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ABSTRACT

Federated fine-tuning (FFT) adapts foundation models to decentralized data but re-
mains fragile under heterogeneous client distributions due to local drift, i.e., client-
level update divergences that induce systematic bias and amplified variance in the
global model. Existing aggregation and personalization methods largely correct
drift post hoc, which proves brittle under extreme non-IID conditions. We intro-
duce OvA-LP, a minimalist framework that is, to our knowledge, the first explic-
itly designed to suppress drift at its source within the PEFT-based FFT paradigm.
OvA-LP combines linear probing on a frozen encoder with a one-vs-all head and
a simple two-stage procedure, preserving pretrained feature geometry and decou-
pling logits to prevent the mechanisms that amplify drift. On CIFAR-100 with 100
clients, averaged over shard-1, shard-2, and Bernoulli–Dirichlet partitions, OvA-
LP retains 95.9% of its IID accuracy, whereas state-of-the-art FFT baselines retain
only 10.1% (PFPT) and 34.5% (FFT-MoE) under the same conditions. OvA-LP
further maintains resilience under both symmetric and asymmetric label noise. In
addition, precomputing encoder features makes per-round cost nearly indepen-
dent of encoder size. Together, these results demonstrate that OvA-LP provides a
principled and efficient basis for robust FFT under heterogeneity.

1 INTRODUCTION

Foundation models (FMs) have reshaped machine learning by providing powerful pretrained repre-
sentations that can be adapted to diverse downstream tasks. In federated learning (FL), this shift has
given rise to federated fine-tuning (FFT), where clients adapt a shared encoder instead of training
models from scratch (Zhuang et al., 2023). Parameter-efficient fine-tuning (PEFT) methods such as
adapters, LoRA, and prompt tuning (Houlsby et al., 2019; Hu et al., 2022; Lester et al., 2021) further
reduce computational and communication costs, making FFT a practical paradigm for large-scale
decentralized adaptation. This paradigm is particularly critical in domains where data locality is a
strict requirement, such as training on sensitive medical records across hospitals or financial data
across institutions. However, despite its efficiency and practical importance, the robustness of FFT
under heterogeneous client distributions remains a major challenge (Ren et al., 2025). This gap
motivates a rethinking of how to make FFT robust to extreme heterogeneity.

The core difficulty lies in local drift: client updates diverge due to distributional differences, and
when aggregated, these drifts bias and destabilize the global model. Specifically, client-level diver-
gences manifest as both systematic bias and amplified variance in the aggregated update, degrading
final accuracy and hindering convergence. In practice, under extreme non-IID conditions, state-of-
the-art FFT methods often converge slowly and retain well below half of their IID accuracy within
50 rounds. This persistent relative gap highlights the need for approaches that directly mitigate drift
at the client level, rather than merely compensating for it after aggregation.

Broadly, prior efforts fall into two families. Aggregation strategies modify the global update rule,
from classical methods such as FedProx and Scaffold (Li et al., 2020; Karimireddy et al., 2020) to
more recent LoRA-specific variants (Wang et al., 2024; Guo et al., 2024; Yan et al., 2025). Person-
alization frameworks attach client-specific modules to absorb drift locally, ranging from adapters
and prompts to expert-based models (Zhang et al., 2024; Fan et al., 2024; Wang et al., 2025; Yang
et al., 2025). In practice these families are not disjoint—many approaches combine both, such as
FFT-MoE(Hu et al., 2025) with expert routing on top of FedAvg, or PFPT (Weng et al., 2024) with

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

redesigned prompts and aggregation. Yet despite their variety, they share a common philosophy:
drift is treated as unavoidable and corrected only post-hoc, once it has already manifested at the
client or global level. This reactive stance leaves them fragile under extreme heterogeneity, as no
method so far has succeeded in preventing drift from arising in the first place.

In this paper, we present OvA-LP, a minimalist framework that suppresses client drift at its root.
OvA-LP integrates three lightweight components—linear probing (LP) on a frozen encoder (Alain
& Bengio, 2016), one-vs-all (OvA) binary heads, and a two-stage training schedule—each explored
in isolation but never unified. By aligning them within a bias–variance decomposition of federated
gradients, we systematically connect feature geometry, label decoupling, and variance control into a
single source-level framework. This reframes drift mitigation from post-hoc correction to proactive
prevention, suggesting shift in how robustness is pursued within PEFT-based FFT.

