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Abstract001

In modern speech synthesis, paralinguistic in-002
formation—such as a speaker’s vocal timbre,003
emotional state, and dynamic prosody—plays a004
critical role in conveying nuance beyond mere005
semantics. Traditional Text-to-Speech (TTS)006
systems rely on fixed style labels or inserting007
a speech prompt to control these cues, which008
severely limits flexibility. Recent attempts seek009
to employ natural-language instructions to mod-010
ulate paralinguistic features, substantially im-011
proving the generalization of instruction-driven012
TTS models. Although many open-source and013
commercial systems now support customized014
synthesis via textual description, their actual015
ability to interpret and execute complex in-016
structions remains largely unexplored. In ad-017
dition, there is still a shortage of high-quality018
benchmarks and automated evaluation metrics019
specifically designed for instruction-based TTS,020
which hinders accurate assessment and itera-021
tive optimization of these models. To address022
these limitations, we introduce INSTRUCTTT-023
SEVAL, the first TTS benchmark for measur-024
ing the capability of complex natural-language025
style control. INSTRUCTTTSEVAL includes026
three tasks, namely Acoustic-Parameter Speci-027
fication, Descriptive-Style Directive, and Role-028
Play, including English and Chinese subsets,029
each with 1k test cases (6k total) paired with030
reference audio. We leverage Google’s Gemini031
as an automatic judge to assess their instruction-032
following abilities. Our evaluation of accessi-033
ble instruction-following TTS systems reveals034
that even the best-performing model achieves035
only modest style-control accuracy, underscor-036
ing substantial room for improvement. We an-037
ticipate that INSTRUCTTTSEVAL will drive038
progress toward more powerful, flexible, and039
accurate instruction-following TTS models. 1040

1 Introduction041

In recent years, a number of standout TTS systems042

have emerged (Ye et al., 2025; Wang et al., 2024b;043

1 We will release our data soon after acceptance.

Task 1:  Acoustic-Parameter Specification (APS)

Task 2:  Descriptive-Style Directive (DSD)

Task 3:  Role-Play (RP)
On the phone, attempting to describe the accident
to emergency responders, but speaking with
urgency and anxiety.

Convey a high-pitched female vocal style,
beginning at a normal pitch but climbing
markedly under emotional pressure......

Pitch:   High female pitch, rising sharply...,
Speed:   Rapidly accelerates with panic...,
Emotion:   Escalating panic, anxiety...,
......

"No matter what, this will become public. And it'll be in all
the papers. Everyone in town will know about it......"

Text

Instructions

Figure 1: Tasks in INSTRUCTTTSEVAL, progressing
from concrete control to abstract expressiveness. APS
task evaluates models’ accurate control for all low-level
acoustic features, DSD task tests a model’s ability to
generalize from unstructured prompts, and RP task re-
quires models to infer appropriate vocal styles from
high-level character or scenario descriptions.

Liao et al., 2024; Ren et al., 2020; Chen et al., 2024; 044

Betker, 2023; Wang et al., 2023, 2025; Anastassiou 045

et al., 2024), achieving extremely low word- or 046

character-error rates, highly natural “human-like” 047

fluency, and remarkable voice-cloning abilities. 048

Despite their strong semantic clarity, human con- 049

versation carries vital acoustic cues as well (Cutler 050

et al., 1997). In an extreme example, the same 051

text spoken by different people—or by the same 052

person in different moods—can convey entirely dif- 053

ferent meanings. For instance, when someone says 054
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“Help me”, a playful child’s request might simply055

