodes. This captures important constraints, notably: we don’t want other
gm cells to connect to both -gm+ stages, because we want cascaded gain blocks and sequential separation of the units. This
is significant from a methodology perspective because DIGGED is inducing symbolic rules such as these directly from
examples, so it won’t construe unintended topology, whereas other autoregressive graph decoders might. Furthermore, these
step-by-step derivations provide explainability into the designs, whereas decoding a DAG in an arbitrary order might miss
this information.

E.2. Expert Feedback

We visualize the four novel designs with highest FoMs in Figs. 7a-7c. We consulted an expert with decades of experience in
circuit design, and include the feedback in the captions.

18

Directed Graph Grammars for Sequence-based Learning

E.3. More Details on Baselines

Similar to the setup for ENAS and BN Zhang et al. (2019); Thost & Chen (2021), we retrain the SGP model each round and
acquire latent points using the Greedy Expected Improvement heuristic. For each latent point, we decode a DAG using
the decoder and convert it to a circuit. We refer to this as unconstrained BO, and adapt the existing implementations by
Zhang et al. (2019); Thost & Chen (2021). We also include their reported BO results in Table 3. However, we could not find
support for this in the codebase of Dong et al. (2023). Instead, they provide instructions to run BO with pivots, where they
first generate latent encodings of all circuits in their benchmark dataset, CktBench301, then snap each acquisition point to
the closest circuit in the dataset. Thus, it’s unclear how they obtained the numbers in their Table 1. For completeness, we ran
their code and include the results as CktGNN [CktBench301] in Table 3. Despite using a large enumerated dataset as pivots,
they were unable to produce designs close to the max FoM in CktBench301.

E.4. Summary

DIGGED demonstrates, through a domain-agnostic and unsupervised paradigm, it is capable of achieving greater perfor-
mances than domain-specific methods. It does so by autonomously discovering domain-specific patterns, automatically
inducing principled and compact sequential descriptions over those patterns, and harnessing general-purpose sequence
learning.

F. Case Study: Bayesian Networks
In Section 5.2, we observed an interesting finding, where DIGGED achieves extraordinary Pearson r (nearly 1.6x that of
the next best method and 2.9x that of other VAE encoders) despite a modest RMSE. To understand this phenomenon, we
visualize the trained SGP’s test set predictions (one of the ten seeds) in Fig 8. We then stratify the test set across the number
of rules in the sequence representation, and plot the mean absolute error per strata.

Findings. We indeed see a tight, linear trend of the predictions across the entire ground-truth value range in Fig. 8, despite
the error residues being high. We also see this test error is highest for examples with parse length 1. Fortunately, there
are very few of those. We then observe a generally decreasing trend in the test error as parse length increases. Notably,
2 and 3 are the most common parse lengths, but exhibits relatively low test errors. We attribute the linear trend to the
unique properties of our representation. In contrast with node-by-node or edge-by-edge sequential decoding schemes,
DIGGED uses compatible and consistent rules to linearize a DAG. This reparameterizes the DAG representation space into
a sequence representation space, where Transformers have shown strong generalization abilties (Vaswani, 2017). Thus,
although individual residue errors are still large, a global linear trend emerges from this representation space. This shows
how theoretical properties of our grammar translate into more congruous representations that are amenable for downstream
tasks.

G. Further Discussion of Results
Relation to Compositional Generalization. In addition to recognizing our method as “converting a graph into a sequence”,
there is a deep motivation from the objectives of compositional generalization. Contrary to what a “sequential” representation
may imply, DIGGED is intrinsically compositional (see 2). In fact, DIGGED is trained to embed DAGs with similar
hierarchical compositions to similar points in latent space. For example, consider DAG 1 represented (uniquely) as
W → X → Y and DAG 2 as W → X → Z. DIGGED’s decoder must predict shared initial tokens for both graphs,
naturally clustering these related graphs in latent space. Combined with the relational inductive bias of our DAGNN encoder,
the autoencoder objective can be viewed as combining both the relational and hierarchical inductive bias to learn expressive
and generalizable representations.

