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Abstract

In this paper, we address the following problem: Given an offline demonstration dataset
from an imperfect expert, what is the best way to leverage it to bootstrap online learning
performance in MDPs. We first propose an Informed Posterior Sampling-based RL (iPSRL)
algorithm that uses the offline dataset, and information about the expert’s behavioral policy
used to generate the offline dataset. Its cumulative Bayesian regret goes down to zero
exponentially fast in N , the offline dataset size if the expert is competent enough. Since
this algorithm is computationally impractical, we then propose the iRLSVI algorithm that
can be seen as a combination of the RLSVI algorithm for online RL, and imitation learning.
Our empirical results show that the proposed iRLSVI algorithm is able to achieve significant
reduction in regret as compared to two baselines: no offline data, and offline dataset but
used without suitably modeling the generative policy. Our algorithm can be seen as bridging
online RL and imitation learning.

1 Introduction

An early vision of the Reinforcement Learning (RL) field is to design a learning agent that when let loose
in an unknown environment, learns by interacting with it. Such an agent starts with a blank slate (with
possibly, arbitrary initialization), takes actions, receives state and reward observations, and thus learns by
“reinforcement”. This remains a goal but at the same time, it is recognized that in this paradigm learning is
too slow, inefficient and often impractical. Such a learning agent takes too long to learn near-optimal policies
way beyond practical time horizons of interest. Furthermore, deploying an agent that learns by exploration
over long time periods may simply be impractical.

In fact, reinforcement learning is often deployed to solve complicated engineering problems by first collecting
offline data using a behavioral policy, and then using off-policy reinforcement learning, or imitation learning
methods (if the goal is to imitate the policy that generated the offline dataset) on such datasets to learn
a policy. This often suffers from the distribution-shift problem, i.e., the learnt policy upon deployment
often performs poorly on out-of-distribution state-action space. Thus, there is a need for adaptation and
fine-tuning upon deployment.

∗Work done while at Google DeepMind.
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In this paper, we propose a systematic way to use offline datasets to bootstrap online RL algorithms.
Performance of online learning agents is often measured in terms of cumulative (expected) regret. We
show that, as expected, there is a gain in performance (reflected in reduction in cumulative regret) of the
learning agent as compared to when it did not use such an offline dataset. We call such an online learning
agent as being partially informed. However, somewhat surprisingly, if the agent is further informed about
the behavioral policy that generated the offline dataset, such an informed (online learning) agent can do
substantially better, reducing cumulative regret significantly. In fact, we also show that if the behavioral
policy is suitably parameterized by a competence parameter, wherein the behavioral policy is asymptotically
the optimal policy, then the higher the “competence” level, the better the performance in terms of regret
reduction over the baseline case of no offline dataset.

We first propose an ideal (informed) iPSRL (posterior sampling-based RL) algorithm and show via theoretical
analysis that under some mild assumptions, its expected cumulative regret is bounded as Õ(

√
T ) where T

is the number of episodes. In fact, we show that if the competence of the expert is high enough (quantified
in terms of a parameter we introduce), the regret goes to zero exponentially fast as N , the offline dataset
size grows. This is accomplished through a novel prior-dependent regret analysis of the PSRL algorithm,
the first such result to the best of our knowledge. Unfortunately, posterior updates in this algorithm can
be computationally impractical. Thus, we introduce a Bayesian-bootstrapped algorithm for approximate
posterior sampling, called the (informed) iRLSVI algorithm (due to its commonality with the RLSVI algo-
rithm introduced in Osband et al. (2019)). The iRLSVI algorithm involves optimizing a loss function that
is an optimistic upper bound on the loss function for MAP estimates for the unknown parameters. Thus,
while inspired by the posterior sampling principle, it also has an optimism flavor to it. Through, numeri-
cal experiments, we show that the iRLSVI algorithm performs substantially better than both the partially
informed-RLSVI (which uses the offline dataset naively) as well as the uninformed-RLSVI algorithm (which
doesn’t use it at all).

We also show that the iRLSVI algorithm can be seen as bridging online reinforcement learning with imitation
learning since its loss function can be seen as a combination of an online learning term as well as an imitation
learning term. And if there is no offline dataset, it essentially behaves like an online RL algorithm. Of course,
in various regimes in the middle it is able to interpolate seamlessly.

Related Work. Because of the surging use of offline datasets for pre-training (e.g., in Large Language
models (LLMs), e.g., see Brown et al. (2020); Thoppilan et al. (2022); Hoffmann et al. (2022)), there has
been a lot of interest in Offline RL, i.e., RL using offline datasets (Levine et al., 2020). A fundamental issue
this literature addresses is RL algorithm design (Nair et al., 2020; Kostrikov et al., 2021; Kumar et al., 2020;
Nguyen-Tang & Arora, 2023; Fujimoto et al., 2019; Fujimoto & Gu, 2021; Ghosh et al., 2022) and analysis
to best address the “out-of-distribution” (OOD) problem, i.e., policies learnt from offline datasets may not
perform so well upon deployment. The dominant design approach is based on ‘pessimism’ (Jin et al., 2021;
Xie et al., 2021a; Rashidinejad et al., 2021) which often results in conservative performance in practice. Some
of the theoretical literature (Xie et al., 2021a; Rashidinejad et al., 2021; Uehara & Sun, 2021; Agarwal &
Zhang, 2022) has focused on investigation of sufficient conditions such as “concentrability measures” under
which such offline RL algorithms can have guaranteed performance. Unfortunately, such measures of offline
dataset quality are hard to compute, and of limited practical relevance (Argenson & Dulac-Arnold, 2020;
Nair et al., 2020; Kumar et al., 2020; Levine et al., 2020; Kostrikov et al., 2021; Wagenmaker & Pacchiano,
2022).

There is of course, a large body of literature on online RL (Dann et al., 2021; Tiapkin et al., 2022; Ecoffet
et al., 2021; Guo et al., 2022; Ecoffet et al., 2019; Osband et al., 2019) with two dominant design philosophies:
Optimism-based algorithms such as UCRL2 in Auer et al. (2008), and Posterior Sampling (PS)-type algo-
rithms such as PSRL (Osband et al., 2013; Ouyang et al., 2017), etc. (Osband et al., 2016a;b; 2019; Russo &
Van Roy, 2018; Zanette & Sarkar, 2017; Wen et al., 2020; Hao & Lattimore, 2022). However, none of these
algorithms consider starting the learning agent with an offline dataset. Of course, imitation learning (Hester
et al., 2018; Beliaev et al., 2022; Schaal, 1996) is exactly concerned with learning the expert’s behavioral
policy (which may not be optimal) from the offline datasets but with no online finetuning of the policy learnt.
Several papers have actually studied bridging offline RL and imitation learning (Ernst et al., 2005; Kumar
et al., 2022; Rashidinejad et al., 2021; Hansen et al., 2022; Vecerik et al., 2017; Lee et al., 2022). Some have

2



Published in Transactions on Machine Learning Research (10/2023)

also studied offline RL followed by a small amount of policy fine-tuning (Song et al., 2022; Fang et al., 2022;
Xie et al., 2021b; Wan et al., 2022; Schrittwieser et al., 2021; Ball et al., 2023; Uehara & Sun, 2021; Xie
et al., 2021b; Agarwal & Zhang, 2022) with the goal of finding policies that optimize simple regret.

The problem we study in this paper is motivated by a similar question: Namely, given an offline demonstration
dataset from an imperfect expert, what is the best way to leverage it to bootstrap online learning performance
in MDPs? However, our work is different in that it focuses on cumulative regret as a measure of online learning
performance. This requires smart exploration strategies while making maximal use of the offline dataset to
achieve the best regret reduction possible over the case when an offline dataset is not available. Of course, this
will depend on the quality and quantity of the demonstrations. And the question is what kind of algorithms
can one devise to achieve this objective, and what information about the offline dataset-generation process
is helpful? What is the best regret reduction that is achievable by use of offline datasets? How it depends
on the quality and quantity of demonstrations, and what algorithms can one devise to achieve them? And
does any information about the offline-dataset generation process help in regret reduction? We answer some
of these questions in this paper.

