
Published as a conference paper at ICLR 2024

SRL: SCALING DISTRIBUTED REINFORCEMENT
LEARNING TO OVER TEN THOUSAND CORES

Zhiyu Mei∗ 12Z, Wei Fu∗ 12\, Jiaxuan Gao12, Guangju Wang 3, Huanchen Zhang 12, Yi Wu 123^
1 IIIS, Tsinghua University, 2 Shanghai Qi Zhi Institute, 3 OpenPsi Inc.Z
meizy20@mails.tsinghua.edu.cn, \ fuwth17@gmail.com,^
jxwuyi@gmail.com

ABSTRACT

The ever-growing complexity of reinforcement learning (RL) tasks demands a
distributed system to efficiently generate and process a massive amount of data.
However, existing open-source libraries suffer from various limitations, which
impede their practical use in challenging scenarios where large-scale training is
necessary. In this paper, we present a novel abstraction on the dataflows of RL
training, which unifies diverse RL training applications into a general framework.
Following this abstraction, we develop a scalable, efficient, and extensible dis-
tributed RL system called ReaLly Scalable RL (SRL), which allows efficient and
massively parallelized training and easy development of customized algorithms.
Our evaluation shows that SRL outperforms existing academic libraries, reaching
at most 21x higher training throughput in a distributed setting. On learning per-
formance, beyond performing and scaling well on common RL benchmarks with
different RL algorithms, SRL can reproduce the same solution in the challenging
hide-and-seek environment as reported by OpenAI with up to 5x speedup in wall-
clock time. Notably, SRL is the first in the academic community to perform RL
experiments at a large scale with over 15k CPU cores. SRL source code is available
at: https://github.com/openpsi-project/srl.

1 INTRODUCTION

Table 1: Capabilities of open-source distributed RL systems.

Multi-Node
Training

Remote GPU
Inference

Custom
RL Algo.

Custom
DataFlow

RLlib ✘ ✘ ✘

SeedRL ✘ ✘ ✘

ACME ✘ ✘ ✘

MSRL ✘ ✘

SRL (ours)

Reinforcement Learning (RL) has
been a popular paradigm leading to
a lot of AI breakthroughs, including
defeating world champions in various
competitive games (Silver et al., 2016;
Berner et al., 2019; Vinyals et al.,
2019; Pérolat et al., 2022), controlling
a tokamak nuclear fusion reactor (De-
grave et al., 2022), discovering novel
algorithms (Fawzi et al., 2022), and
creating intelligent robots (Liu et al.,
2022). As RL tasks get increasingly more complex, training a strong neural network policy requires
millions to billions of trajectories. Generating the data sequentially would take hundreds or even
thousands of years. Therefore, building a system that can parallelize the data collection process
and perform efficient RL training over massive trajectories becomes a fundamental requirement for
applying RL to real-world applications.

Numerous open-source libraries or frameworks are available to facilitate efficient RL training.
However, we have identified several limitations in these systems that hinder their abilities to train RL
agents efficiently in various scenarios, as we will show in Sec. 2.2. Such limitations render open-
source libraries insufficient for supporting large-scale RL training applications like AlphaStar (Vinyals
et al., 2019) for StarCraft II or OpenAI Five (Berner et al., 2019) for Dota 2. Unfortunately, the
proprietary systems used by OpenAI and DeepMind have not been open-sourced, and the architectural
and engineering details have not been disclosed to the research community. As a result, it remains

∗Equal Contribution.

1

https://github.com/openpsi-project/srl

Published as a conference paper at ICLR 2024

largely unknown how to develop a system capable of scaling well enough to support RL training in
complex environments and maximizing hardware efficiency under resource constraints.

In this paper, we present a general abstraction of the dataflows of RL training. This abstraction
effectively unifies training tasks in diverse circumstances into a simple framework. At a high level,
we introduce the notion of workers to represent computational and data management components,
each of which hosts distinct task handlers such as environments or RL algorithms. Workers are
interconnected by streams and supported by services. Based on such an abstraction, we propose SRL
(ReaLly Scalable RL), a scalable, efficient, and extensible distributed RL system. Capabilities of SRL
compared to exitsing systems are shown in Table 1. SRL encompasses three primary types of workers
to decouple major computations in RL training, which allows SRL to allocate suitable computing
resources (CPUs or GPUs with varying computation powers) based on the requirements of each task
in a cluster with heterogeneous hardware. Moreover, SRL is highly adaptable and extensible. In
addition to a set of built-in implementations of workers and algorithms, SRL provides a general set of
APIs that allow users to develop new algorithms and system components easily.

Our evaluation focused on two key metrics: training throughput and learning performance. We
first compared the training throughput of SRL to various open-source libraries, showing the superior
performance of SRL in both local and distributed settings. While open-source libraries generally fail
to scale up to a large cluster, we re-implement their system architectures within SRL and compare
them with the novel architecture in SRL. Such evaluation shows the extraordinary efficiency and
scalibility of SRL’s decoupled architecture. As for learning performance, we implement several
popular RL algorithms and evaluate them at various scales on common RL benchmarks. These
algorithms can obtain a reasonably high performance after 8 hours, as well as showing insightful
scaling trends as the experiment scale increases. Finally, we evaluated SRL in the challenging
hide-and-seek environment (Baker et al., 2019) and found that SRL is able to reproduce the same
solution quality as Rapid (Berner et al., 2019), OpenAI’s production system, while achieving a 3x
speedup with CPU inference and a 5x speedup with GPU inference. SRL was also able to solve a
more challenging variant of HnS with over 15K CPU cores. The training process gets substantially
accelerated with an increasing amount of computation.

We make three primary contributions in this paper. First, we introduce a general abstraction on
RL dataflows, which facilitates massive parallelism and efficient resource utilization under various
resource settings. Second, based on this abstraction, we develop SRL, a scalable, efficient, and
extensible distributed RL system. SRL features high-throughput training on both local machines and
very large clusters, and flexible APIs that allows easy development of customized algorithms and
system components. Third, we evaluate the performance of SRL extensively across a wide range of
RL testbeds and algorithms in a large scale with up to 15k CPU cores. SRL shows superior scalability
and efficiency compared to existing academic systems as well as OpenAI’s production system.

2 BACKGROUND & MOTIVATION

2.1 REINFORCEMENT LEARNING SYSTEM

We identify three major computation components in a typical RL system: Environment simulation
produces observations and rewards based on actions. This computation is typically performed using
external black-box programs on CPUs. Policy inference produces actions from observations via
neural network inference.Training executes gradient descent iterations with the collected trajectories
to improve the policy. For computations on neural networks, the system can use either CPU or GPU
devices, although there can be a clear performance advantage when adopting GPUs. Vanilla RL
implementations tightly couple the above computations: at each training iteration, it first conducts
environment simulation and policy inference alternatively to collect trajectories, and then performs
training with the data. This vanilla implementation is far from efficient because only one of the major
computations can be executed at a given time.

There have been numerous works aimed at developing RL systems or libraries only focusing on
limited purposes and scales (Nair et al., 2015; Caspi et al., 2017; Hafner et al., 2017; Gauci et al.,
2018; Castro et al., 2018; Fan et al., 2018; Stooke & Abbeel, 2018; 2019; Pardo, 2020; Zhi et al.,
2020; Petrenko et al., 2020). OpenAI and DeepMind have developed industrial-scale distributed RL
systems for training complex agents (Berner et al., 2019; Vinyals et al., 2019; Hessel et al., 2021).

2

Published as a conference paper at ICLR 2024

CPU Node CPU Node

GPU NodeObservations

Actions

GPU Node
CPU

GPU

SeedRL

CPUCPU

CPU Node CPU Node

Collected
Trajectories

GPU Node
GPU

GPU Node

CPU

RLlib / ACME

CPU CPU GPU

Figure 1: IMPALA-style (left) and SEED-style (right) architecture implementations on a cluster with
GPU nodes. The former merges environment simulation and policy inference in a single CPU/GPU
node, while the latter merges policy inference and training on centralized GPU node. Note that in
SEED-style, GPU nodes running environment simulation rely on the training GPU node for policy
inference, while in IMPALA-style, they rely on local CPU/GPU for policy inference.

Unfortunately, they never open-source their systems or explain the architecture or engineering details.
The open-source versions (Dhariwal et al., 2017; Küttler et al., 2019) of these systems are typically
limited to small-scale settings and benchmarking purposes.

Other open-source and academic RL systems that enables distributed training typically follows two
types of architectures. The first one is IMPALA-style (Espeholt et al., 2018) architecture (Fig. 1 left),
which tightly couples environment simulation and policy inference. The coupled environment-policy
loop can be parallelized to speed up training sample generation. This architecture is widely adopted
by existing systems. Among them, RLlib (Liang et al., 2017), implemented with Ray (Moritz et al.,
2017), is probably a most popular one. RLlib also exploits a programming model named RLlibFlow
(Liang et al., 2020) to reduce coding efforts. ACME (Hoffman et al., 2020) is a framework with
similar architecture to RLlib, based on a customized communication library Launchpad (Yang et al.,
2021). Other similar works that share the architecture include ElegantRL (Liu et al., 2021) and
TLeague (Sun et al., 2020). The other one, the SEED-style architecture (Fig. 1 right) proposed
by SeedRL (Espeholt et al., 2019), features centralized policy inference and training on its single
TPU/GPU “learner”. SeedRL is originally specialized for RL training on TPUs, while remains
compatible with GPU devices. MSRL (Zhu et al., 2023) is a concurrent work to us that supports
both IMPALA- and SEED-style architectures. It transforms RL algorithm implementations into
executable code fragments at runtime. Then these fragments are parallelized and executed following
a pre-determined scheduling plan.

