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Abstract

We present an approach to modeling annotator001
disagreement in subjective NLP tasks through002
both architectural and data-centric innovations.003
Our model, DEM-MOE (Demographic-Aware004
Mixture of Experts), routes inputs to expert005
subnetworks based on annotator demograph-006
ics, enabling it to better represent structured,007
group-level variation compared to prior mod-008
els. DEM-MOE consistently performs compet-009
itively across demographic groups, and shows010
especially strong results on datasets with high011
annotator disagreement. To address sparse de-012
mographic coverage, we test whether LLM-013
generated synthetic annotations via zero-shot014
persona prompting can be used for data im-015
putation. We show these synthetic judgments016
align moderately well with human annotations017
on our data and offer a scalable way to poten-018
tially enrich training data. We then propose and019
evaluate approaches for blending real and syn-020
thetic data using strategies tailored to dataset021
structure. We find that the optimal strategies022
depend on dataset structure. Together, these023
contributions improve the representation of di-024
verse perspectives.025

1 Introduction026

Substantial disagreement among annotators is com-027

mon in many subjective annotation tasks, including028

the classification of online comment toxicity, mis-029

information labeling, or evaluation of politeness030

and other communication quality. These disagree-031

ments often reflect meaningful differences in per-032

spective rooted in social, cultural, or demographic033

backgrounds, rather than just random noise (Hol-034

land and Quinn, 1987; Larimore et al., 2021; Sap035

et al., 2022). For instance, a comment labeled as036

toxic by younger users might be seen as benign037

by older ones, reflecting different sensitivities to038

certain language or topics. Modeling subjective039

perspectives with annotator disagreements is crit-040

ical for building systems that reflect and reason041

over diverse perspectives. However, many exist- 042

ing approaches treat disagreement as noise, col- 043

lapsing annotations into a single label, which can 044

marginalize minoritized perspectives and lead to 045

biased models (Prabhakaran et al., 2021). Several 046

works have treated disagreement as a signal rather 047

than noise (Dawid and Skene, 1979), addressing it 048

by weighting or filtering items based on disagree- 049

ment, or learning from the distribution of annota- 050

tions (Uma et al., 2022). Among these, distribu- 051

tional modeling methods have become increasingly 052

prominent, especially in NLP tasks where annota- 053

tor disagreements reflect socially grounded varia- 054

tions (Mostafazadeh Davani et al., 2022; Fleisig 055

et al., 2024; Gordon et al., 2022; Wan et al., 2023). 056

While promising, these methods often lack the in- 057

ductive biases needed to capture structured group- 058

level variation. Without explicit modeling of shared 059

patterns among similar annotators, models risk un- 060

derrepresenting marginalized groups. 061

We introduce DEM-MOE, a Demographic- 062

Aware Mixture of Experts model that learns to rep- 063

resent subjective judgments by routing inputs to ex- 064

pert subnetworks based on annotator demographics. 065

This design introduces an inductive bias: similar 066

annotators may reason about inputs in similar ways. 067

It encourages specialization and improves repre- 068

sentation of underrepresented groups. DEM-MOE 069

outperforms strong baselines and state of the art 070

systems across multiple datasets and demographic 071

groups. Beyond architectural innovation, we ad- 072

dress modeling disagreement in low-data settings 073

with sparse demographic coverage. We propose 074

using LLMs to generate synthetic annotations via 075

zero-shot prompting and explore training strategies 076

that blend real and synthetic data. Our findings 077

show that the optimal strategies depend on dataset 078

structure. These results highlight how DEM-MOE, 079

combined with strategic data augmentation, can 080

effectively model viewpoint diversity even in low- 081

resource scenarios. 082
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We make the following contributions: 1) We083

