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ABSTRACT

Graph data augmentation (GDA) has shown significant promise in enhanc-
ing the performance, generalization, and robustness of graph neural networks
(GNNs). However, contemporary methodologies are often limited to static graphs,
whose applicability on dynamic graphs—more prevalent in real-world applica-
tions—remains unexamined. In this paper, we empirically highlight the challenges
faced by static GDA methods when applied to dynamic graphs, particularly their
inability to maintain temporal consistency. In light of this limitation, we pro-
pose a dedicated augmentation framework for dynamic graphs, termed DyAug,
which adaptively augments the evolving graph structure with temporal consis-
tency awareness. Specifically, we introduce the paradigm of graph rationaliza-
tion for dynamic GNNs, progressively distinguishing between causal subgraphs
(rationale) and the non-causal complement (environment) across snapshots. We
develop three types of environment replacement, including, spatial, temporal, and
spatial-temporal, to facilitate data augmentation in the latent representation space,
thereby improving the performance, generalization, and robustness of dynamic
GNNs. Extensive experiments on six benchmarks and three GNN backbones
demonstrate that DyAug can (I) improve the performance of dynamic GNNs by
0.89% ∼ 3.13% ↑; (II) effectively counter targeted and non-targeted adversarial
attacks with 6.2% ∼ 12.2% ↑ performance boost; (III) make stable predictions
under temporal distribution shifts. The source code is anonymously available at
https://anonymous.4open.science/r/DyAug-8216.

1 INTRODUCTION

Data-driven inference has greatly enhanced generalization capabilities and improved model perfor-
mance, particularly through data augmentation, across a wide range of domains, including computer
vision (CV) (Yang et al., 2022; Alomar et al., 2023; Zheng et al., 2023), natural language process-
ing (NLP) (Shorten et al., 2021; Dai et al., 2023), and graph-based tasks (Rong et al., 2019; Feng
et al., 2020; Fang et al., 2022; Wang et al., 2021b; Liu et al., 2022c; Sui et al., 2024). Among these
domains, graph-tailored augmentation strategies are notably distinct due to the irregular and non-
Euclidean nature of graph data, unlike the other two domains, where data is typically structured in
regular, Euclidean forms such as grids (i.e., images) and sequences (i.e., sentences). Drawing upon
these unique characteristics, current graph data augmentation (GDA) techniques have demonstrated
significant effectiveness in enhancing the performance (Zhao et al., 2022c), robustness (Jin et al.,
2020; Kong et al., 2022), and generalization ability (Wu et al., 2022b; Liu et al., 2022a) on graph
neural networks (GNNs), applicable to various levels of graph tasks, including node-level (Rong
et al., 2019; Wang et al., 2021b; Liu et al., 2022c), edge-level (Dai et al., 2019; Zhao et al., 2022b),
and graph-level (Feng et al., 2020; You et al., 2021; Liu et al., 2022a).

Despite their success, previous graph data augmentation methods have been largely constrained
to a specific class of graphs, namely static graphs. In contrast, dynamic graphs, which evolve
over time, and are widely recognized as more prevalent in real-world applications such as social
networks (Berger-Wolf & Saia, 2006; Greene et al., 2010), financial transactions (Nascimento et al.,
2021; Zhang et al., 2021), and traffic networks (Peng et al., 2021; 2020), notably lack effective and
tailored data augmentation designs. In light of this dilemma, an intuitive approach would be to
directly apply static graph augmentation techniques to dynamic graphs. But is this truly feasible? In
the remainder of this section, we will (1) first review key advancements in graph data augmentation,
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Vanilla +DropEdge +NeuralSparse

(a) Performance (b) Duration CDF (c) Duration distribution

Figure 1: (Left) (a) illustrates the AUC (%) comparison among vanilla DySAT, DropEdge (Rong et al., 2019),
GraphMixup (Wang et al., 2021b), RGDA (Liu et al., 2024a) and our DyAug on the Yelp dataset; (Middle)
(b) analyzed the time span of each edge, i.e., its longest consecutive existence period across snapshots, and
compared the cumulative distribution function (CDF) for the vanilla dataset and after applying NeuralSparse
and DropEdge; (Right) (c) visualizes the distribution of edge time spans under different methods, with colors
ranging from light to dark representing [1, 2, 3, 4, 5, others].

(2) highlight the critical challenges in their extension to dynamic graphs, (3) present our proposal
for dynamic graph augmentation, and (4) summarize the contributions of this paper.

Look-back on GDA. Existing graph augmentation techniques can be broadly categorized into
the following two types: ❶ rule-based augmenters, which manipulate data through predefined
strategies such as edge dropping (Rong et al., 2019), node dropping (Feng et al., 2020), message
dropping (Fang et al., 2022), and mixup (Wang et al., 2021b; Han et al., 2022; Ling et al., 2023;
Kim et al., 2023; Ma et al., 2024); and ❷ learning-based augmenters, which incorporate learn-
able parameters in the generation of augmented examples, including graph structure learning (Jin
et al., 2020; Wu et al., 2022a; Zou et al., 2023), graph rationalization (Liu et al., 2022a; Wu et al.,
2022b; Yue et al., 2024), adversarial training (Zhu et al., 2019; Li et al., 2023a), and contrastive
learning (You et al., 2020; 2021; Shen et al., 2023). Although these methods have made significant
strides in empowering, generalizing, and robustifying GNNs on static graphs (Zhao et al., 2022a;
Ding et al., 2022; Adjeisah et al., 2023), their performance on dynamic graphs , along with the
potential challenges, remains largely unexplored and unassessed.
Emperical Observation. To investigate the potential issues of transferring static GDA methods
to dynamic settings, we select three representative methods from both rule- and learning-based aug-
menters and apply them on Yelp (Sankar et al., 2020) with DySAT (Sankar et al., 2020) as the
GNN backbone1. As shown in Figure 1 (Left), not all methods contribute positively: though effec-
tive on static graphs, DropEdge (Rong et al., 2019) and GraphMixup (Wang et al., 2021b), lead to a
performance drop of 0.2% ∼ 0.6%. Nevertheless, RGDA (Liu et al., 2024a) achieves a modest im-
provement (0.6% ↑ in AUC). This raises the question: what caused such a discrepancy? To explore
this further, we examine how graph augmentation affects dynamic graph sequences. We investigate
the edge timespan (Yang et al., 2023), namely the maximum number of consecutive graph snapshots
an edge spans. As illustrated in Figure 1 (Middle), DropEdge significantly alters the cumulative
distribution function (CDF) of edge timespans, while RGDA has a comparatively minor effect.

Challenges. Based on the above observations, we conclude that static GDA methods are not fully
applicable to dynamic graphs, due to their unawareness of temporal consistency. More concretely,
existing methods primarily focus on augmenting individual graphs, while overlooking the strong
temporal dependencies across different graph snapshots. Imagine a scenario where existing GDA
techniques are applied independently to each graph snapshot. Since topological augmentations often
involve removing/deleting edges (Zhao et al., 2022a; Ding et al., 2022), this can lead to a surge in
edges with a timespan of only 1, while many long-timespan edges may suddenly disappear at one
timestamp and reappear at the next–such behavior does not align with the natural evolution patterns
observed in real-world dynamic graphs (Beck et al., 2017). This issue is clearly illustrated in Figure 1
(Right): DropEdge disrupted many originally long-spanned edges, causing the proportion of edges
with a timespan of 1 to increase sharply from 43.57% to 69.25%. We call this the disruption of
the temporal consistency (Qian et al., 2021) between different graph frames, which significantly
undermines the continuity and temporal dependencies inherent in dynamic graphs. Therefore, a
natural question arises: how can we design a data augmentation method for dynamic graphs that
effectively enhances dynamic GNNs via well-maintaining temporal consistency?