Our main findings are:

• OvA-LP consistently prevents local drift from arising at the client level, offering a princi-
pled foundation for robust FFT under heterogeneity.

• OvA-LP retains 95.9% of its IID accuracy on CIFAR-100 with 100 clients under shard-1,
shard-2, and Bernoulli–Dirichlet (p = 0.1, α = 0.001)(Xu et al., 2022), whereas FFT-MoE
and PFPT retain only 34.5% and 10.1%, respectively.

• OvA-LP demonstrates innate robustness to label noise: it consistently reduces accuracy
degradation under both symmetric and asymmetric corruption, maintaining resilience at
higher noise levels and surpassing specialized noise-robust baselines.

• OvA-LP precomputes encoder features once, making per-round training nearly indepen-
dent of encoder size and preserving modularity for integration with other FFT strategies.

2 RELATED WORK

Aggregation strategies. A long line of work has sought to improve FL robustness by modifying
the global update rule. Classical approaches such as FedProx and Scaffold reduce the variance of
client updates and partially stabilize convergence. More recent extensions adapt these ideas to PEFT
settings, for example FLoRA, FedSA-LoRA, and FRLoRA (Wang et al., 2024; Guo et al., 2024; Yan
et al., 2025). While effective in mitigating some client drift, these methods still rely on aggregation
at the server side, typically applied only after local divergence has already occurred.

Personalization frameworks. Another direction attaches client-specific modules to absorb drift
locally. Examples include FedAdapter and FedPrompt (Cai et al., 2022; Zhao et al., 2023), as well
as expert-based extensions such as FFT-MoE and PFPT. These approaches improve local adaptation,
but global consistency remains limited because personalization cannot prevent drift from propagat-
ing into the shared model.

Classification heads for label imbalance. Another line of work modifies the classification head to
mitigate skewed label distributions. FedRS (Li & Zhan, 2021) restricts softmax updates for missing
classes, mitigating bias under label imbalance. OvA-based approaches such as FedOVA, FedABC,
and ATHENA-FL (Zhu et al., 2021; Wang et al., 2023; de Souza et al., 2024) decompose multiclass
tasks into binary classifiers to avoid softmax coupling and improve fairness. However, these meth-
ods are designed for scratch training and focus mainly on label imbalance, without addressing the
broader challenge of feature drift.

Label noise robustness. A complementary line of research tackles noisy labels in FL. Methods
such as FedCorr (Xu et al., 2022) and FedLTF (Zhan et al., 2025) design correction mechanisms
or robust objectives to improve performance under corruption. While effective, these approaches
explicitly address noise rather than the underlying drift mechanisms, and remain orthogonal to our
focus.

Our positioning. Unlike prior OvA-based methods restricted to scratch training and label imbal-
ance, OvA-LP is designed to prevent drift from arising by freezing the encoder and introducing
a two-stage OvA head. Its minimalist design remains modular and in principle compatible with
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Figure 1: Overall structure of OvA-LP. Clients precompute encoder features once (left) and perform
two-stage local training with one-vs-all heads (right).

aggregation and personalization families, suggesting potential for deployment across diverse FFT
pipelines.

3 METHODOLOGY

Overview. OvA-LP is motivated by a source-level philosophy: preventing drift at its origin rather
than correcting it post hoc. Fig. 1 summarizes the overall workflow. Clients first precompute en-
coder features with a frozen backbone, then train one-vs-all heads under a lightweight two-stage
schedule. This design is guided by a bias–variance decomposition of federated gradients, which
identifies local bias, global bias, and variance as the root causes of drift. OvA-LP targets each of
these components with simple yet complementary mechanisms: feature geometry bounds the effect
of feature skew, OvA heads eliminate label-skew bias and variance amplification, and the two-stage
schedule stabilizes optimization under participation variance.

The remainder of this section develops these ideas step by step. Sec. 3.1 formalizes the bias–variance
framework that motivates our design. Sec. 3.2 shows how pretrained geometry preserves align-
ment and separation, limiting bias from feature skew. Sec. 3.3 analyzes label skew, explaining how
OvA decoupling removes the bias and variance amplification caused by softmax coupling. Finally,
Sec. 3.4 addresses the remaining variance, demonstrating how the two-stage schedule achieves fast
and stable convergence. Together, these analyses show how OvA-LP systematically aligns with the
bias–variance view to bring Non-IID training close to the IID reference.