How Choice of Datasets Affect Interpretation of Results. ENAS and BN both impose special constraints: all DAGs
have the same number of nodes; ENAS DAGs must follow consecutively numbered nodes, and BN DAGs must contain
exactly one node of each type (8 types). Such simplifying conditions allow naı̈ve positional encodings to overcome the
shortcomings we discussed earlier, making predictive tasks relatively easier. We initially chose these datasets due to the
limited availability of standardized benchmarks for DAGs. By contrast, the CKT dataset involves significant diversity in
both graph topology and node types, making it a better testbed for evaluating the true strengths of DIGGED’s compositional,
position-free encoding approach. At the same time, we note predictive accuracy (RMSE, Pearson’s r) does not reflect
decoder effectiveness. For example, BN-Random, CKT-BFS, and CKT-Random achieve reasonable scores on predictive

19

Directed Graph Grammars for Sequence-based Learning

metrics (RMSE and Pearson’s r), yet fail fundamental decoder sanity checks, rendering them ineffective for subsequent
optimization tasks. DIGGED prioritizes end-to-end optimization results, which requires the ability to navigate and decode
from the latent space.

Explanation for Better Optimization, Worse Predictive Accuracy. The opportunities and challenges of hierarchical,
compositional generalization also explains the behavior we observe in Ablation 6.1. DIGGED is intentionally designed
for compositionality of its outputs. Unlike naive sequential encodings, DIGGED places DAGs with shared hierarchical
structures (intermediate derivations) close together in the latent space. Learning both the token vocabulary embeddings and
latent space compositional structure jointly indeed poses a more challenging training task – reflected partly in predictive
metrics – but strongly supports compositional generalization and decoder reliability. This trade-off underscores DIGGED’s
core strength: effectively navigating a compositional design space to reliably generate diverse and valid DAG structures
optimized for practical performance. DIGGED is also a design language, combining hierarchical inductive biases and can
uncover domain-specific insights (case studies in App. E).

H. Choice of Encoder
In Fig. 9, we plot the frequency of rule tokens, sorted by rank (from most to least common) against Zipf’s Law (Zipf,
2013), a cornerstone of modern linguistics. Zipf’s Law states that the frequency of the k’th most common word is inversely
proportional to its rank, and this arises in many natural settings (Powers, 1998). It’s encouraging to see that our unsupervised
MDL-based compression scheme also gives rise to such an underlying relationship. Similar to natural language, we believe
the formal language behind DIGGED also shares similar governing laws, which would be fascinating to study in its own
right.

Despite the theory and intuitions, transferring modern practices in NLP directly onto our framework did not strike gold on
the first try. We showed in our ablations in Section 5 that using a full transformer encoder (TOKEN) did worse than using a
GNN tailored to the inductive biases of DAGs. We postulate two reasons for this:

1. Transformer encoders require more investment in training. This is supported by our hyperparameter experiments
in I, where we noticed the encoder required twice as many layers as our decoder. Because the focus of our work is not
pretraining, we did not invest the time to pretrain the encoder separately.

2. Jointly training an encoder, decoder, and dictionary is data-intensive. For this reason, pretrained word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) are used out-of-the-box for joint encoder-decoder training (Vaswani,
2017; Raffel et al., 2020). However, distributed embeddings for our rule-based tokens do not exist. However, since we
are, to our knowledge, among the first to train generative models by representing graphs as sequences of tokens, such
solutions do not currently exist.

We believe standard encoder pretraining practices like masked language modeling (Devlin, 2018) will be effective. We
encourage future works to explore this direction further with larger datasets, and we believe there will be scaling laws akin to
those we have seen in modern language models (Kaplan et al., 2020). We also encourage future works to explore distributed
embeddings by viewing graphs as documents and neighborhood topologies as context windows. Another promising way to
bootstrap token embeddings is to leverage the inductive bias of its definition (daughter graph D and instruction set I). We
hope our work opens the Pandora’s Box of graph language modeling using lossless, sequential descriptions!