Proposal. To address the aforementioned challenges, we propose a temporal-consistent
::
dynamic

graph
:::
augmentation framework (dubbed DyAug), which can efficiently integrate into mainstream

1We place detailed explanations of their adaption to dynamic graphs in Appendix A.1.
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dynamic GNN backbones, and adaptively manipulates and augments evolving graph structures with
temporal consistency awareness. Technically, DyAug pioneers the exploration of graph rationaliza-
tion (Liu et al., 2022a; Si et al., 2023; Yue et al., 2024) in dynamic graphs by dynamically pinpointing
the rational features (rationales) that support a model’s predictions during the training phase, while
the contrasting elements are referred to as the environment. Through temporally conditioned graph
rationale-environment separation, DyAug learns a highly correlated rationale subgraph sequence for
the dynamic graphs, effectively preserving the temporal consistency. By employing three types
of augmentation techniques, i.e., temporal, spatial, and spatial-temporal environment replacement,
DyAug efficiently expands the data distribution for dynamic GNNs, achieving a triple win in terms
of performance, robustness, and generalization capacity.

Our contributions are summarized as follows:
❶ Problem Identification. We pioneer the exploration of graph data augmentation (GDA) within

dynamic graphs. Through empirical evaluation, we demonstrate the poor transferability of tra-
ditional static GDA methods to dynamic graphs, identifying the root cause as the disruption of
temporal consistency inherent to dynamic graph structures.

❷ Pratical Solution. We propose a temporal-consistent dynamic graph augmentation framework,
termed DyAug, which makes the first step to explore graph rationalization within dynamic GNNs.
By extracting rationale subgraphs in a temporally conditioned manner, DyAug effectively preserves
the temporal consistency of dynamic graph sequences while efficiently augmenting training data
through temporal, spatial, and spatial-temporal environment replacement.

❸ Experimental Validation. Extensive experiments on six benchmarks and four dynamic GNN
backbones demonstrate that DyAug can (I) improve the performance of dynamic GNNs by
0.89% ∼ 3.13% ↑, surpassing state-of-the-art GDA methods by up to 2.8%; (II) effectively
counter targeted and non-targeted adversarial attacks with 6.20% ∼ 12.22% ↑ performance boost;
(III) make stable predictions under temporal distribution shifts.

2 RELATED WORK

Dynamic Graph Neural Networks. Dynamic Graphs find applications in a wide variety of dis-
ciplines, including social networks (Berger-Wolf & Saia, 2006; Greene et al., 2010), recommender
systems (Li et al., 2020; Zhang et al., 2022a; Gong et al., 2024), epidemiology (Liu et al., 2024c),
etc. According to data types, current dynamic graphs can be primarily classified into discrete-time
dynamic graphs (DTDG) and continuous-time dynamic graphs (CTDG) (Barros et al., 2021; Feng
et al., 2024). This paper’s main research scope focuses on DTDG, which consists of multiple dis-
crete graph snapshots arranged in chronological order. Contemporary dynamic GNNs (DyGNNs)
typically follow a framework where a spatial module processes different snapshots, and a temporal
module aggregates information from various timestamps. Common categories include: (1) Typ-
ical GNN-RNN DyGNNs, which utilize a GNN module to handle individual snapshots and em-
ploy recurrent neural network (RNN) style modules to aggregate information across time, including
STGCN (Yu et al., 2017), DySAT (Sankar et al., 2020), EvolveGCN (Pareja et al., 2020), TeMP (Wu
et al., 2020), TFE-GNN (Zhang et al., 2023a), and SEIGN (Qin et al., 2023); (2) Temporal-
enhanced DyGNNs, where specific design are adopted to better capture temporal dependencies,
such as generative adversarial networks (GAN) in SGNN-GR (Wang et al., 2022) and spiking neu-
ral networks (SNN) in SpikeNet (Li et al., 2023b); (3) Spatial-enhanced DyGNNs, which focus on
improving spatial modeling, such as GCRN (Seo et al., 2018) and TTGCN (Li et al., 2024a).

Graph Data Augmentation As discussed in Section 1, existing graph data augmentation (GDA)
techniques can be broadly categorized into two types. (1) Rule-based augmentors employ heuristic
rules for enhancing graph data across various dimensions, including topological-level (Rong et al.,
2019; You et al., 2020; Wang et al., 2020; Sun et al., 2021), feature-level (Zhao et al., 2021a; Sun
et al., 2021), and label-level (Park et al., 2021; Han et al., 2022). (2) Learning-based augmenters
employ various automated learning paradigms to expand graph data. For instance, graph structure
learning (Zhu et al., 2021; Li et al., 2024b; Zhiyao et al., 2024) has been leveraged for enhancing
graph topology by adding or removing edges (Jin et al., 2020; Liu et al., 2022b; Zhao et al., 2023; Wu
et al., 2023). Techniques such as contrastive learning (Velickovic et al., 2019; You et al., 2020; 2021;
Zhang et al., 2023b; 2024b) and reinforcement learning (Zhao et al., 2022c; Zhou & Gong, 2023)
are also commonly used for graph augmentation. In contrast to the aforementioned methods, graph
rationalization focuses on identifying intrinsically learned subgraphs as the rationale graph (Zhao
et al., 2022a), with the opposing context referred to as the environment, which augments data by
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Figure 2: The overview of our proposed DyAug.

perturbing the rationale-environment pair. Due to its robustness to data noise (Sun et al., 2022; Yuan
et al., 2024a) and distribution shifts (Wu et al., 2022b; Liu et al., 2024a), graph rationalization has
garnered increasing attention, and our proposed method falls within this category. However, all these
GDA methods are confined to static graphs and do not take into account the temporal correlations
present in dynamic graph sequences, which significantly limits their performance when extended
to dynamic graphs. Regarding GDA for dynamic graphs, although there are a few attempts for
CTDG (Wang et al., 2021a; Chen et al., 2023), to the best of our knowledge, there currently are no
GDA methods specifically designed for DTDG.

3 METHODOLOGY

3.1 NOTATIONS AND PRELIMINARY

Notations Consider a graph G with the node set V and the edge set E . A (discrete-time) dynamic
graph can be defined as G1:T = (G1,G2, · · · ,GT ), where T is the number of time stamps, Gt =

{Vt, Et} is the graph slice at time stamp t ∈ [1, T ], V =
⋃T

t=1 Vt, E =
⋃T

t=1 Et. Alternatively, G1:T
can be represented as {X1:T ,A1:T }, where each snapshot Gt = {Xt,At} consists of node attributes
Xt ∈ RN×D and adjacency matrices At ∈ {0, 1}N×N , with N = |V| denoting the number of nodes
and D denoting the dimensionality of the node attributes.