mean “help me reach that toy” or “tie my shoe,”056

delivered with innocent enthusiasm rather than real057

distress; an elderly speaker, however, could express058

genuine urgency—“I need assistance because I’m059

injured or unsteady”—signaling true vulnerability060

rather than casual plea. Controlling such acoustic061

features is crucial even for modern TTS systems:062

we would not expect comforting words rendered in063

a cold, detached tone by a speech engine, as that064

mismatch could largely diminish the quality of the065

user’s experience.066

There have been initial attempts to control067

acoustic features—most use special tokens (e.g.,068

<happy>) or short phrase prompts (Du et al., 2024a;069

Guo et al., 2024; Kim et al., 2021), and some re-070

cent works explore free-form natural-language con-071

trol and show encouraging progress (Yang et al.,072

2023; Guo et al., 2022; Leng et al., 2023; Liu073

et al., 2023; Du et al., 2024b; Ji et al., 2023, 2024;074

Lyth and King, 2024; Zhou et al., 2024; Yang075

et al., 2025). However, current metrics are in-076

sufficient for evaluation: most common objective077

metrics measure speech quality like word error078

rate (WER) and speaker similarity (SIM), while079

subjective MOS evaluations depend on costly hu-080

man annotation and often suffer from inconsistent081

standards. We still lack standardized benchmarks082

specifically designed to quantify the effectiveness083

of natural-language instruction-based acoustic con-084

trol, hindering accurate assessment and iterative085

model improvement.086

To address this gap, we introduce INSTRUCTTT-087

SEVAL, a fully automatic benchmark for measur-088

ing a TTS system’s ability to control acoustic fea-089

tures. As shown in Fig. 1, it consists of three090

tasks: 1) Acoustic-parameter Specification: mod-091

els receive a structured set of fine-grained natural-092

language instructions specifying detailed acoustic093

characteristics (e.g., pitch, speed, emotion), and094

must directly map each descriptive cue to the corre-095

sponding acoustic realization. 2) Descriptive-style096

Directive: models receive more open-ended, quali-097

tative style instructions expressed freely in natural098

language. It must parse this holistic description and099

infer the underlying parameter adjustments (e.g.,100

prosody, speed, intensity) needed to produce the re-101

quested expressive style. 3) Role-play: models are102

given abstract, high-level role and scenario descrip-103

tions—closer to the kinds of prompts non-expert104

users might provide—and must leverage their own105

knowledge and contextual understanding to infer106

coherent acoustic expressions (emotion, volume, 107

tone, etc.) and manifest these choices in the syn- 108

thesized output. 109

To ensure realism, we build our dataset bottom- 110

up: we mine highly expressive clips from movies 111

and TV, apply rigorous cleaning and filtering, and 112

then reverse-generate style instructions from the au- 113

dio. In total, we offer three tasks with 1,000 English 114

and 1,000 Chinese examples each (6,000 instruc- 115

tions overall), each paired with a reference wave 116

collected data. Finally, we leverage Gemini’s pow- 117

erful speech-understanding capabilities—using an 118

LLM-as-a-judge setup—to evaluate today’s state- 119

of-the-art instruct TTS systems. Results show that 120

even the top-scoring model only achieved a 71.1 121

in the EN subset and 51.1 in the ZH subset, high- 122

lighting that fine-grained acoustic control remains 123

a major open challenge. Meanwhile, our case 124

studies reveal the significant shortcomings in cur- 125

rent TTS systems when it comes to reproducing 126

natural vocal events, handling extreme emotional 127

transitions, and synthesizing character-specific tim- 128

bres—capabilities that are crucial for advancing 129

TTS toward truly human-like expressiveness. 130

In summary, our contributions are as follows: 131

• We propose INSTRUCTTTSEVAL, the first au- 132

tomatic benchmark for instruction-following 133

TTS, comprising hierarchical tasks to com- 134

prehensively evaluate a model’s ability to in- 135

terpret and execute complex natural-language 136

style descriptions. 137

• Confirming strong agreement with human an- 138

notations, we leverage Gemini as a judge to 139

conduct rapid, scalable automatic assessment. 140

• We benchmark a diverse collection of popu- 141

lar open-source and commercial TTS systems 142

on INSTRUCTTTSEVAL, providing detailed 143

analysis for future model improvements. 144

2 Related Work 145

2.1 Controllable TTS 146

In previous work, researchers have taken several 147

different approaches to controlling acoustic fea- 148

tures in TTS. CosyVoice (Du et al., 2024a) and Fir- 149

eRedTTS (Guo et al., 2024) seek to insert special 150

tokens into the input to steer the generated speech. 151

ST-TTS (Kim et al., 2021) similarly uses dedicated 152

style tags to modulate prosody and timbre. 153

Meanwhile, models such as InstructTTS (Yang 154

et al., 2023), PromptTTS series (Guo et al., 2022; 155
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Dataset/Benchmark # Labels Highlights Annotation Hier.

TextrolSpeech (Ji et al., 2023) 5 - Fixed ✗

PromptSpeech (Guo et al., 2022) 5 - Fixed ✗

SpeechCraft (Jin et al., 2024) 8 Emphasis Fixed ✗

ParaSpeechCraft (Diwan et al., 2025) 11 Sound event Fixed ✗

INSTRUCTTTSEVAL (ours) 12 Emphasis, sound event, dynamic changes Free-form !

Table 1: Comparison with existing open-sourced style description datasets. “Hier.” denotes hierarchical design.
“Fixed” annotation refers to labels drawn from a limited set of tags or classifier outputs; “free-form” indicates
natural-language descriptions that vary on a case-by-case basis.. In all cases, the initial annotations are rewritten
into fluent style instructions using a language model.

Leng et al., 2023), PromptStyle (Liu et al., 2023),156

and ParlerTTS(Lyth and King, 2024) allow users to157

describe desired voice characteristics in free-form158

text rather than relying on rigid tokens. CosyVoice159

2 (Du et al., 2024b) also goes further by permit-160

ting a natural-language style prompt before the text.161

Salle (Ji et al., 2023) combines speech tags with162

LLM-based style rewriting; and ControlSpeech (Ji163

et al., 2024) additionally integrates an example164

speech prompt for guidance. VoxInstruct (Zhou165

et al., 2024) merges style directives and transcript166

into a single instruction. And EmoVoice (Yang167

et al., 2025) focuses specifically on conveying emo-168

tional nuance via natural-language descriptions.169

For commercial offerings, Services like Hume AI 2170

and ElevenLabs 3 let users simply type in style de-171

scriptions to shape output, and the recent GPT-4o-172

mini TTS 4 likewise supports free-form prompts173

for style control. Despite this diversity of tech-174

niques, no unified evaluation framework exists to175

measure and compare their real-world style-control176

capabilities. To fill this gap, we aim to propose a177

benchmark designed explicitly to assess how ef-178

fectively these models follow user-defined style179

instructions.180

2.2 Acoustic-featured Datasets and181

Benchmarks182

Traditional TTS Evaluation Metrics Early TTS183

research has predominantly measured performance184

in terms of intelligibility and speaker similar-185

ity—most commonly using word error rate (WER)186

and speaker-similarity (SIM) scores (Panayotov187

et al., 2015; Anastassiou et al., 2024). While these188

metrics effectively capture whether the synthesized189

speech is accurate and natural-sounding, they do190

not assess a system’s ability to follow detailed style191

2 https://www.hume.ai/
3 https://elevenlabs.io/text-to-speech
4 https://www.openai.fm/

or prosody instructions. Meanwhile, subjective 192

metrics such as Mean-Opinion-Score (MOS) rely 193

on human annotation, which is time-consuming 194

and extremely costly. 195

Speech Understanding Benchmarks Bench- 196

marks focusing on acoustic features mostly include 197

speech understanding tasks. AudioBench (Wang 198

et al., 2024a) and SD-Eval (Ao et al., 2024) in- 199

tegrate voice understanding tasks to assess mod- 200

els’ ability to perceive paralinguistic information 201

like accent, gender, and emotion. And Salmon 202

(Maimon et al., 2024) measures whether the model 203

can identify the inconsistencies in the input speech. 204

These suites excel at evaluating recognition and 205

classification, but they do not measure how well 206

a TTS model can produce speech that matches a 207

user-defined acoustic description. 208

Datasets with Style Description Several recent 209

datasets pair speech samples with natural-language 210

style descriptions using a variety of pipelines. Tex- 211

trolSpeech (Ji et al., 2023) begins with five discrete 212

features (gender, pitch, speed, volume, emotion) 213

and relies on an LLM to weave those elements into 214

coherent prompts. AudioBox (Vyas et al., 2023) 215

and PromptSpeech (Guo et al., 2022) both have hu- 216

man annotators label clips along core dimensions 217

and then apply an LLM to rewrite those tags into 218

fluent sentences. And NLSpeech (Yang et al., 2023) 219

relies entirely on manually annotated data. gener- 220

ates descriptive keywords (gender, speed, pitch, 221

volume) before forming sentences and retrieving 222

Spoken Language Understanding (SLU)-tagged au- 223

dio. SpeechCraft (Jin et al., 2024) adopts a bottom- 224

up approach: a classifier first assigns tags to audio 225

(e.g., “elderly”, “emphasis on...”), and an LLM 226

then composes those tags into full descriptions. 227

ParaSpeechCraft (Diwan et al., 2025) expands the 228

tag set to 58 labels spanning inherent speaker traits 229

and situational context. 230
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While each method offers useful insights, they231