2 Preliminaries

Episodic Reinforcement Learning. Consider a scenario where an agent repeatedly interacts with an
environment modelled as a finite-horizon MDP, and refer to each interaction as an episode. The finite-horizon
MDP is represented by a tuple M = (S,A, P, r, H, ν), where S is a finite state space (of size S), A is a
finite action space (of size A), P encodes the transition probabilities, r is the reward function, H is the time
horizon length, and ν is the initial state distribution. The interaction protocol is as follows: at the beginning
of each episode t, the initial state st

0 is independently drawn from ν. Then, at each period h = 0, 1, . . . , H−1
in episode t, if the agent takes action at

h ∈ A at the current state st
h ∈ S, then it will receive a reward

rh(st
h, at

h) and transit to the next state st
h+1 ∈ Ph(·|st

h, at
h). An episode terminates once the agent arrives at

state st
H in period H and receives a reward rH(st

H). We abuse notation for the sake of simplicity, and just
use rH(st

H , at
H) instead of rH(st

H), though no action is taken at period H. The objective is to maximize its
expected total reward over T episodes.

Let Q∗
h and V ∗

h respectively denote the optimal state-action value and state value functions at period h.
Then, the Bellman equation for MDP M is

Q∗
h(s, a) = rh(s, a) +

∑
s′

Ph(s′|s, a)V ∗
h+1(s′), (1)

where V ∗
h+1(s′) := maxb Q∗

h+1(s′, b), if h < H − 1 and V ∗
h+1(s′) = 0, if h = H − 1. We define a policy π

as a mapping from a state-period pair to a probability distribution over the action space A. A policy π∗ is
optimal if π∗

h(·|s) ∈ arg maxπh

∑
a Q∗

h(s, a)πh(a|s) for all s ∈ S and all h.

Agent’s Prior Knowledge about M. We assume that the agent does not fully know the environment
M; otherwise, there is no need for learning and this problem reduces to an optimization problem. However,
the agent usually has some prior knowledge about the unknown part of M. For instance, the agent might
know that M lies in a low-dimensional subspace, or may have a prior distribution over M. We use the
notation M(θ) where θ parameterizes the unknown part of the MDP. When we want to emphasize it as a
random quantity, we will denote it by θ∗ with a prior distribution µ0. Of course, different assumptions about
the agent’s prior knowledge lead to different problem formulations and algorithm designs. As a first step,
we consider two canonical settings:

• Tabular RL: The agent knows S,A, r, H and ν, but does not know P . That is, θ∗ = P in this
setting. We also assume that the agent has a prior over P , and this prior is independent across
state-period-action triples.

• Linear value function generalization: The agent knows S,A, H and ν, but does not know P
and r. Moreover, the agent knows that for all h, Q∗

h lies in a low-dimensional subspace span(Φh),
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where Φh ∈ ℜ|S||A|×d is a known matrix. In other words, Q∗
h = Φhθ∗

h for some θ∗
h ∈ ℜd. Thus, in

this setting θ∗ =
[
θ∗⊤

0 , . . . , θ∗⊤
H−1

]⊤. We also assume that the agent has a Gaussian prior over θ∗.

As we will discuss later, the insights developed in this paper could potentially be extended to more general
cases.

Offline Datasets. We denote an offline dataset with L episodes as D0 = {(s̄l
0, āl

0, · · · , s̄l
H)L

l=1}, where
N = HL denotes the dataset size in terms of number of observed transitions. For the sake of simplicity, we
assume we have complete trajectories in the dataset but it can easily be generalized if not. We denote an
online dataset with t episodes as Ht = {(sl

0, al
0, · · · , sl

H)t
l=1} and Dt = D0 ⊕Ht.

The Notion of Regret. A online learning algorithm ϕ is a map for each episode t, and time h, ϕt,h : Dt →
∆A, the probability simplex over actions. We define the Bayesian regret of an online learning algorithm ϕ
over T episodes as

BRT (ϕ) := E

[
T∑

t=1

(
V ∗

0 (st
0; θ∗)−

H∑
h=0

rh(st
h, at

h)
)]

,

where the (st
h, at

h)’s are the state-action tuples from using the learning algorithm ϕ, and the expectation
is over the sequence induced by the interaction of the learning algorithm and the environment, the prior
distributions over the unknown parameters θ∗ and the offline dataset D0.

Expert’s behavioral policy and competence. We assume that the expert that generated the offline
demonstrations may not be perfect, i.e., the actions it takes are only approximately optimal with respect to
the optimal Q-value function. To that end, we model the expert’s policy by use of the following generative
model,

πβ
h(a|s) = exp(β(s)Q∗

h(s, a))∑
a exp(β(s)Q∗

h(s, a)) , (2)

where β(s) ≥ 0 is called the state-dependent deliberateness parameter, e.g., when β(s) = 0, the expert
behaves naively in state s, and takes actions uniformly randomly. When β(s) → ∞, the expert uses the
optimal policy when in state s. When β(·) is unknown, we will assume an independent exponential prior for
the sake of analytical simplicity, f2(β(s)) = λ2 exp(−λ2β(s)) over β(s) where λ2 > 0 is the same for all s.
In our experiments, we will regard β(s) as being the same for all states, and hence a single parameter.

The above assumes the expert is knowledgeable about Q∗. However, it may know it only approximately. To
model that, we introduce a knowledgeability parameter λ ≥ 0. The expert then knows Q̃ which is distributed
as N (Q∗, I/λ2) conditioned on θ, and selects actions according to the softmax policy Eq. (2), with the Q∗

replaced by Q̃. The two parameters (β, λ) together will be referred to as the competence of the expert. In
this case, we denote the expert’s policy as πβ,λ

h .
Remark 2.1. While the form of the generative policy in Eq. (2) seems specific, πβ

h(·|s) is a random vector
with support over the entire probability simplex. In particular, if one regards β(s) and Q̃h(s, ·) as parameters
that parameterize the policy, the softmax policy structure as in Eq. (2) is enough to realize any stationary
policy.

Furthermore, we note that our main objective here is to yield clear and useful insights when information is
available to be able to model the expert’s behavioral policy with varying competence levels. Other forms of
generative policies can also be used including ϵ-optimal policies introduced in (Beliaev et al., 2022), and the
framework extended.

3 The Informed PSRL Algorithm

We now introduce a simple Informed Posterior Sampling-based Reinforcement Learning (iPSRL) algorithm
that naturally uses the offline dataset D0 and action generation information to construct an informed prior
distribution over θ∗. The realization of θ∗ is assumed known to the expert (but not the learning agent) with
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Algorithm 1 iPSRL
Input: Prior µ0, Initial state distribution ν
for t = 1, · · · , T do

(A1) Update posterior, µt(θ|Ht−1,D0) using Bayes’ rule

(A2) Sample θ̃t ∼ µt

Compute optimal policy π̃t(·|s) := π∗
h(·|s; θ̃t) (for all h) by using any DP or other algorithm

Sample initial state sl
0 ∼ ν

for h = 0, · · · , H − 1 do
Take action at

h ∼ π̃t(|st
h)

Observe (st
h+1, rt

h)
end for

end for

Q̃(·, ·; θ∗) = Q(·, ·; θ∗), and β(s) := β ≥ 0 (i.e., it is state-invariant) is also known to the expert. Thus, the
learning agent’s posterior distribution over θ∗ given the offline dataset is,

µ1(θ∗ ∈ ·) := P(θ∗ ∈ ·|D0) ∝ P(D0|θ∗ ∈ ·)P(θ∗ ∈ ·)

= P(θ∗ ∈ ·)×
∫

θ∈·

L∏
l

H−1∏
h=0

θ(s̄l
h+1|s̄l

h, āl
h)πβ

h(āl
h|s̄l

h, θ)ν(s̄l
0) dθ.