I. Hyperparameter Scan
The optimal parameters for our model were determined using a hyperparameter scan sweeping over various properties of
the VAE, using validation loss as the guide. During the scan, we explore varying architecture properties such as: number
of encoder layers, number of decoder layers, latent dimension, embedding dimension, batch size, and KL divergence loss
coefficient. We employed the validation loss of the VAE to guide parameter selection, updating one hyperparamter at a time
while keeping all others fixed at baseline values. After each scan, we locked in the best-performing setting before moving on
to the next parameter type. The ordering and description of each hyperparameter that was optimized is as follows. We also
include the default setting of each parameter in parenthesis:

20

Directed Graph Grammars for Sequence-based Learning

1. Number of Decoder Layers: Depth of the Transformer decoder. (4)

2. Number of Encoder Layers: Depth of the Transformer encoder. (4)

3. KL Divergence Loss Coefficient: Scalar coefficient of the KL divergence term in the typical VAE loss function (Evidence
Lower Bound, ELBO). Controls how closely the encoder’s latent distribution matches the prior. (0.5)

4. Batch Size: Number of training examples processed simultaneously for a gradient update. (256)

5. Latent Dimension: Size of the representation of input sequences in the latent space of the variational autoencoder. (256)

6. Embedding Dimension: Size of the embeddings that the encoder and decoder use to represent tokens. (256)

The chosen parameters values from each experiment are highlighted in green in Table 8 and Table 9.

Interestingly, for the ”Sequence Rule” encoder on the CKT dataset, we achieve the lowest validation loss with just 4
Transformer decoder layers, whereas the Transformer encoder requires 8. This shows that DIGGED works well with a
lightweight decoder. We attribute this to the compactness of the grammar. Given a good sequential description, decoding
can be streamlined significantly.

It is worth noting that due to time and resource constraints, we were only able to fully scan the hyperparameters for a subset
of the possible encoder-type—dataset combinations.

21

Directed Graph Grammars for Sequence-based Learning

Algorithm 4: function disambiguate(G,S)
Input: G;D // learned grammar, dataset

1 all elim rule sets← {};
2 all derivs← [];
3 for (Hi, λi) ∈ D do
4 derivs← enumerate derivations(Hi);
5 deriv rule set lookup = {};
6 for deriv ∈ derivs do
7 key← sorted(list(set(deriv)));
8 deriv rule set lookup[key]+ = [deriv];

9 umabig poss← False;
10 for key ∈ deriv rule set lookup do
11 if deriv rule set lookup[key] == 1 then
12 umabig poss← True;
13 break;

14 if !umabig poss then
// impossible to make unambiguous, later will be lost

15 all derivs← umabig poss + [[]];
16 continue;

17 all derivs← all derivs + [derivs];
18 elim rule sets← {};
19 for key ∈ deriv rule set lookup do
20 if len(deriv rule set lookup[key]) > 1 then
21 continue;

22 keep deriv← deriv rule set lookup[key][0];
23 elim sets← {};
24 for deriv ∈ derivs do
25 if deriv == keep deriv then
26 continue;

27 elim sets← elim sets ∪ {deriv) \ set(keep deriv)};
28 elim rule set← quick hitting set(elim sets);// inner hitting set problem

// we use a linear greedy implementation

29 elim rule sets← elim rule sets ∪ {elim rule set};
30 all elim rule sets← all elim rule sets ∪ {elim rule sets};
31 elim rules← minimal rule set selection(all elim rule sets);// given a set of set of subsets, find

minimal rules to eliminate so each set of subsets has at least one subset included

32 G.P ← G.P \ elim rules;
33 dataset← [];
34 unique derivs← {};
35 for (Hi, λi) ∈ D do
36 lost← True;
37 for deriv ∈ all derivs[i] do
38 if empty(set(deriv) ∩ elim rules) then
39 lost← False;
40 unique derivs[i]← deriv;
41 break;

42 if lost then
43 dataset← dataset + [(Hi, λi)];

