
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RATIONALIZING AND AUGMENTING DYNAMIC GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph data augmentation (GDA) has shown significant promise in enhanc-
ing the performance, generalization, and robustness of graph neural networks
(GNNs). However, contemporary methodologies are often limited to static graphs,
whose applicability on dynamic graphs—more prevalent in real-world applica-
tions—remains unexamined. In this paper, we empirically highlight the challenges
faced by static GDA methods when applied to dynamic graphs, particularly their
inability to maintain temporal consistency. In light of this limitation, we pro-
pose a dedicated augmentation framework for dynamic graphs, termed DyAug,
which adaptively augments the evolving graph structure with temporal consis-
tency awareness. Specifically, we introduce the paradigm of graph rationaliza-
tion for dynamic GNNs, progressively distinguishing between causal subgraphs
(rationale) and the non-causal complement (environment) across snapshots. We
develop three types of environment replacement, including, spatial, temporal, and
spatial-temporal, to facilitate data augmentation in the latent representation space,
thereby improving the performance, generalization, and robustness of dynamic
GNNs. Extensive experiments on six benchmarks and three GNN backbones
demonstrate that DyAug can (I) improve the performance of dynamic GNNs by
0.89% ∼ 3.13% ↑; (II) effectively counter targeted and non-targeted adversarial
attacks with 6.2% ∼ 12.2% ↑ performance boost; (III) make stable predictions
under temporal distribution shifts. The source code is anonymously available at
https://anonymous.4open.science/r/DyAug-8216.

1 INTRODUCTION

Data-driven inference has greatly enhanced generalization capabilities and improved model perfor-
mance, particularly through data augmentation, across a wide range of domains, including computer
vision (CV) (Yang et al., 2022; Alomar et al., 2023; Zheng et al., 2023), natural language process-
ing (NLP) (Shorten et al., 2021; Dai et al., 2023), and graph-based tasks (Rong et al., 2019; Feng
et al., 2020; Fang et al., 2022; Wang et al., 2021b; Liu et al., 2022c; Sui et al., 2024). Among these
domains, graph-tailored augmentation strategies are notably distinct due to the irregular and non-
Euclidean nature of graph data, unlike the other two domains, where data is typically structured in
regular, Euclidean forms such as grids (i.e., images) and sequences (i.e., sentences). Drawing upon
these unique characteristics, current graph data augmentation (GDA) techniques have demonstrated
significant effectiveness in enhancing the performance (Zhao et al., 2022c), robustness (Jin et al.,
2020; Kong et al., 2022), and generalization ability (Wu et al., 2022b; Liu et al., 2022a) on graph
neural networks (GNNs), applicable to various levels of graph tasks, including node-level (Rong
et al., 2019; Wang et al., 2021b; Liu et al., 2022c), edge-level (Dai et al., 2019; Zhao et al., 2022b),
and graph-level (Feng et al., 2020; You et al., 2021; Liu et al., 2022a).

Despite their success, previous graph data augmentation methods have been largely constrained
to a specific class of graphs, namely static graphs. In contrast, dynamic graphs, which evolve
over time, and are widely recognized as more prevalent in real-world applications such as social
networks (Berger-Wolf & Saia, 2006; Greene et al., 2010), financial transactions (Nascimento et al.,
2021; Zhang et al., 2021), and traffic networks (Peng et al., 2021; 2020), notably lack effective and
tailored data augmentation designs. In light of this dilemma, an intuitive approach would be to
directly apply static graph augmentation techniques to dynamic graphs. But is this truly feasible? In
the remainder of this section, we will (1) first review key advancements in graph data augmentation,

1

https://anonymous.4open.science/r/DyAug-8216

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Vanilla +DropEdge +NeuralSparse

(a) Performance (b) Duration CDF (c) Duration distribution

Figure 1: (Left) (a) illustrates the AUC (%) comparison among vanilla DySAT, DropEdge (Rong et al., 2019),
GraphMixup (Wang et al., 2021b), RGDA (Liu et al., 2024a) and our DyAug on the Yelp dataset; (Middle)
(b) analyzed the time span of each edge, i.e., its longest consecutive existence period across snapshots, and
compared the cumulative distribution function (CDF) for the vanilla dataset and after applying NeuralSparse
and DropEdge; (Right) (c) visualizes the distribution of edge time spans under different methods, with colors
ranging from light to dark representing [1, 2, 3, 4, 5, others].

(2) highlight the critical challenges in their extension to dynamic graphs, (3) present our proposal
for dynamic graph augmentation, and (4) summarize the contributions of this paper.

Look-back on GDA. Existing graph augmentation techniques can be broadly categorized into
the following two types: ❶ rule-based augmenters, which manipulate data through predefined
strategies such as edge dropping (Rong et al., 2019), node dropping (Feng et al., 2020), message
dropping (Fang et al., 2022), and mixup (Wang et al., 2021b; Han et al., 2022; Ling et al., 2023;
Kim et al., 2023; Ma et al., 2024); and ❷ learning-based augmenters, which incorporate learn-
able parameters in the generation of augmented examples, including graph structure learning (Jin
et al., 2020; Wu et al., 2022a; Zou et al., 2023), graph rationalization (Liu et al., 2022a; Wu et al.,
2022b; Yue et al., 2024), adversarial training (Zhu et al., 2019; Li et al., 2023a), and contrastive
learning (You et al., 2020; 2021; Shen et al., 2023). Although these methods have made significant
strides in empowering, generalizing, and robustifying GNNs on static graphs (Zhao et al., 2022a;
Ding et al., 2022; Adjeisah et al., 2023), their performance on dynamic graphs , along with the
potential challenges, remains largely unexplored and unassessed.
Emperical Observation. To investigate the potential issues of transferring static GDA methods
to dynamic settings, we select three representative methods from both rule- and learning-based aug-
menters and apply them on Yelp (Sankar et al., 2020) with DySAT (Sankar et al., 2020) as the
GNN backbone1. As shown in Figure 1 (Left), not all methods contribute positively: though effec-
tive on static graphs, DropEdge (Rong et al., 2019) and GraphMixup (Wang et al., 2021b), lead to a
performance drop of 0.2% ∼ 0.6%. Nevertheless, RGDA (Liu et al., 2024a) achieves a modest im-
provement (0.6% ↑ in AUC). This raises the question: what caused such a discrepancy? To explore
this further, we examine how graph augmentation affects dynamic graph sequences. We investigate
the edge timespan (Yang et al., 2023), namely the maximum number of consecutive graph snapshots
an edge spans. As illustrated in Figure 1 (Middle), DropEdge significantly alters the cumulative
distribution function (CDF) of edge timespans, while RGDA has a comparatively minor effect.

Challenges. Based on the above observations, we conclude that static GDA methods are not fully
applicable to dynamic graphs, due to their unawareness of temporal consistency. More concretely,
existing methods primarily focus on augmenting individual graphs, while overlooking the strong
temporal dependencies across different graph snapshots. Imagine a scenario where existing GDA
techniques are applied independently to each graph snapshot. Since topological augmentations often
involve removing/deleting edges (Zhao et al., 2022a; Ding et al., 2022), this can lead to a surge in
edges with a timespan of only 1, while many long-timespan edges may suddenly disappear at one
timestamp and reappear at the next–such behavior does not align with the natural evolution patterns
observed in real-world dynamic graphs (Beck et al., 2017). This issue is clearly illustrated in Figure 1
(Right): DropEdge disrupted many originally long-spanned edges, causing the proportion of edges
with a timespan of 1 to increase sharply from 43.57% to 69.25%. We call this the disruption of
the temporal consistency (Qian et al., 2021) between different graph frames, which significantly
undermines the continuity and temporal dependencies inherent in dynamic graphs. Therefore, a
natural question arises: how can we design a data augmentation method for dynamic graphs that
effectively enhances dynamic GNNs via well-maintaining temporal consistency?

Proposal. To address the aforementioned challenges, we propose a temporal-consistent
::
dynamic

graph
:::
augmentation framework (dubbed DyAug), which can efficiently integrate into mainstream

1We place detailed explanations of their adaption to dynamic graphs in Appendix A.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

dynamic GNN backbones, and adaptively manipulates and augments evolving graph structures with
temporal consistency awareness. Technically, DyAug pioneers the exploration of graph rationaliza-
tion (Liu et al., 2022a; Si et al., 2023; Yue et al., 2024) in dynamic graphs by dynamically pinpointing
the rational features (rationales) that support a model’s predictions during the training phase, while
the contrasting elements are referred to as the environment. Through temporally conditioned graph
rationale-environment separation, DyAug learns a highly correlated rationale subgraph sequence for
the dynamic graphs, effectively preserving the temporal consistency. By employing three types
of augmentation techniques, i.e., temporal, spatial, and spatial-temporal environment replacement,
DyAug efficiently expands the data distribution for dynamic GNNs, achieving a triple win in terms
of performance, robustness, and generalization capacity.

Our contributions are summarized as follows:
❶ Problem Identification. We pioneer the exploration of graph data augmentation (GDA) within

dynamic graphs. Through empirical evaluation, we demonstrate the poor transferability of tra-
ditional static GDA methods to dynamic graphs, identifying the root cause as the disruption of
temporal consistency inherent to dynamic graph structures.