(3)

A PSRL agent (Osband et al., 2013; Ouyang et al., 2017) takes this as the prior, and then updates the
posterior distribution over θ∗ as online observation tuples, {(st

h, at
h, st′

h , rt
h)H−1

h=0 become available. Such an
agent is really an ideal agent with assumed posterior distribution updates being exact. In practice, this is
computationally intractable and we will need to get samples from an approximate posterior distribution, an
issue which we will address in the next section. We will denote the posterior distribution over θ∗ given the
online observations by episodes t and the offline dataset by µt.

We note the key steps (A1)-(A2) in the algorithm above where we use both offline dataset D0 and online
observations Ht to compute the posterior distribution over θ∗ by use of the prior ν.

3.1 Prior-dependent Regret Bound

It is natural to expect some regret reduction if an offline demonstration dataset is available to warm-start
the online learning. However, the degree of improvement must depend on the “quality” of demonstrations,
for example through the competence parameter β. Further note that the role of the offline dataset is via the
prior distribution the PSRL algorithm uses. Thus, theoretical analysis involves obtaining a prior-dependent
regret bound, which we obtain next.
Lemma 3.1. Let ε = P(π̃1 ̸= π∗), i.e. the probability that the strategy used for the first episode, π̃1 is not
optimal. Then,

BRT (ϕiPSRL) = O(
√

εH4S2AT (1 + log(T ))). (4)

The proof can be found in the Appendix. Note that this Lemma provides a prior dependent-bound in terms
of ε.

In the rest of the section, we provide an upper bound on ε = P(π̃1 ̸= π∗) for Algorithm 1: iPSRL. We
first show that ε can be bounded in terms of estimation error of the optimal strategy given the offline data.
Lemma 3.2. Let π̂∗ be any estimator of π∗ constructed from D0, then P(π̃1 ̸= π∗) ≤ 2P(π̂∗ ̸= π∗).

Proof. If π̃1 ̸= π∗, then either π̂∗ ̸= π̃1 or π̂∗ ̸= π∗ must be true. Conditioning on D0, π̂∗ is identically
distributed as π∗ while π̂∗ is deterministic, therefore

P(π̃1 ̸= π∗) ≤ P(π̂∗ ̸= π̃1) + P(π̂∗ ̸= π∗) = 2P(π̂∗ ̸= π∗)
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We now bound the estimation error of π∗. We assume the following about the prior distribution of θ∗.
Assumption 3.3. There exists a ∆ > 0 such that for all θ ∈ Θ, h = 0, 1, · · · , H − 1, and s ∈ S, there exists
an a∗ ∈ A such that Qh(s, a∗; θ) ≥ Qh(s, a′; θ) + ∆, ∀a′ ∈ A\{a∗}.

Define ph(s; θ) := Pθ,π∗(θ)(sh = s), where π∗(θ) denotes the optimal policy under model θ.
Assumption 3.4. The infimum probability of any reachable non-final state , defined as

p := inf{ph(s; θ) : 0 ≤ h < H, s ∈ S, θ ∈ Θ, ph(s; θ) > 0}

satisfies p > 0.

We now describe a procedure to construct an estimator of the optimal policy, π̂∗ from D0 so that P(π∗ ̸= π̂∗)
is small. Fix an integer L, and choose a δ ∈ (0, 1). For each θ ∈ Θ, define a deterministic Markov policy
π∗(θ) = (π∗

h(·; θ))H−1
h=0 sequentially through

π∗
h(s; θ) =

{
arg maxa Qh(s, a; θ), if Pθ,π∗

0:h−1(θ)(sh = s) > 0
ā0, if Pθ,π∗

0:h−1(θ)(sh = s) = 0,
(5)

where the tiebreaker for the argmax operation is based on a fixed order on actions, and ā0 ∈ A is a fixed
action in A. It is clear that π∗(θ) is an optimal policy for the MDP θ. Furthermore, for those states that are
impossible to be visited, we choose to take a fixed action ā0. Although the choice of action at those states
doesn’t matter, our construction will be helpful for the proofs.

Construction of π̂∗: Let Nh(s) (resp. Nh(s, a)) be the number of times state s (resp. state-action pair
(s, a)) appears at time h in dataset D0. Define π̂∗ to be such that:

• π̂∗
h(s) = arg maxa∈A Nh(s, a) (ties are broken through some fixed ordering of actions) whenever

Nh(s) ≥ δL;

• π̂∗
h(s) = ā0 whenever Nh(s) < δL. ā0 is a fixed action in A that was used in the definition of π∗(θ).

The idea of the proof is that for sufficiently large β and L, we can choose a δ ∈ (0, 1) such that

• Claim 1: If s ∈ S is probable at time h under π∗(θ), then Nh(s) ≥ δL with large probability.
Furthermore, π∗

h(s) = arg maxa∈A Nh(s, a) with large probability as well.

• Claim 2: If s ∈ S is improbable at time h under π∗(θ), then Nh(s) < δL with large probability;

Given the two claims, we can then conclude that the probability of π∗ ̸= π̂∗ is small via a standard union
bound argument. The arguments are formalized in Lemma A.2. We now present the upper bound on
Bayesian regret for Algorithm 1: iPSRL.
Theorem 3.5. For sufficiently large β independent of L, we have

BRT (ϕiPSRL) = O(
√

εLH4S2AT (1 + log(T ))). (6)

where

εL = min
{

1, 2SH

[
exp

(
−

Lp2

18

)
+ exp

(
−

Lp

36

)]}
.

Proof. The result follows from Lemma 3.1, Lemma 3.2, and Lemma A.2.

We note that the right-hand side of Eq. (6) converges to zero exponentially fast as N = LH →∞.
Remark 3.6. (a) For fixed N , and large S and A, the regret bound is Õ(H2S

√
AT ), which possibly could be

improved in H. (b) For a suitably large β, the regret bound obtained goes to zero exponentially fast as L,
the number of episodes in the offline dataset, goes to infinity thus indicating the online learning algorithm’s
ability to learn via imitation of the expert.
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4 Approximating iPSRL

4.1 The Informed RLSVI Algorithm

The iPSRL algorithm introduced in the previous section assumes that posterior updates can be done exactly.
In practice, the posterior update in Eq. (3) is challenging due to the loss of conjugacy while using the Bayes
rule. Thus, we must find a computationally efficient way to do approximate posterior updates (and obtain
samples from it) to enable practical implementation. Hence, we propose a novel approach based on Bayesian
bootstrapping to obtain approximate posterior samples. The key idea is to perturb the loss function for
the maximum a posterior (MAP) estimate and use the point estimate as a surrogate for the exact posterior
sample.

Note that in the ensuing, we regard β as also unknown to the learning agent (and λ = ∞ for simplicity).
Thus, the learning agent must form a belief over both θ and β via a joint posterior distribution conditioned
on the offline dataset D0 and the online data at time t, Ht. We denote the prior pdf over θ by f(·) and prior
pdf over β by f2(·).

For the sake of compact notation, we denote Q∗
h(s, a; θ) as Qθ

h(s, a) in this section. Now, consider the offline
dataset,

D0 = {((sl
h, al

h, šl
h, rl

h)H−1
h=0 )L

l=1}

and denote θ = (θh)H−1
h=0 . We introduce the temporal difference error E l

h (parameterized by a given Qθ),

E l
h(Qθ) :=

(
rl

h + max
b

Qθ
h+1(šl

h, b)−Qθ
h(sl

h, al
h)
)

.

We will regard Qθ
h to only be parameterized by θh, i.e., Qθh

h but abuse notation for the sake of simplicity.
We use this to construct a parameterized offline dataset,

D0(Qθ) = {((sl
h, al

h, šl
h, E l

h(Qθ))h=0:H−1)l=1:L}.