face several challenges: 1) they cannot handle nu-232

anced features in a speech, such as emotion tran-233

sition; 2) they rely on heavy human annotation, or234

classifiers that are only available for limited fea-235

tures. We illustrate the major difference between236

our dataset and previous work in Fig. 1. To address237

these gaps, we introduce an automatic and scalable238

pipeline for constructing style captions and instruc-239

tions, capturing fine-grained acoustic attributes, to240

enable continuous evaluation and enhancement of241

controllable TTS systems.242

3 INSTRUCTTTSEVAL243

3.1 Task Definition244

Based on previous studies (Cutler et al., 1997; Di-245

wan et al., 2025; Jin et al., 2024), we integrate 12246

features across four tiers: physiological (e.g., gen-247

der, pitch, texture), linguistic (e.g., clarity, fluency,248

speed), social (e.g., accent, age, volume), and psy-249

chological or pragmatic (e.g., emotion, tone, per-250

sonality), as listed in Fig. 3. Building upon these251

features, we design the following tasks taskscor-252

responding to three instruction granularities, as il-253

lustrated in Fig. 1, to evaluate controllable TTS254

systems:255

1. Acoustic-Parameter Specification (APS) fo-256

cuses on fine-grained control over low-level257

acoustic attributes. The input consists of ex-258

plicit instructions covering all 12 features, and259

the goal is to assess whether the model can260

independently manipulate each property with261

precision.262

2. Descriptive-Style Directive (DSD) is a more263

naturalistic variant where the structured in-264

structions from APS are rewritten by an LLM265

into free-form descriptions. We further in-266

troduce diversity by randomly omitting some267

attributes in the prompt. This task examines268

the model’s ability to generalize from unstruc-269

tured input and produce appropriate speech270

styles even when certain attributes are unspec-271

ified.272

3. Role-Play (RP) challenges the model’s contex-273

tual and social reasoning abilities. Instead of274

explicitly stating vocal traits, the prompts de-275

scribe roles or scenarios (e.g., a teacher scold-276

ing a student, a nervous applicant in an inter-277

view). The model is expected to infer the cor-278

responding vocal style based on world knowl- 279

edge and map abstract social cues to con- 280

crete acoustic realizations, such as changes 281

in speed, volume, intonation, or phrasing. 282

Together, these three tasks offer a comprehen- 283

sive benchmark for evaluating both low-level con- 284

trollability and high-level style generalization in 285

controllable TTS systems. 286

3.2 Data Collection 287

The overall process of how we construct IN- 288

STRUCTTTSEVAL is illustrated in Fig. 2. 289

3.2.1 Data Preprocessing 290

Data Source To design prompts that exhibit 291

strong stylistic expression with coherent feature 292

alignment, we curate our data from movies, TV 293

dramas, and variety shows—domains rich in ex- 294

pressive speech and diverse emotional delivery. We 295

utilized the publicly available NCSSD (Liu et al., 296

2024) dataset and additionally collect and process 297

supplementary audio from various film and televi- 298

sion sources. 299

Data Cleaning For our self-collected data, we 300

apply speaker diarization (Bredin, 2023; Plaquet 301

and Bredin, 2023) to acquire segments shorter 302

than 30 seconds of the same speakers. We then 303

use whisper-large-v3 (Radford et al., 2022) for 304

automatic speech recognition (ASR), followed 305

by punctuation restoration using ct-punc 5 and 306

BELLE (BELLEGroup, 2023). This pipeline yields 307

approximately 6,000 hours of transcribed speech. 308

Filtering To ensure high audio quality, we fil- 309

ter both NCSSD and our own data using DNS- 310

MOS (Reddy et al., 2021) with a threshold of 311

2.8. We further refine the dataset with a custom- 312

tuned WhisperD (Darefsky et al., 2024) model to 313

reserve single-speaker segments. To improve the 314

accuracy of downstream speech caption, we retain 315

only segments longer than 3 seconds and contain- 316

ing more than 10 words (for English) or 10 char- 317

acters (for Chinese). To select highly expressive 318

speech samples, we employ the DVA toolkit (Wag- 319

ner et al., 2022). We retain only the Dominance 320

(Potency–Submissiveness) and Arousal (Activa- 321

tion–Deactivation) dimensions, filtering samples 322

with both scores exceeding a threshold of 0.8. The 323

Valence (V) dimension is discarded, as our bench- 324

mark aims to cover both positive and negative emo- 325

5 https://huggingface.co/funasr/ct-punc

4



1. Data Preprocessing

Raw data

Clean segments

Cleaning

Single speaker's short
audio clips (<30s)

Open-source datasets,
collected movies

Expressive segments
Audio clips with high
dominance and arousal 

Filtering

2. Speech Caption

Pitch: High female pitch... 
Speed: Accelerates with panic...
Emotion: Escalating panic...
......

You are a Paralinguistics Analysis
Expert ...... based on the provided
speech, generate a concise
descriptive phrase of the following
vocal characteristcs.

Prompt

Expressive segments

Caption

3. Instruction Generation

Please generate style instructions
to guide a Text-to-Speech (TTS)
system strictly based on the
following voice style description...

Prompt

Instructions

Generate instructions

Descriptive-Style Directive

Role-Play

4. Evaluation

Guidelines
Your task is to judge
whether the audio matches
the described style ...

Eval

TTS Synthesis

True
Human

Style instruction

[ Task 2 ]

[ Task 3 ]

[ Task 1]
False

Further evaluation...