2.2 LIMITATIONS OF EXISTING SYSTEMS

Based on our research and evaluation, we have found that existing systems have several common
limitations in both designs and implementations.

Limitation 1: Low Resource Efficiency. The two architectures adopted by existing systems have
made unnecessary assumptions in available computation resources. Consequently, their architectures
tightly couple multiple computational components and allocate them onto devices located on the
same node, which could be highly inefficient in a customized cluster. The IMPALA-style architecture,
represented by RLlib and ACME, assumes only local devices are available for policy inference to
produce actions for environment simulations. The variation of inference requirements may easily
cause local computing resources (CPUs or GPUs) to be idle or overloaded and lead to significant
resource waste. The SEED-style architecture primarily assumes that multi-core TPU is available
for training and policy inference. In the case of GPUs instead of a multi-core TPU, however, its
computing power may struggle to handle both inference and training. Note that although MSRL
implements both of the two architectures, it does not provide additional solutions to overcome their
limitations caused by coupling.

Limitation 2: Simplistic Implementations with Inadequate Optimizations. Existing open-source
systems and libraries have limited supports for multi-node training and performance optimizations.
Specifically, RLlib and ACME only support multi-GPU training on a single node, while SeedRL can
only run on a single trainer. Although the original design of MSRL include multi-learner options, only
single-learner training is available in their open-source codebase. Moreover, the implementations
of their components are usually single-threaded without overlapping I/O heavy operations and
computation or fully utilizing idle time caused by data dependencies. Consequently, these systems
lead to poor training throughput, especially in large-scale scenarios.

3

Published as a conference paper at ICLR 2024

 Trainer
 Worker

 Policy
 Worker

 Policy
 Worker

 Actor
 Worker

 Actor
 Worker

 Actor
 Worker

 Actor
 Worker

CPU Nodes
(Actor Workers)

Low-power GPU node
(Policy/Actor Workers)

High-power GPU Node
(Trainer Workers)

GPUCPUCPUCPU

CPUGPU

Inference Stream Sample Stream

Network Shared Memory

 Worker task handler

 Worker task handler

 Worker task handler

........

Data Streams

Service

Se
rv

ic
e

 Actor
 Worker Environment

 Policy
 Worker RL Policy

 Trainer
 Worker RL Trainer

Inference Stream Sample Stream

...

...

Parameter Service

Parameter Service

...

...

Abstraction Architecture (with minimal components) Execution Instance

Figure 2: (left) In SRL abstraction, workers host task handlers to execute computing tasks. Workers
are connected by data streams and supported by services. (middle) Based on the abstraction, the
architecture for a typical RL workflow in SRL incorporates 3 types of core workers, 2 types of
streams and the parameter services. (right) In an execution instance of SRL, workers are assigned
appropriate resources on heterogeneous nodes in a distributed cluster. Data streams exploit fastest
available communication substrates to ensure high-throughput data transmission.

Limitation 3: Coupled Algorithm and System Interfaces. In most open-source systems, the
algorithm implementation is closely intertwined with their system APIs. In order to customize
the algorithm, the users are forced to understand and modify codes related to system execution.
Additionally, these systems assume a classic RL workflow that strictly follows the three major RL
computation components mentioned in Sec. 2.1. As a result, they lack an interface that enables the
expansion of system components, which restricts their compatibility with complex RL algorithms
(such as Re-analyzed MuZero (Schrittwieser et al., 2019)) that require addtional computations.

3 SYSTEM DESIGN & ARCHITECTURE

In this section, we present the design and architecture of SRL, addressing all previously mentioned
limitations. Sec. 3.1 introduces a general abstraction for RL training dataflows. Base on this abstrac-
tion, we introduce the architecture of SRL. For a clear presentation, the architecture demonstrated
here only contains minimal components that is sufficient to support the most popular RL algorithm
PPO (Schulman et al., 2017). The workflow of PPO is already introduced in Sec. 2.1. Next, Sec. 3.2
and Sec. 3.3 describes detailed designs, implementations and optimizations in core components
of SRL, which reveals the factors that contribute to SRL’s high performance. Finally, in Sec. 3.4,
we introduce the extensible and user-friendly interfaces in SRL, showing its capability to be easily
extended to support RL algorithms that require a more complicated system design.

3.1 HIGH-LEVEL DESIGN OF SRL

In order to achieve high resource efficiency in various computation resource settings, we propose a
general abstraction to express RL training dataflows. As Fig. 2 left shows, the abstraction is composed
of multiple workers that host distinct task handlers that execute computing tasks. These workers
are connected via data streams and supported by background services. Unlike previous designs,
all workers in SRL can be independently scheduled and distributed across multiple machines with
heterogeneous resources, allowing massive parallelism and efficient resource utilization under various
resource settings from single machines to large clusters. The data streams and background services
follows different patterns depending on the requirement of various RL algorithms. It is also worth
mentioning that the clean abstraction of SRL enables fine-grained optimization within each type of
workers, which brings significant improvements in performance and scalability compared to existing
libraries, even when adopting the same architecture.

Based on this simple abstraction, we develop the architecture of SRL as illustrated in Fig. 2 middle.
We would like to emphasize that the architecture introduced here only contains minimal components
that supports a typical RL workflow. This architecture incorporates three core types of workers: actor
worker, policy worker, and trainer worker, which are responsible for the three pivotal workloads in
RL training tasks. Data transmission between workers are primarily subsumed into two patterns and
handled by inference streams and sample streams. Other communications are managed by services,
for example, parameter service for parameter synchronization. Fig. 2 right demonstrates an execution
instance of SRL in a distributed scenario. The workers are instantiated as processes on heterogeneous
nodes in a cluster. Each worker is assigned an appropriate amount of computing resources based on

4

Published as a conference paper at ICLR 2024

its task. Data streams exploit networking sockets or shared memory blocks as their communication
substrates, facilitating high-throughput data transmission. As a result, the architecture of SRL not
only unifies existing local and distributed architectures, but also enables efficient resource allocation
and data communication for scenarios beyond the capabilities of existing architectures.

3.2 SYSTEM COMPONENTS & IMPLEMENTATION

In this section, we will describe the working logic and implementation of each system component.

Actor workers handle execution of black-box environment programs. Before every environment step,
each actor worker sends out the observation and requests an action from policy workers to continue
to the next step. Actor workers are inherently designed to be multi-agent, such that (1) different
actor workers can host different number of agents, (2) agents can asynchronously step though the
environment (skip if the environment returns None), and (3) agents can apply different policies by
connecting to different streams (see App. A for an example use case). This flexible design enables
SRL to deal with more complex and realistic application scenarios.

Policy workers provide batched policy inference services for actor workers. Policy workers flush
inference requests, compute forward passes with batched observations, and respond to them with
output actions. Jobs on the CPU and GPU are separated into two threads. Our implementation
of policy workers also supports a local mode using CPU cores, which we call inline inference. In
this case, the inference stream module will ensure direct data transmission between an actor and its
associated local policy worker with proper batching without redundant data transmission, which can
be preferred when no GPU devices are available.

Trainer worker consumes samples and updates policy model. Each trainer worker is embedded
with a buffer. At each step, a trainer worker aggregates a batch of trajectories from the buffer and
loads them into GPU for gradient updates. Jobs on the CPU and GPU are separated into two threads.
Trainer workers use PyTorch DistributedDataParallel (DDP) (Li et al., 2020) for data parallel training.

Sample streams and inference streams. In SRL, we identify two primitive types of data transmis-
sions. The first is exchanging observations and actions between actor and policy workers, while the
other is pushing samples from actor to trainer workers. In SRL, we developed inference streams and
sample streams to handle these two patterns, respectively. In one experiment, multiple instances of
streams can be instantiated to establish independent and perhaps overlapped communications, which
can be preferred in applications like multi-agent RL and population-based training.

Parameter server is the intermediate station for synchronizing policy models between policy and
trainer workers. Trainer workers will push a newer version of policy models to the parameter server
and policy workers will pull the model from it regularly. SRL adopts an NFS (Sandberg et al., 1985)
implementation for the parameter server, which has enough throughput according to our experience.

Controller and scheduler. Upon launching an experiment, SRL submits a controller and all workers
to the cluster via a scheduler. The controller is responsible for monitoring and managing the lifetime
of workers. The scheduler supports a rich set of configuration options to do customized resource
allocation, e.g., allocating trainer and policy workers to the same node with remote actors. Workers
allocated to the same node will automatically establish shared-memory stream connection. The
scheduler design prevents resource waste when some workers cannot fully utilize the power of a GPU
and maximally reduces data transmission overhead in the cluster.

3.3 PERFORMANCE OPTIMIZATION

In this section, we introduce two optimizations that significantly contribute to the performance of
SRL. Other optimizations are discussed in App. B and ablation studies are illustrated in App. C.

Environment Ring. In a trivial implementation of actor workers, CPU cores will be periodically
idle when waiting for the next actions. To fully utilize the CPU resources, an actor worker in SRL
maintains multiple environment instances and executes them sequentially in an “environment ring”.
When an environment instance finishes simulation and starts waiting for an action, the actor will
immediately switch to the next one. With a proper ring size, we can ensure that when simulating an
environment instance, the required action is always ready. Environment rings substantially eliminate
idle time for actors, and thus greatly increase data generation efficiency for actor workers.