DyGNN Paradigm We take the classical link prediction in dynamic graph modeling as an ex-
ample. The objective is to train a dynamic GNN fΘ : {X1:T ,A1:T } 7−→ {0, 1}N×N , which
leverages information from the past T snapshots to predict edge existence at time step T + 1. Fur-
thermore, we can express fΘ as fΘ = fd ◦ ft ◦ fs, where fs : {X1:T ,A1:T } 7−→ Hs, parameter-
ized by Θs, is tasked with capturing spatial patterns to derive representations for timestamps 1 : T ,
ft : Hs 7−→ Ht, parameterized by Θt, captures temporal dependencies and retrieves representations
for the T + 1 time step, and fd : Ht 7−→ Y , parameterized by Θd, denotes the downstream task
function, which predicts the connectivity AT+1 at time step T +1 in the context of link prediction.

3.2 FRAMEWORK OVERVIEW

In this study, we present the first efficient data augmentation framework tailored for dynamic graphs,
termed DyAug, as depicted in Figure 2. Given a dynamic graph sequence G1:T , DyAug progressively
performs rationale-environment separation for each snapshot, constrained by consistency regulariza-
tion to preserve temporal consistency across snapshots. The underlying DyGNN backbone is then
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employed to generate both rationale and environment representations. Subsequently, three types of
augmentations, including spatial, temporal, and spatial-temporal, are applied to prevent fΘ from
learning spurious correlations from environment representations, thus enhancing the performance,
robustness, and generalizability of DyGNNs. In the following sections, we will first give a causal
analysis in Section 3.3, introduce how DyAug performs temporal-conditioned rationale-environment
separation in Section 3.4, present the data augmentation strategies in Section 3.5, and showcase the
overall optimization objective and complexity analysis in Section 3.6.

3.3 A CAUSAL VIEW ON DYGNNS

: Dynamic graph:  Spurious factor

:  Causal factor : Adjacency matrices

: Node attributes: Representation 

: Prediction 

Figure 3: Structural Causal Model
(SCM) for DyGNNs.

To clarify the goal and implementation of graph rationaliza-
tion in dynamic graphs, we first take a step back to ana-
lyze the DyGNN modeling through a Structural Causal Model
(SCM) (Pearl et al., 2000; Pearl, 2016), as illustrated in Fig-
ure 3. We depict the causal relationships among seven key
variables in the DyGNN setting: the dynamic graph G1:T ,
the unobservable causal variable C, the unobservable non-
causal (environmental) variable S, the observable node at-
tributes X1:T , the observable topology A1:T , representations
H, and predictions Y . Solid arrows indicate causal relation-
ships, while dashed lines represent spurious correlations. Be-
low are some critical insights about the SCM:

• S ← G1:T → C: The dynamic graph G1:T consists of two disjoint parts: the causal part C and
the non-causal/environmental part S.

• S → A1:T ← C and S → X1:T ← C: two variables (causal variable C and non-causal variable
S) construct two components of observable contextual subgraphs (node attributes X1:T and
topology A1:T ), which is different from i.i.d. data only consider attributes.

• A1:T → H← X1:T andH → Y: DyGNN backbones are leveraged to generate future represen-
tations based on observable contextual subgraphs, which are then utilized for making predictions.

• C S: the spurious probabilistic dependencies between S and C.

Based on this SCM, we can identify two backdoor paths between C and Y: (i) C ← G1:T → S →
A1:T → H → Y , and (ii) C ← G1:T → S → X1:T → H → Y . In both cases, the environmental
variable S acts as a confounder between G1:T and Y , potentially causing a misleading correlation
between C and Y , if there is no direct causal link C → Y . Therefore, severing C S is crucial. In
the following sections, we will elaborate on how DyAug effectively severs these spurious correlations
through the rationale-environment separation and augmentation.

3.4 TEMPORAL-CONDITIONED RATIONALE–ENVIRONMENT SEPARATION

Given a graph snapshot Gt, we model its unobservable causal part as a soft mask MR
t ∈

[0, 1]N×N , where each entry represents the probability score of the corresponding edge belong-
ing to the rationale subgraph. Naturally, the rationale for snapshot Gt can be expressed as
GR(t) = {Xt,At ⊙MR

t }, and the causal part of the entire dynamic graph sequence is denoted
as GR1:T = {X1:T ,A1:T

⊕
MR

1:T }. Traditional static graph rationalization methods (Zhang et al.,
2024a; Liu et al., 2024a) typically follow the paradigm below to extract rationales:

MR
t ∼ pΦ(M

R
t | At,Xt), (1)

where the causal mask is generated conditioned on the current features Xt and topology At, and
the generator is parameterized by Φ. However, this overlooks the temporal dependencies between
snapshots, often negatively disrupting the spatial-temporal distribution of the augmented data. To
address this issue, we design temporal-conditioned graph rationalization, which progressively
uncovers the causal subgraph along the temporal dimension. At each step, it depends solely on the
previous timestamp and current status, thereby maintaining the Markov property:

MR
t ∼ pΦ(M

R
t | At,Xt,M

R
t−1), (2)
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where the generation of MR
t additionally depends on the causal mask from the (t−1)-th timestamp.

In practice, we model the rationale as follows:

pΦ(M
R
t | At,Xt,M

R
t−1) =

N∏
i=1

N∏
j=1

pΦ(M
R
t,ij | At,Xt,M

R
t−1), (3)

where MR
t,ij is the element at the i-th row and j-th column of MR

t , representing the probability that
edge eij belongs to the rationale at timestamp t. We compute MR

t,ij as follows:

pΦ(M
R
t,ij = 1 | At,Xt,M

R
t−1) = 1At[i,j]=1fΦ(x

t
i,x

t
j ,M

R
t−1,ij),

= 1At[i,j]=1σ
(
(log(ϵ)− log(1− ϵ) +ϖij)/τ

)
,

(4)

where 1(·) is an indicator function, ωij = FFNΦ([x
t
i,x

t
j ,M

R
t,ij ]) parameterized by Φ, ϵ ∼

Uniform(0, 1), σ(·) represents the sigmoid function, and τ is the temperature coefficient. When
τ approaches zero, Equation (4) effectively returns the Bernoulli sampling result for edge eij . The
gradient ∂MR

t,ij/∂ϖij remains well-defined as long as τ > 0. Through this temporally progressive
rationale discovery, we ultimately obtain the rationale subgraph set GR1:T and the corresponding en-
vironmental subgraph set GS1:T , defined as follows:

GR1:T = {X1:T ,A1:T ⊕MR
1:T }, GS1:T = {X1:T ,A1:T ⊕M

R
1:T }, (5)

where Mt = At −Mt. To further ensure temporal consistency, i.e., the rationales across different
snapshots remain coherent even as the graph structure evolves, we propose the following consistency
regularization loss:

Lcr = −
T∑

t=1

t+w∑
p=t−w

log
exp(sim(GRt ,GRp ))

exp
(
sim(GRt ,GRp )

)
+

∑
k/∈[t−w,t+w]

exp
(
sim(GRt ,GRk )

) , (6)

where GRp represents the rationale within a w-step temporal window surrounding the central ra-
tionale GRt , while GRk refers to rationales that are further away. sim(·, ·) measures the similarity
between graphs, and we implement it as sim(GRt ,GRp ) = sum(|MR

t −MR
p |). Equation (6) draws

inspiration from the practices in Tonekaboni et al. (2021); Wang et al. (2023), where closely situated
subsequences are regarded as positive pairs and those with larger distance are treated as negatives.
Exhibiting a similar idea, Equation (6) aims to maintain higher consistency around the current ra-
tionale. Upon disentangling the causal and non-causal components in dynamic graphs as well as
maintaining the temporal consistency, we proceed to the next step of data augmentation.