❷ Pratical Solution. We propose a temporal-consistent dynamic graph augmentation framework,
termed DyAug, which makes the first step to explore graph rationalization within dynamic GNNs.
By extracting rationale subgraphs in a temporally conditioned manner, DyAug effectively preserves
the temporal consistency of dynamic graph sequences while efficiently augmenting training data
through temporal, spatial, and spatial-temporal environment replacement.

❸ Experimental Validation. Extensive experiments on six benchmarks and four dynamic GNN
backbones demonstrate that DyAug can (I) improve the performance of dynamic GNNs by
0.89% ∼ 3.13% ↑, surpassing state-of-the-art GDA methods by up to 2.8%; (II) effectively
counter targeted and non-targeted adversarial attacks with 6.20% ∼ 12.22% ↑ performance boost;
(III) make stable predictions under temporal distribution shifts.

2 RELATED WORK

Dynamic Graph Neural Networks. Dynamic Graphs find applications in a wide variety of dis-
ciplines, including social networks (Berger-Wolf & Saia, 2006; Greene et al., 2010), recommender
systems (Li et al., 2020; Zhang et al., 2022a; Gong et al., 2024), epidemiology (Liu et al., 2024c),
etc. According to data types, current dynamic graphs can be primarily classified into discrete-time
dynamic graphs (DTDG) and continuous-time dynamic graphs (CTDG) (Barros et al., 2021; Feng
et al., 2024). This paper’s main research scope focuses on DTDG, which consists of multiple dis-
crete graph snapshots arranged in chronological order. Contemporary dynamic GNNs (DyGNNs)
typically follow a framework where a spatial module processes different snapshots, and a temporal
module aggregates information from various timestamps. Common categories include: (1) Typ-
ical GNN-RNN DyGNNs, which utilize a GNN module to handle individual snapshots and em-
ploy recurrent neural network (RNN) style modules to aggregate information across time, including
STGCN (Yu et al., 2017), DySAT (Sankar et al., 2020), EvolveGCN (Pareja et al., 2020), TeMP (Wu
et al., 2020), TFE-GNN (Zhang et al., 2023a), and SEIGN (Qin et al., 2023); (2) Temporal-
enhanced DyGNNs, where specific design are adopted to better capture temporal dependencies,
such as generative adversarial networks (GAN) in SGNN-GR (Wang et al., 2022) and spiking neu-
ral networks (SNN) in SpikeNet (Li et al., 2023b); (3) Spatial-enhanced DyGNNs, which focus on
improving spatial modeling, such as GCRN (Seo et al., 2018) and TTGCN (Li et al., 2024a).

Graph Data Augmentation As discussed in Section 1, existing graph data augmentation (GDA)
techniques can be broadly categorized into two types. (1) Rule-based augmentors employ heuristic
rules for enhancing graph data across various dimensions, including topological-level (Rong et al.,
2019; You et al., 2020; Wang et al., 2020; Sun et al., 2021), feature-level (Zhao et al., 2021a; Sun
et al., 2021), and label-level (Park et al., 2021; Han et al., 2022). (2) Learning-based augmenters
employ various automated learning paradigms to expand graph data. For instance, graph structure
learning (Zhu et al., 2021; Li et al., 2024b; Zhiyao et al., 2024) has been leveraged for enhancing
graph topology by adding or removing edges (Jin et al., 2020; Liu et al., 2022b; Zhao et al., 2023; Wu
et al., 2023). Techniques such as contrastive learning (Velickovic et al., 2019; You et al., 2020; 2021;
Zhang et al., 2023b; 2024b) and reinforcement learning (Zhao et al., 2022c; Zhou & Gong, 2023)
are also commonly used for graph augmentation. In contrast to the aforementioned methods, graph
rationalization focuses on identifying intrinsically learned subgraphs as the rationale graph (Zhao
et al., 2022a), with the opposing context referred to as the environment, which augments data by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4

t=T

t=1

t=2

...
t=TProgressive

sparsificationDynamic Graph

Consistency Regularization:

t=1

Rationale subgraph Environment subgraph

t=T t=Tt=1

DTDG DyGNN

DyGNN:

...
...

...

...

...

...

t=1
t=2

t=T

t=1
t=2

t=T

Spatial Aug: environment
embeddings

Environment-based
Subgraph Augmentation

Temporal Aug:

Spa-temp Aug:

Comb(

Optimization

forward

rationale
 embeddings

Performance Robustness Generalizability

t=1

Temporal-conditioned
rationale generation

Comb(

Comb(

Figure 2: The overview of our proposed DyAug.

perturbing the rationale-environment pair. Due to its robustness to data noise (Sun et al., 2022; Yuan
et al., 2024a) and distribution shifts (Wu et al., 2022b; Liu et al., 2024a), graph rationalization has
garnered increasing attention, and our proposed method falls within this category. However, all these
GDA methods are confined to static graphs and do not take into account the temporal correlations
present in dynamic graph sequences, which significantly limits their performance when extended
to dynamic graphs. Regarding GDA for dynamic graphs, although there are a few attempts for
CTDG (Wang et al., 2021a; Chen et al., 2023), to the best of our knowledge, there currently are no
GDA methods specifically designed for DTDG.

3 METHODOLOGY

3.1 NOTATIONS AND PRELIMINARY

Notations Consider a graph G with the node set V and the edge set E . A (discrete-time) dynamic
graph can be defined as G1:T = (G1,G2, · · · ,GT), where T is the number of time stamps, Gt =

{Vt, Et} is the graph slice at time stamp t ∈ [1, T], V =
⋃T

t=1 Vt, E =
⋃T

t=1 Et. Alternatively, G1:T
can be represented as {X1:T ,A1:T }, where each snapshot Gt = {Xt,At} consists of node attributes
Xt ∈ RN×D and adjacency matrices At ∈ {0, 1}N×N , with N = |V| denoting the number of nodes
and D denoting the dimensionality of the node attributes.

DyGNN Paradigm We take the classical link prediction in dynamic graph modeling as an ex-
ample. The objective is to train a dynamic GNN fΘ : {X1:T ,A1:T } 7−→ {0, 1}N×N , which
leverages information from the past T snapshots to predict edge existence at time step T + 1. Fur-
thermore, we can express fΘ as fΘ = fd ◦ ft ◦ fs, where fs : {X1:T ,A1:T } 7−→ Hs, parameter-
ized by Θs, is tasked with capturing spatial patterns to derive representations for timestamps 1 : T ,
ft : Hs 7−→ Ht, parameterized by Θt, captures temporal dependencies and retrieves representations
for the T + 1 time step, and fd : Ht 7−→ Y , parameterized by Θd, denotes the downstream task
function, which predicts the connectivity AT+1 at time step T +1 in the context of link prediction.

3.2 FRAMEWORK OVERVIEW

In this study, we present the first efficient data augmentation framework tailored for dynamic graphs,
termed DyAug, as depicted in Figure 2. Given a dynamic graph sequence G1:T , DyAug progressively
performs rationale-environment separation for each snapshot, constrained by consistency regulariza-
tion to preserve temporal consistency across snapshots. The underlying DyGNN backbone is then

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

employed to generate both rationale and environment representations. Subsequently, three types of
augmentations, including spatial, temporal, and spatial-temporal, are applied to prevent fΘ from
learning spurious correlations from environment representations, thus enhancing the performance,
robustness, and generalizability of DyGNNs. In the following sections, we will first give a causal
analysis in Section 3.3, introduce how DyAug performs temporal-conditioned rationale-environment
separation in Section 3.4, present the data augmentation strategies in Section 3.5, and showcase the
overall optimization objective and complexity analysis in Section 3.6.

3.3 A CAUSAL VIEW ON DYGNNS

: Dynamic graph: Spurious factor

: Causal factor : Adjacency matrices

: Node attributes: Representation

: Prediction

Figure 3: Structural Causal Model
(SCM) for DyGNNs.

To clarify the goal and implementation of graph rationaliza-
tion in dynamic graphs, we first take a step back to ana-
lyze the DyGNN modeling through a Structural Causal Model
(SCM) (Pearl et al., 2000; Pearl, 2016), as illustrated in Fig-
ure 3. We depict the causal relationships among seven key
variables in the DyGNN setting: the dynamic graph G1:T ,
the unobservable causal variable C, the unobservable non-
causal (environmental) variable S, the observable node at-
tributes X1:T , the observable topology A1:T , representations
H, and predictions Y . Solid arrows indicate causal relation-
ships, while dashed lines represent spurious correlations. Be-
low are some critical insights about the SCM:

• S ← G1:T → C: The dynamic graph G1:T consists of two disjoint parts: the causal part C and
the non-causal/environmental part S.

• S → A1:T ← C and S → X1:T ← C: two variables (causal variable C and non-causal variable
S) construct two components of observable contextual subgraphs (node attributes X1:T and
topology A1:T), which is different from i.i.d. data only consider attributes.

• A1:T → H← X1:T andH → Y: DyGNN backbones are leveraged to generate future represen-
tations based on observable contextual subgraphs, which are then utilized for making predictions.