propose DEM-MOE, a modular architecture that084

uses demographic-aware routing to capture struc-085

tured variation in annotation behavior across demo-086

graphic groups. 2) We evaluate the alignment of087

zero-shot LLM-generated annotations with human088

ratings on subjective tasks. 3) We present a frame-089

work with data generation methods and training090

strategies to incorporate synthetic data, showing091

that the configuration’s effectiveness depends on092

dataset structure. All data and code are available 1.093

2 Related Work094

Modeling Individual & Group Preferences in095

Recommendation Systems. Modeling individual096

and group preferences is well-studied in recommen-097

dation systems. Group methods often aggregate098

member preferences to make collective decisions,099

using centrality-aware representations (Yin et al.,100

2022) or hierarchical attention and bi-level frame-101

works to disentangle individual and group represen-102

tations (Xu et al., 2024; Liang et al., 2022; Wang103

et al., 2024b). MoE architectures are shown to be104

effective as well, as they capture multifaceted user105

interests (Liu et al., 2024), model user-item inter-106

actions (Zhao et al., 2020), and support multi-task107

personalization (Kong et al., 2024). However, no108

prior work in recommendation or NLP uses MoEs109

to model both individual and group preferences as110

we do. While both model variation across individ-111

uals and groups, the nature and objectives differ.112

In recommendation, preferences are idiosyncratic,113

with weak demographic variation, with the aim of114

combining diverse signals into a unified group pref-115

erence. Our task focuses on socio-demographic116

regularities: annotators from similar groups may117

evaluate content in similar ways. Instead of ig-118

noring or collapsing cases of disagreement, our119

approach models and preserves these differences120

to more faithfully represent diverse perspectives.121

Modeling Annotator Disagreement in NLP. Dis-122

agreement among annotators is common in sub-123

jective NLP tasks like toxicity classification, mis-124

information detection, and stance analysis. Tra-125

ditional methods treat disagreements as noise by126

using majority voting or averaging to create a sin-127

gle ‘gold’ label per instance, which can obscure128

meaningful variation from underrepresented or mi-129

noritized groups (Prabhakaran et al., 2021). Alter-130

natives include early work that measured or filtered131

1http://anonymized

Dataset #Inst #Ann Avg/Inst IAA (α) Entropy

Safety 350 123 123.0 0.241 0.742
Offensiveness 1,500 262 8.69 0.287 1.212
Patient Centered Comm. 2,230 589 3.33 0.287 1.492
Politeness 3,718 506 6.74 0.440 1.395
Toxicity 107,620 17,172 4.74 0.272 1.070

Table 1: Dataset statistics. “#Inst” = number of in-
stances, “#Ann” = annotators, “Avg/Inst” = avg. annota-
tors per instance, “IAA” = Krippendorff’s α, “Entropy”
= mean entropy of annotator ratings per instance.

disagreement to improve data quality (Aroyo and 132

Welty, 2015; Reidsma and op den Akker, 2008; 133

Klebanov and Beigman, 2014), and more recent 134

approaches that learn from disagreement directly: 135

a) Uncertainty-based methods, which weight exam- 136

ples by annotation variability (Plank et al., 2014); 137

b) Distributional and multi-task models, which 138

use label distributions or treat annotators as tasks 139

(Mostafazadeh Davani et al., 2022); c) Annotator 140

modeling frameworks, which predict individual la- 141

bels using shared encoders and per-annotator heads 142

or embeddings (Fleisig et al., 2024; Gordon et al., 143

2022; Wan et al., 2023). Recent work emphasizes 144

the role of demographics in annotation behavior. 145

Wan et al. (2023) model demographics to predict 146

disagreement, while Gordon et al. (2022) use a jury 147

learning approach to estimate group verdicts. How- 148

ever, most models treat demographic features as 149

input to shared encoders, without architectural di- 150

versity or inductive biases to model group-specific 151

reasoning. As a result, they capture individual vari- 152

ation but struggle with group-level differences. 153

3 Data 154

We evaluate our approach on five datasets with 155

diverse tasks, demographic compositions, and lev- 156

els of annotator diversity and disagreement (Table 157

1); full details are in Appendix A.1.1. The Toxic- 158

ity dataset of Kumar et al. (2021) has annotators 159

rate the level of toxicity for social media content 160

from multiple sources; it is the largest dataset, with 161

the broadest demographic coverage (2,535 com- 162

binations) and relatively low agreement (Krippen- 163

dorff’s α=0.27), suggesting that annotators could 164

disagree systematically. Ridge regression using 165

demographic group features shows strong demo- 166

graphic signal, especially for age (2.06) and ed- 167

ucation (1.11). The Safety dataset (Aroyo et al., 168

2023) asks annotators to rate the how safe an AI re- 169

sponse is; the data includes dense annotations (123 170

per instance) across 48 demographic combinations, 171

but shows low inter-annotator agreement (α=0.24), 172
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likely due to the complexity of perceived harm-173