5

Published as a conference paper at ICLR 2024

Trainer Pre-fetching. A typical working cycle for a trainer worker consists of three steps: storing
received data in the buffer, loading data into GPU, and computing gradients for model updates. The
first two steps are I/O heavy operations. Overlapping these steps with the third step can lead to higher
sample throughput than executing them sequentially on the trainer worker. While receiving and
storing data into the buffer could be simply implemented into a separate thread, model updates on a
sample batch require data loading as a dependency. To overlap computing with I/O operations, we
use a pre-fetching technique. To implement this technique, we reserve GPU memory for additional
batches of training samples. When training starts, one sample batch is fetched into GPU memory.
Then, while the GPU computes the gradient on this sample batch, another sample batch is pre-fetched
into the other memory block simultaneously. In this way, all three steps in the working cycle will be
executed in parallel threads, which further improves the performance of SRL.

3.4 USER-FRIENDLY AND EXTENSIBLE DESIGNS

class MyDQNPolicy:

def __init__(self, **kwargs):

Can be any neural networks.

self.net = MyNet(**kwargs)

...

def rollout(self, request: Dict[Tensor]):

This method is used by policy workers.

"request" contains obs, policy state, ..

...

def analyze(self, sample: Dict[Tensor]):

This method is used by the RL algorithm.

"sample" contains obs, act, rew, ..

...

class MyDQNAlgorithm:

def step(self, sample: Dict[Tensor]):

The API called by trainer workers.

q, q_target = self.policy.analyze(sample)

loss = mse_loss(q, q_target)

... # Gradient descent step.

return {’loss’: float(loss)}

Code 1: Example of a simplified DQN policy.

class Worker:

def configure(self, config):

self._configure(config)

...

def run(self):

while not self.__exiting:

r = self._poll()

RPC requests from controller

self._server.handle_requests()

class BufferWorker(Worker):

def _configure(self, cfg: api.config.BufferWorker):

... # Init streams and the policy.

def _poll(self):

Connected with actor worker.

x, cnt = self.up_stream.consume_to(self.buf)

The "task handler".

y = self.policy.reanalyze(self.buf.get())

Connected with trainer worker.

self.down_stream.post(y)

return PollResult(sample_count=cnt, batch_count=1)

Code 2: An simplified implementation of a customized
buffer worker for data reanalysis.

In addition to its high scalability and efficiency, SRL offers user-friendly and extensible interfaces,
allowing for the development and execution of customized environments, policies and complex
algorithms within its framework.

Policies and algorithms in SRL are separated from the system design, allowing users to develop
new variants without using any system-related interfaces. In Code 1, we present an example of
a Deep Q-Network (Mnih et al., 2013) policy. To write a new policy, users only need to write a
policy class that defines the policy’s behavior during data generation and training, and an algorithm
file that specifies how to compute the scalar loss given data obtained from the policy. These files
are independent of the system component implementations, allowing users to focus on algorithm
development rather than execution details.

Additionally, SRL offers interfaces for both new workers and data streams, facilitating complete
customization of dataflow and algorithmic modules. For example, to implement Re-analyzed MuZero,
an additional module that periodically reprocesses generated samples is required. Code 2 shows a
simplified example of BufferWorker that implements such a module. Although this module
does not fit into the primary computation components of SRL, users can easily create a self-defined
worker-type by inheriting the base Worker, and define the underlying communication with data
streams. This worker-based customization further facilitates the development of complex RL training
routines within our framework. More examples and details can be found in App. A.

4 EXPERIMENTS

Our evaluation focuses on two key metrics: training throughput and learning performance. Training
throughput refers to the rate at which a system can process sample frames per second (FPS) for
gradient updates, while learning performance measures the wall-clock time required to generate the

6

Published as a conference paper at ICLR 2024

8 16 32 64
Num CPU cores

0

50k

100k

Fr
am

es
 p

er
 se

co
nd

atari
SRL
Sample Factory
SeedRL
rlpyt

8 16 32 64
Num CPU cores

0

20k

40k

dmlab

8 16 32 64
Num CPU cores

0

1k

2k

football

8 16 32 64
Num CPU cores

0

1k

2k

smac-27m-vs-30m

Figure 3: Training FPS of SRL and baselines on a single machine. SeedRL with 32 and 64 CPU
cores results in GPU out-of-memory. SeedRL and Rlpyt do not support multi-agent environments.

8 16 24 32
N trainer workers

0

200k

400k

Fr
am

es
 p

er
 se

co
nd

atari
SRL SEED IMPALA

8 16 24 32
N trainer workers

0

100k

200k

300k

football

8 16 24 32
N trainer workers

0

20k

40k

smac-27m-vs-30m

8 16 24 32
N trainer workers

0

200k

400k

dmlab

Figure 4: Training FPS of three different architectures (SRL, IMPALA, SEED) implemented in SRL
in a large-scale cluster, using up to 32 A100 GPU, 64 RTX 3090 GPU and 12800 CPU cores.

optimal solution or the reward obtained after training for a fixed amount of time. Full experiment
details (including hardware resources, training parameters, etc.) are listed in App. D.

In terms of training throughput, we compare the end-to-end training FPS of SRL with open-source
libraries in both single-machine and medium-scale distributed settings. Baselines generally fail
to scale up to a large-scale cluster. To perform large-scale evaluation, we re-implement baseline
architectures within SRL via adopting different scheduling configurations and compare them against
SRL’s fully decoupled architecture. These experiments demonstrate the super-high efficiency and
scalability of SRL from academic use cases to large-scale production scenarios.

As for learning performance, we implement several popular RL algorithms within SRL and evaluate
them at various scales on common RL benchmarks. Through these experiments, we validate the
capability of SRL to unify different RL workflows, as well as presenting insightful scaling trends of
representative RL algorithms. Finally, we focus on a realistic and challenging environment, hide-and-
seek (HnS), to show the applicability of SRL for addressing complicated real-world problems.

4.1 TRAINING THROUGHPUT

Environments & Algorithm We run experiments on Atari (Bellemare et al., 2012) (Pong), Google
Research Football (gFootball) (Kurach et al., 2019) (11 vs 11), StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019) (27m vs 30m), and DMLab (Beattie et al., 2016) (watermaze),
each of which possesses distinct characteristics in terms of observation type, speed, memory, etc (see
Table 3). We employ the widely-used Proximal Policy Optimization (PPO) (Schulman et al., 2017)
as our primary algorithm choice. Each trajectory will be consumed only once.

Comparison with Baselines We choose Sample Factory (Petrenko et al., 2020), rlpyt (Stooke &
Abbeel, 2019), and SeedRL (Espeholt et al., 2019) as baselines in the single-machine setting and
RLlib (Liang et al., 2017) as baseline in the distributed setting. Fig. 3 and Table 2 show results in the
single-machine and distributed setting respectively. SRL achieves the best overall performance in
both settings. In the single-machine setting, SRL beats state-of-the-art systems specialized for this
setting without sacrificing scalability and extensibility. In the distributed setting, SRL achieved 6.3x
to 21.6x higher maximal performance compared with RLlib. We remark that trainer workers of SRL
can effectively utilize more training samples in contrast to RLlib’s single-endpoint multi-threaded
trainer. Moreover, actor workers in SRL are capable of generating more training samples with
GPU-accelerated inference and specialized performance optimizations. As for MSRL (Zhu et al.,
2023), the IMPALA and PPO algorithm implementations in their open-source codebase 1 use NCCL
as the communication backend. This results in GPU requirement for each environment simulation

1MSRL trainer code link.

7

https://github.com/mindspore-lab/mindrl/blob/master/mindspore_rl/algorithm/impala/impala_trainer.py

Published as a conference paper at ICLR 2024

Table 2: Training throughput with 8 A100 GPU
trainers with distributed actors. # CPU Cores
(peak): CPU cores used for training sample gen-
eration when trainers reaches peak performance.

Atari DMLab gFootball SMAC

SRL(FPS) 644k 741k 89k 17k
Cores (Peak) 800 1600 3200 1280

SRL(FPS) 150k 658k 19k 5.0k
Cores 96 160 700 200

RLlib(FPS) 66k 34k 5.8k 2.7k
Cores (Peak) 96 160 700 200

(a) HnS environment.

1 2 3 4

(b) Reward over time in
HnS.

Figure 5: (a) A snapshot of HnS. (b) Rewards
in HnS. Agent behavior evolves over four stages:
running and chasing, box lock, ramp use, and
ramp lock.

process, forbidding us to evaluate MSRL in the single-machine setting. Moreover, the open-source
codebase does not involve multi-learner options, blocking us from experiments in our distributed
setting. Hence, we evaluated against its performance described in paper. The detailed experiment
settings and training throughput numbers are listed in App. D.2. The result shows that our system
could reach 2.52x training FPS under the same experiment settings.

Large-Scale Architecture Evaluation We implement IMPALA-style and SEED-style architectures
in SRL, and evaluate them against the new decoupled architecture of SRL. Fig. 4 shows the full result.
We progressively increased the allocation of computing resources from a quarter of the cluster (8 A100
GPUs and 3200 CPU cores) to the entire cluster. As the computing resources increase, SRL exhibits
proportional performance improvement across all architectures, indicating favorable scalability. When
employing a full-sized cluster, our novel architecture achieves a maximum improvement of 3.74x
compared to SEED-style and 1.68x compared to IMPALA-style architecture.