• C S: the spurious probabilistic dependencies between S and C.

Based on this SCM, we can identify two backdoor paths between C and Y: (i) C ← G1:T → S →
A1:T → H → Y , and (ii) C ← G1:T → S → X1:T → H → Y . In both cases, the environmental
variable S acts as a confounder between G1:T and Y , potentially causing a misleading correlation
between C and Y , if there is no direct causal link C → Y . Therefore, severing C S is crucial. In
the following sections, we will elaborate on how DyAug effectively severs these spurious correlations
through the rationale-environment separation and augmentation.

3.4 TEMPORAL-CONDITIONED RATIONALE–ENVIRONMENT SEPARATION

Given a graph snapshot Gt, we model its unobservable causal part as a soft mask MR
t ∈

[0, 1]N×N , where each entry represents the probability score of the corresponding edge belong-
ing to the rationale subgraph. Naturally, the rationale for snapshot Gt can be expressed as
GR(t) = {Xt,At ⊙MR

t }, and the causal part of the entire dynamic graph sequence is denoted
as GR1:T = {X1:T ,A1:T

⊕
MR

1:T }. Traditional static graph rationalization methods (Zhang et al.,
2024a; Liu et al., 2024a) typically follow the paradigm below to extract rationales:

MR
t ∼ pΦ(M

R
t | At,Xt), (1)

where the causal mask is generated conditioned on the current features Xt and topology At, and
the generator is parameterized by Φ. However, this overlooks the temporal dependencies between
snapshots, often negatively disrupting the spatial-temporal distribution of the augmented data. To
address this issue, we design temporal-conditioned graph rationalization, which progressively
uncovers the causal subgraph along the temporal dimension. At each step, it depends solely on the
previous timestamp and current status, thereby maintaining the Markov property:

MR
t ∼ pΦ(M

R
t | At,Xt,M

R
t−1), (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where the generation of MR
t additionally depends on the causal mask from the (t−1)-th timestamp.

In practice, we model the rationale as follows:

pΦ(M
R
t | At,Xt,M

R
t−1) =

N∏
i=1

N∏
j=1

pΦ(M
R
t,ij | At,Xt,M

R
t−1), (3)

where MR
t,ij is the element at the i-th row and j-th column of MR

t , representing the probability that
edge eij belongs to the rationale at timestamp t. We compute MR

t,ij as follows:

pΦ(M
R
t,ij = 1 | At,Xt,M

R
t−1) = 1At[i,j]=1fΦ(x

t
i,x

t
j ,M

R
t−1,ij),

= 1At[i,j]=1σ
(
(log(ϵ)− log(1− ϵ) +ϖij)/τ

)
,

(4)

where 1(·) is an indicator function, ωij = FFNΦ([x
t
i,x

t
j ,M

R
t,ij]) parameterized by Φ, ϵ ∼

Uniform(0, 1), σ(·) represents the sigmoid function, and τ is the temperature coefficient. When
τ approaches zero, Equation (4) effectively returns the Bernoulli sampling result for edge eij . The
gradient ∂MR

t,ij/∂ϖij remains well-defined as long as τ > 0. Through this temporally progressive
rationale discovery, we ultimately obtain the rationale subgraph set GR1:T and the corresponding en-
vironmental subgraph set GS1:T , defined as follows:

GR1:T = {X1:T ,A1:T ⊕MR
1:T }, GS1:T = {X1:T ,A1:T ⊕M

R
1:T }, (5)

where Mt = At −Mt. To further ensure temporal consistency, i.e., the rationales across different
snapshots remain coherent even as the graph structure evolves, we propose the following consistency
regularization loss:

Lcr = −
T∑

t=1

t+w∑
p=t−w

log
exp(sim(GRt ,GRp))

exp
(
sim(GRt ,GRp)

)
+

∑
k/∈[t−w,t+w]

exp
(
sim(GRt ,GRk)

) , (6)

where GRp represents the rationale within a w-step temporal window surrounding the central ra-
tionale GRt , while GRk refers to rationales that are further away. sim(·, ·) measures the similarity
between graphs, and we implement it as sim(GRt ,GRp) = sum(|MR

t −MR
p |). Equation (6) draws

inspiration from the practices in Tonekaboni et al. (2021); Wang et al. (2023), where closely situated
subsequences are regarded as positive pairs and those with larger distance are treated as negatives.
Exhibiting a similar idea, Equation (6) aims to maintain higher consistency around the current ra-
tionale. Upon disentangling the causal and non-causal components in dynamic graphs as well as
maintaining the temporal consistency, we proceed to the next step of data augmentation.

3.5 DATA AUGMENTATION WITH ENVIRONMENT SUBGRAPHS

With the rationale subgraph set GR1:T and the environmental subgraph set GS1:T available, we explic-
itly separate the message passing from the rationale and environmental subgraphs during the spatial
and temporal modeling processes of the vanilla DyGNN:

HR
1:T = fs(X1:T ,A1:T ⊕MR

1:T ; Θs), H
S
1:T = fs(X1:T ,A1:T ⊕M

R
1:T ; Θs), (7)

where HR
1:T ∈ RT×N×D and HS

1:T ∈ RT×N×D represent the aggregated rationale and environment
embeddings for timestamps 1 : T . The standard fΘ without rationalization tends to merge rationale
and environment for predictions, leading to spurious correlations between GS1:T and Y , resulting in
potentially accurate but unjustified predictions. Therefore, DyAug enhances the training samples by
simulating various rationale-environment combinations within the node embedding space. To be
more concrete, considering the rationale embedding hR

t,i = HR
t [i, :] for node vti at timestamp t, we

propose three environment replacement augmentation paradigms.

Spatial Replacement Augmentation Data augmentation with environment replacement replaces
the environment variable of the current node vti with any other environment variable from a different
sample. Given that the rationable embedding hR

t,i is considered to be the dominant factor of predic-
tions of vi, the environment embedding can be interpreted as natural noise. Hence, combining vti ’s
rationale embedding with environment embeddings from other nodes at the same snapshot enhances

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the model’s robustness against the noise signal brought by the environment subgraphs. This pro-
cess can be accomplished using any pooling function, such as concatenation, sum pooling, or max
pooling. Taking sum pooling for example, the spatial replacement is executed as follows:

ĥR
t,i ← Combine(hR

t,i,h
S
t,j) = hR

t,i + hS
t,j , j ∼ Uniform(1, N) \ i, (8)

where h̃R
t,i represents the augmented node embedding, and hS

t,j = HS
t [j, :].

Temporal Replacement Augmentation In contrast to spatial replacement, temporal enhancement
focuses on augmenting the temporal dimension. As the dynamic graph structure evolves, A1:T ⊕
MR

1:T remains a stable causal factor; however, fΘ may inadvertently learn spurious patterns from
the complementary non-causal components. Therefore, for each node vi, we replace its environment
embedding with one from a historical snapshot to avoid reliance on temporal trivial information:

ĥt,i ← Combine(hR
t,i,h

S
p,i), p ∼ Uniform(1, t− 1). (9)

Spatial-temporal Replacement Augmentation Combining the above two, spatial-temporal envi-
ronment replacement augments data simultaneously across both spatial and temporal dimensions:

ĥt,i ← Combine(hR
t,i,h

S
p,j), (p, j) ∼

(
Uniform(1, t− 1),Uniform(1, N) \ i

)
. (10)

After applying the three types of environment replacement, we obtain the augmented representa-
tions Ĥ1:T = [Ĥ1, Ĥ2, . . . , ĤT], where Ĥt = [ĥt,1, ĥt,2, . . . , ĥt,N]. These representations are
then further transformed by the DyGNN backbone into future node embeddings X̂T+1, which are
subsequently converted into predictions Ŷ as follows:

X̃T+1 = ft(H̃1:T ,A1:T ⊕MR
1:T ; Θt), Ŷ = fd(X̃T+1; Θd). (11)

3.6 OPTIMIZATION AND ANALYSIS

Optimization Objective In addition to the original task-specific loss associated with DyGNN
training, denoted as Lpred, DyAug introduces two supplementary losses: the consistency regulariza-
tion loss defined in Equation (6), and the contrastive loss aimed at differentiating between causal
and non-causal representations while ensuring semantic similarity between causal and augmented
representations, which is expressed mathematically as follows:

Lcl =
1

T

T∑
t=1

N∑
i=1

log
exp(sim(ĥt,i,h

R
t,i)/τ)

exp(sim(ĥt,i,hR
t,i)/τ) + exp(sim(hS

t,i,h
R
t,i)/τ)

, (12)

where τ represents the temperature coefficient and sim(·, ·) is computed using the dot product. The
overall training objective for DyAug is formulated as:

min
Φ,Θ
L(Φ,Θ) = Lpred + α1 · Lcr + α2 · Lcl, (13)

where Φ pertains to rationale-environment separation, Θ parameterizes the vanilla DyGNN back-
bone, and α1, α2 are scaling factors.

Complexity Analysis The additional complexity coming with DyAug arises primarily from three
sources: (1) causal mask estimation, which contributes O(

∑T
t=1 |E(t)|D); (2) the contrastive loss,

addingO(NDT 2); and (3) the consistency loss, contributingO(ϖT
∑T

t=1 |E(t)|), which is negligi-
ble. In summary, the overall extra complexity introduced by DyAug is O(

∑T
t=1 |E(t)|D +NDT 2).