A parametrized online dataset Ht(Qθ) after episode t can be similarly defined. To ease notation, we will
regard the jth episode during the online phase as the (L + j)th observed episode. Thus,

Ht(Qθ) = {((sk
h, ak

h, šk
h, Ek

h(Qθ))h=0:H−1)k=L+1:L+t},

the dataset observed during the online phase by episode t.

Note that Qθ is to be regarded as a parameter. Now, at time t, we would like to obtain a MAP estimate
for (θ, β) by solving the following:

MAP: arg max
θ,β

log P (Ht(Qθ)|D0(Qθ), θ, β) + log P (D0(Qθ)|θ, β) + log f(θ) + log f2(β). (7)

Denote a perturbed version of the Qθ-parameterized offline dataset by

D̃0(Qθ) = {((sl
h, ãl

h, šl
h, Ẽ l

h)h=0:H−1)l=1:L}

where random perturbations are added: (i) actions have perturbation wh
l ∼ exp(1), (ii) rewards have per-

turbations zl
h ∼ N (0, σ2), and (iii) the prior θ̃ ∼ N (0, Σ0).

Note that the first and second terms involving Ht and D0 in Eq. (7) are independent of β when conditioned
on the actions. Thus, we have a sum of log-likelihood of TD error, transition and action as follows:

log P (D̃0(Qθ)|Qθ
0:H) =

L∑
l=1

∑
h

(
log P (Ẽ l

h|šl
h, al

h, sl
h, Qθ

0:H)+ log P (šl
h|al

h, sl
h, Qθ

0:H) + log P (al
h|sl

h, Qθ
0:H)

)
≤

L∑
l=1

∑
h

(
log P (Ẽ l

h|šl
h, al

h, sl
h, Qθ

h:h+1) + log πβ
h(al

h|sl
h, Qθ

h)
)

.
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By ignoring the log-likelihood of the transition term (akin to optimizing an upper bound on the negative
loss function), we are actually being optimistic.

For the terms in the upper bound above, under the random perturbations assumed above, we have

log P (Ẽ l
h|šl

h, al
h, sl

h, Qθ
h:h+1) = −1

2

(
rl

h + zl
h + max

b
Qθ

h+1(šl
h, b)−Qθ

h(sl
h, al

h)
)2

+ constant

and

log πβ
h(al

h|sl
h, Qθ

h) = wl
h

(
βQθ

h(sl
h, al

h)− log
∑

b

exp
(
βQθ

h(sl
h, b)

))
.

Now, denote a perturbed version of the Qθ-parametrized online dataset,

H̃t(Qθ) = {((sk
h, ak

h, šk
h, Ẽk

h)h=0:H−1)k=L+1:L+t},

and thus similar to before, we have

log P (H̃t(Qθ)|D̃0(Qθ), Qθ
0:H) =

L+t∑
k=L+1

∑
h

(
log P (Ẽk

h(Qθ)|šk
h, ak

h, sk
h, Qθ

0:H)+ log P (šk
h|ak

h, sk
h, Qθ)

)
,

≤
L+t∑

k=L+1

∑
h

(
log P (Ẽk

h |šk
h, ak

h, sk
h, Qθ

h:h+1)
)

,

where we again ignored the transition term to obtain an optimistic upper bound.

Given the random perturbations above, we have

log P (Ẽk
h(Qθ)|šk

h, ak
h, sk

h, Qθ
h:h+1) = −1

2

(
rk

h + zk
h + max

b
Qθ

h+1(šk
h, b)−Qθ

h(sk
h, ak

h)
)2

+ constant.

The prior over β, f2(β) is assumed to be an exponential pdf λ2 exp(−λ2β), β ≥ 0, while that over θ is assumed
Gaussian. Thus, putting it all together, we get the following optimistic loss function (to minimize over
θ and β),

L̃(θ, β) = 1
2σ2

L+t∑
k=1

H−1∑
h=0

(
rk

h + zk
h + max

b
Qθ

h+1(šk
h, b)−Qθ

h(sk
h, ak

h)
)2

−
L∑

l=1

H−1∑
h=0

wl
h

(
βQθ

h(sl
h, al

h)− log
∑

b

exp
(
βQθ

h(sl
h, b)

))
+ 1

2(θ − θ̃)⊤Σ0(θ − θ̃) + λ2β.

(8)

The above loss function is difficult to optimize in general due to the max operation, and the Q-value function
in general having a nonlinear form.

Now Algorithm 2: iRLSVI can be summarized by replacing steps (A1)-(A2) in Algorithm 1: iPSRL
by (B1)-(B2), with the other steps being the same:

(B1) Solve the MAP Problem (7) by minimizing loss function (8).
(B2) Get solutions (θ̃l, β̃l).

Remark 4.1. Note that the loss function in Eq. (8) can be hard to jointly optimize over θ and β. In particular,
estimates of β can be quite noisy when β is large, and the near-optimal expert policy only covers the state-
action space partially. Thus, we consider other methods of estimating β that are more robust, which can then
be plugged into the loss function in Eq. (8). Specifically, we could simply look at the entropy of the empirical
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distribution of the action in the offline dataset. Suppose the empirical distribution of {āl
0, . . . āl

H}L
l=1 is µA.

Then we use c0/H(µA) as an estimation for β, where c0 > 0 is a hyperparameter. The intuition is that
for smaller β, the offline actions tend to be more uniform and thus the entropy will be large. This is an
unsupervised approach and agnostic to specific offline data generation process.
Remark 4.2. In the loss function in Eq. (8), the parameter θ appears inside the max operation. Thus, it can
be quite difficult to optimize over β. Since the loss function is typically optimized via an iterative algorithm
such as a gradient descent method, a simple and scalable solution that works well in practice is to use the
parameter estimate θ from the previous iteration inside the max operation, and thus optimize over θ only
in the other terms.

4.2 iRLSVI bridges Online RL and Imitation Learning

In the previous subsection, we derived iRLSVI, a Bayesian-bootstrapped algorithm. We now present inter-
pretation of the algorithm as bridging online RL (via commonality with the RLSVI algorithm (Osband et al.,
2016a) and imitation learning, and hence a way for its generalization.

Consider the RLSVI algorithm for online reinforcement learning as introduced in (Osband et al., 2019). It
draws its inspiration from the posterior sampling principle for online learning, and has excellent cumulative
regret performance. RLSVI, that uses all of the data available at the end of episode t, including any offline
dataset involves minimizing the corresponding loss function at each time step:

L̃RLSVI(θ) = 1
2σ2

L+t∑
k=1

H−1∑
h=0

(
rk

h + max
b

Qθ
h+1(šk

h, b)−Qθ
h(sk

h, ak
h)
)2

+ 1
2(θ0:H − θ̃0:H)⊤Σ0(θ0:H − θ̃0:H).

Now, let us consider an imitation learning setting. Let τl = (sl
h, al

h, šl
h)H−1

h=0 be the trajectory of the lth
episode. Let π̂h(a|s) denote the empirical estimate of probability of taking action a in state s at time h, i.e.,
an empirical estimate of the expert’s randomized policy. Let p(τ) denote the probability of observing the
trajectory under the policy π̂.

Let πβ,θ
h (·|s) denote the parametric representation of the policy used by the expert. And let pβ,θ(τ) denote

the probability of observing the trajectory τ under the policy πβ,θ. Then, the loss function corresponding to
the KL divergence between ΠL

l=1p(τl) and ΠL
l=1pβ,θ(τl) is given by

L̃IL(β, θ) = DKL

(
ΠL

l=1p(τl)||ΠL
l=1pβ,θ(τl)

)
=
∫

ΠL
l=1p(τl) log ΠL

l=1p(τl)
ΠL

l=1pβ(τl)
=

L∑
l=1

∫
p(τl) log p(τl)

pβ,θ(τl)
,

=
L∑

l=1

H−1∑
h=0

log π̂h(al
h|sl

h)
πβ,θ

h (al
h|sl

h)

=
L∑

l=1

H−1∑
h=0

[log π̂h(al
h|sl

h)− log πβ,θ
h (al

h|sl
h)]

= −
L∑

l=1

H−1∑
h=0

(
βQθ

h(sl
h, al

h)− log
∑

b

exp
(
βQθ

h(sl
h, b)

))
+ constant.