3.1 BIAS–VARIANCE FRAMEWORK

We begin by formalizing drift through a bias–variance decomposition, which identifies local bias,
global bias, and variance as the core sources of degradation.

Client drift under non-IID data can be understood through a bias–variance decomposition at both
local and global levels. Let the stochastic gradient on client i be gi = ∇ℓ(w;x, y). De-
note by Di the local data distribution of client i and by D the global distribution. The local
loss is Li(w) = E(x,y)∼Di

[ℓ(w;x, y)] with expected gradient ∇Li(w), and the global loss is
L(w) = E(x,y)∼D[ℓ(w;x, y)] with gradient ∇L(w).

Local bias. Each client’s optimum deviates from the global one by bi = ∇Li(w)−∇L(w), arising
from distributional differences across clients, in particular feature skew and label skew.

Global bias. Aggregating across clients yields B = Ei[∇Li(w)] − ∇L(w), which distorts the
overall update direction and accumulates to reduce accuracy.

Local and global variance. Even within a single client, stochastic gradients fluctuate with vari-
ance vi = Var[gi]. When aggregated with weights pi (e.g., proportional to dataset sizes ni), the
update is ĝ =

∑
i pigi with variance V = Var[ĝ], which is further amplified by quantity skew.
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Metric Pretrained (T) Pretrained (F)

Alignment ↓ 1.366 ± 0.006 1.761 ± 0.008
Intra ↓ 0.818 ± 0.002 0.917 ± 0.004
Inter ↑ 0.840 ± 0.004 0.487 ± 0.008
Ratio ↓ 0.974 ± 0.007 1.885 ± 0.038

Figure 2: Feature geometry of pretrained vs randomly initialized encoders (CIFAR-10, ViT-L/16).

Takeaway. Local bias and variance are the primary contributors to drift, while global bias and
variance are their aggregated manifestations. Variance is further exacerbated under label skew due
to softmax coupling, which introduces cross-class covariance. This explains why aggregation-level
fixes cannot fundamentally solve non-IID degradation: they address only the aggregate symptoms
rather than the underlying local causes.

3.2 LINEAR PROBING AND FEATURE GEOMETRY

Feature skew is bounded by pretrained geometry: alignment clusters same-class samples, and sepa-
ration keeps classes apart.

We quantify feature geometry with four standard metrics. Following Wang & Isola (2020), align-
ment is defined as the expected squared distance between positive pairs:

Alignment = E(x,y)∼ppos ∥f(x)− f(y)∥22.

In addition, we report three well-known statistical measures of representation geometry:

Intra = E(x,y) ∥f(x)− µy∥22, Inter = Ey ̸=y′ ∥µy − µy′∥22, Ratio =
Intra
Inter

.

Here ppos denotes the distribution over positive pairs, µy is the centroid of class y, and f(·) is
the encoder representation. Alignment captures the closeness of positive pairs, Intra measures the
compactness of each class cluster, Inter quantifies separation between class centroids, and Ratio
summarizes the trade-off. Smaller Alignment, Intra, and Ratio and larger Inter indicate stronger
feature geometry.

Fig. 2 compares pretrained and randomly initialized encoders. Across all four metrics, pretrained
features show smaller Alignment and Intra, larger Inter, and a lower Ratio, confirming that they form
compact, well-separated clusters.

From the bias–variance perspective, this structural geometry directly limits the bias induced by
feature skew: alignment keeps same-class representations compact, while separation enforces clear
boundaries across classes. As a result, client updates remain anchored to the global geometry, and
the extent of local bias before aggregation is fundamentally bounded. In the ideal case of perfect
alignment, feature-induced bias would vanish entirely.

3.3 OVA HEAD AND DECOUPLING

The second major source of drift is label skew, which biases gradients and amplifies variance through
softmax coupling. Let h(x) = fθ(x) ∈ Rd denote the encoder representation of input x, and let
wc ∈ Rd be the classifier weight vector for class c. We use 1[y = c] to denote the indicator for the
ground-truth class.