4.2 LEARNING PERFORMANCE

Common RL Benchmarks We implement four RL algorithms: (MA)PPO (Schulman et al., 2017;
Yu et al., 2022), Apex-DQN (Horgan et al., 2018), and VDN (Sunehag et al., 2018). These algorithms
cover a wide range of RL workflows range from on/off-policy to single/multi-agent. We select Atari
as the single-agent benchmark suite and gFootball as the cooperative multi-agent counterpart. We
train agents for a fixed amount of time (8 hours) and report the evaluation score of the final checkpoint
over 100 episodes. For each algorithm, we choose a base configuration and multiply the batch size
and the number of workers for larger scales. All experiments are submitted to our distributed cluster
with GPU inference. See App. D for detailed configurations.

0 2 4 6 8 10 12 14 16
Scale of Batch Size & Workers

2

4

6

8

IQ
M

 H
um

an
No

rm
al

ize
d

Sc
or

e

PPO
ApexDQN

0 2 4 6 8 10 12 14 16
Scale of Batch Size & Workers

0.0

0.5

IQ
M

 W
in

 R
at

e

MAPPO
VDN

Figure 6: Algorithm performance in terms of IQM (Agarwal
et al., 2021) human-normalized score in Atari-5 (Aitchison
et al., 2023) and IQM win rate in gFootball academy scenarios
after 8-hour training at various scales. Averaged over 5 seeds
with 0.95 confidence interval shaded. PPO shows appealing
scaling trend with more samples and larger batch sizes.

We show the aggregated task performance
in terms of IQM (Agarwal et al., 2021) in
Fig. 6. Per-task scores and hyperparame-
ters are presented in App. D. Since training
is terminated after 8 hours, the resulting
score is not directly comparable to prior
works or across different algorithms. We
primarily draw two main conclusions from
Fig. 6. First, SRL is able to support differ-
ent RL algorithms with little engineering
efforts. Within SRL, these algorithms can
obtain a reasonably high performance after
a short period of training. Second, the scal-
ing trend shows that PPO acquires more
benefits of the increased scale thanks to
variance reduction, while the performance of Q-learning algorithms my drop because of less training
steps under fixed time budget. This finding extends previous studies (Andrychowicz et al., 2021; Yu
et al., 2022) and raises several open questions. We hope these questions could drive the community
towards developing more advanced techniques for efficient RL training.

8

Published as a conference paper at ICLR 2024

x1 x2 x4
Scale of Batch Size & Workers

2

4

6

Sp
ee

du
p

Ra
tio

(T
im

e)

Rapid
SRL CPU inf.
SRL GPU inf.

x1 x2 x4
Scale of Batch Size & Workers

0

1

2

3

Sp
ee

du
p

Ra
tio

(S
am

pl
e

Fr
am

es
)

(a) Speedup ratio in HnS compared with Rapid.

15360 CPUs
32 A100

7680 CPUs
16 A100

3840 CPUs
64 3090
32 A100

1920 CPUs
32 3090
16 A100

(b) Learning progress in the hard setting of HnS.

Figure 7: (a) Speedup ratio to reach stage four in HnS compared with results reported in Baker et al.
(2019). SRL achieves up to 5x acceleration. (b) Learning curves (i.e. the number of locked ramps in
the preparation phase over time) in HnS with 2x map size at various scales.

Reproducing Hide-and-Seek (HnS) We present the environmental details in App. D.5. Via training
intelligent agents in HnS via PPO self-play, Baker et al. (2019) discovered four stages of emergent
behaviors across learning. The reward across this learning process (reproduction within SRL) is
shown in Fig. 4b. Due to the non-trivial agent-object interactions and the complexity of the task,
observing such behavior evolution requires an extremely large batch size, e.g. 320k interaction steps
in a single batch. We made our best efforts to run baseline systems in this environment, but none of
them can handle training tasks on such a scale and reproduce the reported results. We run SRL with
the same environment configuration, policy model, and PPO hyper-parameters as Baker et al. (2019).
Since Rapid is not open-source, nor do the authors reveal how much computation resources they have
utilized, we are only able to compare with the reported numbers in the original paper.

We conduct experiments in the distributed setting using both inline CPU inference (denoted as CPU
Inf.) and remote GPU inference (denoted as GPU Inf.). In Fig. 7a, we present the acceleration ratio
of training time and data volume required to achieve the ramp lock stage. Our results reveal that SRL
is up to 3x faster than the Rapid system with the same architecture (CPU Inf.), while GPU Inf. can
achieve up to 5x acceleration with further reduced time and environment interactions. We attribute
the improvement in training efficiency to two reasons. First, our system design is more efficient and
has a higher FPS than Rapid. Second, our flexible system design and fine-grained optimizations
ensure that the efficiency of the RL algorithm is less affected by various system-related factors like
network latency and out-of-date data, which leads to improved sample efficiency even with the same
RL algorithm and hyperparameters.

Solving Harder HnS with over 15k CPU cores. To explore the performance limit of SRL, we
examine a more challenging HnS setting with double-sized playground area. This scenario has
not been studied in previous works. Since the episode length is not changed, agents must learn
to cooperatively search across a larger map for available objects and efficiently utilize the limited
preparation phase. We run experiments with scale x4 and x8, and present learning progress over time
in Fig. 7b. With the same computation resources (i.e., x4), SRL requires almost twice the time to
achieve the ramp lock stage in this new task, highlighting its difficulty. Interestingly, while GPU
Inf. x8 attained similar performance compared to the x4 scale, CPU Inf. x8 halved the required
training time. We remark that CPU Inf. x8 utilizes up to 15000+ CPU cores and 32 A100 GPUs,
which is much beyond the computation used in most prior research papers. This outcome not only
highlights the exceptional scalability of SRL, but also demonstrates the potential benefits of utilizing
RL training, specifically PPO, at a larger scale.

5 CONCLUSION

This paper presents a general abstraction of RL training dataflows. Based on the abstraction, we
propose a scalable, efficient, and extensible RL system, SRL. The abstraction and architecture of
SRL enables massively parallelized computation, efficient resource allocation, and fine-grained
performance optimization, leading to high performances in both single-machine and large-scale
scenarios. Also, the user-friendly and extensible interface of SRL facilitates customized environments,
policies, algorithms, and system architectures for users. Our experiments demonstrate the remarkable
training throughput and learning performance of SRL across a wide range of applications and
algorithms.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We extend our sincere gratitude to Qiwei Feng, who made significant contributions to establishing
the basis of our code framework during the initial phase of this project. He also provided essential
assistance in setting up the Slurm cluster.

We also extend our thanks to Zelai Xu, Hao Tang, Shusheng Xu, Chao Yu, Weilin Liu, and Yunfei Li
for their contributions in implementing new features and adapting our system to various reinforcement
learning applications. Their dedication greatly aided us in refining SRL and enhancing its functionality.
The order of names listed does not imply a hierarchy of contribution.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
29304–29320, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
f514cec81cb148559cf475e7426eed5e-Abstract.html.

Matthew Aitchison, Penny Sweetser, and Marcus Hutter. Atari-5: Distilling the arcade learning
environment down to five games. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 421–438. PMLR, 2023. URL https://proceedings.mlr.
press/v202/aitchison23a.html.

Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier
Bachem. What matters for on-policy deep actor-critic methods? A large-scale study. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. URL https://openreview.net/forum?id=nIAxjsniDzg.

Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-agent autocurricula. CoRR, abs/1909.07528, 2019.
URL http://arxiv.org/abs/1909.07528.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016. URL http:
//arxiv.org/abs/1612.03801.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning en-
vironment: An evaluation platform for general agents. CoRR, abs/1207.4708, 2012. URL
http://arxiv.org/abs/1207.4708.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. Reinforcement learning coach, December
2017. URL https://doi.org/10.5281/zenodo.1134899.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A research framework for deep reinforcement learning. CoRR, abs/1812.06110, 2018.
URL http://arxiv.org/abs/1812.06110.

10

https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.mlr.press/v202/aitchison23a.html
https://proceedings.mlr.press/v202/aitchison23a.html
https://openreview.net/forum?id=nIAxjsniDzg
http://arxiv.org/abs/1909.07528
http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1912.06680
https://doi.org/10.5281/zenodo.1134899
http://arxiv.org/abs/1812.06110

Published as a conference paper at ICLR 2024

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. SEED RL:
scalable and efficient deep-rl with accelerated central inference. CoRR, abs/1910.06591, 2019.
URL http://arxiv.org/abs/1910.06591.

Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-Costa, Silvio
Savarese, and Li Fei-Fei. Surreal: Open-source reinforcement learning framework and robot
manipulation benchmark. In Conference on Robot Learning, 2018.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47–53, 2022.

Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary Kaden, Vivek
Narayanan, Xiaohui Ye, Zhengxing Chen, and Scott Fujimoto. Horizon: Facebook’s open source
applied reinforcement learning platform, 2018. URL https://arxiv.org/abs/1811.
00260.

Danijar Hafner, James Davidson, and Vincent Vanhoucke. Tensorflow agents: Efficient batched
reinforcement learning in tensorflow. CoRR, abs/1709.02878, 2017. URL http://arxiv.
org/abs/1709.02878.

Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio Vi-
ola, and Hado van Hasselt. Podracer architectures for scalable reinforcement learning. CoRR,
abs/2104.06272, 2021. URL https://arxiv.org/abs/2104.06272.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alexander
Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Çaglar Gülçehre, Tom Le Paine, Andrew
Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed
reinforcement learning. CoRR, abs/2006.00979, 2020. URL https://arxiv.org/abs/
2006.00979.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. CoRR, abs/1803.00933, 2018. URL
http://arxiv.org/abs/1803.00933.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly. Google
research football: A novel reinforcement learning environment. CoRR, abs/1907.11180, 2019.
URL http://arxiv.org/abs/1907.11180.

Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar, Tim
Rocktäschel, and Edward Grefenstette. Torchbeast: A pytorch platform for distributed RL. CoRR,
abs/1910.03552, 2019. URL http://arxiv.org/abs/1910.03552.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experiences
on accelerating data parallel training. CoRR, abs/2006.15704, 2020. URL https://arxiv.
org/abs/2006.15704.

11

https://github.com/openai/baselines
https://github.com/openai/baselines
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1910.06591
https://arxiv.org/abs/1811.00260
https://arxiv.org/abs/1811.00260
http://arxiv.org/abs/1709.02878
http://arxiv.org/abs/1709.02878
https://arxiv.org/abs/2104.06272
https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2006.00979
http://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1907.11180
http://arxiv.org/abs/1910.03552
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704

Published as a conference paper at ICLR 2024

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gonzalez, Ken
Goldberg, and Ion Stoica. Ray rllib: A composable and scalable reinforcement learning library.
CoRR, abs/1712.09381, 2017. URL http://arxiv.org/abs/1712.09381.

Eric Liang, Zhanghao Wu, Michael Luo, Sven Mika, and Ion Stoica. Distributed reinforcement
learning is a dataflow problem. CoRR, abs/2011.12719, 2020. URL https://arxiv.org/
abs/2011.12719.

Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, S. M. Ali Eslami, Daniel Hennes, Wojciech M. Czarnecki,
Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, Noah Y. Siegel, Leonard Hasenclever,
Luke Marris, Saran Tunyasuvunakool, H. Francis Song, Markus Wulfmeier, Paul Muller, Tuomas
Haarnoja, Brendan D. Tracey, Karl Tuyls, Thore Graepel, and Nicolas Heess. From motor control
to team play in simulated humanoid football. Sci. Robotics, 7(69), 2022. doi: 10.1126/scirobotics.
abo0235. URL https://doi.org/10.1126/scirobotics.abo0235.

Xiao-Yang Liu, Zechu Li, Zhuoran Yang, Jiahao Zheng, Zhaoran Wang, Anwar Walid, Jian Guo,
and Michael I. Jordan. Elegantrl-podracer: Scalable and elastic library for cloud-native deep
reinforcement learning. CoRR, abs/2112.05923, 2021. URL https://arxiv.org/abs/
2112.05923.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
William Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for emerging AI
applications. CoRR, abs/1712.05889, 2017. URL http://arxiv.org/abs/1712.05889.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De
Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane Legg,
Volodymyr Mnih, Koray Kavukcuoglu, and David Silver. Massively parallel methods for deep
reinforcement learning. CoRR, abs/1507.04296, 2015. URL http://arxiv.org/abs/1507.
04296.

Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.
CoRR, abs/2011.07537, 2020. URL https://arxiv.org/abs/2011.07537.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. CoRR, abs/1912.01703, 2019. URL http://arxiv.org/abs/1912.
01703.

Julien Pérolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T. Connor, Neil Burch, Thomas W. Anthony, Stephen McAleer, Romuald Elie,
Sarah H. Cen, Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair,
Finbarr Timbers, Toby Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau,
Bilal Piot, Shayegan Omidshafiei, Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Rémi
Munos, David Silver, Satinder Singh, Demis Hassabis, and Karl Tuyls. Mastering the game of
stratego with model-free multiagent reinforcement learning. CoRR, abs/2206.15378, 2022. doi:
10.48550/arXiv.2206.15378. URL https://doi.org/10.48550/arXiv.2206.15378.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sample
factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement
learning. CoRR, abs/2006.11751, 2020. URL https://arxiv.org/abs/2006.11751.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

12

http://arxiv.org/abs/1712.09381
https://arxiv.org/abs/2011.12719
https://arxiv.org/abs/2011.12719
https://doi.org/10.1126/scirobotics.abo0235
https://arxiv.org/abs/2112.05923
https://arxiv.org/abs/2112.05923
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1507.04296
https://arxiv.org/abs/2011.07537
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.48550/arXiv.2206.15378
https://arxiv.org/abs/2006.11751

Published as a conference paper at ICLR 2024

Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and implemen-
tation of the sun network filesystem. In Proceedings of the summer 1985 USENIX conference, pp.
119–130, 1985.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019. URL http://arxiv.org/abs/1911.08265.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, jan 2016. ISSN 0028-0836.
doi: 10.1038/nature16961.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. CoRR,
abs/1803.02811, 2018. URL http://arxiv.org/abs/1803.02811.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. CoRR, abs/1909.01500, 2019. URL http://arxiv.org/abs/1909.01500.

Peng Sun, Jiechao Xiong, Lei Han, Xinghai Sun, Shuxing Li, Jiawei Xu, Meng Fang, and Zhengyou
Zhang. Tleague: A framework for competitive self-play based distributed multi-agent rein-
forcement learning. CoRR, abs/2011.12895, 2020. URL https://arxiv.org/abs/2011.
12895.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinı́cius Flores Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel.
Value-decomposition networks for cooperative multi-agent learning based on team reward. In
Elisabeth André, Sven Koenig, Mehdi Dastani, and Gita Sukthankar (eds.), Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018,
Stockholm, Sweden, July 10-15, 2018, pp. 2085–2087. International Foundation for Autonomous
Agents and Multiagent Systems Richland, SC, USA / ACM, 2018. URL http://dl.acm.
org/citation.cfm?id=3238080.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
Silver. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575
(7782):350–354, Nov 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z. URL https:
//doi.org/10.1038/s41586-019-1724-z.

Fan Yang, Gabriel Barth-Maron, Piotr Stańczyk, Matthew Hoffman, Siqi Liu, Manuel Kroiss, Aedan
Pope, and Alban Rrustemi. Launchpad: A programming model for distributed machine learning
research. arXiv preprint arXiv:2106.04516, 2021. URL https://arxiv.org/abs/2106.
04516.

Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao
Qiu, Hongsheng Yu, Yinyuting Yin, Bei Shi, Liang Wang, Tengfei Shi, Qiang Fu, Wei Yang,
Lanxiao Huang, and Wei Liu. Towards playing full MOBA games with deep reinforcement
learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,

13

http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1803.02811
http://arxiv.org/abs/1909.01500
https://arxiv.org/abs/2011.12895
https://arxiv.org/abs/2011.12895
http://dl.acm.org/citation.cfm?id=3238080
http://dl.acm.org/citation.cfm?id=3238080
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/2106.04516
https://arxiv.org/abs/2106.04516

Published as a conference paper at ICLR 2024

2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
06d5ae105ea1bea4d800bc96491876e9-Abstract.html.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre M. Bayen,
and Yi Wu. The surprising effectiveness of PPO in cooperative multi-agent games. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_
Benchmarks.html.

Jiale Zhi, Rui Wang, Jeff Clune, and Kenneth O. Stanley. Fiber: A platform for efficient develop-
ment and distributed training for reinforcement learning and population-based methods. CoRR,
abs/2003.11164, 2020. URL https://arxiv.org/abs/2003.11164.

Huanzhou Zhu, Bo Zhao, Gang Chen, Weifeng Chen, Yijie Chen, Liang Shi, Yaodong Yang, Peter
Pietzuch, and Lei Chen. MSRL: Distributed reinforcement learning with dataflow fragments. In
2023 USENIX Annual Technical Conference (USENIX ATC 23), pp. 977–993, Boston, MA, July
2023. USENIX Association. ISBN 978-1-939133-35-9. URL https://www.usenix.org/
conference/atc23/presentation/zhu-huanzhou.

14

https://proceedings.neurips.cc/paper/2020/hash/06d5ae105ea1bea4d800bc96491876e9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/06d5ae105ea1bea4d800bc96491876e9-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2003.11164
https://www.usenix.org/conference/atc23/presentation/zhu-huanzhou
https://www.usenix.org/conference/atc23/presentation/zhu-huanzhou

Published as a conference paper at ICLR 2024

A SRL INTERFACES & MORE CODE EXAMPLES

ExperimentConfig(

actors=[

ActorWorker(

env="remote_reward_compute_env",

inference_streams=["pol_inf", "rwd_inf"],

sample_streams=["rl_train", "null_stream"],

agent_specs=[

AgentSpec(

index_regex="0", # the first agent

macthes to the first inf stream

inference_stream_idx=0,

sample_stream_idx=0,

),

AgentSpec(

index_regex="1",

inference_stream_idx=1,

sample_stream_idx=1,

)

],

) for _ in range(128)

],

policies=[PolicyWorker(

inference_stream="pol_inf",

policy="rl_policy",

) for _ in range(4)] +

[PolicyWorker(

inference_stream="rwd_inf",

policy="clip", # The large pretrained model.