True
False

Figure 2: Overview of the benchmark construction and evaluation. We perform careful data cleaning and filtering to
select audio with high expressiveness. Then we prompt Gemini to generate detailed, free-form descriptions for each
acoustic feature, this caption is also used as the APS task’s instruction. Then, we prompt GPT-4o to generate diverse
instructions to create diverse DSD and RP instructions. Finally, after consistency verification between human and
Gemini as judges, we further perform holistic evaluation on current TTS systems.

tional expressions without bias toward emotional326

polarity. Finally, we collect 2,000 segments as ref-327

erence audio. Data statistics can be seen in Tab. 2.328

Source
# items Duration (h)

EN ZH EN ZH

NCSSD 183 500 0.47 0.93
Collected 817 500 2.57 1.61

Overall 1,000 1,000 3.04 2.54

Table 2: Statistics of reference audio

3.2.2 Speech Caption329

Compared to using predefined categorical tags, we330

argue that continuous natural language provides a331

more precise and nuanced description of the rele-332

vant speech features. To this end, we leverage the333

strong spoken language understanding (SLU) capa-334

bilities of Gemini 6 to generate a natural language335

description for each reference audio sample. The336

prompting strategy used for caption generation is337

illustrated in Fig. 3. This caption also serves as338

the instruction for the APS task. In particular, we339

emphasize the importance of capturing dynamic340

changes in vocal attributes. For example, a speaker341

might drop to a whisper when starting a gossip;342

or gradually escalate in emotional intensity, lead-343

ing to increased volume and even shouting by the344

end. These dynamic transitions are common in nat-345

ural speech but have often been overlooked in prior346

6 gemini-2.5-pro-preview-05-06

free-form style descriptions. We believe that mod- 347

eling such temporal transitions is a crucial aspect 348

of evaluating controllability in TTS systems. 349

3.2.3 Instruction Generation 350

Based on the generated captions, we use ChatGPT 7 351

to produce natural language style instructions. For 352

the Descriptive-Style Directive (DSD) task, we ran- 353

domly drop certain features from the instruction to 354

simulate incomplete or underspecified input. The 355

omitted features are considered unconstrained, al- 356

lowing the TTS system to generate any plausible 357

values for those attributes. For the Role-play (RP) 358

task, we adopt a chain-of-thought (CoT) prompting 359

strategy, guiding GPT to infer the speaker’s role or 360

scenario by reasoning through the twelve defined 361

acoustic features. This approach encourages the 362

model to map low-level acoustic cues to high-level 363

social or contextual roles. 364

3.3 Metrics 365

We design an instruction-following metric (Zhou 366

et al., 2024) to evaluate whether the synthesized 367

speech aligns with the given instruction. A brief 368

overview of the evaluation criteria is shown in 369

Tab. 3, while detailed scoring guidelines are pro- 370

vided in App. C. For each subset, the final score is 371

computed as the macro-average of the instruction- 372

following scores across all 1,000 items. 373

7 gpt-4o-2024-08-06
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Score Criteria

true The sample’s primary style attributes
(e.g., gender, pitch, rate, emotion) align
with the prompt, without conflict.

false At least one key style attribute clearly
conflicts with the prompt, or the overall
style deviates from the prompt.

Table 3: Scoring Criteria

4 Evaluation374

4.1 Consistency375

To assess whether Gemini can serve as a reli-376

able substitute for human evaluation, we first mea-377

sure the consistency between human judgments378

and Gemini’s judgments. For each of the three379

instruction types across two languages, we ran-380

domly selected 50 reference audio samples for hu-381

man annotation. Among them, 25 samples are382

matched, meaning the instruction was originally383

derived from the corresponding reference audio.384

The remaining 25 are mismatched pairs, created by385

randomly assigning a non-corresponding instruc-386

tion from the dataset to each reference audio. This387

setup allows us to assess Gemini’s ability to cor-388

rectly reject negative cases. Note, however, that389

due to the many-to-many (Ji et al., 2024) nature390

of speech and description, it is still possible for a391

mismatched instruction to partially align with the392

given audio.393

We recruit three human annotators (graduate394

students, all with TOEFL scores above 100) and395

compensate them at a rate of 50 RMB/hour. They396

follow the same evaluation guidelines as Gemini.397

Detailed annotation guidance and screenshots are398

illustrated in App. C. We take the majority vote399

among the three annotators as the final human judg-400

ment, and compare it with Gemini’s predictions.401

The agreement results are summarized in Tab. 4.402

Notably, DSD and RP instructions are generated403

without feeding in the reference audio, so they may404

deviate from the original audio. Furthermore, be-405

cause RP prompts are inherently more subjective,406

human–Gemini agreement tends to decline.407

4.2 TTS Systems408

We select models that support free-style descrip-409

tion as input, without requiring a prompt speech410

sample. For closed-sourced models, we evaluate411

Accuracy APS DSD RP Avg.

EN 86% 78% 66% 76.7%
ZH 88% 80% 76% 81.3%

Avg. 87% 79% 71% 79.0%

Table 4: Consistency between human majority vote and
Gemini.

TTS APS DSD RP Avg.

reference_audio 96.2 89.4 67.2 84.3

Closed-sourced

gpt-4o-mini-tts 76.4 74.3 54.8 68.5
hume* 83.0 75.3 54.3 71.1

Open-sourced

VoxInstruct 54.9 57.0 39.3 50.4
Parler-TTS-mini 63.4 48.7 28.6 46.9
Parler-TTS-large 60.0 45.9 31.2 45.7
PromptTTS 64.3 47.2 31.4 47.6
PromptStyle 57.4 46.4 30.9 38.2

Table 5: Performance of instruction-following TTS Sys-
tems on English (EN). Best results are bold and second-
best are underlined. * denotes that few cases are missing
due to model constraints such as max instruction length
or safety settings.

gpt-4o-mini-tts and Hume. ElevenLabs is only par- 412

tially evaluated due to subscription limitations, so 413

we exclude it from evaluation. Since we must spec- 414

ify a voice for gpt-4o-mini-tts, we randomly choose 415

from the provided female/male voice list accord- 416

ing to the caption result. For open-sourced TTS, 417

we select Parler-TTS (Lyth and King, 2024), Vox- 418

Instruct (Zhou et al., 2024), and the reproducible 419

variants (Ji et al., 2024) of PromptTTS (Guo et al., 420

2022) and PromptStyle (Liu et al., 2023) for evalu- 421

ation. Each evaluation session containing all three 422

tasks costs approximately $12.8 for English and 423

$11.9 for Chinese using Gemini-as-a-judge. 424

4.3 Results and Analysis 425

4.3.1 Performance on EN Subset 426

Overall, the closed-sourced commercial models 427

significantly outperform the open-sourced ones. In 428

particular, hume achieves an impressive average 429

score of 71.1. Both hume and gpt-4o-mini-tts han- 430

dle emotional nuance with remarkable accuracy. 431

However, gpt-4o-mini-tts’s need for forced voice 432

selection (we aligned male/female choices) some- 433
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TTS APS DSD RP Avg.