Softmax coupling. For class c, the gradient of the cross-entropy loss with respect to wc is

gc(x, y) = (1[y = c]− pc(x))h(x), pc(x) =
exp(w⊤

c h(x))∑K
j=1 exp(w

⊤
j h(x))

.
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Because all classes share a denominator, majority classes repeatedly dominate updates, while minor-
ity classes receive little signal. As analyzed in FedRS (Li & Zhan, 2021), this coupling introduces
both bias and variance amplification under label skew. Replacing softmax with independent OvA
heads removes this cross-class covariance, eliminating the mechanism behind label-skew drift. As
analyzed in FedRS (Li & Zhan, 2021), majority classes dominate through repeated “pulls,” while mi-
nority classes often receive only “pushes.” This imbalance introduces bias, since updates are driven
by probability-weighted terms pc(x) rather than purely class-specific targets. It also amplifies vari-
ance, because the shared denominator induces non-zero cross-class covariances Cov(gc, gj) ̸= 0.
Together, these mechanisms destabilize training under heterogeneous distributions.

OvA decoupling. An OvA head replaces softmax with independent binary classifiers. The gradi-
ent of the logistic loss with respect to wc is

gOvA
c (x, y) = (1[y = c]− qc(x))h(x), qc(x) = σ(w⊤

c h(x)) =
1

1+exp(−w⊤
c h(x))

.

qc(x) is the Bernoulli likelihood under a logistic regression head, and each head optimizes its binary
logistic loss independently. As a result, the pull/push imbalance described in FedRS disappears: ma-
jority and minority classes are updated without mutual interference. This decoupling eliminates the
mechanism of label-skew-induced bias and variance amplification, directly addressing the sources
of drift at their origin.

3.4 VARIANCE AND TWO-STAGE TRAINING

After bias terms are suppressed, variance remains the main source of drift. Variance cannot be
eliminated entirely, but its destabilizing effect can be controlled through a two-stage curriculum
aligned with the OvA structure.

Stage 1 (positive-only). When pretrained representations preserve alignment and separation, the
global optimum of each OvA head lies near the class centroid at the point of maximum margin.
Training only on positives thus pulls classifier weights toward these centroids, leading to rapid con-
vergence without cross-class conflicts and helping to overcome the destabilizing effect of variance
in the early rounds.

Stage 2 (positive+negative). After centroids are established, a large set of negatives is introduced
to expand inter-class margins. At the same time, a small fraction of positives is retained as anchors,
preventing the decision boundary from drifting away under the stronger influence of negatives. This
combination enables efficient margin learning while preserving the stability achieved in Stage 1.

Takeaway. Together, the two stages implement an easy-first, hard-later curriculum. Stage 1
quickly aligns classifiers with class centroids under minimal variance, while Stage 2 leverages neg-
atives for margin expansion without destabilizing the positive clusters. This design directly over-
comes variance effects at their source, complementing OvA-LP’s treatment of feature and label
skew.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Shared setting. Our primary experiments use CIFAR-100 with 100 clients for 50 rounds, a scale
comparable to or larger than those adopted in recent FL benchmarks (see Appendix B.1 for survey).
We fix five random seeds (0, 42, 777, 1337, 15254) across all runs for comparability. For the
IID setting, data are split uniformly at random across clients. For the Non-IID setting, we use three
representative configurations widely adopted in the literature: Shard-1 (one class per client), Shard-2
(two classes per client), and Dirichlet (p = 0.1, α = 0.001) following the FedCorr construction (Xu
et al., 2022). These serve as the standard Non-IID benchmarks throughout. Further analyses in
Sec. 4.4 expand beyond this shared setting, including alternative partitions, encoder scaling, datasets
like TinyImageNet, and robustness to label noise.
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Our model. OvA-LP uses a frozen ViT-L/16 encoder and is trained with 100% client participation,
three local epochs per round, batch size 50, learning rate 0.01, and AdamW optimizer with weight
decay 1 × 10−4. Client updates are aggregated by FedAvg (McMahan et al., 2017), with the first
round conducted using Stage 1 (positive-only) training and all subsequent rounds using Stage 2
(positive+negative) training, as described in Sec. 3.4.

Baselines. Baseline methods are reproduced using their original model architectures and training
protocols as specified in their papers. We preserve the encoders used in the original implementations
(e.g., ViT-B/32, ViT-B/16), ensuring faithful reproduction; detailed configurations are reported in
Appendix B.2.

Evaluation philosophy. We quantify non-IID robustness by comparing accuracy trajectories to
the IID reference. For round t, we compute the relative ratio R(t) = AccNonIID(t)/AccIID(t)× 100.
We present results in two unified views: round-wise R(t) curves showing how quickly and stably
each method tracks the IID trajectory, and final R(50) barplots summarizing the endpoint gap for
each partition. This framing provides a consistent lens that captures convergence speed, stability,
and final accuracy.