44 Out: G, dataset, unique derivs

22

Directed Graph Grammars for Sequence-based Learning

Algorithm 5: function wl hash(H)
Input: H; // DAG

1 G← deepcopy(H);
2 G← relabel nodes(G, dict(zip(sorted(G.nodes()), range(|G|))));
3 m← |G.edges|;
4 edge index← ∅2×m;
5 edge index[:, : m]← array(G.edges).T ;
6 roots← setdiff({0, . . . , |G| − 1}, edge index[1]); // Nodes with no predecessors

7 colors← {};
8 for r ∈ roots do
9 wl hash node(G, r, colors);

10 ans← ‘—’.join(sorted([colors[r] | r ∈ roots]));
11 hash value← sha256(ans.encode()).hexdigest();
12 Out: hash value

Algorithm 6: function wl hash node(G, n, colors)
Input: G; n; colors

1 if n ∈ colors then
2 Out: colors[n];

3 if G[n] ̸= ∅ then
4 cs← sorted([wl hash node(G, c, colors) | c ∈ G[n]]);
5 val← G.nodes[n][‘label’]);// symbol in N ∪ T

6 val← val + ‘,′ +‘ ’.join(cs);

7 else
8 val← G.nodes[n][‘label’]);

9 colors[n]← val;
10 Out: colors[n]

Algorithm 7: function enumerate derivations(index, all derivs, grammar, graph)
Input: index; all derivs; grammar; graph

1 if index ∈ all derivs then
2 log(f”index enumerated”);
3 Out: all derivs[index];

4 G← DiGraph();
5 G.add node(’0’, label = ’black’);
6 init hash← wl hash(G);
7 stack← [(deepcopy(G), init hash)];
8 mem← {};
9 while stack ̸= ∅ do

10 worker single(stack, grammar, graph, init hash,mem);// Here we use multi-processing, omitted for

simplicity

11 derivs← mem[init hash];
12 all derivs[index]← derivs;
13 Out: derivs

23

Directed Graph Grammars for Sequence-based Learning

Algorithm 8: function worker single(stack, grammar, graph, init hash, mem)
Input: stack; grammar; graph; init hash; mem

1 while True do
2 if stack = ∅ then
3 if init hash ∈ mem ∧mem[init hash] ̸= 0 then
4 break;

5 (H, val)← stack.pop();
6 if val ∈ mem then
7 if mem[val] ̸= 0 then
8 continue;

9 else
10 mem[val]← 0;

11 nts← {v ∈ H | v ∈ N};
12 if nts = ∅ then
13 if is isomorphic(H, graph, node match) then
14 mem[val]← [[]];

15 else
16 mem[val]← [];

17 continue;

18 done← True; res← [];
19 for nt ∈ nts do
20 for rule ∈ grammar.rules do
21 if rule = None then
22 continue;

23 nt label← HV [nt][‘label’];
24 if rule.nt = nt label then
25 c← rule(H, nt);
26 if ¬is connected(Graph(c)) then continue; ;
27 if ¬is directed acyclic graph(c) then continue; ;
28 if ¬find partial([graph], c) then continue; ;
29 hash val← wl hash(c);
30 if hash val /∈ mem then
31 if done then
32 stack.append((H, val));
33 done← False;

34 stack.append((c, hash val));

35 else
36 if mem[hash val] = 0 then
37 if done then
38 stack.append((H, val));
39 done← False;

40 else
41 for seq ∈ mem[hash val] do
42 res.append([i] + deepcopy(seq));

43 if done then
44 mem[val]← res;

24

Directed Graph Grammars for Sequence-based Learning

(a) Parse (top-to-bottom) representation.
(b) Step-by-step derivation for the design (not shown:
instruction set per rule).

(c) Visualization of instructions for rule 56. The daughter graph D consists of two -gm+ cells
units (with different device placement parameters). We fan out individual instructions, where
we use custom half-arrows to visualize redirections (d/d′). For what each element in the tuple
means, see Section 3.1.

Figure 6. Visualization of case study for the best novel design in Fig. 3.