fulness judgments. However, demographic signal174

is comparatively weak (gender: 0.11, age: 0.12).175

The POPQUORN dataset (Pei and Jurgens, 2023)176

includes subsets for Politeness and Offensiveness.177

The Politeness dataset shows the highest agreement178

(α=0.44) and lower label entropy, indicating greater179

consistency in judgments of email politeness. The180

dataset has substantial demographic signal, partic-181

ularly for race (1.43) and education (0.84). Offen-182

siveness lies between these extremes in terms of183

demographic diversity, agreement, and variability.184

The dataset has strong demographic signal, espe-185

cially for age (1.35) and occupation (1.08). Patient186

Centered Communication (PCC) rates the speech187

of doctors speaking to patients along multiple at-188

tributes. Details on how PCC is collected are in189

Appendix A.1.2. PCC presents a challenging mod-190

eling task: it has sparse annotations per instance191

(3.33), with the highest uncertainty or ambiguity of192

labels (entropy), due to the nuanced and personal193

nature of patient–provider interactions. PCC also194

shows the strongest demographic signal overall,195

particularly for age (2.38) and gender (1.54). These196

datasets vary in the balance between idiosyncratic197

and systematic demographic disagreement.198

4 DEM-MOE for Modeling Disagreement199

Recent work in modeling annotator disagreement200

has moved beyond majority-vote aggregation to201

approaches that predict annotator-specific labels202

(Mostafazadeh Davani et al., 2022; Fleisig et al.,203

2024; Gordon et al., 2022). While many incorpo-204

rate annotator identity or demographic information,205

they typically do so by concatenating demographic206

data with text input (Fleisig et al., 2024; Gordon207

et al., 2022; Wan et al., 2023), or by learning208

annotator-specific perspectives implicitly through209

embeddings (Deng et al., 2023). By modeling all210

annotator variation through a single network, these211

methods do not explicitly enable the model to spe-212

cialize in distinct judgment patterns across demo-213

graphic groups. As a result, the model’s ability to214

systematically represent shared behaviors within215

demographic subgroups is limited.216

We propose a novel approach, DEM-MOE217

(Demographic-aware mixture of experts), based on218

Mixture of Experts (MoE) (Fig. 5) (Shazeer et al.,219

2017), which naturally supports modular specializa-220

tion (different experts learn distinct annotation pat-221

terns linked to demographic groups) and selective222

routing (inputs are dynamically directed to relevant 223

experts based on annotator demographics). Our ar- 224

chitecture encodes inductive bias: annotators from 225

similar demographic groups may share systematic 226

ways of judging texts. We address a key gap in 227

prior work: the lack of structured inductive bias. 228

While large networks can learn subgroup variation, 229

they may not do so in a structured or interpretable 230

way. Additionally, they may overfit to dominant 231

groups without an architectural signal promoting 232

subgroup differentiation. Our model makes this 233

inductive bias more robust and interpretable, es- 234

pecially under data imbalance or sparse subgroup 235

representation. It has three components: 1) learned 236

annotator and demographic embeddings; 2) expert 237

selection and dynamic routing; and 3) expert load 238

balance and specialization via a weighted training 239

loss. We discuss each next. 240

Annotator & Demographic Embeddings. We 241

initialize Bayesian embeddings (Vilnis and McCal- 242

lum, 2015) for annotators and their demographic 243

attributes, enabling the model to capture annotator- 244

specific idiosyncrasies and demographic-related 245

biases. Each is represented by a learned Gaus- 246

sian posterior distribution, with embeddings sam- 247

pled during training via the reparameterization trick 248

(Kingma and Welling, 2014). We concatenate the 249

text (with Modern-BERT (Warner et al., 2024)), 250

annotator, and demographic embeddings into the 251

MoE input: x = [etext; eann; edemo] 252

Expert Selection. To promote expert specializa- 253

tion aligned with demographic-group preferences, 254

we build a pool of n experts (n = number of demo- 255

graphic groups). A lightweight gate maps the input 256

vector to expert scores: s = Ws x + b, p = 257

softmax(s). We hard-select the top k experts (k ∈ 258

{2, 3}): Ik = arg topk(p, k). Gating weights pj 259

determine which demographic-aware experts are 260

used. Each expert fj receives the same input; their 261

outputs are mixed sparsely: h =
∑

j∈Ik pj fj(x). 262

A linear regression head predicts the snippet rating. 263

Ratings are z-score normalized to stabilize training. 264

We prefer hard expert selection over soft gating to 265

reinforce specialization. 266

Expert Load Balance & Specialization. Naive 267

routing often leads to expert load imbalance, rout- 268

ing collapse, or bottlenecks. While some auxiliary 269

losses improve hardware efficiency via uniformity 270

(Fedus et al., 2021; Wang et al., 2024a), we focus 271

on expert diversity with a normalized standard de- 272

viation loss, allowing roughly even usage, rather 273

than strict uniformity, to support demographic spe- 274
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cialization. We also include an orthogonality loss275