4.2 ABLATION STUDY

We examine the contribution of each design component of OvA-LP by comparing three head config-
urations: (i) LP with softmax, (ii) OvA-LP without the two-stage design, and (iii) the full OvA-LP.

Figure 3: Ablation of OvA-LP components. Stepwise gains (56.3 → 95.4 → 95.9) illustrate the
effects of OvA decoupling and two-stage training.

As shown in Fig. 3, the progression is stepwise. LP-softmax reaches only 56.3% under Non-IID,
reflecting limited benefit from encoder freezing alone. Replacing the softmax with independent OvA
classifiers stabilizes training and raises performance to 95.4%. Adding the two-stage design enables
faster convergence to 95.9%, closely tracking the IID curve within only a few rounds.

A brief overshoot above the IID curve occurs in the first few rounds. This behavior arises from
FedAvg’s weighted averaging under imbalanced partitions and quickly settles.

In summary, OvA decoupling mitigates label-skew effects, and the two-stage procedure helps over-
come variance, leading to faster and more stable convergence. These observations align with the
bias–variance decomposition described in Sec. 3.4. Full accuracy curves and efficiency breakdowns
are reported in Appendix A.1.

4.3 COMPARISON WITH BASELINES

We next compare OvA-LP against two recent state-of-the-art baselines, FFT-MoE and PFPT.

Fig. 4 shows the outcome under the extreme Non-IID setting. Both baselines perform poorly
compared to the IID reference: PFPT increases gradually but saturates at 34.5%, while FFT-MoE
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Figure 4: Comparison with state-of-the-art baselines. FFT-MoE plateaus near 10.1%, while PFPT
rises slowly but saturates at 34.5%. OvA-LP remains stable and converges to 95.9%.

Method Label Bias Feature Bias Var. R(50)(%)

FFT-MoE / PFPT × × × 10.1 / 34.5
LP-softmax × △ × 56.3
OvA-LP (w/o 2-stage) ✓ △ × 95.4
OvA-LP (2-stage) ✓ △ ✓ 95.9

Table 1: Bias–variance view of methods. “✓” = removed/handled, “△” = partially removed, “×”
= not addressed. As non-IID severity increases, leaving label bias intact results in low robustness,
while OvA-LP progressively removes label bias and handles variance to reach near-IID performance.

plateaus early and remains near 10.1%. These results are consistent with their post-hoc philosophy,
which seeks to mitigate drift only after aggregation.

OvA-LP, in contrast, maintains stability and converges to 95.9%, closely following the IID trajec-
tory. As noted in Sec. 4.2, even LP-softmax, which partially reduces feature bias through encoder
freezing, already surpasses post-hoc baselines in this setting. OvA-LP further improves upon this by
also addressing label skew and variance effects, leading to accuracy near the IID level. Additional
comparisons with FFT-MoE and PFPT are provided in Appendix A.2.

The ranking across methods follows a stepwise pattern. Post-hoc baselines leave both label and
feature bias intact, resulting in poor robustness under strong heterogeneity. LP-softmax reduces
feature bias but retains label bias, leading to moderate accuracy. OvA-LP without the two-stage
procedure removes label bias and improves stability, and the full OvA-LP additionally addresses
variance, reaching near-IID robustness. This stepwise progression aligns with the bias–variance
decomposition and illustrates the benefit of addressing drift at its origin, as summarized in Table 1.

4.4 ADDITIONAL ANALYSES

4.4.1 PARTITION-WISE ROBUSTNESS.

We evaluate OvA-LP under five representative heterogeneity patterns. Three of them—Shard-1,
Shard-2, and Dirichlet (α = 0.001, p = 0.1)—are the standard benchmarks already introduced
in Sec. 4.1. We further include two additional settings. First, we adopt a Zipf distribution with
exponent s = 2.0, a standard setup in FL for inducing quantity skew across clients (Piantadosi,
2014). Second, feature-based clustering, where each class is partitioned into K clusters (with K
equal to the number of clients) using k-means, and each cluster is then assigned to a client.

Fig. 5 shows that across all five settings, the R(t) curves remain aligned with the IID trajectory,
and final R(50) values range from 94.9% to 99.7%. This demonstrates that OvA-LP maintains
robustness under diverse forms of skew, including label, feature, and quantity heterogeneity.
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Figure 5: Partition-wise robustness of OvA-LP. Across five representative heterogeneity patterns,
R(t) curves (left) closely track the IID reference and final R(50) values (right) remain above 94.9%.
This confirms consistent robustness across diverse forms of skew, including label, feature, and quan-
tity heterogeneity.