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions (RQ):
(RQ1) Can DyAug augment dynamic GNNs?
(RQ2) Can DyAug better preserve the temporal consistency of dynamic graphs?
(RQ3) Does DyAug improve the robustness of DyGNNs against adversarial attacks?
(RQ4) Does DyAug enhance the out-of-distribution generalization of DyGNNs?
(RQ5) How sensitive is DyAug to its key components and parameters?

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: AUC score (± standard deviation) of future link prediction task on five real-world datasets. The best
results are in bold, and the runner-ups are underlined.

Method COLLAB Yelp Bitcoin UCI ACT
G

R
C

N
Vanilla 0.8278±0.0052 0.6645±0.0187 0.8766±0.0034 0.7682±0.0074 0.7963±0.0041
+DropEdge 0.8285±0.0059 0.6472±0.0205 0.8732±0.0051 0.7693±0.0105 0.7928±0.0042
+DropNode 0.8297±0.0077 0.6448±0.0196 0.8749±0.0064 0.7664±0.0068 0.7942±0.0500
+DropMessage 0.8326±0.0097 0.6669±0.0240 0.8780±0.0057 0.7690±0.0119 0.7968±0.0044
+GraphMixup 0.8258±0.0049 0.6697±0.0180 0.8641±0.0038 0.7613±0.0133 0.7902±0.0045
+NeuralSparse 0.8394±0.0076 0.6705±0.0233 0.8792±0.0065 0.7710±0.0062 0.7959±0.0046
+SUBLIME 0.8312±0.0056 0.6685±0.0273 0.8770±0.0059 0.7735±0.0081 0.7989±0.0047
+RGDA 0.8374±0.0031 0.6692±0.0194 0.8812±0.0031 0.7698±0.0046 0.8066±0.0048
+DyAug (ours) 0.8495±0.0070 0.6795±0.0204 0.9079±0.0029 0.7783±0.0054 0.8147±0.0049

D
yS

A
T

Vanilla 0.8807±0.0018 0.7962±0.0045 0.8896±0.0027 0.7502±0.0056 0.7790±0.0036
+DropEdge 0.8760±0.0039 0.7985±0.0106 0.8843±0.0048 0.7516±0.0077 0.7689±0.0067
+DropNode 0.8783±0.0031 0.7980±0.0077 0.8826±0.0039 0.7519±0.0045 0.7705±0.0044
+DropMessage 0.8815±0.0069 0.7964±0.0082 0.8915±0.0070 0.7574±0.0102 0.7689±0.0060
+GraphMixup 0.8785±0.0112 0.7814±0.0029 0.8726±0.0031 0.7505±0.0030 0.7653±0.0012
+NeuralSparse 0.8862±0.0053 0.8074±0.0050 0.8916±0.0044 0.7579±0.0064 0.7796±0.0061
+SUBLIME 0.8871±0.0034 0.8037±0.0041 0.8927±0.0043 0.7552±0.0074 0.7772±0.0054
+RGDA 0.8897±0.0030 0.8149±0.0059 0.8865±0.0036 0.7560±0.0051 0.7805±0.0041
+DyAug (ours) 0.8925±0.0034 0.8233±0.0023 0.9032±0.0040 0.7698±0.0063 0.7860±0.0054

SE
IG

N

Vanilla 0.9219±0.0021 0.8072±0.0039 0.8955±0.0013 0.7932±0.0035 0.8457±0.0018
+DropEdge 0.9235±0.0024 0.8015±0.0041 0.9015±0.0084 0.7985±0.0026 0.8366±0.0035
+DropNode 0.9215±0.0039 0.8039±0.0046 0.8928±0.0035 0.7913±0.0015 0.8382±0.0030
+DropMessage 0.9259±0.0032 0.8120±0.0032 0.8968±0.0071 0.7896±0.0024 0.8429±0.0018
+GraphMixup 0.9187±0.0029 0.7942±0.0043 0.8905±0.0057 0.7903±0.0019 0.8381±0.0034
+NeuralSparse 0.9279±0.0029 0.8038±0.0046 0.8994±0.0028 0.8012±0.0030 0.8491±0.0030
+SUBLIME 0.9310±0.0027 0.8144±0.0015 0.8981±0.0025 0.8069±0.0020 0.8465±0.0013
+RGDA 0.9245±0.0025 0.8131±0.0020 0.9013±0.0018 0.7985±0.0039 0.8472±0.0013
+DyAug (ours) 0.9362±0.0022 0.8284±0.0015 0.9067±0.0017 0.8098±0.0022 0.8546±0.0029

4.1 EXPERIMENTAL SETUP

Datasets and Splits To thoroughly evaluate our proposed method, we select five real-world
datasets. COLLAB (Tang et al., 2012) is an academic collaboration network spanning 16 years.
Yelp (Sankar et al., 2020) is a business review dataset containing customer feedback on various
businesses. Bitcoin (Kumar et al., 2018) is a trust network dataset representing users who engage
in trading on the Bitcoin OTC platform. UCI (Panzarasa et al., 2009) is an online communication
network from the University of California, Irvine, capturing student interactions. Lastly, ACT (Ku-
mar et al., 2019) describes the actions taken by users on a popular MOOC website within 30 days.
Backbones and Baselines For DyGNN backbones, we select three classical baselines: (1)
GCRN (Seo et al., 2018), which combines GCNs and GRU (Chung et al., 2014); (2) DySAT (Sankar
et al., 2020), which models spatial and temporal dependencies via self-attention; and (3)
SEIGN (Qin et al., 2023), which leverages GCN for message passing, GRU for parameter up-
dates, and transformer for learning the final node representations. For baselines, we compre-
hensively choose seven GDA techniques for comparison. Regarding rule-based augmenters, we
adopt DropEdge (Rong et al., 2019), DropNode (Feng et al., 2020), DropMessage (Fang et al.,
2022), and Graph Mixup (Wang et al., 2021b). Regarding rule-based augmenters, we opt for Neu-
ralSparse (Zheng et al., 2020) and SUBLIME (Liu et al., 2022d) for the graph structure learning
branch, RGDA (Liu et al., 2024a) for the graph rationalization branch. Notably, we acknowledge
that some classical or highly related GDA methods, such as DIR (Wu et al., 2022b), GREA (Liu
et al., 2022a), JOAO (You et al., 2021), and AIA (Sui et al., 2024), are not included in our eval-
uation. This exclusion is either due to data format limitations (e.g., methods focused solely on
graph classification) or incompatibility issues (e.g., inability to adapt to dynamic graphs). Detailed
explanations and the full baseline setup can be found in Appendix A.1.
Hyperparameter Configurations We set the number of layers to two for all baselines, with a
hidden dimension of 128. Specifically, for DyAug, we fix τ = 1e− 2 and ϖ = 2 across all datasets.
For each node, we assign an equal probability of selecting one of the following strategies: (1) no
replacement, using only the rationale embedding; (2) spatial replacement; (3) temporal replacement;
or (4) spatial-temporal replacement. We provide an ablation study on the effectiveness of these
replacement strategies in Appendix B.2. For the parameters α1 and α2 in Equation (13), we vary
α1 ∈ {1e− 2, 5e− 2, 1e− 1} and α2 ∈ {1e− 4, 5e− 4, 1e− 3, 5e− 3}.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Yelp COLLAB ACT

Edge Timespan Edge Timespan Edge Timespan

Figure 4: The cumulative distribution function (CDF) of edge timespan for the vanilla dataset and after apply-
ing different GDA methods on YELP, COLLAB and ACT. We opt for GRCN for all the datasets. The faster the
curve converges to 1, the greater the proportion of edges with shorter timespans.

A
U

C
 (

%
)

Figure 5: The performance comparison of various GDA methods under structure attack on DySAT+YELP.

4.2 COMPARISON WITH EXISTING GDA METHODS (RQ1 & RQ2)

We compare the performance of DyAug against seven GDA baselines across five datasets on GRCN,
DySAT, and SEIGN, summarized in Table 1. We draw the following observations (Obs.):
Obs.❶ Temporal consistency counts for dynamic graphs. DropEdge, DropNode, DropMessage,
and GraphMixup belong to rule-based augmenters, and many of them consistently result in perfor-
mance drops rather than improvements. For example, GraphMixup shows a 1.25% ↓ decrease on
GRCN+Bitcoin, and DropNode shows a 0.85% ↓ drop on DySAT+ACT. We attribute the under-
lying cause to the disruption of temporal consistency. As shown in Figure 4, both DropNode and
GraphMixup lead to a rapid convergence of the edge timespan CDF to 1, which indicates that these
methods cause many long-spanning edges to disappear, replacing them with numerous short-lived
edges that quickly appear and vanish. In contrast, RGDA and our DyAug closely approximate the
vanilla CDF, resulting in far more stable and significant performance improvements.
Obs.❷ DyAug continuously enhances dynamic graph modeling. DyAug demonstrates a stable
performance improvement across all datasets and DyGNN backbones. Nevertheless, the magnitude
of this improvement is tied to the complexity of the DyGNN backbone. For simpler backbones like
GRCN, DyAug yields notable gains, such as a 2.17% increase on COLLAB and a 3.13% boost on
Bitcoin. While the AUC improvements on more advanced backbones like SEIGN are relatively
marginal, DyAug still achieves a 2.14% ↑ increase on YELP.