) for _ in range(1)],

trainers=[TrainerWorker(

trainer="ppo",

policy="rl_policy",

sample_stream="rl_train",

)],

)

Code 1: Example configuration for computing rewards in remote policy workers hosting large
pre-trained models.

Figure 8: Graphical illustration of SRL interfaces.

Code 1 depicts a scenario where rewards returned by the environment must be computed using a
large pre-trained neural network model rather than the program itself. With SRL, users can create an
additional sentinel agent for reward computation. This agent is linked to another inference stream and
policy worker, which hosts the reward model. After each environment step, real agents return None
and the sentinel agent issues a reward computation inference request. After the reward is returned,
the sentinel agent returns NULL and real agents return next-step observations and computed reward
to advance environment simulation.

15

Published as a conference paper at ICLR 2024

(a) Trivial actor worker with one env. in-
stance.

(b) SRL actor worker with env. ring of size three (3 env.
instances).

Figure 9: Timelines of actor workers. “S” marks env. steps. “I” marks inference steps. Arrows
between timelines are observations and actions transmitted between actor worker and policy worker.

Fig. 8 illustrates the basic structure of the interfaces of SRL. The interface is separated into three
levels, i.e. tasks level, execution level and data level. If users want to experiment on an existing
algorithm on a pre-defined environment, they only need to modify experiment configuration, as
depicted in Code 1. If users require customization of a new environment, policy or algorithm, they
only need to implement APIs (e.g. env.step() and algo.step()) in the tasks level. If the
new algorithm requires additional dataflow or computation components, users can implement new
workers and data streams easily with APIs provided in the execution and data levels.

Other concrete examples of configurations, algorithms and system components, and documentation
of our full interfaces can be found in our (anonymous) code repository: https://anonymous.
4open.science/r/srl-1E45/

B PERFORMANCE OPTIMIZATIONS

In this section, we discuss effective optimizations techniques that contribute to the overall performance
of SRL in details.

B.1 ENVIRONMENT RINGS

In actor workers, environment simulation usually follows a two-stage loop: an actor simulates a
black-box program by feeding in an action to receive an observation, and then waits until an action is
received from the policy worker. In this process, the CPU will be periodically idle when the action is
being processed by the policy worker (Fig. 9a). To fully utilize the CPU resources, an actor in SRL
maintains multiple environment instances and executes each environment instance sequentially. We
call this technique an environment ring. With an environment ring, when an environment instance
finishes simulation and starts waiting for an action, the actor will immediately switch to the next
environment instance. With a proper ring size, we can ensure that when simulating an environment
instance, the required action is always ready (Fig. 9b). Environment rings substantially eliminate idle
time for actors, and thus greatly increase data generation efficiency for actor workers. The optimal
ring size usually depends on the speed of environment simulation, observation size, and policy model
size.

B.2 TRAINER DATA PRE-FETCHING

A typical working cycle for a trainer worker consists of three steps: storing received data in the buffer,
loading data into GPU, and computing gradients for model updates. The first two steps, receiving
and loading data, are I/O heavy operations. Overlapping these steps with the third step can lead to
higher sample throughput than executing them sequentially on the trainer worker. While receiving
and storing data into the buffer could be simply implemented into a separate thread, model updates
on a sample batch require data loading as a dependency. To overlap computing the gradient for model
update with data loading, we use a data pre-fetching technique.

To implement this technique, we reserve GPU memory for additional batches of training samples.
When training starts, one sample batch is fetched into GPU memory. Then, while the GPU computes
the gradient on this sample batch, another sample batch is pre-fetched into the other memory block

16

https://anonymous.4open.science/r/srl-1E45/
https://anonymous.4open.science/r/srl-1E45/

Published as a conference paper at ICLR 2024

simultaneously. In this way, all three steps in the working cycle will be executed in parallel threads,
which further improves SRL’s training performance.

B.3 SEPARATE CPU/GPU WORKER THREADS

For workers involving GPU computation, we leave CPU-heavy and I/O-heavy parts in the main
worker poll thread, and initialize a new thread for GPU computation, including policy inference,
policy re-analyze, and training. CPU-thread and GPU-thread communicate via queues. This design
enables non-blocking logging, data transmission and parameter synchronization. Besides, it avoids
additional data copy and context switching compared with the multi-process implementation.

B.4 SHARED-MEMORY STREAM

For workers allocated on the same node, streams connecting these workers will automatically use
shared memory to reduce communication overhead.

The shared-memory inference stream is implemented as two pinned memory blocks. The block size
is set to be the total number of environments in connected actor workers. Each environment instance
is associated with a specific block ID. After each environment step, the environment will write the
returned observation into the observation block according to its own ID and mark the corresponding
slot as ready. The policy worker will gather all ready slots in the block and perform batched policy
inference, then the returned actions will be written to the action memory block with corresponding
block IDs.

The shared-memory sample stream is a well-designed FIFO queue. The queue is composed of several
out-of-order slots (i.e., they can be written and read in random orders), and each slot stores one
piece of trajectory. When an actor worker pushes samples to the stream, the stream will allocate
free slots and return them back to the actor worker for writing. The trainer worker randomly fetches
from allocated slots, consumes the data once, and increase the usage counter of each fetched by one.
Special care should be taken to manage the slot indices (e.g., whether it is being read/written or
whether the sample reuse is exhausted). Besides, the shared-memory sample stream is zero-copy:
data stored by actor workers will be directly loaded into GPU in the trainer worker without additional
copying.

B.5 DYNAMIC BATCHING

In the policy worker, we use a dynamic batch size to perform inference. The policy worker will wait
until received inference requests exceeds the configured maximum batch size or the time exceeds
the configured maximum idle time, then it will flush all accumulated requests to the GPU thread.
Compared with fixed-batch-size inference, dynamic batching can automatically adjust the workload
according to the ratio between actor and policy workers, and enable fault tolerance when some actor
worker crashes due to unstable environment implementations.

B.6 THREADED ENVIRONMENT RINGS

Most types of environments are computation-heavy simulators, but in some cases, environments
hosted in actor workers can be internet brokers of remote environments. In other words, the physics
engine or game simulator runs on the remote cloud and communicates observations, actions, and
rewards with SRL actor workers. In this case, the standard environment ring will face several
challenges:

1. Due to the fluctuation of internet connection, the variance of environment step is large.
Environments stepped latter may return earlier. Waiting for environments in the ring
sequentially will cause large time waste.

2. The connection between brokers and the remote cloud may get lost. In a standard environ-
ment ring, this actor worker will idly wait for the response of the lost environment and also
ignores all other healthy environments in the ring.

17

Published as a conference paper at ICLR 2024

To address these challenges, we provide a threaded environment ring implementation. Environments
are hosted in independent threads in actor workers. This implementation can largely benefit fault
tolerance and increase the sample generation throughput for remote broker-based environments.

B.7 DATA COMPRESSION

Transferring image-based observation or observations of multiple agents in streams is expensive.
Since these data usually holds specific patterns (i.e., they are not nearly random numbers that are
hard to compress, like the hidden states of a neural network), we optionally compress these data
before sending them to the stream and decompress them on the receiver side. In our experiments, we
compress all data sent via sockets with lz4.

C ABLATION STUDIES

0 5 10 15 20
Env. Ring Size

0

1

2

3

4

5

6

7

Sp
ee

du
p

Ra
tio

atari
football
smac
dmlab

(a) Env. simulation speed up ra-
tio of actor workers with different
env. ring size.

1 2 3 4 5 6 7 8 9 10
Actor Scale

0

1

2

3

4

5

6
FP

S
Sc

al
e

atari
football
dmlab
smac

(b) FPS scale on trainer worker
with different numbers of actor
workers.

1 2 3 4 5 6 7 8 9 10
Actor Scale

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
Sa

m
pl

es
 P

er
ce

nt

atari
football
dmlab
smac

(c) Utilized percentage of training
samples produced by actor work-
ers.

atari
0

50k

100k

En
v.

ro
llo

ut
 F

PS

CPU 1 GPU 2 GPUs

football
0

1k

2k

3k

4k

smac
0

1k

2k

3k

dmlab
0

20k

40k

60k

80k

(d) Environment simulation FPS by 128 actor work-
ers with difference inference devices.

atari
0

25k

50k

75k

100k

Tr
ai

ne
r t

hr
ou

gh
pu

t F
PS

With Prefetch No Prefetch

football
0

2k

4k

smac
0

2k

4k

dmlab
0

50k

100k

150k

0

2

4

6

8

10

GP
U

M
em

or
y

Us
ag

e
(G

B)

(e) Training throughput on a Nvidia RTX 3090,
with or without pre-fetching. Red cross marks
GPU memory usage.

Figure 10: Ablation studies
This section presents a detailed analysis of the individual components of SRL. The purpose of
these ablation studies is to offer practical recommendations for configuring SRL to achieve optimal
performance in specific application scenarios. Our analysis encompasses fundamental systematic
parameters and choices within SRL, such as the environment ring size, the employment of GPU
inference, trainer worker pre-fetching, as well as the allocation of resources and ratios for each worker
type.