3.5 DATA AUGMENTATION WITH ENVIRONMENT SUBGRAPHS

With the rationale subgraph set GR1:T and the environmental subgraph set GS1:T available, we explic-
itly separate the message passing from the rationale and environmental subgraphs during the spatial
and temporal modeling processes of the vanilla DyGNN:

HR
1:T = fs(X1:T ,A1:T ⊕MR

1:T ; Θs), H
S
1:T = fs(X1:T ,A1:T ⊕M

R
1:T ; Θs), (7)

where HR
1:T ∈ RT×N×D and HS

1:T ∈ RT×N×D represent the aggregated rationale and environment
embeddings for timestamps 1 : T . The standard fΘ without rationalization tends to merge rationale
and environment for predictions, leading to spurious correlations between GS1:T and Y , resulting in
potentially accurate but unjustified predictions. Therefore, DyAug enhances the training samples by
simulating various rationale-environment combinations within the node embedding space. To be
more concrete, considering the rationale embedding hR

t,i = HR
t [i, :] for node vti at timestamp t, we

propose three environment replacement augmentation paradigms.

Spatial Replacement Augmentation Data augmentation with environment replacement replaces
the environment variable of the current node vti with any other environment variable from a different
sample. Given that the rationable embedding hR

t,i is considered to be the dominant factor of predic-
tions of vi, the environment embedding can be interpreted as natural noise. Hence, combining vti ’s
rationale embedding with environment embeddings from other nodes at the same snapshot enhances

6
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the model’s robustness against the noise signal brought by the environment subgraphs. This pro-
cess can be accomplished using any pooling function, such as concatenation, sum pooling, or max
pooling. Taking sum pooling for example, the spatial replacement is executed as follows:

ĥR
t,i ← Combine(hR

t,i,h
S
t,j) = hR

t,i + hS
t,j , j ∼ Uniform(1, N) \ i, (8)

where h̃R
t,i represents the augmented node embedding, and hS

t,j = HS
t [j, :].

Temporal Replacement Augmentation In contrast to spatial replacement, temporal enhancement
focuses on augmenting the temporal dimension. As the dynamic graph structure evolves, A1:T ⊕
MR

1:T remains a stable causal factor; however, fΘ may inadvertently learn spurious patterns from
the complementary non-causal components. Therefore, for each node vi, we replace its environment
embedding with one from a historical snapshot to avoid reliance on temporal trivial information:

ĥt,i ← Combine(hR
t,i,h

S
p,i), p ∼ Uniform(1, t− 1). (9)

Spatial-temporal Replacement Augmentation Combining the above two, spatial-temporal envi-
ronment replacement augments data simultaneously across both spatial and temporal dimensions:

ĥt,i ← Combine(hR
t,i,h

S
p,j), (p, j) ∼

(
Uniform(1, t− 1),Uniform(1, N) \ i

)
. (10)

After applying the three types of environment replacement, we obtain the augmented representa-
tions Ĥ1:T = [Ĥ1, Ĥ2, . . . , ĤT ], where Ĥt = [ĥt,1, ĥt,2, . . . , ĥt,N ]. These representations are
then further transformed by the DyGNN backbone into future node embeddings X̂T+1, which are
subsequently converted into predictions Ŷ as follows:

X̃T+1 = ft(H̃1:T ,A1:T ⊕MR
1:T ; Θt), Ŷ = fd(X̃T+1; Θd). (11)

3.6 OPTIMIZATION AND ANALYSIS

Optimization Objective In addition to the original task-specific loss associated with DyGNN
training, denoted as Lpred, DyAug introduces two supplementary losses: the consistency regulariza-
tion loss defined in Equation (6), and the contrastive loss aimed at differentiating between causal
and non-causal representations while ensuring semantic similarity between causal and augmented
representations, which is expressed mathematically as follows:

Lcl =
1

T

T∑
t=1

N∑
i=1

log
exp(sim(ĥt,i,h

R
t,i)/τ)

exp(sim(ĥt,i,hR
t,i)/τ) + exp(sim(hS

t,i,h
R
t,i)/τ)

, (12)

where τ represents the temperature coefficient and sim(·, ·) is computed using the dot product. The
overall training objective for DyAug is formulated as:

min
Φ,Θ
L(Φ,Θ) = Lpred + α1 · Lcr + α2 · Lcl, (13)

where Φ pertains to rationale-environment separation, Θ parameterizes the vanilla DyGNN back-
bone, and α1, α2 are scaling factors.

Complexity Analysis The additional complexity coming with DyAug arises primarily from three
sources: (1) causal mask estimation, which contributes O(

∑T
t=1 |E(t)|D); (2) the contrastive loss,

addingO(NDT 2); and (3) the consistency loss, contributingO(ϖT
∑T

t=1 |E(t)|), which is negligi-
ble. In summary, the overall extra complexity introduced by DyAug is O(

∑T
t=1 |E(t)|D +NDT 2).

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions (RQ):
(RQ1) Can DyAug augment dynamic GNNs?
(RQ2) Can DyAug better preserve the temporal consistency of dynamic graphs?
(RQ3) Does DyAug improve the robustness of DyGNNs against adversarial attacks?
(RQ4) Does DyAug enhance the out-of-distribution generalization of DyGNNs?
(RQ5) How sensitive is DyAug to its key components and parameters?
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Table 1: AUC score (± standard deviation) of future link prediction task on five real-world datasets. The best
results are in bold, and the runner-ups are underlined.

Method COLLAB Yelp Bitcoin UCI ACT
G

R
C

N
Vanilla 0.8278±0.0052 0.6645±0.0187 0.8766±0.0034 0.7682±0.0074 0.7963±0.0041
+DropEdge 0.8285±0.0059 0.6472±0.0205 0.8732±0.0051 0.7693±0.0105 0.7928±0.0042
+DropNode 0.8297±0.0077 0.6448±0.0196 0.8749±0.0064 0.7664±0.0068 0.7942±0.0500
+DropMessage 0.8326±0.0097 0.6669±0.0240 0.8780±0.0057 0.7690±0.0119 0.7968±0.0044
+GraphMixup 0.8258±0.0049 0.6697±0.0180 0.8641±0.0038 0.7613±0.0133 0.7902±0.0045
+NeuralSparse 0.8394±0.0076 0.6705±0.0233 0.8792±0.0065 0.7710±0.0062 0.7959±0.0046
+SUBLIME 0.8312±0.0056 0.6685±0.0273 0.8770±0.0059 0.7735±0.0081 0.7989±0.0047
+RGDA 0.8374±0.0031 0.6692±0.0194 0.8812±0.0031 0.7698±0.0046 0.8066±0.0048
+DyAug (ours) 0.8495±0.0070 0.6795±0.0204 0.9079±0.0029 0.7783±0.0054 0.8147±0.0049