4.3 AGAINST ADVERSARIAL ATTACKS (RQ3)

In this section, we aim to empirically validate that DyAug can effectively defend against both non-
targeted and targeted attacks to answer RQ3. We employ three types of attacks: (1) structure attack,
which randomly perturbs 20% of edges; (2) feature attack, where Gaussian noise is added to the
node features; and (3) Nettack (poisoning mode), where Nettack (Zügner et al., 2018) is applied to
perturb the training set twice. The results are visualized in Figures 5, 7 and 8. We observe:
Obs.❸ DyAug outperform all baselines under various attack modes. Among the three types of
attacks, Nettack, as a targeted attack, poses the greatest challenge to the robustness of DyGNNs.
As shown in Figure 8, the vanilla DySAT suffers from a significant drop of 12.7% in AUC, and
even when combined with RGDA, it only recovers 2.1% of the loss. However, DyAug, through its
tailored data augmentation design, effectively mitigates the impact of noise and perturbations during
training, resulting in an 8.2% improvement in the attacked model’s performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: AUC score (%) of different methods on real-world datasets. The best results are in bold and the
second-best results are underlined. ‘w/o DS’ and ‘w/ DS’ denote test data with and without distribution shift.

Model COLLAB (ROC-AUC↑) YELP (ROC-AUC↑)
Test Data w/o DS w/ DS w/o DS w/ DS

GRCN (Seo et al., 2018) 82.78± 0.52 67.49 ± 0.73 66.45 ± 1.87 61.82 ± 3.39
+ DyAug 84.95± 0.70 73.22 ± 0.56 67.95 ± 0.24 61.78 ± 2.76

DySAT (Sankar et al., 2020) 88.07± 0.18 75.59 ± 0.29 79.62 ± 0.65 65.80 ± 1.22
+ DyAug 89.25± 0.74 82.56 ± 0.68 82.33± 1.13 73.15 ± 0.92

SEIGN (Qin et al., 2023) 92.19± 0.21 80.68 ± 0.72 80.72 ± 0.39 67.19 ± 0.84
+ DyAug 93.62± 0.42 83.11 ± 0.56 82.84 ± 0.35 76.50 ± 0.65

IRM (Rosenfeld et al., 2021) 87.96± 0.90 75.42 ± 0.87 66.49 ± 0.78 56.02 ± 6.08
DIDA (Zhang et al., 2022b) 91.97± 0.05 81.87 ± 0.40 78.22 ± 0.40 75.92 ± 0.90
DGIB-Bern (Yuan et al., 2024a) 92.17± 0.20 83.09 ± 0.56 76.88 ± 0.20 72.56 ± 0.74

4.4 AGAINST DISTRIBUTION SHIFT (RQ4)
Graph rationalization was originally introduced to address the out-of-distribution (OOD) challenge
by capturing invariant patterns in evolving data (Wu et al., 2021; 2024). To evaluate whether DyAug
can defend against distribution shifts in dynamic graphs, we use COLLAB and Yelp, and explicitly
construct distribution shifts. Specifically, for COLLAB, we transfer all edges belonging to “data
mining” category to the test set, ensuring that DyGNN has never been exposed to this category
during training. For Yelp, we select “Pizza” edges as the out-of-distribution data. We observe that:
Obs.❹ DyAug effectively enhances the robustness of DyGNNs. As demonstrated in Table 2,
SEIGN+DyAug consistently achieves the best performance on both Yelp and COLLAB, regard-
less of the presence of distribution shifts. This improvement can be attributed not only to SEIGN’s
strong baseline performance but also to DyAug’s ability to sever spurious correlations. For example,
on YELP, DyAug boosts SEIGN’s OOD performance from 67.19% to 76.50%.

Clean Structure attack
70

75

80

85

A
U

C
 (%

) 81.40

77.40
79.30

76.30

79.90

74.50

80.10

76.70

80.30

75.60

DyAug w/o TC w/o RA w/o CR w/o CL

Figure 6: Ablation study on DyAug and its four variants, tested on
ACT and that after structure attack. We use GRCN as the backbone.

α2/α1 1e − 2 5e − 2 1e − 1

1e − 4 78.14±0.2 78.60±0.2 78.30±0.3

5e − 4 78.47±0.1 78.25±0.5 78.58±0.3

1e − 3 77.60±0.4 78.45±0.3 77.92±0.5

5e − 3 77.52±0.4 77.81±0.3 77.06±0.4

Table 3: Sensitivity study on scaling fac-
tor α1 and α2. The results are reported on
DySAT backbone and ACT dataset.

4.5 ABLATION STUDY AND SENSITIVITY ANALYSIS (RQ5)
Ablation Study We evaluate four variants: (1) DyAug w/o TC, where graph rationalization is
snapshot-independent rather than temporally conditioned; (2) DyAug w/o RA, where all data aug-
mentations are discarded; (3) DyAug w/o CR, where Lcr is omitted; and (4) DyAug w/o CL, where
Lcl is discarded. It can be observed from Figure 6 that the removal of each module results in AUC
decay, among which DyAug w/o RA is the most detrimental, leading to 2.9% ↓ drop under the
structure attack. This demonstrates each component’s importance in dynamic graph augmentation.
Sensitivity Analysis We evaluate DyAug under different α1 and α2. As shown in Table 3, DyAug
is relatively insensitive to changes in α1. However, when α2 becomes too large, a performance drop
is observed. For instance, with α1 = 1e−2, the performance with α2 = 1e−4 is 0.75% higher than
that with α2 = 5e−3. Nevertheless, DyAug demonstrates overall robustness to parameter variations.

5 CONCLUSION
In this work, we present the first graph data augmentation (GDA) method specifically designed for
(discrete-time) dynamic graphs, termed DyAug. DyAug addresses the limitations of previous static
GDA methods, i.e., the unawareness of temporal consistency, by employing temporal-conditioned
rationale discovery to disentangle the rationale-environment within dynamic graph sequences. We
further propose three augmentation strategies to enrich the data distribution. Experimental results
demonstrate that DyAug excels in empowering, robustifying, and generalizing dynamic GNNs. In
the future, a promising direction for exploration lies in extending DyAug beyond DTDGs to make it
applicable to CTDGs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Adjeisah, Xinzhong Zhu, Huiying Xu, and Tewodros Alemu Ayall. Towards data aug-
mentation in graph neural network: An overview and evaluation. Computer Science Review, 47:
100527, 2023.

Khaled Alomar, Halil Ibrahim Aysel, and Xiaohao Cai. Data augmentation in classification and
segmentation: A survey and new strategies. Journal of Imaging, 9(2):46, 2023.

Claudio DT Barros, Matheus RF Mendonça, Alex B Vieira, and Artur Ziviani. A survey on embed-
ding dynamic graphs. ACM Computing Surveys (CSUR), 55(1):1–37, 2021.

Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. A taxonomy and survey of
dynamic graph visualization. In Computer graphics forum, volume 36, pp. 133–159. Wiley Online
Library, 2017.

Tanya Y Berger-Wolf and Jared Saia. A framework for analysis of dynamic social networks. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 523–528, 2006.

Hongjiang Chen, Pengfei Jiao, Huijun Tang, and Huaming Wu. Temporal graph representation
learning with adaptive augmentation contrastive. In Joint European conference on machine learn-
ing and knowledge discovery in databases, pp. 683–699. Springer, 2023.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan Cao, Zihao Wu, Lin Zhao,
Shaochen Xu, Wei Liu, Ninghao Liu, et al. Auggpt: Leveraging chatgpt for text data augmenta-
tion. arXiv preprint arXiv:2302.13007, 2023.

Quanyu Dai, Xiao Shen, Liang Zhang, Qiang Li, and Dan Wang. Adversarial training methods for
network embedding. In The World Wide Web Conference, pp. 329–339, 2019.

Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph learning:
A survey. ACM SIGKDD Explorations Newsletter, 24(2):61–77, 2022.

Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmes-
sage: Unifying random dropping for graph neural networks. arXiv preprint arXiv:2204.10037,
2022.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems, 33:22092–22103, 2020.

ZhengZhao Feng, Rui Wang, TianXing Wang, Mingli Song, Sai Wu, and Shuibing He. A com-
prehensive survey of dynamic graph neural networks: Models, frameworks, benchmarks, experi-
ments and challenges. arXiv preprint arXiv:2405.00476, 2024.

Jibing Gong, Yi Zhao, Jinye Zhao, Jin Zhang, Guixiang Ma, Shaojie Zheng, Shuying Du, and Jie
Tang. Personalized recommendation via inductive spatiotemporal graph neural network. Pattern
Recognition, 145:109884, 2024.