Remark 4.3. (i) The loss function L̃IL(β, θ) is the same as the second (action-likelihood) term in Eq. (8)
while the loss function L̃RLSVI(θ) is the same as the first and third terms there (except for perturbation) and
minus the λ2β term that corresponds to the prior over β. (ii) Note that while we used the more common
KL divergence for the imitation learning loss function, use of log loss would yield the same outcome.

Thus, the iRLSVI loss function can be viewed as

L̃(β, θ) = L̃RLSVI(θ) + L̃IL(β, θ) + λ2β, (9)

thus establishing that the proposed algorithm may be viewed as bridging Online RL with Imitation Learning.
Note that the last term corresponds to the prior over β. If β is known (or uniform), it will not show up in
the loss function above.
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The above also suggests a possible way to generalize and obtain other online learning algorithms that can
bootstrap by use of offline datasets. Namely, at each step, they can optimize a general loss function of the
following kind:

L̃α(β, θ) = αL̃ORL(θ) + (1− α)L̃IL(β, θ) + λ2β, (10)

where L̃ORL is a loss function for an Online RL algorithm, L̃IL is a loss function for some Imitation Learning
algorithm, and factor α ∈ [0, 1] provides a way to tune between emphasizing the offline imitation learning
and the online reinforcement learning.

5 Empirical Results

Experimental setup. We now present some empirical results in two prototypical environments: “Deep Sea”
and “Maze”. Specifically, we compare three variants of the RLSVI agents, which are respectively referred to
as informed RLSVI (iRLSVI), partially informed RLSVI (piRLSVI), and uninformed RLSVI (uRLSVI). All
three agents are tabular RLSVI agents with similar posterior sampling-type exploration schemes. However,
they differ in whether or not and how to exploit the offline dataset. In particular, uRLSVI ignores the offline
dataset; piRLSVI exploits the offline dataset but does not utilize the information about the generative policy;
while iRLSVI fully exploits the information in the offline dataset, about both the generative policy and the
reward feedback. Please refer to Appendix D.1 for the pseudo-codes of these agents. We note no other
algorithms are known for the problem as posed.

Deep Sea (Figure 1 (i))(Osband et al., 2019) is an episodic reinforcement learning problem with state space
S = {0, 1, . . . , M}2 and , where M is its size. The state at period h in episode t is st

h = (xt
h, dt

h) ∈ S, where
xt

h = 0, 1, . . . , M is the horizontal position while dt
h = 0, 1, . . . , M is the depth (vertical position). Its action

space is A = {left, right} and time horizon length is H = M . Its reward function is as follows: If the
agent chooses an action right in period h < H, then it will receive a reward −0.1/M , which corresponds
to a “small cost”; If the agent successfully arrives at state (M, M) in period H = M , then it will receive
a reward 1, which corresponds to a “big bonus”; otherwise, the agent will receive reward 0. The system
dynamics are as follows: for period h < H, the agent’s depth in the next period is always increased by 1,
i.e., dt

h+1 = dt
h + 1. For the agent’s horizontal position, if at

h = left, then xt
h+1 = max{xt

h − 1, 0}, i.e., the
agent will move left if possible. On the other hand, if at

h = right, then we have xt
h+1 = min{xt

h + 1, M}
with prob. 1− 1/M and xt

h+1 = xt
h with prob. 1/M . The initial state of this environment is fixed at state

(0, 0). In this section, we fix the size of Deep Sea as M = 10.

Figure 1: (i) DeepSea Environment with start state in top left corner, and goal state in bottom right corner.
(ii) The map for the Maze environment.

Maze (Figure 1 (ii)) is also an episodic reinforcement learning problem, which is a variant of a maze problem
proposed in D4RL (Fu et al., 2020). To fit this problem into the finite-state framework of this paper, we
discretize the locations in Figure 1 (ii) into a 6 × 6 grid. Note that excluding the walls, there are 26 valid
locations in the maze. We set the time horizon of this problem as H = 7. Since each state is a location-period
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pair, there are 26×7 = 182 states in this problem. Moreover, we assume that this problem has a fixed initial
state: in each episode, the agent starts at the location denoted by the green dot in Figure 1 (ii).

We assume that the action space for Maze is A = {left, right, up, down, stay}. At each period h < H − 1,
if the agent takes action left, and it is also feasible to go left (i.e. the agent does not hit the wall if going
left), then the agent will successfully go left with probability 0.95, and fail to go left and stay at the same
location with probability 0.05. On the other hand, if it is infeasible to go left, then the agent will stay at
the same location with probability 1. The state transitions under action right, up, and down are defined
similarly, with the same success/failure probabilities. Finally, if the agent takes action stay, then it will stay
at the same location with probability 1. The reward function of Maze is as follows: if the agent is at the
target location, which is denoted by the red dot in Figure 1 (ii), then the agent will receive a “big bonus" of
reward 1; otherwise, the agent will incur a “small cost", which is reward −0.01.

In both environments, the offline dataset is generated based on the expert’s policy specified in Eq. (2), and
we assume β(s) = β (a constant) across all states. We set the size of the offline dataset D0 as |D0| = κ|A||S|,
where κ ≥ 0 is referred to as data ratio.

Experimental results. We run the experiments on Deep Sea for T = 300 episodes, and run the experiments
on Maze for T = 200 episodes. For both environments, the empirical cumulative regrets are averaged over 50
simulations. The experimental results are illustrated in Figure 2 and 3, as well as Figure 5 in Appendix D.2
and Figure 6 in Appendix D.3.

0.1 1 10 100

60

80

100

Re
gr

et
(T

)

data_ratio: 1.0

agent
iRLSVI
piRLSVI
uRLSVI

0.1 1 10 100

60

80

100
data_ratio: 5.0

Figure 2: Cumulative regret vs. β in Deep Sea.
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Figure 3: Cumulative regret vs. β in Maze.

Specifically, Figure 2 plots the cumulative regret on Deep Sea in the first T = 300 episodes as a function
of the expert’s deliberateness β, for two different data ratios, κ = 1,and 5. There are several interesting
observations based on Figure 2: (i) Figure 2 shows that iRLSVI and piRLSVI tend to perform much better
than uRLSVI, which demonstrates the advantages of exploiting the offline dataset, and this improvement
tends to be more dramatic with a larger offline dataset. (ii) When we compare iRLSVI and piRLSVI, we note

11



Published in Transactions on Machine Learning Research (10/2023)

0.1 1 10 100

80

85

90

95

100

Re
gr

et
(T

)

data_ratio: 1.0

agent
iRLSVI
piRLSVI
uRLSVI

0.1 1 10 100

70

80

90

100
data_ratio: 5.0

Figure 4: Robustness of iRLSVI to misspecification.

that their performance is similar when β is small, but iRLSVI performs much better than piRLSVI when β
is large. This is because when β is small, the expert’s generative policy does not contain much information;
and as β gets larger, it contains more information and eventually it behaves like imitation learning and
learns the optimal policy as β → ∞. Note that the error bars denote the standard errors of the empirical
cumulative regrets, hence the improvements are statistically significant.

Similarly, Figure 3 plots the cumulative regret on Maze in the first T = 200 episodes as a function of β,
also for data ratios κ = 1 and 5. Note that we have obtained similar results in this experiment, and the
improvements are also statistically significant.