D
yS

A
T

Vanilla 0.8807±0.0018 0.7962±0.0045 0.8896±0.0027 0.7502±0.0056 0.7790±0.0036
+DropEdge 0.8760±0.0039 0.7985±0.0106 0.8843±0.0048 0.7516±0.0077 0.7689±0.0067
+DropNode 0.8783±0.0031 0.7980±0.0077 0.8826±0.0039 0.7519±0.0045 0.7705±0.0044
+DropMessage 0.8815±0.0069 0.7964±0.0082 0.8915±0.0070 0.7574±0.0102 0.7689±0.0060
+GraphMixup 0.8785±0.0112 0.7814±0.0029 0.8726±0.0031 0.7505±0.0030 0.7653±0.0012
+NeuralSparse 0.8862±0.0053 0.8074±0.0050 0.8916±0.0044 0.7579±0.0064 0.7796±0.0061
+SUBLIME 0.8871±0.0034 0.8037±0.0041 0.8927±0.0043 0.7552±0.0074 0.7772±0.0054
+RGDA 0.8897±0.0030 0.8149±0.0059 0.8865±0.0036 0.7560±0.0051 0.7805±0.0041
+DyAug (ours) 0.8925±0.0034 0.8233±0.0023 0.9032±0.0040 0.7698±0.0063 0.7860±0.0054

SE
IG

N

Vanilla 0.9219±0.0021 0.8072±0.0039 0.8955±0.0013 0.7932±0.0035 0.8457±0.0018
+DropEdge 0.9235±0.0024 0.8015±0.0041 0.9015±0.0084 0.7985±0.0026 0.8366±0.0035
+DropNode 0.9215±0.0039 0.8039±0.0046 0.8928±0.0035 0.7913±0.0015 0.8382±0.0030
+DropMessage 0.9259±0.0032 0.8120±0.0032 0.8968±0.0071 0.7896±0.0024 0.8429±0.0018
+GraphMixup 0.9187±0.0029 0.7942±0.0043 0.8905±0.0057 0.7903±0.0019 0.8381±0.0034
+NeuralSparse 0.9279±0.0029 0.8038±0.0046 0.8994±0.0028 0.8012±0.0030 0.8491±0.0030
+SUBLIME 0.9310±0.0027 0.8144±0.0015 0.8981±0.0025 0.8069±0.0020 0.8465±0.0013
+RGDA 0.9245±0.0025 0.8131±0.0020 0.9013±0.0018 0.7985±0.0039 0.8472±0.0013
+DyAug (ours) 0.9362±0.0022 0.8284±0.0015 0.9067±0.0017 0.8098±0.0022 0.8546±0.0029

4.1 EXPERIMENTAL SETUP

Datasets and Splits To thoroughly evaluate our proposed method, we select five real-world
datasets. COLLAB (Tang et al., 2012) is an academic collaboration network spanning 16 years.
Yelp (Sankar et al., 2020) is a business review dataset containing customer feedback on various
businesses. Bitcoin (Kumar et al., 2018) is a trust network dataset representing users who engage
in trading on the Bitcoin OTC platform. UCI (Panzarasa et al., 2009) is an online communication
network from the University of California, Irvine, capturing student interactions. Lastly, ACT (Ku-
mar et al., 2019) describes the actions taken by users on a popular MOOC website within 30 days.
Backbones and Baselines For DyGNN backbones, we select three classical baselines: (1)
GCRN (Seo et al., 2018), which combines GCNs and GRU (Chung et al., 2014); (2) DySAT (Sankar
et al., 2020), which models spatial and temporal dependencies via self-attention; and (3)
SEIGN (Qin et al., 2023), which leverages GCN for message passing, GRU for parameter up-
dates, and transformer for learning the final node representations. For baselines, we compre-
hensively choose seven GDA techniques for comparison. Regarding rule-based augmenters, we
adopt DropEdge (Rong et al., 2019), DropNode (Feng et al., 2020), DropMessage (Fang et al.,
2022), and Graph Mixup (Wang et al., 2021b). Regarding rule-based augmenters, we opt for Neu-
ralSparse (Zheng et al., 2020) and SUBLIME (Liu et al., 2022d) for the graph structure learning
branch, RGDA (Liu et al., 2024a) for the graph rationalization branch. Notably, we acknowledge
that some classical or highly related GDA methods, such as DIR (Wu et al., 2022b), GREA (Liu
et al., 2022a), JOAO (You et al., 2021), and AIA (Sui et al., 2024), are not included in our eval-
uation. This exclusion is either due to data format limitations (e.g., methods focused solely on
graph classification) or incompatibility issues (e.g., inability to adapt to dynamic graphs). Detailed
explanations and the full baseline setup can be found in Appendix A.1.
Hyperparameter Configurations We set the number of layers to two for all baselines, with a
hidden dimension of 128. Specifically, for DyAug, we fix τ = 1e− 2 and ϖ = 2 across all datasets.
For each node, we assign an equal probability of selecting one of the following strategies: (1) no
replacement, using only the rationale embedding; (2) spatial replacement; (3) temporal replacement;
or (4) spatial-temporal replacement. We provide an ablation study on the effectiveness of these
replacement strategies in Appendix B.2. For the parameters α1 and α2 in Equation (13), we vary
α1 ∈ {1e− 2, 5e− 2, 1e− 1} and α2 ∈ {1e− 4, 5e− 4, 1e− 3, 5e− 3}.
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Yelp COLLAB ACT

Edge Timespan Edge Timespan Edge Timespan

Figure 4: The cumulative distribution function (CDF) of edge timespan for the vanilla dataset and after apply-
ing different GDA methods on YELP, COLLAB and ACT. We opt for GRCN for all the datasets. The faster the
curve converges to 1, the greater the proportion of edges with shorter timespans.

A
U

C
 (

%
)

Figure 5: The performance comparison of various GDA methods under structure attack on DySAT+YELP.

4.2 COMPARISON WITH EXISTING GDA METHODS (RQ1 & RQ2)

We compare the performance of DyAug against seven GDA baselines across five datasets on GRCN,
DySAT, and SEIGN, summarized in Table 1. We draw the following observations (Obs.):
Obs.❶ Temporal consistency counts for dynamic graphs. DropEdge, DropNode, DropMessage,
and GraphMixup belong to rule-based augmenters, and many of them consistently result in perfor-
mance drops rather than improvements. For example, GraphMixup shows a 1.25% ↓ decrease on
GRCN+Bitcoin, and DropNode shows a 0.85% ↓ drop on DySAT+ACT. We attribute the under-
lying cause to the disruption of temporal consistency. As shown in Figure 4, both DropNode and
GraphMixup lead to a rapid convergence of the edge timespan CDF to 1, which indicates that these
methods cause many long-spanning edges to disappear, replacing them with numerous short-lived
edges that quickly appear and vanish. In contrast, RGDA and our DyAug closely approximate the
vanilla CDF, resulting in far more stable and significant performance improvements.
Obs.❷ DyAug continuously enhances dynamic graph modeling. DyAug demonstrates a stable
performance improvement across all datasets and DyGNN backbones. Nevertheless, the magnitude
of this improvement is tied to the complexity of the DyGNN backbone. For simpler backbones like
GRCN, DyAug yields notable gains, such as a 2.17% increase on COLLAB and a 3.13% boost on
Bitcoin. While the AUC improvements on more advanced backbones like SEIGN are relatively
marginal, DyAug still achieves a 2.14% ↑ increase on YELP.