Figure 6: Encoder and task variations. OvA-LP is evaluated with different encoders (ViT-B/16, ViT-
L/16, DINOv2-L/14) on CIFAR-100 and extended to TinyImageNet under Dirichlet partitioning.

4.4.2 ENCODER AND TASK VARIATIONS.

We next test whether robustness depends on encoder scale or task domain. Fig. 6 compares ViT-
B/16, ViT-L/16, and DINOv2-L/14 on CIFAR-100, and extends to TinyImageNet under Dirichlet
partitioning. Absolute accuracy decreases for the smallest encoder (ViT-B/16), while ViT-L/16 and
DINOv2-L/14 remain comparable, with minor fluctuations depending on the dataset. Crucially, in
all cases R(t) curves consistently track the IID trajectory, confirming that OvA-LP’s robustness is
agnostic to encoder scale, architecture, and task domain.

We note that the brief overshoot observed in the first round is a benign effect of size-weighted
FedAvg, which appears more prominently with smaller encoders. It stabilizes quickly and does not
affect final convergence.

4.4.3 LABEL NOISE ROBUSTNESS.

Following FedLTF (Zhan et al., 2025), we adopt the same label noise benchmarks and directly
compare against the baselines it reports. FedLTF represented the prior state-of-the-art under label
corruption. As Table 2 shows, OvA-LP achieves markedly smaller accuracy declines, surpassing
FedLTF and all other reported methods.
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Noise Type Symmetric Asymmetric

Method Baseline Acc (%) Decline Rate(%) ↓ Baseline Acc (%) Decline Rate(%) ↓
Noise Ratio 0.30 0.40 0.50 0.60 0.70 0.20 0.30 0.40

FedAvg 16.75% 15.70% 23.70% 37.49% 51.46% 18.85% 13.37% 30.93%
Symmetric CE 16.99% 17.77% 25.66% 40.79% 49.79% 26.14% 17.71% 36.34%
Co-teaching 34.21% 8.68% 36.07% 51.04% 66.99% 34.19% 20.10% 33.23%
FedCorr 32.15% 13.50% 26.59% 41.65% 62.64% 41.12% 13.47% 30.81%
FedNoRo 38.58% 9.46% 19.57% 35.38% 43.36% 45.42% 9.82% 26.97%
FedLTF (Stage 2) 55.23% 3.73% 8.73% 12.18% 21.24% 52.63% 10.94% 26.51%
FedLTF (Stage 3) 58.43% 3.70% 9.24% 14.65% 20.91% 57.78% 8.71% 24.80%

OvA-LP (Ours) 88.78% 0.76% 2.35% 4.52% 10.35% 89.28% 0.63% 1.53%

Table 2: Robustness on CIFAR-100 with label noise, measured as accuracy decline rates (%) from
baseline accuracy. Baseline results are taken from FedLTF (Zhan et al., 2025) (Table 2), which in-
cluded standard and robust training schemes as well as its own variants. OvA-LP (2-stage) achieves
the smallest decline, outperforming the prior state-of-the-art FedLTF.

Summary. Taken together, these analyses show that OvA-LP retains stability under diverse forms
of heterogeneity, across encoder scales and task domains, and even in the presence of label corrup-
tion, demonstrating robustness across a broad range of conditions.

5 LIMITATIONS

We note two main limitations. First, OvA-LP relies heavily on the pretrained encoder: alignment
and separation in the encoder’s feature geometry are what reduce feature-skew bias and enable linear
probing. If the encoder is weak, OvA-LP cannot compensate on its own. This is not unique to our
method but reflects the broader trend in federated fine-tuning, where progress is fundamentally tied
to advances in foundation models.

Second, all experiments assume full client participation. This choice highlights fast convergence
under minimal variance but abstracts away from partial participation, which is common in practice.
Indeed, as shown in Appendix A.3, reduced participation slows convergence, and our two-stage
strategy alone cannot fully overcome this variance. However, Appendix A.2 demonstrates that OvA-
LP remains highly efficient under full participation: it reaches Acc@95 within only 1–3 rounds, with
both computation and communication costs substantially lower than prior methods, even when all
100 clients are active. Thus, while partial participation exposes a limitation, the lightweight design
of OvA-LP makes full participation not only operationally feasible but also a practical advantage in
real deployments.