Robustness to misspecification of β. We also investigate the robustness of various RLSVI agents with
respect to the possible misspecification of β. In particular, we demonstrate empirically that in the Deep Sea
environment with M = 10, with offline dataset is generated by an expert with deliberateness β = 5, the
iRLSVI agent is quite robust to moderate misspecification. Here, the misspecified deliberateness parameter
is denoted β̃. The empirical results are illustrated in Figure 4, where the experiment is run for T = 300
episodes and the empirical cumulative regrets are averaged over 50 simulations.

Since uRLSVI and piRLSVI do not use parameter β̃, thus, as expected, their performance is constant over
β̃. On the other hand, iRLSVI explicitly uses parameter β̃. As Figure 4 shows, the performance of iRLSVI
does not vary much as long as β̃ has the same order of magnitude as β. However, there will be significant
performance loss when β̃ is too small, especially when the data ratio is also small. This makes sense since
when β̃ is too small, iRLSVI will choose to ignore all the information about the generative policy and
eventually reduces to piRLSVI. Similar results can be anticipated for the Maze environment and are omitted
to save space.

6 Conclusions

In this paper, we have introduced and studied the following problem: Given an offline demonstration dataset
from an imperfect expert, what is the best way to leverage it to bootstrap online learning performance in
MDPs. We have followed a principled approach and introduced two algorithms: the ideal iPSRL algorithm,
and the iRLSVI algorithm that is computationally practical and seamlessly bridges online RL and imitation
learning in a very natural way. We have shown significant reduction in regret both empirically, and theoret-
ically as compared to two natural baselines. The dependence of the regret bound on some of the parameters
(e.g., H) could be improved upon, and is a good direction for future work. In future work, we will also
combine the iRLSVI algorithm with deep learning to leverage offline datasets effectively for continuous state
and action spaces as well.
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A Auxiliary Lemmas

Lemma A.1. Let X be the sum of L i.i.d. Bernoulli random variables with mean p ∈ (0, 1). Let q ∈ (0, 1),
then

P(X ≤ qL) ≤ exp
(
−2L(q − p)2) , if q < p,

P(X ≥ qL) ≤ exp
(
−2L(q − p)2) , if q > p.

Proof. Both inequalities can be obtained by applying Hoeffding’s Inequality.

Lemma A.2. Let ∆ and p be as in Assumptions 3.3 and 3.4 respectively and let

β := [log 3− log p + log(H − 1) + log(A− 1)]/∆.

For any β ≥ β and N ∈ N, there exists an estimator π̂∗ constructed from D0 that satisfies

P(π∗ ̸= π̂∗) ≤ SH

[
exp

(
−

Lp2

18

)
+ exp

(
−

Lp

36

)]
.

The proof is available in Appendix C.

B Proof of Lemma 3.1

Let θ̃k the environment sampled for the kth episode, and π̃k be the optimal strategy under θ̃k. Recall
that Hk−1 is the data available to the iPSRL agent before the start of learning episode k. For notational
simplicity, let Pk(·) = P(·|Hk−1) and Ek[·] = E[·|Hk−1]. We first prove the following Lemma.
Lemma B.1. P(π̃k ̸= π∗) ≤ P(π̃1 ̸= π∗) for all k ≥ 1.

Proof. Define f(x) = x(1− x). f is a concave function. We have

P(π̃k ̸= π∗) = E[Pk[π̃k ̸= π∗]] = E

[∑
π∈Π

Pk(π̃k = π, π∗ ̸= π)
]

(11)

= E

[∑
π∈Π

f(Pk(π∗ = π))
]

(12)

= E

[∑
π∈Π

E1[f(Pk(π∗ = π))]
]
≤ E

[∑
π∈Π

f(E1[Pk(π∗ = π)])
]

(13)

= E

[∑
π∈Π

f(P1(π∗ = π))
]

= E

[∑
π∈Π

P1(π̃1 = π, π∗ ̸= π)
]

(14)

= P(π̃1 ̸= π∗) (15)

Now we proceed to prove Lemma 3.1.

Let Jθ
π := Eθ,π[

∑H−1
h=0 rh(sh, ah) + rH(sH)] denote the expected total reward under the environment θ and

the Markov strategy π. Define

Zk := Jθ∗

π∗ − Jθ∗

π̃k (16)

Z̃k := J θ̃k

π̃k − Jθ∗

π̃k (17)
Ik := 1{π̃k ̸=π∗} (18)
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First, note that Zk = ZkIk with probability 1, hence

Ek[Zk − Z̃kIk] = Ek[(Zk − Z̃k)Ik] = Ek[(Jθ∗

π∗ − J θ̃k

π̃k )Ik] (19)

= Ek[Jθ∗

π∗ 1{π̃k ̸=π∗}]− Ek[J θ̃k

π̃k 1{π∗ ̸=π̃k}] = 0, (20)

where the last equality is true since θ∗ and θ̃k are independently identically distributed given Dk. Therefore,
we can write the Bayesian regret as E[

∑T
k=1 Z̃kIk]. By Cauchy-Schwartz inequality, we have

E

[
T∑

k=1
Z̃kIk

]
≤

√√√√( T∑
k=1

E[I2
k ]
)(

T∑
k=1

E[Z̃2
k ]
)

(21)

Using Lemma B.1, the first part can be bounded by

T∑
k=1

E[I2
k ] =

T∑
k=1

P(π̃k ̸= π∗) ≤ TP(π̃1 ̸= π∗) = εT (22)

The rest of the proof provides a bound on
∑T

k=1 E[Z̃2
k ].

Let T θ
πh

be the Bellman operator at time h defined by T θ
πh

Vh+1(s) := rh(s, a)+
∑

s′∈S Vh+1(s′)P θ
h (s′|s, πh(s)).

Using Equation (6) of Osband et al. (2013), we have

Z̃k = Eθ∗,θ̃k

[
H−1∑
h=0

[T θ̃k

π̃k
h

V θ̃k

h+1(s(k−1)H+h)− T θ∗

π̃k
h

V θ̃k

h+1(s(k−1)H+h)]
]

(23)

For convenience, we write P̃ k
h = P θ̃k

h , P ∗
h = P θ∗

h , sk,h = s(k−1)H+h, and ak,h = a(k−1)H+h = π̃k
h(s(k−1)H+h).

Recall that the instantaneous reward satisfies rh(s, a) ∈ [0, 1]. We have

|T θ̃k

π̃k
h

V θ̃k

h+1(sk,h)− T θ∗

π̃k
h

V θ̃k

h+1(sk,h)| ≤ H∥P̃ k
h (·|sk,h, ak,h)− P ∗

h (·|sk,h, ak,h)∥1

Therefore,

E[Z̃2
k ] ≤ HE

[
H−1∑
h=0

[T θ̃k

π̃k
h

V θ̃k

h+1(sk,h)− T θ∗

π̃k
h

V θ̃k

h+1(sk,h)]2
]

(24)

≤ H3E

[
H−1∑
h=0
∥P̃ k

h (·|sk,h, ak,h)− P ∗
h (·|sk,h, ak,h)∥2

1

]
(25)

where we used Cauchy-Schwartz inequality for the first inequality.

Following Osband et al. (2013), define Nk(s, a, h) =
∑k−1

l=1 1{(sl,h,al,h)=(s,a)} to be the number of times (s, a)
was sampled at step h in the first (k − 1) episodes.