4.3 AGAINST ADVERSARIAL ATTACKS (RQ3)

In this section, we aim to empirically validate that DyAug can effectively defend against both non-
targeted and targeted attacks to answer RQ3. We employ three types of attacks: (1) structure attack,
which randomly perturbs 20% of edges; (2) feature attack, where Gaussian noise is added to the
node features; and (3) Nettack (poisoning mode), where Nettack (Zügner et al., 2018) is applied to
perturb the training set twice. The results are visualized in Figures 5, 7 and 8. We observe:
Obs.❸ DyAug outperform all baselines under various attack modes. Among the three types of
attacks, Nettack, as a targeted attack, poses the greatest challenge to the robustness of DyGNNs.
As shown in Figure 8, the vanilla DySAT suffers from a significant drop of 12.7% in AUC, and
even when combined with RGDA, it only recovers 2.1% of the loss. However, DyAug, through its
tailored data augmentation design, effectively mitigates the impact of noise and perturbations during
training, resulting in an 8.2% improvement in the attacked model’s performance.
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Table 2: AUC score (%) of different methods on real-world datasets. The best results are in bold and the
second-best results are underlined. ‘w/o DS’ and ‘w/ DS’ denote test data with and without distribution shift.

Model COLLAB (ROC-AUC↑) YELP (ROC-AUC↑)
Test Data w/o DS w/ DS w/o DS w/ DS

GRCN (Seo et al., 2018) 82.78± 0.52 67.49 ± 0.73 66.45 ± 1.87 61.82 ± 3.39
+ DyAug 84.95± 0.70 73.22 ± 0.56 67.95 ± 0.24 61.78 ± 2.76

DySAT (Sankar et al., 2020) 88.07± 0.18 75.59 ± 0.29 79.62 ± 0.65 65.80 ± 1.22
+ DyAug 89.25± 0.74 82.56 ± 0.68 82.33± 1.13 73.15 ± 0.92

SEIGN (Qin et al., 2023) 92.19± 0.21 80.68 ± 0.72 80.72 ± 0.39 67.19 ± 0.84
+ DyAug 93.62± 0.42 83.11 ± 0.56 82.84 ± 0.35 76.50 ± 0.65

IRM (Rosenfeld et al., 2021) 87.96± 0.90 75.42 ± 0.87 66.49 ± 0.78 56.02 ± 6.08
DIDA (Zhang et al., 2022b) 91.97± 0.05 81.87 ± 0.40 78.22 ± 0.40 75.92 ± 0.90
DGIB-Bern (Yuan et al., 2024a) 92.17± 0.20 83.09 ± 0.56 76.88 ± 0.20 72.56 ± 0.74

4.4 AGAINST DISTRIBUTION SHIFT (RQ4)
Graph rationalization was originally introduced to address the out-of-distribution (OOD) challenge
by capturing invariant patterns in evolving data (Wu et al., 2021; 2024). To evaluate whether DyAug
can defend against distribution shifts in dynamic graphs, we use COLLAB and Yelp, and explicitly
construct distribution shifts. Specifically, for COLLAB, we transfer all edges belonging to “data
mining” category to the test set, ensuring that DyGNN has never been exposed to this category
during training. For Yelp, we select “Pizza” edges as the out-of-distribution data. We observe that:
Obs.❹ DyAug effectively enhances the robustness of DyGNNs. As demonstrated in Table 2,
SEIGN+DyAug consistently achieves the best performance on both Yelp and COLLAB, regard-
less of the presence of distribution shifts. This improvement can be attributed not only to SEIGN’s
strong baseline performance but also to DyAug’s ability to sever spurious correlations. For example,
on YELP, DyAug boosts SEIGN’s OOD performance from 67.19% to 76.50%.

Clean Structure attack
70
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80

85
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U

C
 (%

) 81.40

77.40
79.30

76.30

79.90

74.50

80.10

76.70

80.30

75.60

DyAug w/o TC w/o RA w/o CR w/o CL

Figure 6: Ablation study on DyAug and its four variants, tested on
ACT and that after structure attack. We use GRCN as the backbone.

α2/α1 1e − 2 5e − 2 1e − 1

1e − 4 78.14±0.2 78.60±0.2 78.30±0.3

5e − 4 78.47±0.1 78.25±0.5 78.58±0.3

1e − 3 77.60±0.4 78.45±0.3 77.92±0.5

5e − 3 77.52±0.4 77.81±0.3 77.06±0.4

Table 3: Sensitivity study on scaling fac-
tor α1 and α2. The results are reported on
DySAT backbone and ACT dataset.

4.5 ABLATION STUDY AND SENSITIVITY ANALYSIS (RQ5)
Ablation Study We evaluate four variants: (1) DyAug w/o TC, where graph rationalization is
snapshot-independent rather than temporally conditioned; (2) DyAug w/o RA, where all data aug-
mentations are discarded; (3) DyAug w/o CR, where Lcr is omitted; and (4) DyAug w/o CL, where
Lcl is discarded. It can be observed from Figure 6 that the removal of each module results in AUC
decay, among which DyAug w/o RA is the most detrimental, leading to 2.9% ↓ drop under the
structure attack. This demonstrates each component’s importance in dynamic graph augmentation.
Sensitivity Analysis We evaluate DyAug under different α1 and α2. As shown in Table 3, DyAug
is relatively insensitive to changes in α1. However, when α2 becomes too large, a performance drop
is observed. For instance, with α1 = 1e−2, the performance with α2 = 1e−4 is 0.75% higher than
that with α2 = 5e−3. Nevertheless, DyAug demonstrates overall robustness to parameter variations.

5 CONCLUSION
In this work, we present the first graph data augmentation (GDA) method specifically designed for
(discrete-time) dynamic graphs, termed DyAug. DyAug addresses the limitations of previous static
GDA methods, i.e., the unawareness of temporal consistency, by employing temporal-conditioned
rationale discovery to disentangle the rationale-environment within dynamic graph sequences. We
further propose three augmentation strategies to enrich the data distribution. Experimental results
demonstrate that DyAug excels in empowering, robustifying, and generalizing dynamic GNNs. In
the future, a promising direction for exploration lies in extending DyAug beyond DTDGs to make it
applicable to CTDGs.
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Yannis Karmim, Marc Lafon, Raphaël Fournier S’niehotta, and Nicolas Thome. Supra-laplacian
encoding for transformer on dynamic graphs. arXiv preprint arXiv:2409.17986, 2024.

Junghurn Kim, Sukwon Yun, and Chanyoung Park. S-mixup: Structural mixup for graph neural net-
works. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, pp. 4003–4007, 2023.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Robust optimization as data augmentation for large-scale graphs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 60–69, 2022.

Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrahma-
nian. Rev2: Fraudulent user prediction in rating platforms. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pp. 333–341, 2018.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Hongxi Li, Zuxuan Zhang, Dengzhe Liang, and Yuncheng Jiang. K-truss based temporal graph
convolutional network for dynamic graphs. In Asian Conference on Machine Learning, pp. 739–
754. PMLR, 2024a.

Jianxin Li, Xingcheng Fu, Shijie Zhu, Hao Peng, Senzhang Wang, Qingyun Sun, S Yu Philip, and
Lifang He. A robust and generalized framework for adversarial graph embedding. IEEE Trans-
actions on Knowledge and Data Engineering, 35(11):11004–11018, 2023a.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8588–8596,
2023b.

Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and S Yu Philip. Dynamic graph
collaborative filtering. In 2020 IEEE international conference on data mining (ICDM), pp. 322–
331. IEEE, 2020.