In addition, our study is limited to vision benchmarks and does not yet combine with aggregation or
personalization frameworks. We regard these as natural directions for future work.

6 CONCLUSION

We introduced OvA-LP, a minimalist framework for federated fine-tuning that addresses client drift
at its origin. By combining linear probing with a one-vs-all head and a simple two-stage training
strategy, OvA-LP shows that non-IID robustness can be achieved without architectural complexity.
Despite its simplicity, it reaches near-IID accuracy across a wide range of non-IID settings, ex-
hibits robustness to label noise consistent with its bias–variance suppression design, and maintains
efficiency that scales favorably with encoder size.

Our perspective does not dismiss existing aggregation or personalization strategies; rather, it offers
a complementary direction. Where prior approaches mitigate drift after it emerges, OvA-LP pre-
vents its amplification at the source, making it especially effective under extreme heterogeneity. At
the same time, post-hoc methods remain valuable for personalization and fine-grained corrections,
suggesting a natural synergy with our framework.

OvA-LP stands as a strong new baseline and an initial step toward making source-level robustness a
standard paradigm in federated fine-tuning.
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Figure 7: Ablation curves under IID and averaged Non-IID settings. Accuracy trajectories over 50
rounds.

Methodology Accuracy (%) Acc@95 (Rounds) Total Time (s) Total Comm. (MB)
LP-Softmax (IID) 90.13± 0.04 1± 0 0.03± 0.00 0.39± 0.00
LP-Softmax (Non-IID) 53.70± 6.79 27± 9 0.73± 0.23 10.71± 3.37

OvA-LP w/o 2 stage (IID) 90.03± 0.08 2± 0 0.05± 0.00 0.78± 0.00
OvA-LP w/o 2 stage (Non-IID) 85.89± 1.11 15± 3 0.37± 0.07 5.72± 1.02

OvA-LP 2 stage (IID) 90.04± 0.12 3± 0 0.05± 0.00 1.18± 0.00
OvA-LP 2 stage (Non-IID) 86.34± 0.73 1± 0 0.02± 0.00 0.42± 0.10

Table 3: Final performance metrics of ablation study, including accuracy, convergence rounds
(Acc@95), total time, and total communication until convergence.

Methodology Time (Client, ms) Time (Server, ms) Comm. (Client) Comm. (Server)
LP-Softmax (IID) 23.18± 0.17 2.64± 0.04 401.20 KB 39.18 MB
LP-Softmax (Non-IID) 23.78± 0.60 2.97± 0.11 401.20 KB 39.18 MB

OvA-LP w/o 2 stage (IID) 21.67± 0.21 2.69± 0.06 401.20 KB 39.18 MB
OvA-LP w/o 2 stage (Non-IID) 22.27± 0.48 2.99± 0.03 401.20 KB 39.18 MB

OvA-LP 2 stage (IID) 14.15± 0.22 1.90± 0.04 401.20 KB 39.18 MB
OvA-LP 2 stage (Non-IID) 14.86± 0.51 1.91± 0.06 401.20 KB 39.18 MB

Table 4: Per-round computation and communication costs of ablation study.

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 ABLATION RESULTS

Tables 3 and 4 summarize convergence and per-round costs. Under IID, all methods converge
quickly with small differences; OvA-LP (2-stage) shows a slight increase in communication due
to additional heads. The differences appear under Non-IID: LP-Softmax requires 27 rounds and
about 0.73s to reach Acc@95, whereas OvA-LP (2-stage) reaches the same point in a single round,
reducing total time by ∼36× and communication by ∼25×. Per-round metrics show that OvA-
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Figure 8: Baseline curves under IID and averaged Non-IID settings. Accuracy trajectories over 50
rounds.

LP (2-stage) is also more efficient, requiring 14.9ms on clients versus 23.8ms for LP-Softmax, and
1.9ms on the server versus 3.0ms.

In summary, the ablation indicates that while all methods behave similarly under IID, under Non-IID
the full OvA-LP achieves near-IID efficiency with substantially fewer rounds and lower system cost.