Claim: For any k, h and any δ > 0,

E[∥P̃ k
h (·|sk,h, ak,h)− P ∗

h (·|sk,h, ak,h)∥2
1] ≤ 4E

[
(2 log 2)S + 2 log(1/δ)

max{Nk(sk,h, ak,h, h), 1}

]
+ 8(k − 1)SAδ (26)
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Given the claim, we have

T∑
k=1

E[Z̃2
k ] (27)

≤ H3

[
4E
[

T∑
k=1

H−1∑
h=0

(2 log 2)S + 2 log(1/δ)
max{Nk(sk,h, ak,h, h), 1}

]
+

T∑
k=1

8(k − 1)SAδ

]
(28)

≤ 4H3E

[
T∑

k=1

H−1∑
h=0

(2 log 2)S + 2 log(1/δ)
max{Nk(sk,h, ak,h, h), 1}

]
+ H3(4T 2SAδ) (29)

= 8H3[(log 2)S + log(1/δ)]E
[

T∑
k=1

H−1∑
h=0

(max{Nk(sk,h, ak,h, h), 1})−1

]
+ 4H3SAT 2δ (30)

It remains to bound the expectation term in Eq. (30). We have

T∑
k=1

H−1∑
h=0

(max{Nk(sk,h, ak,h, h), 1})−1 =
H−1∑
h=0

∑
s∈S

∑
a∈A

NT (s,a,h)−1∑
j=0

1
max{j, 1} (31)

≤
H−1∑
h=0

∑
(s,a):NT (s,a,h)>0

(2 + log(NT (s, a, h))) ≤ HSA(2 + log(T )) (32)

Combining Eq. (30) and Eq. (32), setting δ = 1
T 2 , we have

T∑
k=1

E[Z̃2
k ] (33)

≤ 8H4SA[(log 2)S + log(1/δ)] [2 + log(L)] + 4H3SAT 2δ (34)
= 8H4SA[(log 2)S + 2 log(T )] [2 + log(T )] + 4H3SA (35)
= O(H4S2A[1 + log(T )]2) (36)

Combining Eq. (21)Eq. (22)Eq. (36), we conclude that

BRT = O(
√

εH4S2AT log(1 + T )) (37)

Proof of Claim. Let P̌ n
h (·|s, a) be the empirical distribution of transitions after sampling (s, a) at step h

exactly n times. By the L1 concentration inequality for empirical distributions Weissman et al. (2003), we
have

Pθ∗(∥P̌ n
h (·|s, a)− P θ∗

h (·|s, a)∥1 > ϵ) ≤ 2S exp
(
−1

2nϵ2
)

(38)

for any ϵ > 0. For δ > 0, define ξ(n, δ) := (2 log 2)S+2 log(1/δ)
max{n,1} , we have

Pθ∗

(
∥P̌ n

h (·|s, a)− P θ∗

h (·|s, a)∥2
1 > ξ(n, δ)

)
≤ δ. (39)

Define P̂ k
h (·|s, a) to be the empirical distribution of transitions after sampling (s, a) at step h in the first

k − 1 episodes. Define

Θ̂k
h =

{
θ : ∥P̂ k

h (·|s, a)− P θ
h (·|s, a)∥2

1 ≤ ξ(Nk(s, a, h), δ) ∀s ∈ S, a ∈ A
}
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Then, we have
P(θ∗ ̸∈ Θ̂k

h) (40)

≤ P
(
∃n ∈ [k − 1], s ∈ S, a ∈ A ∥P̌ n

h (·|s, a)− P θ∗

h (·|s, a)∥2
1 > ξ(n, δ)

)
(41)

≤ (k − 1)SAδ (42)

Since θ∗ and θ̃k are i.i.d. given Dk, and the random set Θ̂k
h is measurable to Dk, we have P(θ∗ ̸∈ Θ̂k

h) =
P(θ̃k ̸∈ Θ̂k

h). Therefore we have
E
[
∥P̃ k

h (·|sk,h, ak,h)− P ∗
h (·|sk,h, ak,h)∥2

1
]

(43)

≤ E
[
∥P̃ k

h (·|sk,h, ak,h)− P ∗
h (·|sk,h, ak,h)∥2

11{θ∗,θ̃k∈Θ̂k
h

}

]
+ (44)

+ E
[
∥P̃ k

h (·|sk,h, ak,h)− P ∗
h (·|sk,h, ak,h)∥2

1

(
1{θ∗ ̸∈Θ̂k

h
} + 1{θ̃k ̸∈Θ̂k

h
}

)]
(45)

≤ E[4ξ(Nk(sk,h, ak,h, h), δ)] + 4
(
P(θ∗ ̸∈ Θ̂k

h) + P(θ̃k ̸∈ Θ̂k
h)
)

(46)

≤ 4E[ξ(Nk(sk,h, ak,h, h), δ)] + 8(k − 1)SAδ (47)

C Proof of Lemma A.2

Proof. For convenience, write Pθ(·) = P(·|θ).

Define the event En,h = {ān,h ̸= a∗
h(s̄n,h; θ)}, i.e. in the n-th round of demonstration, the expert did not

take the optimal action at time h. Given the expert’s randomized policy ϕ, we have
Pθ(En,h|s̄n,0:h, ān,0:h−1) (48)

= 1− 1
1 +

∑
a̸=a∗

h
(s̄n,h;θ) exp(−β∆h(s̄n,h, a; θ)) (49)

≤
∑

a ̸=a∗
h

(s̄n,h;θ)

exp(−β∆h(s̄n,h, a; θ)) (50)

≤ (A− 1) exp(−β∆) =: κ̃β . (51)

Define κβ = (H − 1)κ̃β . Then β ≥ β means that κβ ≤ p/3.

Consider each (h, s) ∈ {0, 1, · · · , H − 1} × S, conditioning on θ there are two cases:

• If ph(s; θ) > 0 then

Pθ(s̄n,h = s) ≥ (1− κ̃β)h
ph(s; θ) ≥ (1− κβ)p ≥ 2

3p. (52)

The first inequality in Eq. (52) can be established via induction on h: First observe that Pθ(s̄n,0 =
s) = p0(s; θ) for all s ∈ S by definition. Suppose that we have proved the statement for time h, i.e.
Pθ(s̄n,h = s) ≥ (1− κ̃β)hph(s; θ) for all s ∈ S. Then we have

ph+1(s′; θ) =
∑
s∈S

Pθ(s′|s, a∗
h(s; θ))ph(s; θ) (53)

Pθ(s̄n,h+1 = s′) ≥
∑
s∈S

ϕβ
h(a∗

h(s; θ)|s; θ)Pθ(s′|s, a∗
h(s; θ))Pθ(s̄n,h = s) (54)

≥
∑
s∈S

(1− κ̃β)Pθ(s′|s, a∗
h(s; θ))Pθ(s̄n,h = s) (55)

≥
∑
s∈S

(1− κ̃β)h+1 Pθ(s′|s, a∗
h(s; θ))ph(s; θ). (56)

19



Published in Transactions on Machine Learning Research (10/2023)

The statement for h + 1 then follows by comparing Eq. (53) and Eq. (56), establishing the induction
step.

• If ph(s; θ) = 0, then if s̄n,h = s, the expert must have chosen some action that was not optimal
before time h in the n-th round of demonstration. We conclude that

Pθ(s̄n,h = s) ≤ Pθ

h−1⋃
h̃=1

En,h̃

 ≤ h−1∑
h̃=1

Pθ(En,h̃) ≤ κβ ≤
1
3p. (57)

The above argument shows that there’s a separation of probability between two types of state and time index
pairs under the expert’s policy ϕβ(θ): the ones that are probable under the optimal policy π∗(θ) and the
ones that are not. Using this separation, we will proceed to show that when L is large, we can distinguish
the two types of state and time index pairs through their appearance counts in D0. This will allow us to
construct a good estimator of π∗.