Zhixun Li, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin Zhou, Qiang
Liu, Shu Wu, Liang Wang, et al. Gslb: the graph structure learning benchmark. Advances in
Neural Information Processing Systems, 36, 2024b.

Hongyi Ling, Zhimeng Jiang, Meng Liu, Shuiwang Ji, and Na Zou. Graph mixup with soft align-
ments. In International Conference on Machine Learning, pp. 21335–21349. PMLR, 2023.

Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with
environment-based augmentations. In Proceedings of the 28th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2022a.

Gang Liu, Eric Inae, Tengfei Luo, and Meng Jiang. Rationalizing graph neural networks with data
augmentation. ACM Transactions on Knowledge Discovery from Data, 18(4):1–23, 2024a.

Gang Liu, Eric Inae, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Data-centric learning
from unlabeled graphs with diffusion model. Advances in neural information processing systems,
36, 2024b.

Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, and Chuan Shi. Compact graph structure
learning via mutual information compression. In Proceedings of the ACM web conference 2022,
pp. 1601–1610, 2022b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Songtao Liu, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou Huang, and
Dinghao Wu. Local augmentation for graph neural networks. arXiv preprint arXiv:2109.03856,
2022c.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsu-
pervised deep graph structure learning. In Proceedings of the ACM Web Conference 2022, pp.
1392–1403, 2022d.

Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph
neural networks in epidemic modeling. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 6577–6587, 2024c.

Youzhi Luo, Michael Curtis McThrow, Wing Yee Au, Tao Komikado, Kanji Uchino, Koji
Maruhashi, and Shuiwang Ji. Automated data augmentations for graph classification. In The
Eleventh International Conference on Learning Representations, 2023.

Xinyu Ma, Xu Chu, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, and Wenwu Zhu. Fused
gromov-wasserstein graph mixup for graph-level classifications. Advances in Neural Information
Processing Systems, 36, 2024.

Diego C Nascimento, Bruno A Pimentel, Renata MCR Souza, Lilia Costa, Sandro Gonçalves, and
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Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

A EXPERIMENTAL SETUP

A.1 BASELINE SETUPS

Since many of the baselines we selected are originally designed for static graphs, in this section, we
outline how these methods are adapted for dynamic graphs.

Stochastic methods DropEdge, DropNode, and DropMessage belong to stochastic dropping
methods, which can be naturally integrated into the spatial modeling module of DyGNNs, as all
three backbones use GNNs to capture spatial correlations.

Mixup methods Graph Mixup is a two-stage approach. After fully training the original DyGNN,
we freeze its temporal module and continue training the spatial module following the Mixup
paradigm from Wang et al. (2021b).

Graph Structure Learning Both NeuralSparse and SUBLIME are graph structure learning meth-
ods for GDA. For NeuralSparse, we initialize a denoising network for each graph snapshot and co-
train it with DyGNN. For SUBLIME, we ensure that both X1:T and A1:T are visible to the model.

Graph Rationalization RGDA operates at both the graph and node levels. We apply its node-level
augmentation independently for each snapshot and use sum pooling for Combine(·, ·) in RGDA.

A.2 BASELINES NOT CHOOSED

We acknowledge that some classical or highly relevant GDA methods are not included in our evalu-
ation. This is primarily due to two main reasons:

• Task specificity to graph-level tasks: Many graph rationalization methods are designed ex-
clusively for graph-level tasks, including DIR (Wu et al., 2021), GREA (Liu et al., 2022a),
GraphAug (Luo et al., 2023), DCT (Liu et al., 2024b), AIA (Sui et al., 2024), and C2R (Yue
et al., 2024). Thus, they were not selected for our evaluation.

• Limited to static graphs: When adapting static GDA methods to dynamic graphs, we faced
considerable difficulties, especially with approaches that are inherently designed for individual
graphs. For instance, GAUG-O (Zhao et al., 2021b) perturbs the original graph to generate K
perturbed graphs, which causes issues for DyGNN’s temporal module when aggregating across
different snapshots, as it cannot determine which perturbed snapshot to select. Consequently, we
had to exclude several classical yet incompatible GDA baselines, such as Graph Transparent (Park
et al., 2021), AutoGDA (Zhao et al., 2022c) and FLAG (Liu et al., 2022c).
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B SUPPLEMENTARY EXPERIMENT RESULTS

B.1 RESULTS FOR RQ3

In Figure 7, we present the performance comparison of various GDA methods under a feature
attack, where Gaussian noise is added to node features, Similarly, Figure 8 shows the performance
comparison under the Nettack.

A
U

C
 (

%
)

Figure 7: The performance comparison of various GDA methods under feature attack on DySAT+YELP.

A
U

C
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%
)

Figure 8: The performance comparison of various GDA methods under Nettack on DySAT+YELP.

B.2 RESULTS FOR ABLATION STUDY

To further compare the impact of different environment augmentation strategies within DyAug, we
designed three variants: using only spatial replacement, using only temporal replacement, and using
only spatial-temporal replacement. The results, as shown in Table 4, demonstrate that the variant
with only spatial-temporal replacement closely approximates the performance of the full DyAug. On
the Yelp and ACT datasets, DyAug (spa.) exhibits a significant performance drop, which is likely
due to the longer edge timespans in these datasets (as shown in Figure 4), indicating a higher need
for temporal augmentation.

In addition, Tables 5 and 6 provides supplementary ablation studies under the scenarios of distribu-
tion shift, feature attack, and Nettack.

B.3 RESULTS FOR SENSITIVITY ANALYSIS

To provide a more comprehensive evaluation of DyAug, we have included a sensitivity analysis on
the window size ϖ using the COLLAB and Yelp datasets, as shown in Table 7:
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Table 4: AUC score (%) of DyAug and its variants equipped with different augmentation strategies on real-
world datasets. We select DySAT as the backbone. (tem.), (spa.), and (spa-tem.) denote the configurations
where only temporal replacement, only spatial replacement, and only spatial-temporal replacement are applied.

Model COLLAB Yelp Bitcoin ACT
DyAug 0.8925±0.0074 0.8233±0.0043 0.9032±0.0060 0.7860±0.0084
DyAug (tem.) 0.8923±0.0047 0.8217±0.0047 0.8960±0.0052 0.7869±0.0060
DyAug (spa.) 0.8841±0.0050 0.8193±0.0065 0.8938±0.0052 0.7725±0.0043
DyAug (tem-spa.) 0.8937±0.0068 0.8215±0.0040 0.9079±0.0068 0.7810±0.0072

Table 5: Ablation study under distribution shift. The backbone is set as GRCN, and the dataset is COLLAB.

Variant DyAug DyAug w/o TC DyAug w/o RA DyAug w/o CR DyAug w/o CL

ROC-AUC 73.22 72.76 70.58 73.08 72.70

It can be observed that DyAug performs consistently well when ϖ ∈ {2, 4}, while for ϖ = 8, there
is a notable performance drop on the COLLAB dataset (1.50% ↓ compared to ϖ = 2). We attribute
this to the overly large window size, as the COLLAB dataset consists of only 16 snapshots. With
such a large window, the majority of the dynamic graph sequence is considered as ”positive pairs,”
rendering Lcr ineffective. Therefore, we have fixed ϖ = 2 for all subsequent experiments.