25

Directed Graph Grammars for Sequence-based Learning

input

-gm+ C

+gm+

+gm+

output

(a) FoM= 265.53, “is a possible circuit topol-
ogy” - Expert

input

+gm+

-gm+

-gm+

output

(b) FoM= 296.82, “a bit fishy, because +gm+
is in parallel with an edge” - Expert

input

+gm+

+gm+

R -gm+

output

(c) FoM= 243.72, “could be a good design
for certain applications” - Expert

Figure 7. We include three additional novel designs found during BO. For each, we include a comment by a circuit design expert.

Table 8. Hyperparameter scan with ”Sequence Rule” encoder type on the CKT dataset. Note that the order of parameter optimization
follows the ordering detailed in the text above (left → right and top → bottom).

Run # # dec. layers Validation loss

1 1 4.000
2 2 3.919
3 3 3.942
4 4 3.882
5 5 3.909
6 6 3.942
7 7 3.897
8 8 3.917

Run # # enc. layers Validation loss

1 1 4.017
2 2 3.935
3 3 3.882
4 4 3.885
5 5 3.888
6 6 3.908
7 7 3.889
8 8 3.874
9 9 3.882

10 10 3.888
11 11 3.883
12 12 3.874
13 13 3.884
14 14 3.879
15 15 3.894
16 16 3.876

Run # KL Div. coefficient Validation loss

1 0.1 3.911
2 0.2 3.875
3 0.3 3.865
4 0.4 3.881
5 0.5 3.894
6 0.6 3.871
7 0.7 3.891
8 0.8 3.893
9 0.9 3.899
10 1.0 3.893
11 1.1 3.884
12 1.2 3.885
13 1.3 3.909
14 1.4 3.908
15 1.5 3.891

Run # Batch size Validation loss

1 16 3.959
2 32 3.940
3 64 3.896
4 128 3.919
5 256 3.863
6 512 3.882
7 1024 3.844
8 2048 3.851

Run # Latent dim. Validation loss

1 32 3.862
2 64 3.858
3 128 3.862
4 256 3.844
5 512 3.873
6 1024 3.914

Run # Embedding dim. Validation loss

1 32 3.957
2 64 3.910
3 128 3.862
4 256 3.844
5 512 3.851
6 1024 3.872

26

Directed Graph Grammars for Sequence-based Learning

Figure 8. We visualize test set predictions of a trained SGP model against the ground-truth.

27

Directed Graph Grammars for Sequence-based Learning

Figure 9. We sort all rule tokens by the frequency of occurrence across all sequential descriptions in the BN dataset, benchmarked by
Zipf’s Law.

Table 9. Hyperparameter scan with ”Graph” encoder type on the CKT dataset. Note that the order of parameter optimization follows the
ordering detailed in the text above (left → right and top → bottom).

Run # # dec. layers Validation loss

1 1 4.014
2 2 3.932
3 3 3.936
4 4 3.937
5 5 3.930
6 6 3.894
7 7 3.915
8 8 3.965

Run # # enc. layers Validation loss

1 1 3.919
2 2 3.925
3 3 3.937
4 4 3.894
5 5 3.924
6 6 3.918
7 7 3.936
8 8 3.939

Run # KL Div. coefficient Validation loss

1 0.1 3.919
2 0.2 3.900
3 0.3 3.901
4 0.4 3.965
5 0.5 3.919
6 0.6 3.951
7 0.7 3.959
8 0.8 3.949
9 0.9 3.979
10 1.0 3.988

Run # Batch size Validation loss

1 16 3.981
2 32 3.912
3 64 3.926
4 128 3.900
5 256 3.900
6 512 3.882
7 1024 3.883

Run # Latent dim. Validation loss

1 32 3.962
2 64 3.915
3 128 3.898
4 256 3.882
5 512 3.900
6 1024 4.405

Run # Embedding dim. Validation loss

1 32 3.957
2 64 3.918
3 128 3.894
4 256 3.882
5 512 3.913
6 1024 3.908

28