reference_audio 90.9 86.7 69.8 88.7

Closed-sourced

gpt-4o-mini-tts 54.9 52.3 46.0 51.1

Open-sourced

VoxInstruct 47.5 52.3 42.6 47.5

Table 6: Performance of instruction-following TTS Sys-
tems on Chinese (ZH).

times conflicts with the natural instructions, which434

can degrade its performance on timbre-related at-435

tributes—such as texture, age, and pitch—that de-436

pend on physiological voice quality. Among the437

open-source models, VoxInstruct stands out: it438

clearly outperforms its peers on the DSD and RP439

tasks. Yet in the APS task, its inability to process440

longer inputs often leads to outputs that are seman-441

tically and acoustically undistinguishable. Parler-442

TTS-large and Parler-TTS-mini show no significant443

performance gap—and on certain APS and DSD444

cases, the mini version even edges out the large.445

PromptTTS and PromptStyle, by contrast, struggle446

to generate expressive speech, yielding rather flat,447

unremarkable samples.448

Nonetheless, across all TTS systems, there re-449

mains a substantial expressiveness gap between450

synthesized output and the reference audio. Bridg-451

ing this divide to reach truly free-form, human-452

level control and naturalness in TTS remains an453

open challenge.454

4.3.2 Performance on ZH Subset455

In the ZH subset, gpt-4o-mini-tts slightly outper-456

forms VoxInstruct (+3.6), as shown in Tab. 6.457

Though its timbre can sometimes conflict with the458

specified instructions, it handles emotional expres-459

sion very effectively. VoxInstruct exhibits instabil-460

ity when given APS instructions, failing to follow461

the script, resulting in an undistinguishable voice462

style. This issue is largely mitigated for DSD and463

RP tasks, likely because those instructions more464

closely resemble its training data. Meanwhile, it465

performs relatively well on “news anchor” prompts466

but struggles with more expressive directives. No-467

tably, whenever VoxInstruct does stick to the script,468

its Mandarin prosody sounds appreciably more nat-469

ural than gpt-4o-mini-tts’s. Moreover, performance470

on the ZH subset lags significantly behind that on471

the EN subset, highlighting a substantial disparity 472

in TTS capabilities across languages. 473

4.4 Case Studies 474

In this section, we select some representative cases 475

for analysis (Tab. 7). 476

First, modern TTS models still struggle to re- 477

produce the paralinguistic sound events that fre- 478

quently occur in human speech, such as sighs, 479

sudden bursts of laughter, screams, etc. In our 480

case study, only gpt-4o-mini-tts is able to gener- 481

ate laughter. Yet these vocal events are essential 482

for conveying emotion and maintaining a natural 483

speech flow; a powerful, controllable TTS system 484

should be able to capture and synthesize them. 485

Few models are capable of extreme emotional 486

expressions and rapid affective shifts. In our 487

evaluation, gpt-4o-mini-tts clearly stands out: it can 488

produce controlled shouting and other heightened 489

vocalizations on demand. Meanwhile, VoxInstruct 490

and gpt-4o-mini-tts are also initially capable of 491

handling some transitions—such as moving from 492

calm speech to excited. 493

Interestingly, in certain timbre-focused cases, 494

some open-sourced systems actually can pro- 495

duce surprisingly impressive results. Take the 496

“child voice” scenario, for example: hume is 497

blocked from generating child-like timbres by its 498

safety filters, and gpt-4o-mini-tts cannot stray from 499

its fixed voice settings, which largely limit its 500

prosodic generality. Yet several open-source TTS 501

models—despite weaker overall emotional con- 502

trol—deliver astonishingly authentic, youthful vo- 503

cal qualities. And Parler-TTS-Large successfully 504

synthesizes the voice of the elderly. This suggests 505

that timbre flexibility and emotional expressiveness 506

remain orthogonal capabilities, and that future TTS 507

research should aim to unify them rather than treat 508

them separately. 509

Finally, it’s worth noting that no current system 510

can truly generate a “singing” effect. Instruct- 511

ing a TTS model to “speak as if singing” requires 512

integrating prosody, melody, emotion, timbre, and 513

rhythm in a cohesive way. This multidimensional 514

coordination sets a much higher bar for natural- 515

ness and expressiveness in controllable TTS—and 516

represents a key direction for future research. 517

5 Conclusions 518

In this paper, we carefully construct a hirerachi- 519

cal benchmark for instruction-following TTS. 520
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Instruction Performance

Acoustic-Parameter Specification

Speed: Rapid pace initially, slightly slowing.
Volume: Energetic and relatively loud, decreasing slightly.
Emotion: Excited and emphatic, ending with a sigh suggesting weari-
ness.

NO existing models success-
fully ‘sigh’; hume and gpt-4o-
mini-tts sound excited.

Volume: Shouting, very loud.
Texture: Tense, somewhat strained.
Emotion: Intense panic and fear.

gpt-4o-mini-tts shows signs of
‘shouting’; hume bears anger.

Descriptive-Style Directive

Begin with an artificially high-pitched, boisterous laugh that carries a
playful tone, then smoothly transition to a more deliberate pace with a
standard conversational volume, subtly lowering the pitch afterward to
deliver the rest with a slightly put-upon nasal quality.

gpt-4o-mini-tts successfully
laughs out.

Infuse your performance with an outgoing personality, ensuring a
high child pitch is woven through a swift, energetic delivery.

VoxInstruct, Parler-TTS-large
generates voice like a child; gpt-
4o-mini-tts outputs energetic de-
livery.

Role-Play

Use an expressive and somewhat theatrical tone, like an elderly British
female storyteller sharing a funny story at a family gathering. Start with
a quick pace and clear articulation, then slow down, slightly fluctuating
in pitch to emphasize key parts with a quirky and slightly bossy texture.