Define π̂∗ to be the estimator of π∗ constructed with δ = p/2. If π̂∗ ̸= π, then either one of the following
cases happens

• There exists an (s, h) ∈ S × {0, 1, · · · , H − 1} pair such that ph(s; θ) > 0 but Nh(s) < δL;

• There exists an (s, h) ∈ S × {0, 1, · · · , H − 1} pair such that ph(s; θ) = 0 but Nh(s) ≥ δL;

• There exists an (s, h) ∈ S × {0, 1, · · · , H − 1} pair such that ph(s; θ) > 0 and Nh(s) ≥ δL, but
π∗

h(s; θ) = a∗
h(s; θ) ̸= arg maxa Nh(s, a) = π̂∗

h(s);

Using union bound, we have

Pθ(π∗ ̸= π̂∗) (58)

≤
∑

(s,h):ph(s;θ)>0

Pθ(Nh(s) < δL) +
∑

(s,h):ph(s;θ)=0

Pθ(Nh(s) ≥ δL) (59)

+
∑

(s,h):ph(s;θ)>0

Pθ(Nh(s) ≥ δL, a∗
h(s; θ) ̸= arg max

a
Nh(s, a)). (60)

Let Bin(M, q) denote a binomial random variable with parameters M ∈ N and q ∈ [0, 1]. Notice that
conditioning on θ, each Nh(s) is a binomial random variable with parameters L and p̃θ,h(s) := Pθ(s̄1,h = s).

Using equation 52 and Lemma A.1, we conclude that each term in the first summation of equation 60 satisfies

Pθ(Nh(s) < δL) ≤ P(Bin(L, 2p/3) < (p/2)L) (61)

≤ exp(−2L(p/6)2) = exp
(
−

Lp2

18

)
. (62)

Using equation 57 and Lemma A.1, we conclude that each term in the second summation of equation 60
satisfies

Pθ(Nh(s) ≥ δL) ≤ P(Bin(L, κβ) ≤ (p/2)L) (63)

≤ exp
(
−2L

(p

2 − κβ

)2)
≤ exp

(
−

Lp2

18

)
. (64)
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Again, using Lemma A.1, each term in the third summation of equation 60 satisfies

Pθ(Nh(s) ≥ δL, a∗
h(s; θ) ̸= arg max

a
Nh(s, a)) (65)

≤ Pθ(a∗
h(s; θ) ̸= arg max

a
Nh(s, a) | Nh(s) ≥ δL) (66)

≤ Pθ(Nh(s)−Nh(s, a∗
h(s; θ)) ≥ Nh(s)/2 | Nh(s) ≥ δL) (67)

≤ Pθ(Bin(Nh(s), κ̃β) ≥ Nh(s)/2 | Nh(s) ≥ δL) (68)
≤ Pθ(Bin(Nh(s), 1/3) ≥ Nh(s)/2 | Nh(s) ≥ δL) (69)

≤ Eθ

[
exp

(
−Nh(s)

18

) ∣∣∣ Nh(s) ≥ δL

]
(70)

≤ exp
(
−δL

18

)
= exp

(
−

Lp

36

)
. (71)

Combining the above we obtain

Pθ(π∗ ̸∈ π̂∗) ≤ SH

[
exp

(
−

Lp2

18

)
+ exp

(
−

Lp

36

)]
. (72)

D Empirical Results

D.1 Pseudo-codes for RLSVI agents

In this appendix, we provide the pseudo-codes for iRLSVI, piRLSVI, and uRLSVI used in experiments in
Section 5, which are illustrated in Algorithm 2 and 3. Note that all three agents are tabular RLSVI agents
with similar posterior sampling-type exploration schemes. However, they differ in whether or not and how
to exploit the offline dataset. More precisely, they differ in use of the offline dataset D0 when computing
the RLSVI loss L̃RLSVI (see Algorithm 2 and 3), and if the total loss includes the loss associated with the
expert actions L̃IR (see Algorithm 3). Table 1 summarizes the differences. In all experiments in this paper,
we choose the algorithm parameters σ2

0 = 1, σ2 = 0.1, and B = 20.

agent use D0 in L̃RLSVI? include L̃IR?
uRLSVI No No
piRLSVI Yes No
iRLSVI Yes Yes

Table 1: Differences between iRLSVI, piRLSVI, and uRLSVI.

D.2 More empirical results on Deep Sea

In this appendix, we provide more empirical results for the Deep Sea experiment described in Section 5.
Specifically, for Deep Sea with size M = 10, data ratio κ = 1, 5, and expert’s deliberateness β = 1, 10, we
plot the cumulative regret of iRLSVI, piRLSVI, and uRLSVI as a function of the number of episodes t for
the first T = 300 episodes. The experiment results are averaged over 50 simulations and are illustrated in
Figure 5.

As we have discussed in the main body of the paper, when both data ratio κ and the expert’s deliberateness β
are small, then there are not many offline data and the expert’s generative policy is also not very informative.
In this case, iRLSVI, piRLSVI, and uRLSVI perform similarly. On the other hand, when the data ratio κ is
large, iRLSVI and piRLSVI tend to perform much better than uRLSVI, which does not use the offline dataset.
Similarly, when the expert’s deliberateness β is large, then the expert’s generative policy is informative. In
this case, iRLSVI performs much better than piRLSVI and uRLSVI.
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Algorithm 2 RLSVI agents for numerical experiments
Input: algorithm parameter σ2

0 , σ2 > 0, deliberateness parameter β > 0, offline dataset D0, offline buffer
size B, agent type agent

if agent = uRLSVI then
initialize data buffer D as an empty set

else
initialize data buffer D ← D0

end if

for t = 1, · · · , T do
sample state-action value function Q̂t backwardly based on Algorithm 3
sample initial state st

0 ∼ ν
for h = 0, · · · , H − 1 do

take action at
h ∼ Unif

(
arg maxa Q̂t

h(st
h, a)

)
observe (st

h+1, rt
h)

append (st
h, at

h, h, st
h+1, rt

h) to the data buffer D
end for

end for

Algorithm 3 sample Q̂t

Input: algorithm parameter σ2
0 , σ2 > 0, deliberateness parameter β > 0, offline dataset D0, data buffer

D, offline buffer size B, agent type agent

set Q̂t
H+1 ← 0

for h = H, H − 1, · · · , 0 do
Let Q ∈ ℜ|S|×|A| denote the decision variable, then we define the RLSVI loss function

L̃RLSVI(Q) = 1
2

∑
d=(s,a,h′,s′,r)∈D

(
Q(s, a)− (r + ωd)−max

b
Q̂t

h+1(s′, b)
)2

+ 1
2σ2

0
∥Q−Qprior∥2

F,

where for each data entry d = (s, a, s′, r) ∈ D, ωd is i.i.d. sampled from N(0, σ2). Each element in
Qprior ∈ ℜ|S|×|A| is i.i.d. sampled from N(0, σ2

0) and ∥ · ∥F denotes the Frobenius norm.
if agent = iRLSVI then

sample a buffer of B offline data tuple, B, without replacement from the offline dataset D0
define Bh = {(s, a, h′, s, , r) ∈ B : h′ = h}
define the loss function associated with expert actions as

L̃IL(Q) =
∑

(s,a,h′,s′,r)∈Bh

[
log
∑

b

exp (βQ(s, b))− βQ(s, a)
]

choose Q̂t
h ∈ arg minQ

[
L̃RLSVI(Q) + L̃IL(Q)

]
else

choose Q̂t
h ∈ arg minQ L̃RLSVI(Q)

end if
end for
Return Q̂t =

(
Q̂t

0, Q̂t
1, . . . , Q̂t

H

)
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Figure 5: Cumulative regret vs. number of episodes in Deep Sea.

D.3 More empirical results on Maze

In this appendix, we provide more empirical results for the Maze experiment described in Section 5. Specif-
ically, for the Maze environment, data ratio κ = 1, 5, and expert’s deliberateness β = 1, 10, we plot the
cumulative regret of iRLSVI, piRLSVI, and uRLSVI as a function of the number of episodes t for the first
T = 200 episodes. The experiment results are averaged over 50 simulations and are illustrated in Figure 6.
We have observed similar experiment results as the Deep Sea experiment.
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Figure 6: Cumulative regret vs. number of episodes in Maze.
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