B.4 RESULTS ON LARGE-SCALE GRAPHS

We extended our experiments to include a large-scale dynamic graph dataset, DGraphFin (Huang
et al., 2022), using the slicing and data splitting strategy outlined in (Feng et al., 2024). This dataset
comprises 4,889,537 nodes and 4,300,999 edges, as detailed in Table 8. We believe this benchmark
effectively tests DyAug’s scalability.

We evaluated DyAug’s performance on DGraphFin using DySAT as the backbone model, as shown
in Table 9.

From Table 9, we can conclude that DyAug seamlessly scales to ultra-large graphs. Graph structure
learning methods like NeuralSparse and SUBLIME impose substantial GPU memory demands with
marginal or even negative performance gains (2.46% ↓ for NeuralSparse). Rule-based augmenters
such as DropEdge and DropNode introduce negligible computational overhead but fail to deliver
notable performance gains, consistent with the findings in Table 1. DyAug, however, achieves a
1.72% AUC improvement with an additional GPU memory burden of less than 2 GB, demonstrating
its exceptional scalability.

B.5 RESULTS ON TD-PGD ATTACKS

We conducted additional experiments to evaluate DyAug under the more advanced attack method
TD-PGD Sharma et al. (2023), as shown in Table 10. The results demonstrate that DyAug maintains
strong robustness even under TD-PGD attacks. Notably, at ϵ = 0.1, DyAug even achieves a perfor-
mance improvement of 0.14% when applied on DySAT+UCI. What’s more, DyAug demonstrated
significant robustness on the DySAT+ACT setting under the TD-PGD attack, as it successfully im-
proved the attacked performance from 68.53% to 74.90% at ϵ = 0.3, achieving a remarkable 6.37%
gain, which we believe serves as compelling evidence of its resilience in more challenging scenarios.

B.6 RESULTS WITH MORE ADVANCED DYGNN BACKBONES

To further validate the wide applicability of DyAug, we have incorporated two advanced DyGNN
backbones, Roland You et al. (2022) and SLATE Karmim et al. (2024). The experimental results
are presented in Table 11. We observe that DyAug maintains excellent generalizability across these
backbones, achieving a 1.0% and 1.87% performance gain on Roland and SLATE, respectively.
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Table 6: Ablation study under topological attack and Nettack. The backbone is set as GRCN, and the dataset
is ACT.

Variant DyAug DyAug w/o TC DyAug w/o RA DyAug w/o CR DyAug w/o CL

Feature attack 72.35 69.58 65.18 70.95 70.51
Nettack 74.68 72.05 71.41 74.36 73.05

Table 7: Sensitivity analysis on parameter ϖ with GRCN backbone.

Dataset COLLAB Yelp
ϖ = 2 0.8495± 0.0070 0.6795± 0.0204

ϖ = 4 0.8506± 0.0082 0.6785± 0.0139

ϖ = 6 0.8469± 0.0069 0.6732± 0.0188

ϖ = 8 0.8345± 0.0112 0.6690± 0.0228

Table 8: Dataset characteristics.

Dataset COLLAB Yelp Bitcoin UCI ACT DGraphFin

#Nodes 23,035 13,095 5,881 1,899 20,408 4,889,537
#Edges 151,790 65,375 35,591 59,835 202,339 4,300,999
#Time steps 16 24 21 13 30 12

Table 9: Results on DGraphFin+DySAT. The implementation of DySAT is from Amazon-TGL (https:
//github.com/amazon-science/tgl). The results are reported on a single NVIDIA Tesla A100 40G
GPU.

Metric AUC (%) Per-epoch time (s) GPU Memory (GB)
Vanilla 73.26 47s 3.7GB
+DropEdge 72.69 43s 3.7GB
+DropNode 73.50 41s 3.7GB
+DropMessage 71.22 53s 3.7GB
+NeuralSparse 70.80 186s 17GB
+SUBLIME 73.15 147s 21GB
+RGDA 74.12 69s 6.9GB
+DyAug 74.98 56s 5.6GB

Table 10: Results tested with TD-PGD attack.

Data Method ϵ = 0.0 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3

UCI
DySAT 0.7502±0.0056 0.7418±0.0092 0.7276±0.0143 0.7191±0.0129
+DyAug 0.7698±0.0063 0.7712±0.0080 0.7456±0.0120 0.7466±0.0174

ACT
DySAT 0.7790±0.0036 0.7698±0.0028 0.7334±0.0138 0.6853±0.0262
+DyAug 0.7860±0.0054 0.7834±0.0112 0.7682±0.0109 0.7490±0.0176

C DISCUSSION ON DYNAMIC GRAPH OOD METHODS

Several works on out-of-distribution (OOD) handling in dynamic graphs (Zhang et al., 2022a; Yuan
et al., 2024b; Zhang et al., 2024c) have also explored data augmentation for dynamic graphs. Here,
we summarize the key distinctions between DyAug and these approaches:

1. Plug-and-play functionality: Methods such as (Zhang et al., 2022a; Yuan et al., 2024b;
Zhang et al., 2024c) are specifically tailored for OOD-oriented backbones. In contrast,
DyAug can seamlessly integrate with any DyGNN, enhancing its performance, robustness,
and generalizability.
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Table 11: Results on the UCI dataset. Roland is implemented with Roland-GRU.

Backbone Roland SLATE
ROC-AUC (%) Gain ROC-AUC (%) Gain

Vanilla 79.53±0.6122 - 81.26±0.3051 -
+DropEdge 79.25±0.4822 −0.28 ↓ 80.12±0.4715 −1.14 ↓
+DropNode 79.29±0.6590 −0.24 ↓ 80.59±0.3552 −0.67 ↓
+DropMessage 79.72±0.3145 +0.19 ↑ 81.77±0.5819 +0.51 ↑
+GraphMixup 77.50±0.8911 −2.03 ↓ 80.35±0.7401 −0.91 ↓
+NeuralSparse 79.86±0.4818 +0.33 ↑ 81.75±0.4291 +0.49 ↑
+SUBLIME 80.23±0.5741 +0.70 ↑ 82.56±0.3069 +1.30 ↑
+RGDA 79.86±0.9582 +0.33 ↑ 82.77±0.3593 +1.51 ↑
+DyAug 80.53±0.7318 +1.00 ↑ 83.13±0.2639 +1.87 ↑

2. Temporal-consistency awareness: While existing methods (Zhang et al., 2022a; Yuan
et al., 2024b; Zhang et al., 2024c) predominantly rely on disentangled learning to generate
multiple representations for a central node, DyAug adopts a unique approach by sequen-
tially identifying causal masks for each graph snapshot, with each mask conditioned on
the preceding one (as shown in Eq. (3)). This Markov-style subgraph generation ensures
consistency of rationale across the temporal dimension.

3. Comprehensive augmentation: Methods such as DIDA and EAGLE (Yuan et al., 2024b)
employ spatial-temporal augmentation by leveraging environment embeddings from other
nodes across different timestamps, whereas SILD (Zhang et al., 2024c) focuses on spatial
augmentation by enhancing nodes using variant spectrum information from other nodes.
DyAug distinguishes itself by offering comprehensive augmentation across three dimen-
sions: spatial, temporal, and spatial-temporal.

4. Robustness verification: The performance of existing OOD methods for DyGNNs under
adversarial attacks remains unexplored. In contrast, DyAug positions itself as a robusti-
fier for DyGNNs, effectively defending against structural, feature, and hybrid adversarial
attacks.
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