to encourage distinct expert features, and a vari-276

ance loss to promote diverse routing paths (Guo277

et al., 2025). Our training loss further encodes the278

inductive bias, where we include regularizations279

for annotator and demographic embeddings, in ad-280

dition to the load loss, orthogonality, variance loss,281

and demographic within-group specialization loss282

(see Appendix B).283

5 Experiment 1: Modeling Perspectives284

We hypothesize that H1: Models that incorporate285

demographic structure as an inductive bias more286

effectively capture diverse annotator perspectives.287

We first test if the experts are sufficiently special-288

ized within and across demographic groups. We289

then compare DEM-MOE to other models’ repre-290

sentativeness across demographic groups.291

5.1 Experiment Setup292

Models. We evaluate DEM-MOE against five293

other models. (1) Probabilistic Matrix Factoriza-294

tion (PMF; Salakhutdinov and Mnih, 2007) is a295

recommender-system approach that assumes the296

annotator-item interactions are generated from a297

probability distribution. As PMF does not make use298

of the text or any annotator information, it serves as299

a strong baseline for modeling annotator regularity.300

(2) As a text-only approach, we use ModernBERT301

(Warner et al., 2024) to predict the rating; this ap-302

proach does not use any annotator or demographic303

information. We regress on the embeddings to pre-304

dict annotator ratings. (3) Orlikowski et al. (2025)305

proposed learning annotator and demographic vari-306

ation by LoRA fine-tuning LLaMA 3.1-8B using a307

sociodemographic prompt. Their results improved308

over text-only models but revealed the model did309

not benefit from demographics. (4) The Anno-310

tation and Annotator Embedding Model (En + Ea311

model) (Deng et al., 2023) is a SOTA system for312

explicitly modeling both item and annotator-level313

variance but does not incorporate demographic in-314

formation. (5) The Jury Learning Model (Gordon315

et al., 2022) is the closest system to ours. Texts316

are encoded with ModernBERT, concatenated with317

annotator group demographic embeddings and an-318

notator embeddings, and passed through a combi-319

nation of cross and deep networks (Wang et al.,320

2021) to predict each annotator’s rating.321

Training. Train/dev/test splits are created at the322

instance level, ensuring no overlap of snippets be-323

tween the splits while allowing some overlap in 324

annotators between the train and test sets. Offen- 325

siveness has 92% overlap. Politeness has 91%. 326

Safety has 85%. Toxicity has 40%. PCC has 87%. 327

This evaluation focuses on how well the model gen- 328

eralizes to new content and unfamiliar annotators. 329

Training details are in Appendix B.1. 330

Evaluation. Following the evaluation framework 331

from Gordon et al. (2022), we use Mean Absolute 332

Error (MAE) to measure the prediction accuracy at 333

the annotator level. 334

5.2 Results 335

DEM-MOE consistently performs competitively 336

across demographic groups, with particularly 337

strong results on datasets with high annotator dis- 338

agreement: Toxicity, Offensiveness, and PCC (Fig- 339

ure 1). Our model outperforms all other models 340

in every demographic group on Toxicity, the most 341

demographically diverse data with low annotator 342

agreement. Our model outperforms all other mod- 343

els in every demographic group except for race 344

on Offensiveness, and gender (but it is statistically 345

equivalent to the best model) on PCC. On Polite- 346

ness, it is statistically tied with the best models for 347

gender and education. 348

Two other trends merit noting. First, no 349

other system consistently performs well across all 350

datasets. For example, PMF (which uses no text or 351

annotator information) generally performs worst. 352

However, it still outperforms LLaMA on PCC, 353

possibly because PMF captures stable annotator- 354

specific preferences statistically. In contrast, the 355

LLM may rely on coarse demographic priors or 356

stereotypes, which are less effective in subjective 357

domains. Similarly, while Jury Learning is often 358

among the second-best approaches, it performs 359

much worse on the Toxicity dataset. Each of these 360

datasets contains unique sources of label variation 361

due to the interactions between content, identity, 362

and demographics; for example, variation in some 363

datasets may be driven more by individual anno- 364

tators’ preferences rather than by group-level de- 365

mographic effects. This variation in performance 366