Derek Greene, Donal Doyle, and Padraig Cunningham. Tracking the evolution of communities
in dynamic social networks. In 2010 international conference on advances in social networks
analysis and mining, pp. 176–183. IEEE, 2010.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
graph classification. In International Conference on Machine Learning, 2022.

Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen,
and Michalis Vazirgiannis. Dgraph: A large-scale financial dataset for graph anomaly detection.
Advances in Neural Information Processing Systems, 35:22765–22777, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 66–74, 2020.

Yannis Karmim, Marc Lafon, Raphaël Fournier S’niehotta, and Nicolas Thome. Supra-laplacian
encoding for transformer on dynamic graphs. arXiv preprint arXiv:2409.17986, 2024.

Junghurn Kim, Sukwon Yun, and Chanyoung Park. S-mixup: Structural mixup for graph neural net-
works. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, pp. 4003–4007, 2023.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Robust optimization as data augmentation for large-scale graphs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 60–69, 2022.

Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrahma-
nian. Rev2: Fraudulent user prediction in rating platforms. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pp. 333–341, 2018.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Hongxi Li, Zuxuan Zhang, Dengzhe Liang, and Yuncheng Jiang. K-truss based temporal graph
convolutional network for dynamic graphs. In Asian Conference on Machine Learning, pp. 739–
754. PMLR, 2024a.

Jianxin Li, Xingcheng Fu, Shijie Zhu, Hao Peng, Senzhang Wang, Qingyun Sun, S Yu Philip, and
Lifang He. A robust and generalized framework for adversarial graph embedding. IEEE Trans-
actions on Knowledge and Data Engineering, 35(11):11004–11018, 2023a.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8588–8596,
2023b.

Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and S Yu Philip. Dynamic graph
collaborative filtering. In 2020 IEEE international conference on data mining (ICDM), pp. 322–
331. IEEE, 2020.

Zhixun Li, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin Zhou, Qiang
Liu, Shu Wu, Liang Wang, et al. Gslb: the graph structure learning benchmark. Advances in
Neural Information Processing Systems, 36, 2024b.

Hongyi Ling, Zhimeng Jiang, Meng Liu, Shuiwang Ji, and Na Zou. Graph mixup with soft align-
ments. In International Conference on Machine Learning, pp. 21335–21349. PMLR, 2023.

Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with
environment-based augmentations. In Proceedings of the 28th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2022a.

Gang Liu, Eric Inae, Tengfei Luo, and Meng Jiang. Rationalizing graph neural networks with data
augmentation. ACM Transactions on Knowledge Discovery from Data, 18(4):1–23, 2024a.

Gang Liu, Eric Inae, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Data-centric learning
from unlabeled graphs with diffusion model. Advances in neural information processing systems,
36, 2024b.

Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, and Chuan Shi. Compact graph structure
learning via mutual information compression. In Proceedings of the ACM web conference 2022,
pp. 1601–1610, 2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Songtao Liu, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou Huang, and
Dinghao Wu. Local augmentation for graph neural networks. arXiv preprint arXiv:2109.03856,
2022c.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsu-
pervised deep graph structure learning. In Proceedings of the ACM Web Conference 2022, pp.
1392–1403, 2022d.

Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph
neural networks in epidemic modeling. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 6577–6587, 2024c.

Youzhi Luo, Michael Curtis McThrow, Wing Yee Au, Tao Komikado, Kanji Uchino, Koji
Maruhashi, and Shuiwang Ji. Automated data augmentations for graph classification. In The
Eleventh International Conference on Learning Representations, 2023.

Xinyu Ma, Xu Chu, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, and Wenwu Zhu. Fused
gromov-wasserstein graph mixup for graph-level classifications. Advances in Neural Information
Processing Systems, 36, 2024.

Diego C Nascimento, Bruno A Pimentel, Renata MCR Souza, Lilia Costa, Sandro Gonçalves, and
Francisco Louzada. Dynamic graph in a symbolic data framework: An account of the causal
relation using covid-19 reports and some reflections on the financial world. Chaos, Solitons &
Fractals, 153:111440, 2021.

Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community. Journal of the American Society for
Information Science and Technology, 60(5):911–932, 2009.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional net-
works for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 5363–5370, 2020.

Joonhyung Park, Hajin Shim, and Eunho Yang. Graph transplant: Node saliency-guided graph
mixup with local structure preservation. arXiv preprint arXiv:2111.05639, 2021.

Judea Pearl. Causal inference in statistics: a primer. John Wiley & Sons, 2016.

Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
19:2, 2000.

Hao Peng, Hongfei Wang, Bowen Du, Md Zakirul Alam Bhuiyan, Hongyuan Ma, Jianwei Liu,
Lihong Wang, Zeyu Yang, Linfeng Du, Senzhang Wang, et al. Spatial temporal incidence dynamic
graph neural networks for traffic flow forecasting. Information Sciences, 521:277–290, 2020.

Hao Peng, Bowen Du, Mingsheng Liu, Mingzhe Liu, Shumei Ji, Senzhang Wang, Xu Zhang, and
Lifang He. Dynamic graph convolutional network for long-term traffic flow prediction with rein-
forcement learning. Information Sciences, 578:401–416, 2021.

Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge Belongie,
and Yin Cui. Spatiotemporal contrastive video representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 6964–6974, 2021.

Xiao Qin, Nasrullah Sheikh, Chuan Lei, Berthold Reinwald, and Giacomo Domeniconi. Seign: A
simple and efficient graph neural network for large dynamic graphs. In 2023 IEEE 39th Interna-
tional Conference on Data Engineering (ICDE), pp. 2850–2863. IEEE, 2023.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Elan Rosenfeld, Pradeep Kumar Ravikumar, and Andrej Risteski. The risks of invariant risk min-
imization. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=BbNIbVPJ-42.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
International Conference on Web Search and Data Mining, pp. 519–527, 2020.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In International Conference on Neural
Information Processing, pp. 362–373. Springer, 2018.

Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, and Srijan Kumar. Temporal dynamics-aware adver-
sarial attacks on discrete-time dynamic graph models. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2023–2035, 2023.

Xiao Shen, Dewang Sun, Shirui Pan, Xi Zhou, and Laurence T Yang. Neighbor contrastive learning
on learnable graph augmentation. In Proceedings of the AAAI conference on artificial intelligence,
volume 37, pp. 9782–9791, 2023.

Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Text data augmentation for deep learning.
Journal of big Data, 8(1):101, 2021.

Jiasheng Si, Yingjie Zhu, and Deyu Zhou. Exploring faithful rationale for multi-hop fact verifi-
cation via salience-aware graph learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 13573–13581, 2023.

Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang, and Xiangnan
He. Unleashing the power of graph data augmentation on covariate distribution shift. Advances
in Neural Information Processing Systems, 36, 2024.

Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: data-driven molecular
fingerprint via knowledge-aware contrastive learning from molecular graph. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3585–3594,
2021.

Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, and S Yu Philip. Graph
structure learning with variational information bottleneck. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 4165–4174, 2022.

Jie Tang, Sen Wu, Jimeng Sun, and Hang Su. Cross-domain collaboration recommendation. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 1285–1293, 2012.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. International Conference on Learning Representations, 2019.

Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. Streaming graph neural networks with
generative replay. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1878–1888, 2022.

Tianchun Wang, Dongsheng Luo, Wei Cheng, Haifeng Chen, and Xiang Zhang. Dyexplainer: Ex-
plainable dynamic graph neural networks. arXiv preprint arXiv:2310.16375, 2023.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Graphcrop: Subgraph cropping
for graph classification. arXiv preprint arXiv:2009.10564, 2020.

Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Siddharth Bhatia, and Bryan
Hooi. Adaptive data augmentation on temporal graphs. Advances in Neural Information Process-
ing Systems, 34, 2021a.

14

https://openreview.net/forum?id=BbNIbVPJ-42
https://openreview.net/forum?id=BbNIbVPJ-42

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference, pp. 3663–3674, 2021b.

Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L. Hamilton. Temp: Temporal message
passing for temporal knowledge graph completion. In Bonnie Webber, Trevor Cohn, Yulan He,
and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2020, Online, November 16-20, 2020, pp. 5730–5746. Association
for Computational Linguistics, 2020.

Lirong Wu, Haitao Lin, Zihan Liu, Zicheng Liu, Yufei Huang, and Stan Z Li. Homophily-enhanced
self-supervision for graph structure learning: Insights and directions. IEEE Transactions on Neu-
ral Networks and Learning Systems, 2023.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022a.

Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, and Junchi Yan. Graph out-of-distribution gen-
eralization via causal intervention. In Proceedings of the ACM on Web Conference 2024, pp.
850–860, 2024.

Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In International Conference on Learning Representations,
2021.

Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In The Tenth International Conference on Learning Repre-
sentations. OpenReview.net, 2022b.

Suorong Yang, Weikang Xiao, Mengchen Zhang, Suhan Guo, Jian Zhao, and Furao Shen. Image
data augmentation for deep learning: A survey. arXiv preprint arXiv:2204.08610, 2022.