Parler-TTS-large generates a
trembling voice of an elderly;
VoxInstruct delivers a middle-
aged to elderly female voice.

Create an effect that keeps listeners focused: imagine a scenario where
someone is shouting in panic and agony, their words blurred and barely
comprehensible, with piercing screams that demand immediate atten-
tion.

NO models scream; gpt-4o-
mini-tts speaks as if it is in pain.

Share the message with the energy of a young adult cartoon character,
starting with a clear and calm voice that quickly rises to a dynamic,
emotionally impulsive pitch.

VoxInstruct clearly raises its
voice; gpt-4o-mini-tts shows a
slight rise.

Infuse your tone with the brightness of a stage performer in a whimsical
play, keeping your voice clear, lighthearted, and effortlessly melodic.

NO models generate melodic
voice.

Table 7: Case studies. Models not mentioned indicate a lack of significant expressiveness. For APS instructions,
some parameters are omitted due to length constraints.

We meticulously design a three-tier evaluation521

task—spanning the low-level Acoustic-Parameter522

Specification (APS) task, the mid-level Descriptive-523

Style Directive (DSD) task, and the high-level524

Role-Play (RP) task—to comprehensively measure525

current TTS systems’ ability to follow complex526

natural-language descriptions of acoustic features.527

Our results reveal that existing models still struggle528

with fine-grained paralinguistic control, and expose529

significant performance gaps both between closed-530

and open-source systems and across different lan- 531

guages. Moreover, our case studies highlight major 532

deficiencies in reproducing natural vocal events, 533

managing extreme emotional transitions, and syn- 534

thesizing character-specific timbres—capabilities 535

that are crucial for advancing TTS toward truly 536

human-like expressiveness. We hope this bench- 537

mark will catalyze further progress in developing 538

more controllable and expressive speech synthesis. 539
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Limitations540

We acknowledge that our work may have the fol-541

lowing limitations: 1) Subjectivity and evalua-542

tion cost. Some of our tasks, particularly for the543

Role-Play (RP), are inherently subjective. Inter-544

annotator agreement among human raters is rela-545

tively low compared to APS and DSD tasks, which546

introduces noise when using automated evalua-547

tors like Gemini. Moreover, continuously conduct-548

ing large-scale evaluations using Gemini is cost-549

intensive. In future work, we plan to develop a550

more accurate and cost-efficient evaluator to en-551

act iterative evaluation. 2) Data imbalance. Since552

our dataset is constructed in a bottom-up fashion553

from specific acoustic events and style directives,554

certain classes (e.g., particular emotions or role555

archetypes) are underrepresented. This imbalance556

could bias model performance and evaluation. We557

will expand the benchmark to include a broader,558

more evenly distributed set of style categories.559

Ethical Considerations560

Owing to our large-scale automated pipeline,561

we are unable to manually review every562

text–instruction pair. As a result, it may consist563

of some inappropriate content. Please note that any564

content from the reference audio and the synthe-565

sized audio does NOT reflect the authors’ views or566

endorsements. Additionally, this dataset and bench-567

mark are intended solely for academic and research568

use.569
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A Speech Caption765

Fig. 3 illustrates our prompt for Gemini to generate766

a detailed, natural language description for each767

speech segments.768

B Instruction Generation769

In this section, we introduce our prompting strate-770

gies for generating style instructions. In order to771

increase diversity and accuracy, we employ: 1) ran-772

dom dropouts, 2) multiple prompts, 3) generate773

more instructions at one time, and 4) utilize the774

Chain-of-Thought (CoT) strategy.775

To generate the DSD prompt, we design 3 weight776

settings to randomly drop out features, as shown777

in Fig. 8. When instructing GPT-4o to generate778

instructions, we select a weight setting and provide779

last features to the model. Prompt for generating780

DSD can be seen in Fig. 4. Also, we design 3781

prompts for generating RP instructions, as shown782

in Fig. 5 , Fig. 6, and Fig. 7.783

Set 1 Set 2 Set 3

probs 0.5 0.25 0.25

gender 1.0 0.5 0.5
pitch 1.0 0.5 0.5
speed 1.0 0.5 0.5
volume 1.0 0.5 0.5
age 1.0 0.8 0.5
clarity 1.0 0.5 0.5
fluency 1.0 0.5 0.5
accent 1.0 0.8 0.5
texture 1.0 0.8 0.5
emotion 1.0 1.0 0.8
tone 1.0 1.0 0.8
personality 1.0 1.0 0.8

Table 8: Weights

C Scoring Guidelines784

Fig. 8 illustrates our scoring guidelines for Gemini,785

and the screenshot of human annotation can be seen786

in Fig. 9.787
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You are a Paralinguistics Analysis Expert trained to decode human vocal characteristics and speaking styles through
acoustic patterns. Here is the instruction for your task.

### Instructions for Speech Style Caption

**Objective**: Based on the provided speech, generate a JSON-style output that includes concise descriptive phrase of
the following vocal characteristcs. Please reply in English.

---

### Vocal Characteristics

- Gender: Speech characteristics associated with different gender identities, including vocal tract differences and
socialized speech patterns.
- Pitch: The perceived frequency of sound, determining whether a voice sounds high or low. Typically, male voices have a
lower pitch, while female voices tend to have a higher pitch. You can express relative pitch levels based on gender, for
example: "high female pitch", "Low and stable male pitch". 
- Speed: How quickly or slowly someone is speaking, which often changes throughout dialogue. If the speaker exhibits
specific rhythm patterns, please indicate.
- Volume: How loudly or softly someone speaks which can fluctuate significantly. Examples range from whispering to
normal conversation volume to shouting.
- Age: An inference of the speaker's age group or life stage (such as child, teenager, young adult, middle-aged, elderly)
based on vocal characteristics. If it is challenging to identify the exact stage, you may simply indicate the general phase.
- Clarity: Whether pronunciation is distinct and precise or mumbled and blurred. Low clarity may involve slurring,
mumbling, or running words together, while high clarity features precise articulation of sounds.
- Fluency: The smoothness and continuity of speech, indicating how naturally words flow without excessive hesitation,
repetition, or filler words (such as "um," "uh," "like," "you know").
- Accent: Distinctive way of pronouncing words that indicates geographical origin, socioeconomic background, or non-
native speaker status. If the accent is sufficiently pronounced, please specify the dialect region as precisely as you can.
Otherwise response with the approximate region such as American English, British English or Mandarin Chinese.
- Texture: The timbral quality of a speaker's voice, including descriptors such as sweet, husky, deep, bright, warm, nasal,
mellow, gravelly, or delicate. These attributes reflect both physiological traits (e.g., vocal fold structure) and stylistic
nuances, enabling differentiation between speakers or analysis of emotional/expressive tendencies.
- Emotion: The feeling expressed while speaking. which can shift during conversation. A person might begin speaking
calmly but become increasingly frustrated, or switch from sadness to laughter within the same utterance.
- Tone: The emotional or attitudinal quality conveyed through vocal inflection, encompassing patterns of pitch variation
that signal nuances like sarcasm, formality, enthusiasm, or detachment.
- Personality: Please infer the speaker's overall personality based on the aforementioned voice characteristics, such as
extroversion/introversion, confidence, assertiveness, or anxiety. Only describe the speaker's prominent and consistent
personality traits evident in the speech. 