C.1 ENVIRONMENT RING

While the environment ring is not useful for increasing the throughput of inline CPU inference, a
larger ring size can usually lead to a higher throughput of GPU inference. We measure the sample
generation throughput by varying ring size inside a single actor worker with policy workers on
a single GPU. Fig. 10a illustrates that as the ring size increases, the speedup ratio w.r.t. a single
environment instance grows until it reaches a plateau. Note that a larger ring size also means greater
memory consumption. We believe that the optimal ring size should trade off among three factors:
memory consumption, environment simulation speed, and average inference latency. First, memory
consumption can provide information about the maximum number of environments on each node.
Second, a higher environment simulation speed usually indicates a larger optimal ring size — in
our experiment, Atari has the smallest step time, resulting in the largest optimal ring size and the
highest speedup ratio of around 7x. Users can propose a initial value of the ring size according to
the previous two factors. Finally, since inference latency could be influenced by various factors in

18

Published as a conference paper at ICLR 2024

practical situations (e.g. network condition, GPU capabilities), it is the most reliable to find the
optimal ring size by experiments that simulate the practical policy worker and actor worker setups.
We also note that the ring size should be the first thing to be determined for configuring SRL.

C.2 GPU INFERENCE VS CPU INFERENCE

The next thing to determine is whether to use GPUs for policy inference and if so, how many GPUs
should be used. From Fig. 4 we can see that if (1) the observation size is small, (2) the environment
simulation speed is slow, and (3) the policy model is simple (e.g. a feed-forward network), inline CPU
inference is usually sufficient. Otherwise, GPU inference can usually increase training throughput.
Fig. 10d shows the sample generation throughput of 128 actor workers using different inference
devices. Since DMLab and Atari have image-based observations and incorporate convolutional neural
policies, they achieve their optimal throughput when using 2 GPUs, resulting in a 1.56x and 5.44x
speedup ratio, respectively. Football and SMAC environments benefit less from GPU inference due
to a slower pace and simpler policy models.

C.3 MAXIMIZING TRAINER WORKER THROUGHPUT

Once the environment ring size and the ratio between actor and policy workers are determined, the
sample generation speed of the system is fixed. The next concern is to maximize the number of
samples consumed by trainer workers while minimizing wasted training samples. In the subsequent
analysis, we focus on scenarios with a single trainer worker, while the number of workers can be
scaled proportionally for larger-scale experiments. To demonstrate the relationship between trainer
frames-per-second (FPS) throughput and the number of actor workers, we assessed the training
throughput of a single trainer consuming training samples generated by varying numbers of actor
workers. Fig. 10b illustrates that as the number of actors increases, the trainer FPS also rises until
it reaches its maximum processing capacity. Beyond this point, the FPS might experience a slight
decline due to network traffic congestion on the trainer worker. When a large number of actor workers
are employed, redundant samples that cannot be utilized by the trainer are discarded. Fig. 10c presents
the utilization percentage of training samples generated by all actor workers on the trainer worker.
When an excessive number of actor workers are allocated to a trainer worker, the utilization percentage
sharply decreases, indicating a waste of training samples. It is important to note that the outcome
in the DMLab environment exhibits instability as the number of actor workers increases. This is
primarily due to the lengthy and highly variable reset time of the environment, which is inherent to
the original environment implementation and lies beyond the scope of our system optimizations.

C.4 TRAINER WORKER PRE-FETCHING

In App. B, we introduced the concept of pre-fetching in trainer workers, which involves a trade-off
between GPU memory utilization and training speed. This technique can be employed whenever
there is a sufficient amount of available GPU memory, which is commonly the case in reinforcement
learning contexts. To demonstrate the effectiveness of pre-fetching, we conduct an experiment
comparing the training throughput and GPU memory utilization of a single trainer worker using
an Nvidia 3090 GPU, both with and without the pre-fetching technique. Our results, presented in
Fig. 10e, indicate that utilizing pre-fetching can lead to a 2-3x increase in throughput for Atari and
DMLab, but less speedup on Google Football and SMAC. We believe that this discrepancy is due to
the fact that Atari and DMLab are image-based environments, which generate samples at a faster rate
with a larger size and possesses a more intricate policy model. Consequently, the trainer workers’
capacity to consume samples and perform training operations can become a bottleneck. By increasing
the number of samples that trainer workers can access through pre-fetching, the policy update process
can be expedited, making it a more effective technique for such scenarios. On the other hand, GPU
memory consumptions are increased by 100 MBytes to 1.5 GBytes, which is bearable compared to
the total memory size (24 GBytes) of an Nvidia 3090 GPU.

19

Published as a conference paper at ICLR 2024

Table 3: Characteristics of adopted environments.

Atari
(Pong)

Deepmind Lab
(watermaze)

gFootball
(11 vs 11)

SMAC
(27m vs 30m)

Observation Image Image Vector Vector
Controlled Agents 1 1 22 27
Third-Party Engine No No Yes Yes
Background Process No No No Yes
Pure Simulation FPS 4800 300 75 35
Memory (MBytes) ∼100 ∼250 ∼170 ∼1500

Table 4: Computing resources used in experiments in Sec. 4.1. AW: Actor Worker, PW: Policy
Worker, TW: Trainer Worker. Each AW is allocated to one CPU core. 4 PWs are allocated to one
Nvidia 3090 GPU. Each TW is allocated to one Nvidia A100 GPU.

Env. AW Per TW (Total)
in Conf. 1&2

AW Per TW (Total)
in Conf. 3

PW Per TW
in Conf. 1

Atari 100 (3200) 400 (12800) 8
SMAC 160 (5120) 200 (6400) 4

gFootball 400 (12800) 400 (12800) 4
DMLab 200 (6400) 400 (12800) 8

D EXPERIMENT DETAILS

D.1 TRAINING THROUGHPUT

Environments. The four environments chosen in our throughput experiment are representative for
common RL applications, considering simulation speed, observation types, memory occupation,
number of agents and executable programs. Observation size for image-based environments are
84 × 84 greyscale images for Atari and 96 × 72 RGB images for DMLab. In Atari and DMLab
environments, we adopt a traditional 4-frameskip setting. Other features of the four environemnts are
listed in Table 3.

Computing Resources. Experiments are evaluated on two resource settings.

1. Single-machine setting: 32 physical CPU cores, 512 GB DRAM and 1 Nvidia 3090 GPU.
2. Distributed cluster setting: 4 nodes with 64 physical CPU cores and 8 Nvidia A100 GPUs

+ 64 nodes with 128 physical CPU cores and an Nvidia 3090 GPU. Each node in the cluster
has 512GB DRAM, and they are connected by 100 Gbps intra-cluster network. Storage for
the cluster is facilitated through NFS and parameter service, available on all nodes.

Note that All physical cores have hyperthreading enabled and count as 2 logical cores. In this section,
if not emphasized, the term “CPU cores” will be referring to logical CPU cores. In comparison
with baselines, results in Fig. 3 are evaluated on the single-machine setting, and results in Table 2
are evaluated on the cluster with 1 Nvidia A100 node and 16 Nvidia 3090 nodes. In large-scale
experiments, to strike a balance between maximizing performance and minimizing computing
resource waste, we carefully determine the number of workers of each type and the allocated
resources based on our ablation study (refer to App. C). Table 4 presents the specific number of
workers and computing resource utilization for each environment and architecture employed in this
experiment.

Training configurations. In our baseline comparison experiments, we make our best effort to align
training configurations for all baselines. Specifically, the model architectures and sizes are the same,
and implemented with pytorch (Paszke et al., 2019) neural networks. We adopt specifications of
policy models for each environments from prior works: Atari from DQN (Mnih et al., 2013), DMLab
from SampleFactory (Petrenko et al., 2020), SMAC and GoogleFootball from MAPPO (Yu et al.,
2022). From our experience, batch size and episode length does not evidently effect overall sample
throughput of the system, except for the case when the batched samples are so small in size that inflict
significant networking overheads (e.g. GoogleFootball). On the other hand, size of environment ring
is crucial to the performance as illustrated in Fig. 10a. Detailed training configurations are listed in
Table 5.

20

Published as a conference paper at ICLR 2024

Table 5: Batch size (number of episodes per batch), max episode length and env ring size for 4
environments.

Env. Batch Size
(per 3090 GPU)

Batch Size
(per A100 GPU) Max Episode Length Env. Ring Size

Atari 32 128 200 20
SMAC 32 128 100 2

gFootball 128 1024 100 4
DMLab 32 128 200 10

Table 6: Training throughput (FPS) of baseline comparison experiments in single-machine settings,
see Fig. 3

#CPU cores 8 16 32 64 8 16 32 64

SRL Sample Factory

Atari 22183 40565 72681 124021 17248 31595 58831 96416
DMLab 9231 16614 28980 45974 8218 15448 27187 41994
SMAC 363 698 1234 2313 255 501 989 2001

GFootball 477 874 1474 2579 360 695 1382 2725

SeedRL rlpyt

Atari 21088 27918 - - 9890 17406 18472 14816
DMLab 8933 14123 - - 2902 4515 4226 7627

Algorithm Selection. We remark that on-policy methods are preferable for evaluating training
throughput, as training speed is closely related to sample generation speed. Note that on-policy
algorithms have a similar workload on the trainer worker side. Although other on-policy RL al-
gorithms such as IMPALA (Espeholt et al., 2018) are also valid, we have chosen PPO as it is a
highly popular RL algorithm for large-scale training and has demonstrated success in various RL
applications (Berner et al., 2019; Baker et al., 2019; Ye et al., 2020).

Baseline Selection.

• ACME (Hoffman et al., 2020) shares a similar architecture as RLlib. However, the reported
performance in Hoffman et al. (2020) is several times lower than RLlib in the same setting.
The reported number also matches the results of our early experiment, so we omit ACME in
the distributed setting.