Yu Yang, Hongzhi Yin, Jiannong Cao, Tong Chen, Quoc Viet Hung Nguyen, Xiaofang Zhou, and
Lei Chen. Time-aware dynamic graph embedding for asynchronous structural evolution. IEEE
Transactions on Knowledge and Data Engineering, 35(9):9656–9670, 2023.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining,
pp. 2358–2366, 2022.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Haonan Yuan, Qingyun Sun, Xingcheng Fu, Cheng Ji, and Jianxin Li. Dynamic graph information
bottleneck. In Proceedings of the ACM on Web Conference 2024, pp. 469–480, 2024a.

Haonan Yuan, Qingyun Sun, Xingcheng Fu, Ziwei Zhang, Cheng Ji, Hao Peng, and Jianxin Li.
Environment-aware dynamic graph learning for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 36, 2024b.

Linan Yue, Qi Liu, Ye Liu, Weibo Gao, Fangzhou Yao, and Wenfeng Li. Cooperative classification
and rationalization for graph generalization. In Proceedings of the ACM on Web Conference 2024,
pp. 344–352, 2024.

Guibin Zhang, Yiqiao Chen, Shiyu Wang, Kun Wang, and Junfeng Fang. Fortune favors the invari-
ant: Enhancing gnns’ generalizability with invariant graph learning. Knowledge-Based Systems,
292:111620, 2024a.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Haozhen Zhang, Le Yu, Xi Xiao, Qing Li, Francesco Mercaldo, Xiapu Luo, and Qixu Liu. Tfe-
gnn: A temporal fusion encoder using graph neural networks for fine-grained encrypted traffic
classification. In Proceedings of the ACM Web Conference 2023, pp. 2066–2075, 2023a.

Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. Dynamic graph neural networks
for sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 35(5):
4741–4753, 2022a.

Shilei Zhang, Toyotaro Suzumura, and Li Zhang. Dyngraphtrans: Dynamic graph embedding via
modified universal transformer networks for financial transaction data. In 2021 IEEE Interna-
tional Conference on Smart Data Services (SMDS), pp. 184–191. IEEE, 2021.

Xin Zhang, Qiaoyu Tan, Xiao Huang, and Bo Li. Graph contrastive learning with personalized
augmentation. IEEE Transactions on Knowledge and Data Engineering, 2024b.

Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. Spectral feature augmentation
for graph contrastive learning and beyond. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11289–11297, 2023b.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic graph
neural networks under spatio-temporal distribution shift. Advances in neural information pro-
cessing systems, 35:6074–6089, 2022b.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Zhou Qin, Weigao Wen, Hui Xue, Haoyang Li, and Wenwu
Zhu. Spectral invariant learning for dynamic graphs under distribution shifts. Advances in Neural
Information Processing Systems, 36, 2024c.

Jianan Zhao, Qianlong Wen, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. Self-supervised graph
structure refinement for graph neural networks. In Proceedings of the Sixteenth ACM Interna-
tional Conference on Web Search and Data Mining, pp. 159–167, 2023.

Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification on
graphs with graph neural networks. In Proceedings of the 14th ACM international conference on
web search and data mining, pp. 833–841, 2021a.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data aug-
mentation for graph neural networks. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pp. 11015–11023, 2021b.

Tong Zhao, Gang Liu, Stephan Günnemann, and Meng Jiang. Graph data augmentation for graph
machine learning: A survey. arXiv preprint arXiv:2202.08871, 2022a.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In International Conference on Machine Learning, pp. 26911–26926.
PMLR, 2022b.

Tong Zhao, Xianfeng Tang, Danqing Zhang, Haoming Jiang, Nikhil Rao, Yiwei Song, Pallav
Agrawal, Karthik Subbian, Bing Yin, and Meng Jiang. Autogda: Automated graph data aug-
mentation for node classification. 2022c.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Chenyu Zheng, Guoqiang Wu, and Chongxuan Li. Toward understanding generative data augmen-
tation. Advances in Neural Information Processing Systems, 36:54046–54060, 2023.

Zhou Zhiyao, Sheng Zhou, Bochao Mao, Xuanyi Zhou, Jiawei Chen, Qiaoyu Tan, Daochen Zha,
Yan Feng, Chun Chen, and Can Wang. Opengsl: A comprehensive benchmark for graph structure
learning. Advances in Neural Information Processing Systems, 36, 2024.

Mengting Zhou and Zhiguo Gong. Graphsr: a data augmentation algorithm for imbalanced node
classification. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
4954–4962, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1399–1407, 2019.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, and
Shu Wu. A survey on graph structure learning: Progress and opportunities. arXiv e-prints, pp.
arXiv–2103, 2021.

Dongcheng Zou, Hao Peng, Xiang Huang, Renyu Yang, Jianxin Li, Jia Wu, Chunyang Liu, and
Philip S Yu. Se-gsl: A general and effective graph structure learning framework through structural
entropy optimization. In Proceedings of the ACM Web Conference 2023, pp. 499–510, 2023.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

A EXPERIMENTAL SETUP

A.1 BASELINE SETUPS

Since many of the baselines we selected are originally designed for static graphs, in this section, we
outline how these methods are adapted for dynamic graphs.

Stochastic methods DropEdge, DropNode, and DropMessage belong to stochastic dropping
methods, which can be naturally integrated into the spatial modeling module of DyGNNs, as all
three backbones use GNNs to capture spatial correlations.

Mixup methods Graph Mixup is a two-stage approach. After fully training the original DyGNN,
we freeze its temporal module and continue training the spatial module following the Mixup
paradigm from Wang et al. (2021b).

Graph Structure Learning Both NeuralSparse and SUBLIME are graph structure learning meth-
ods for GDA. For NeuralSparse, we initialize a denoising network for each graph snapshot and co-
train it with DyGNN. For SUBLIME, we ensure that both X1:T and A1:T are visible to the model.

Graph Rationalization RGDA operates at both the graph and node levels. We apply its node-level
augmentation independently for each snapshot and use sum pooling for Combine(·, ·) in RGDA.

A.2 BASELINES NOT CHOOSED

We acknowledge that some classical or highly relevant GDA methods are not included in our evalu-
ation. This is primarily due to two main reasons:

• Task specificity to graph-level tasks: Many graph rationalization methods are designed ex-
clusively for graph-level tasks, including DIR (Wu et al., 2021), GREA (Liu et al., 2022a),
GraphAug (Luo et al., 2023), DCT (Liu et al., 2024b), AIA (Sui et al., 2024), and C2R (Yue
et al., 2024). Thus, they were not selected for our evaluation.

• Limited to static graphs: When adapting static GDA methods to dynamic graphs, we faced
considerable difficulties, especially with approaches that are inherently designed for individual
graphs. For instance, GAUG-O (Zhao et al., 2021b) perturbs the original graph to generate K
perturbed graphs, which causes issues for DyGNN’s temporal module when aggregating across
different snapshots, as it cannot determine which perturbed snapshot to select. Consequently, we
had to exclude several classical yet incompatible GDA baselines, such as Graph Transparent (Park
et al., 2021), AutoGDA (Zhao et al., 2022c) and FLAG (Liu et al., 2022c).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B SUPPLEMENTARY EXPERIMENT RESULTS

B.1 RESULTS FOR RQ3

In Figure 7, we present the performance comparison of various GDA methods under a feature
attack, where Gaussian noise is added to node features, Similarly, Figure 8 shows the performance
comparison under the Nettack.

A
U

C
 (

%
)

Figure 7: The performance comparison of various GDA methods under feature attack on DySAT+YELP.

A
U

C
 (

%
)

Figure 8: The performance comparison of various GDA methods under Nettack on DySAT+YELP.

B.2 RESULTS FOR ABLATION STUDY

To further compare the impact of different environment augmentation strategies within DyAug, we
designed three variants: using only spatial replacement, using only temporal replacement, and using
only spatial-temporal replacement. The results, as shown in Table 4, demonstrate that the variant
with only spatial-temporal replacement closely approximates the performance of the full DyAug. On
the Yelp and ACT datasets, DyAug (spa.) exhibits a significant performance drop, which is likely
due to the longer edge timespans in these datasets (as shown in Figure 4), indicating a higher need
for temporal augmentation.

In addition, Tables 5 and 6 provides supplementary ablation studies under the scenarios of distribu-
tion shift, feature attack, and Nettack.

B.3 RESULTS FOR SENSITIVITY ANALYSIS

To provide a more comprehensive evaluation of DyAug, we have included a sensitivity analysis on
the window size ϖ using the COLLAB and Yelp datasets, as shown in Table 7:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: AUC score (%) of DyAug and its variants equipped with different augmentation strategies on real-
world datasets. We select DySAT as the backbone. (tem.), (spa.), and (spa-tem.) denote the configurations
where only temporal replacement, only spatial replacement, and only spatial-temporal replacement are applied.

Model COLLAB Yelp Bitcoin ACT
DyAug 0.8925±0.0074 0.8233±0.0043 0.9032±0.0060 0.7860±0.0084
DyAug (tem.) 0.8923±0.0047 0.8217±0.0047 0.8960±0.0052 0.7869±0.0060
DyAug (spa.) 0.8841±0.0050 0.8193±0.0065 0.8938±0.0052 0.7725±0.0043
DyAug (tem-spa.) 0.8937±0.0068 0.8215±0.0040 0.9079±0.0068 0.7810±0.0072

Table 5: Ablation study under distribution shift. The backbone is set as GRCN, and the dataset is COLLAB.