---

### Output Format

{
    "gender": "Gender of the speaker", 
    "pitch": "Description of the speaker's pitch",
    "speed": "Description of the speaker's temporal flow",
    "volume": "Description of the speaker's dynamic intensity"
    ......
}

---

### Final Checklist

- Make sure to note how the vocal characteristics change over time throughout the speech.
- The description should be concise phrase, avoid using single words or long sentences.
- When describing changes in characteristics, you may reference spoken content to indicate the timing of the changes,
but ensure to summarize the key points semantically rather than repeating verbatim.
- When analyzing pitch, speed, and volume, ensure to distinctly differentiate their variations rather than uniformly
labeling them as "moderate". Avoid using the word "moderate".
- Please utilize diverse vocabulary and varied expressions, avoiding confinement to the illustrative examples provided.

Figure 3: Speech caption prompt for Gemini.
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Please generate exactly **3 English style instructions** to guide a Text-to-Speech (TTS) system strictly based on the
following voice style description. Return your result in **JSON format** as follows:

```json
{
  "instructions": ["Instruction 1...", "Instruction 2...", "Instruction 3..."]
}
````

### Key Requirements

1. **Fine-grained detail**
   • Each instruction must draw on **4–5 distinct voice attributes** from the description (e.g., gender, pitch, rate, volume,
clarity, fluency, emotion).
   • If an attribute is especially striking (e.g. “hoarse,” “furious”), give it prominence; omit subtler traits if needed.

2. **Maximum diversity**
   • **No two instructions** should begin or end the same way—vary your openings, sentence length, word order, and
phrasing.
   • Use a rich palette of synonyms and idioms; employ different grammatical structures (e.g. active vs. passive,
compound vs. simple sentences).
   • Avoid repeating core verbs or adjectives across instructions.
   • **Do not** start any instruction with **Speak**, **Deliver**, **Use**, **Adopt**, **Project**, **Maintain**,
**Channel**, **Utilize**.

3. **Idiomatic, fluent English**
   • Do **not** lead with framing words like “Imagine,” “Envision,” or similar.
   • Maintain a **natural monologue style**—not dialogue or questions.

4. **Instruction format**
   • If quoting a phrase from the description (e.g. “when saying …, raise your voice”), copy it verbatim.
   • Focus each instruction on a **different combination** of attributes—do not echo the same group of features.

### Voice Style Reference

```json
{style_desc}
```

Please return **only** the JSON object—no extra text.

Figure 4: Prompts for DSD instruction generation.
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Please generate exactly **3 English style instructions** to guide a Text-to-Speech (TTS) system strictly based on the
following voice style description. Return your result in **JSON format** as follows:

```json
{
  "instructions": ["Instruction 1...", "Instruction 2...", "Instruction 3..."]
}
````

### Key Requirements

1. **Fine-grained detail**
   • Each instruction must draw on **4–5 distinct voice attributes** from the description (e.g., gender, pitch, rate, volume,
clarity, fluency, emotion).
   • If an attribute is especially striking (e.g. “hoarse,” “furious”), give it prominence; omit subtler traits if needed.

2. **Maximum diversity**
   • **No two instructions** should begin or end the same way—vary your openings, sentence length, word order, and
phrasing.
   • Use a rich palette of synonyms and idioms; employ different grammatical structures (e.g. active vs. passive,
compound vs. simple sentences).
   • Avoid repeating core verbs or adjectives across instructions.
   • **Do not** start any instruction with **Speak**, **Deliver**, **Use**, **Adopt**, **Project**, **Maintain**,
**Channel**, **Utilize**.

3. **Idiomatic, fluent English**
   • Do **not** lead with framing words like “Imagine,” “Envision,” or similar.
   • Maintain a **natural monologue style**—not dialogue or questions.

4. **Instruction format**
   • If quoting a phrase from the description (e.g. “when saying …, raise your voice”), copy it verbatim.
   • Focus each instruction on a **different combination** of attributes—do not echo the same group of features.

### Voice Style Reference

```json
{style_desc}
```

Please return **only** the JSON object—no extra text.

Figure 5: Prompts for RP instruction generation.
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Please generate a total of **3 natural English role-play instructions** to guide a Text-to-Speech (TTS) system strictly
based on the following voice style description. Do not introduce any traits not present in the description or add creative
embellishments.

---
### Output Format Requirements  
First, analyze the voice style description and briefly summarize your understanding and reasoning about the possible
character personas.  
Then output **only** the JSON object in this exact structure:  
```json
{
  "instructions": ["Instruction 1...", "Instruction 2...", "Instruction 3..."]
}
````

---

### Instruction Guidelines

1. Each instruction must embody a **specific character persona** inferred directly from the voice style description.
2. Write each as a **natural, colloquial English phrase** describing the character and their manner of speaking—do not
provide actual dialogue lines.
3. Phrase instructions like a director’s note to an actor: concise, vivid, and instantly actionable.
4. Vary sentence structures and points of entry; avoid formulaic templates.
5. Use declarative sentences only; do **not** start with framing words such as “like,” “imagine,” “pretend,” “as,” “you
are,” “acting,” etc.