A.2 BASELINE COMPARISONS

Methodology Accuracy (%) Acc@95 (Rounds) Total Time (s) Total Comm. (GB)
FFT-MoE (IID) 96.39± 0.41 21± 0 34.58± 0.70 3.67± 0.08
FFT-MoE (Non-IID) 9.83± 7.96 37± 13 61.00± 21.59 6.48± 2.32

PFPT (IID) 80.27± 0.41 13± 1 432.75± 32.45 0.22± 0.02
PFPT (Non-IID) 33.17± 15.30 44± 6 1437.00± 182.03 0.74± 0.09

OvA-LP (IID) 90.04± 0.12 3± 0 0.05± 0.00 0.11± 0.00
OvA-LP (Non-IID) 86.34± 0.73 1± 0 0.02± 0.00 0.04± 0.01

Table 5: Final performance of baselines: accuracy, convergence rounds (Acc@95), and total costs
until convergence.

Methodology Time (Client, ms) Time (Server, ms) Comm. (Client) Comm. (Server)
FFT-MoE (IID) 1560.27± 10.38 94.76± 0.42 1.7703 MB 177.03 MB
FFT-MoE (Non-IID) 1555.74± 18.46 95.49± 1.28 1.7703 MB 177.03 MB

PFPT (IID) 1860.98± 10.01 30941.43± 387.65 1.729 MB 17.29 MB
PFPT (Non-IID) 1855.49± 39.89 31002.22± 239.84 1.729 MB 17.29 MB

OvA-LP (IID) 14.16± 0.22 1.90± 0.04 0.3918 MB 39.18 MB
OvA-LP (Non-IID) 14.86± 0.51 1.91± 0.06 0.3918 MB 39.18 MB

Table 6: Per-round computation and communication costs of baselines.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tables 5 and 6 compare FFT-MoE, PFPT, and OvA-LP under both IID and Non-IID. FFT-MoE
achieves strong accuracy under IID (96%) but collapses under Non-IID, converging below 10% even
after 37 rounds. PFPT is more stable across settings but converges slowly: its time-to-95% accuracy
exceeds OvA-LP by over three orders of magnitude, despite using less communication. In contrast,
OvA-LP converges within 3 rounds (IID) and 1 round (Non-IID), while its final accuracy remains
above 86–90%. This corresponds to 102–104 reductions in time and communication compared to
prior baselines. Per-round metrics further confirm the gap: OvA-LP requires only ∼14 ms on clients
and 2 ms on the server, versus seconds or tens of seconds for PFPT and FFT-MoE.

Overall, OvA-LP attains comparable or better final accuracy while reaching convergence substan-
tially faster and at far lower system cost.

A.3 PARTICIPATION RATE SWEEP

Figure 9: Results under Dirichlet(p = 0.1, α = 0.001) with participation ratios of 0.1, 0.4, 0.7,
and 1.0. Left: accuracy trajectories R(t) over 50 rounds. Right: final accuracy R(50). Lower
participation ratios lead to slower convergence, indicating that the two-stage method does not fully
overcome participation-induced variance.

B BASELINE SETTINGS

B.1 DATASET SETTINGS

Work Dataset # Clients

FedProx (Li et al., 2020) MNIST, FEMNIST, Sent140, Shakespeare 10
SCAFFOLD (Karimireddy et al., 2020) EMNIST 20
FedLTF (Zhan et al., 2025) CIFAR-10/100, MNIST/FMNIST 20
PFPT (Weng et al., 2024) CIFAR-10/100, TinyImageNet 10
FFT-MoE (Hu et al., 2025) AgNews, CIFAR-10 4, 10

Our setup CIFAR-100,TinyImageNet 100

Table 7: Survey of FL benchmarks in recent works. Our setup adopts 100 clients on CIFAR-100 and
TinyImageNet which is comparable to or larger than prior scales.
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PFPT FFT-MoE

Batch size 16 128
Encoder ViT-B/32 ViT-B/16
Optimizer Adam (β = (0.9, 0.98), ϵ = 1e−6) Adam (weight decay=1e−2)
Learning rate 1e−4 3e−4

Local epochs 5 1
Total rounds 50 50
Active client ratio 0.1 (10/100) 1.0 (full)

Table 8: Detailed training configurations of the baseline methods. PFPT: number of tokens = 10.
FFT-MoE: num experts = 8, rank per expert = 2, top-k = 1, aux loss λ = 10−5.

B.2 BASELINE PARAMETERS

USE OF LARGE LANGUAGE MODELS

We used large language models (e.g., ChatGPT) in two limited ways: (i) to polish the writing and
improve readability, and (ii) to aid in the discovery of related work. No parts of the conceptual
design, experiments, or analysis were generated by LLMs.
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