Variant DyAug DyAug w/o TC DyAug w/o RA DyAug w/o CR DyAug w/o CL

ROC-AUC 73.22 72.76 70.58 73.08 72.70

It can be observed that DyAug performs consistently well when ϖ ∈ {2, 4}, while for ϖ = 8, there
is a notable performance drop on the COLLAB dataset (1.50% ↓ compared to ϖ = 2). We attribute
this to the overly large window size, as the COLLAB dataset consists of only 16 snapshots. With
such a large window, the majority of the dynamic graph sequence is considered as ”positive pairs,”
rendering Lcr ineffective. Therefore, we have fixed ϖ = 2 for all subsequent experiments.

B.4 RESULTS ON LARGE-SCALE GRAPHS

We extended our experiments to include a large-scale dynamic graph dataset, DGraphFin (Huang
et al., 2022), using the slicing and data splitting strategy outlined in (Feng et al., 2024). This dataset
comprises 4,889,537 nodes and 4,300,999 edges, as detailed in Table 8. We believe this benchmark
effectively tests DyAug’s scalability.

We evaluated DyAug’s performance on DGraphFin using DySAT as the backbone model, as shown
in Table 9.

From Table 9, we can conclude that DyAug seamlessly scales to ultra-large graphs. Graph structure
learning methods like NeuralSparse and SUBLIME impose substantial GPU memory demands with
marginal or even negative performance gains (2.46% ↓ for NeuralSparse). Rule-based augmenters
such as DropEdge and DropNode introduce negligible computational overhead but fail to deliver
notable performance gains, consistent with the findings in Table 1. DyAug, however, achieves a
1.72% AUC improvement with an additional GPU memory burden of less than 2 GB, demonstrating
its exceptional scalability.

B.5 RESULTS ON TD-PGD ATTACKS

We conducted additional experiments to evaluate DyAug under the more advanced attack method
TD-PGD Sharma et al. (2023), as shown in Table 10. The results demonstrate that DyAug maintains
strong robustness even under TD-PGD attacks. Notably, at ϵ = 0.1, DyAug even achieves a perfor-
mance improvement of 0.14% when applied on DySAT+UCI. What’s more, DyAug demonstrated
significant robustness on the DySAT+ACT setting under the TD-PGD attack, as it successfully im-
proved the attacked performance from 68.53% to 74.90% at ϵ = 0.3, achieving a remarkable 6.37%
gain, which we believe serves as compelling evidence of its resilience in more challenging scenarios.

B.6 RESULTS WITH MORE ADVANCED DYGNN BACKBONES

To further validate the wide applicability of DyAug, we have incorporated two advanced DyGNN
backbones, Roland You et al. (2022) and SLATE Karmim et al. (2024). The experimental results
are presented in Table 11. We observe that DyAug maintains excellent generalizability across these
backbones, achieving a 1.0% and 1.87% performance gain on Roland and SLATE, respectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Ablation study under topological attack and Nettack. The backbone is set as GRCN, and the dataset
is ACT.

Variant DyAug DyAug w/o TC DyAug w/o RA DyAug w/o CR DyAug w/o CL

Feature attack 72.35 69.58 65.18 70.95 70.51
Nettack 74.68 72.05 71.41 74.36 73.05

Table 7: Sensitivity analysis on parameter ϖ with GRCN backbone.

Dataset COLLAB Yelp
ϖ = 2 0.8495± 0.0070 0.6795± 0.0204

ϖ = 4 0.8506± 0.0082 0.6785± 0.0139

ϖ = 6 0.8469± 0.0069 0.6732± 0.0188

ϖ = 8 0.8345± 0.0112 0.6690± 0.0228

Table 8: Dataset characteristics.

Dataset COLLAB Yelp Bitcoin UCI ACT DGraphFin

#Nodes 23,035 13,095 5,881 1,899 20,408 4,889,537
#Edges 151,790 65,375 35,591 59,835 202,339 4,300,999
#Time steps 16 24 21 13 30 12

Table 9: Results on DGraphFin+DySAT. The implementation of DySAT is from Amazon-TGL (https:
//github.com/amazon-science/tgl). The results are reported on a single NVIDIA Tesla A100 40G
GPU.

Metric AUC (%) Per-epoch time (s) GPU Memory (GB)
Vanilla 73.26 47s 3.7GB
+DropEdge 72.69 43s 3.7GB
+DropNode 73.50 41s 3.7GB
+DropMessage 71.22 53s 3.7GB
+NeuralSparse 70.80 186s 17GB
+SUBLIME 73.15 147s 21GB
+RGDA 74.12 69s 6.9GB
+DyAug 74.98 56s 5.6GB

Table 10: Results tested with TD-PGD attack.

Data Method ϵ = 0.0 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3

UCI
DySAT 0.7502±0.0056 0.7418±0.0092 0.7276±0.0143 0.7191±0.0129
+DyAug 0.7698±0.0063 0.7712±0.0080 0.7456±0.0120 0.7466±0.0174

ACT
DySAT 0.7790±0.0036 0.7698±0.0028 0.7334±0.0138 0.6853±0.0262
+DyAug 0.7860±0.0054 0.7834±0.0112 0.7682±0.0109 0.7490±0.0176

C DISCUSSION ON DYNAMIC GRAPH OOD METHODS

Several works on out-of-distribution (OOD) handling in dynamic graphs (Zhang et al., 2022a; Yuan
et al., 2024b; Zhang et al., 2024c) have also explored data augmentation for dynamic graphs. Here,
we summarize the key distinctions between DyAug and these approaches:

1. Plug-and-play functionality: Methods such as (Zhang et al., 2022a; Yuan et al., 2024b;
Zhang et al., 2024c) are specifically tailored for OOD-oriented backbones. In contrast,
DyAug can seamlessly integrate with any DyGNN, enhancing its performance, robustness,
and generalizability.

20

https://github.com/amazon-science/tgl
https://github.com/amazon-science/tgl

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: Results on the UCI dataset. Roland is implemented with Roland-GRU.

Backbone Roland SLATE
ROC-AUC (%) Gain ROC-AUC (%) Gain

Vanilla 79.53±0.6122 - 81.26±0.3051 -
+DropEdge 79.25±0.4822 −0.28 ↓ 80.12±0.4715 −1.14 ↓
+DropNode 79.29±0.6590 −0.24 ↓ 80.59±0.3552 −0.67 ↓
+DropMessage 79.72±0.3145 +0.19 ↑ 81.77±0.5819 +0.51 ↑
+GraphMixup 77.50±0.8911 −2.03 ↓ 80.35±0.7401 −0.91 ↓
+NeuralSparse 79.86±0.4818 +0.33 ↑ 81.75±0.4291 +0.49 ↑
+SUBLIME 80.23±0.5741 +0.70 ↑ 82.56±0.3069 +1.30 ↑
+RGDA 79.86±0.9582 +0.33 ↑ 82.77±0.3593 +1.51 ↑
+DyAug 80.53±0.7318 +1.00 ↑ 83.13±0.2639 +1.87 ↑

2. Temporal-consistency awareness: While existing methods (Zhang et al., 2022a; Yuan
et al., 2024b; Zhang et al., 2024c) predominantly rely on disentangled learning to generate
multiple representations for a central node, DyAug adopts a unique approach by sequen-
tially identifying causal masks for each graph snapshot, with each mask conditioned on
the preceding one (as shown in Eq. (3)). This Markov-style subgraph generation ensures
consistency of rationale across the temporal dimension.

3. Comprehensive augmentation: Methods such as DIDA and EAGLE (Yuan et al., 2024b)
employ spatial-temporal augmentation by leveraging environment embeddings from other
nodes across different timestamps, whereas SILD (Zhang et al., 2024c) focuses on spatial
augmentation by enhancing nodes using variant spectrum information from other nodes.
DyAug distinguishes itself by offering comprehensive augmentation across three dimen-
sions: spatial, temporal, and spatial-temporal.

4. Robustness verification: The performance of existing OOD methods for DyGNNs under
adversarial attacks remains unexplored. In contrast, DyAug positions itself as a robusti-
fier for DyGNNs, effectively defending against structural, feature, and hybrid adversarial
attacks.

21

	Introduction
	Related Work
	Methodology
	Notations and Preliminary
	Framework Overview
	A Causal View on DyGNNs
	Temporal-conditioned Rationale–Environment Separation
	Data Augmentation With Environment Subgraphs
	Optimization and Analysis

	Experiments
	Experimental Setup
	Comparison With Existing GDA Methods (RQ1 & RQ2)
	Against Adversarial Attacks (RQ3)
	Against Distribution Shift (RQ4)
	Ablation Study and Sensitivity Analysis (RQ5)

	Conclusion
	Experimental Setup
	Baseline Setups
	Baselines Not Choosed

	Supplementary Experiment Results
	Results for RQ3
	Results for Ablation Study
	Results For Sensitivity Analysis
	Results on Large-scale Graphs
	Results on TD-PGD Attacks
	Results with More Advanced DyGNN Backbones

	Discussion on Dynamic Graph OOD Methods