---

### Good Instruction Examples

* “Step into the shoes of a big sister at a family gathering, balancing patience and firmness as you restore order.”
* “Portray a determined professional in a boardroom, your voice steady with just a hint of nervous tension.”
* “Embody the excitement of an adventurer discovering a hidden treasure, speaking with wide-eyed enthusiasm.”

### Bad Instruction Examples (avoid)

* ❌  “Pretend you are a cold assassin.”
* ❌  “Act like a weary teacher.”
* ❌  “Speak in a calm voice with moderate pace.”

---

### Voice Style Reference Description

```json
{style_desc}
```

Figure 6: Prompts for RP instruction generation.
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Please generate **3 minimal, natural English role-play instructions** based on the following voice style description to
guide a Text-to-Speech (TTS) system in synthesizing the corresponding character style voice.

---
## Output Format
First, outline your reasoning: explain how you inferred possible character personas from the voice style description.  
Then output **only** this JSON object:
```json
{
  "instructions": ["Instruction 1", "Instruction 2", "Instruction 3"]
}
````

---

## Generation Rules

1. Begin by deducing which character personas fit the voice style description. You may choose imaginative roles (e.g.,
“general,” “empress,” “knight,” “poet,” “kitten,” “robot”), but they must align with the description.
2. Each instruction must consist of **“Character + a single minimal action or speaking manner”** and must not include
any acoustic details.

   * ✅  Example: “On the debate podium, the lawyer unleashes a passionate argument.”
   * ✅  Example: “With swift, clear enunciation, the seasoned commentator brings the match to life.”
   * ✅  Example: “A rural poet slowly recounting the town’s legend.”
3. Use colloquial, vivid phrasing—like a director’s off-the-cuff cue.
4. Vary sentence structures; avoid templated patterns. All three instructions must differ and must not start the same way.
5. Write each as one concise English sentence.

---

### Voice Style Reference Description:

```json
{style_desc}
```

Figure 7: Prompts for RP instruction generation.
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You are an expert with rich acoustic knowledge. Please describe a speech segment according to the following dimensions and judge whether the
speech matches the given description, outputting **True** (matches) or **False** (does not match) on the consistency dimension, ignoring non-style
factors (sound quality, naturalness, etc.).

---

## Evaluation Dimensions
- Gender: Speech characteristics related to different gender identities, including vocal cord differences and socialized speech patterns.
- Pitch: The perceived frequency of the voice, determining whether the voice is high or low. Typically, male voices have lower pitch, female voices
have higher pitch. Relative pitch levels can be based on gender expression, e.g., "female high voice," "male deep stable voice."
- Speech Rate: The speed of talking, which often varies in conversation. If the speaker exhibits specific rhythmic patterns, please indicate.
- Volume: The loudness or softness of speech, which can vary greatly. Examples include whispering, normal conversational volume, or shouting.
- Age: Inferring the speaker's age group or life stage (such as child, teenager, young adult, middle-aged, elderly) based on speech characteristics. If
difficult to determine a specific stage, simply indicate the approximate stage.
- Clarity: Whether pronunciation is clear and accurate or unclear. Low clarity may involve murmuring, mumbling, or connected speech, while high
clarity is characterized by precise pronunciation.
- Fluency: The fluency and continuity of language, reflecting whether words flow naturally without excessive hesitation, repetition, or filler words (such
as "um," "ah," "like," "you know").
- Accent: The unique way of pronunciation, reflecting geographical origin, socioeconomic background, or non-native speaker identity. If the accent is
distinctive enough, please specify the dialect region as precisely as possible; otherwise, indicate the general region, such as American English, British
English, or Standard Mandarin.
- Timbre Quality: The timbral quality of the voice, including descriptions like sweet, hoarse, deep, bright, warm, nasal, soft, rough, or thin. These
attributes reflect physiological characteristics (such as vocal cord structure) and stylistic nuances, useful for distinguishing speakers or analyzing
emotional/expressive tendencies.
- Emotion: The emotion expressed when speaking, which may change during the conversation. For example, a person might start speaking calmly
but gradually become upset, or transition from sadness to laughter within the same sentence.
- Intonation: The emotional or attitudinal quality conveyed through voice modulation, including pitch variation patterns, expressing nuances such as
sarcasm, formality, enthusiasm, or indifference.
- Personality: Inferring the overall personality of the speaker based on the above speech characteristics, such as extroverted/introverted, confident,
assertive, or anxious. Only describe personality traits that are obvious and consistent in the speech.

---

## Judgment Criteria
| Judgment | Definition |
| --------------- | -------------------------------------------------------------------------------- |
| **True (Matches)** | The speech sample satisfies the main stylistic features of the description:<br>- Major style dimensions (such as gender, pitch,
speech rate, emotion, etc.) are consistent with the description<br>- No obvious deviations or conflicts |
| **False (Does not match)** | The speech sample fails to satisfy the main stylistic features of the description:<br>- There is at least one key stylistic
feature that obviously conflicts with the description<br>- The overall listening impression deviates from the described style |

---

## Notes
* When there is an obvious and objective mismatch in a dimension, such as when the speaker's gender or age conflicts with the description, directly
judge it as False
* The description is very likely to have obvious conflicts, degree inconsistencies, or complete mismatches with the speech; do not readily trust the
given description, you should first retain your own understanding of the speech
* The speaker's gender is especially likely to be contrary to the description, please pay special attention
* When terms indicating degree such as "excited," "intense," etc. are mentioned in the description, extra attention is needed, as the specified
dimension in the speech may not be as intense as in the description, such as emotions not being excited enough, pitch not being high enough,
volume not being loud enough, etc., in which case it should be judged as False
* Only evaluate **style consistency**, ignore non-style factors such as pronunciation accuracy, naturalness, etc.
* Use the description as the sole basis, without personal subjective preferences
* For characteristics not mentioned in the description, there are no restrictions on that feature, and it should not affect the judgment
* When the description focuses on only one dimension (such as emotion), judgment should focus on that dimension

---

## Output Format Requirements:
Please strictly use JSON format, containing a dictionary with the following structure:
```json
{
"Gender": ...,
"Pitch": ...,
"Speech Rate": ...,
...
"Consistency": True/False
}

Figure 8: Prompt for Gemini-as-a-judge (translated ver.).
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Figure 9: Screenshot for human annotation.
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