• Although SeedRL (Espeholt et al., 2019) supports distributed execution, we find that samples
generated with 32 CPU cores can easily overburden its single GPU “learner”. Therefore, we
only evaluated SeedRL in the single-machine setting.

Result numbers. The concrete numbers of experiment results illustrated in Fig. 3 and Fig. 4 are
listed in Table 6 and Table 7.

D.2 COMPARISON WITH REPORTED NUMBERS OF MSRL

In order to evaluate the performance of SRL against concurrent work MSRL, we conduct an experi-
ment of training throughput in the setting of Sec. 6.2 Fig. 6(a) in MSRL (Zhu et al., 2023). In MSRL
paper, they have evaluated PPO algorithm with 320 Mujoco Halfcheetah environments and 24 Nvidia
V100 GPUs for inference. The result shows that MSRL can finish one episode of 1000 steps in 3.85s
and 83116 FPS. In our experiment, SRL exploits the same numbers of CPU cores and environment
instances, and 4 Nvidia 3090 GPUs for inference. The result show that the overall training throughput
reaches 210165 FPS. The experiment details are obtained via direct correspondence with authors.

D.3 LEARNING PERFORMANCE

Environment Configuration For Atari, we adopt task-specific action space, no-op start with a
maximum of 30 steps, episodic life, clip reward, 4 frame-skip, 4 frame-skip, and observation size
84 × 84. The ring size is 40. The games of the Atari-5 benchmark suite (Aitchison et al., 2023)
includes BattleZone, DoubleDunk, NameThisGame, Pheonix, and Qbert.

21

Published as a conference paper at ICLR 2024

Table 7: Training throughput (FPS) of large-scale experiments in distributed settings, see Fig. 4

#trainer workers 8 16 24 32

Config 1 (SRL)

Atari 161418 277214 366589 453452
DMLab 180215 293325 413539 493066
SMAC 14452 27037 41106 53383

GFootball 89624 182725 277706 337445

Config 2 (SeedRL style)

Atari 63741 89708 124682 169088
DMLab 82101 183225 278620 338705
SMAC 4092 7881 11055 15123

GFootball 67969 131302 195204 256085

Config 3 (IMPALA style)

Atari 160820 298776 345388 477904
DMLab 149457 272813 332748 424252
SMAC 13359 27767 40765 52725

GFootball 48320 95394 148731 196305

Table 8: Median evaluation score of PPO in Atari across 5 seeds.

scale x1 scale x2 scale x4 scale x8 scale x16

BattleZone 0.0 64494.0 125439.0 108138.0 127798.0
DoubleDunk -1.5 -0.1 22.5 22.6 22.6
NameThisGame 19390.4 21433.5 22202.3 23138.2 23736.7
Phoenix 160519.4 401654.0 425505.6 261782.2 315078.1
Qbert 31511.3 37704.7 45458.3 39129.1 27532.5

For gFootball, we run on four academic scenarios, including academy 3 vs 1 with keeper (3
agents), academy counterattack easy (10 agents), academy counterattack hard (10 agents), and
academy corner (10 agents). We adopt the ”simple115v2” representation, which is a 115-dim vector
for each player, and both scoring and checkpoints reward. Besides, rewards are shared across all
agents following Yu et al. (2022). The ring size is 8.

Algorithm Configuration Per-task scores are shown in Tables 8 to 11. Hyperparameters and
resources used in experiments are shown in Table 12. We remark that the hyperparamters of PPO,
MAPPO, and VDN follow Yu et al. (2022) and hyperparameters of ApexDQN follow Horgan et al.
(2018). We also attempted to benchmark QMix in the gFootball environment, but we found that it
performed worse than VDN.

D.4 COMPUTING RESOURCES

We conduct experiments in the distributed setting using both inline CPU inference (denoted as CPU
Inf.) and remote GPU inference (denoted as GPU Inf.). We fixed the number of actor workers per
trainer at 480 for CPU Inf., each with a single environment, and 120 for GPU Inf., each with an
environment ring of size 20. GPU Inf. uses 8 policy workers along with a trainer, which occupies

Table 9: Median evaluation score of ApexDQN in Atari across 5 seeds.

scale x1 scale x2 scale x4 scale x8 scale x16

BattleZone 47272.0 50260.0 42167.0 37981.0 28166.0
DoubleDunk 22.2 0.4 17.1 -0.5 -1.7
NameThisGame 12568.1 12186.7 12476.5 12595.2 12038.7
Phoenix 5481.0 5334.5 5252.4 5249.6 5071.5
Qbert 19782.2 17198.0 9804.9 4522.9 3088.8

22

Published as a conference paper at ICLR 2024

Table 10: Median evaluation score (win rate) of VDN in gFootball across 5 seeds.

scale x1 scale x2 scale x4 scale x8 scale x16

3v1 0.94 0.95 0.89 0.84 0.90
Corner 0.08 0.09 0.02 -0.19 -0.01
CAeasy -0.22 -0.17 -0.20 -0.22 -0.23
CAhard -0.18 -0.19 -0.22 -0.17 -0.11

Table 11: Median evaluation score (win rate) of MAPPO in gFootball across 5 seeds.

scale x1 scale x2 scale x4 scale x8 scale x16

3v1 0.90 0.92 0.92 0.96 0.94
Corner -0.01 -0.01 -0.01 -0.00 0.54
CAeasy 0.10 0.81 0.84 0.93 0.51
CAhard 0.01 0.01 0.18 0.12 0.88

two 3090 GPUs. We denote the smallest batch size 0.32M used in Baker et al. (2019) as scale x1,
which utilizes 4 trainer workers on A100 GPUs in our experiments. Experiments with larger scales
duplicate all worker types and increase the batch size by a corresponding factor. Note that the largest
scale in Baker et al. (2019) is x4 while the largest scale in our experiments is x8.

D.5 THE HIDE-AND-SEEK ENVIRONMENT

The hide-and-seek (HnS) environment (Baker et al., 2019) simulates a physical world that hosts 2-6
agents, including 1-3 hiders and 1-3 seekers, and diverse physical objects, including 3-9 boxes, 2
ramps, and randomly placed walls, as shown in Fig. 4a. Agents can manipulate boxes and ramps by
moving or locking them, and locked objects can only be unlocked by teammates. At the beginning
of each game, there is a preparation phase when seekers are not allowed to move, such that hiders
can utilize available objects to build a shelter to defend seekers. After the preparation phase, seekers
receive a reward +1 if any of them can discover hiders and -1 otherwise. Rewards received by hiders
have opposite signs. The observation, action, and additional environmental details can be found in
(Baker et al., 2019).

The four stages emerged across training can be summarized as follows:

1. Running and chasing. Seekers learn to run and chase hiders while hiders simply run to
escape seekers.

2. Box lock. Hiders build a shelter with locked boxes in the preparation phase to defend seekers.
3. Ramp use. Seekers learn to utilize ramps to jump over into the shelters built by hiders.
4. Ramp lock. Hiders first lock all ramps in the preparation phase and then build a shelter with

locked boxes, such that seekers cannot move and utilize ramps.

23

Published as a conference paper at ICLR 2024

Table 12: Resources and hyperparameters used in benchmark experiments.

PPO DQN MAPPO VDN

discount γ 0.99 0.99 0.99 0.99
GAE λ 0.97 - 0.95 -

priority buffer? False True False False
prioritization α - 0.6 - -
prioritization β - 0.4 - -

clip ratio 0.2 - 0.2 -
clip value? True False True False

reward transformation? False False False False
value loss huber (δ = 10.0) smoothl1 huber (δ = 10.0) smoothl1

target update interval - 2.5e3 - 200
entropy bonus 0.01 - 0.01 -

optimizer adam rmsprop adam adam
learning rate 5e-4 2.5e-4/4 5e-4 5e-4

optimizer config PyTorch default α = 0.95, ϵ = 1.5e− 7 PyTorch default ϵ = 1e− 5
buffer warmup size - 625 -

value normalization? True False True False
max gradient norm 40.0 40.0 10.0 40.0
shared backbone? True - False -

bootstrap steps 50 3 50 5
data reuse 5 - 5 -

RNN policy? False False True True
rollout length 80 80 200 200
chunk length - - 10 100
network type DQN DQN MLP MLP
hidden size 512 512 128 128

#rollouts in buffer 96 25000 480 50000

batch size 16 16 80 80
actor worker (x1) 16 16 80 80

policy worker scale max(1,#agents×scale/5)
trainer worker max(1, scale/8) max(1,#agents×scale/48)

24

	Introduction
	Background & Motivation
	Reinforcement Learning System
	Limitations of Existing Systems

	System Design & Architecture
	High-Level Design of SRL
	System Components & Implementation
	Performance Optimization
	User-friendly and Extensible Designs

	Experiments
	Training Throughput
	Learning Performance

	Conclusion
	SRL Interfaces & More Code Examples
	Performance Optimizations
	Environment Rings
	Trainer Data Pre-fetching
	Separate CPU/GPU Worker Threads
	Shared-Memory Stream
	Dynamic Batching
	Threaded Environment Rings
	Data Compression

	Ablation Studies
	Environment Ring
	GPU inference vs CPU inference
	Maximizing Trainer Worker Throughput
	Trainer Worker Pre-fetching

	Experiment Details
	Training Throughput
	Comparison with reported numbers of MSRL
	Learning Performance
	Computing Resources
	The Hide-and-Seek Environment