underscores the need to test models across multi- 367

ple datasets in order to assess their sensitivity to 368

different sources of variation. 369

Second, among models that use both annota- 370

tor identity and demographics, we see a trend that 371

increasing model structure generally benefits per- 372

formance and supports our hypothesis (H1) that 373

models with stronger inductive biases can better 374
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Figure 1: Comparison of Mean MAE across demographics for all datasets (lower MAE is better). We obtain the
mean and error bars from bootstrap samples. The star (*) above our MoE model indicates that it is statistically better
(p < 0.05) than next-best model. The circle (o) above MoE indicates that it is statistically equivalent to best model.

learn regularity in label variation. LLaMA has the375

least structure, encoding identity and demographics376

as text and learning preferences using next-token377

prediction. Similar to Orlikowski et al. (2025), we378

find that their model struggles to capture demo-379

graphic variation on datasets with strong demo-380

graphic signals (Offensiveness, Politeness, PCC).381

However, it performs best on Safety, where de-382

mographic influence is minimal, suggesting that383

LLaMA excels in text-dominant settings with lim-384

ited demographic variability, while more structured385

models like DEM-MOE offer greater robustness386

across a broader range of labeling conditions. The387

consistently high performance of DEM-MOE in388

settings with high demographic signal suggests that389

expert routing provides a more effective inductive390

bias than the dense cross-network architecture and391

a strong capacity to represent fine-grained differ-392

ences in annotator viewpoints.393

Does Experts Align with Demographics? To394

test whether the model’s inductive biases lead to395

experts aligning with demographic groups, we an-396

alyze two types of specialization: within-group397

and cross-group. Within-group specialization fo-398

cuses on diversity among subgroups within a de-399

mographic (e.g., different racial identities), reflect-400

ing our view that not all perspectives within a401

group can or should be collapsed into one. We402

quantify this by computing the mean pairwise KL403

divergence in expert usage distributions across404

subgroups for each demographic. To normalize405

0 1
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Figure 2: Mean pairwise KL diversity in expert usage
distributions across subgroups for each demographic
(higher KL shows more specialization).

for model capacity, we divide each KL score by 406

log(K), where K is the number of experts. We 407

find that experts specialize in capturing variation 408

within demographic groups (Figure 2), but the rel- 409

evant groups vary by dataset—highlighting inter- 410

actions between the construct being modeled and 411

demographic-specific variation. For example, the 412

model shows the most specialization on Politeness 413

for race, the strongest predictor of rating variance 414

(Pei and Jurgens, 2023). Heatmaps of expert us- 415

age show different experts specializing in subgroup 416

perspectives (Figures 7–11). DEM-MOE routing 417

provides more granular modeling of demographics 418

meaningfully tied to prediction. 419

Cross-group specialization asks whether certain 420

experts attend more strongly to specific demo- 421

graphic perspectives overall. We use ridge regres- 422

sion to predict expert usage from demographic at- 423

tributes and visualize the coefficients in a clustered 424

heatmap (Fig. 12–16). We observe distinct ex- 425

pert specializations, especially for datasets with 426

high demographic signal (Politeness, Offensive- 427
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ness, PCC). These analyses show that the MoE428

learns both fine-grained subgroup distinctions and429

broader demographic-aligned expert roles, reflect-430

ing encoded inductive bias. MoE specialization431

also reveals the type of demographic variance432

present in the data. This inductive structure primes433

MoE to better capture diverse annotation patterns.434

What kind of data influences performance? Our435

results show that the effectiveness of DEM-MOE436

is closely tied to the dataset’s properties. Three key437

factors mediate performance. (1) Low agreement:438

DEM-MOE performs best in tasks with low IAA439

(Offensiveness, Toxicity, PCC), where subjective440

interpretations vary. In such settings, expert spe-441

cialization provides a clear advantage over models442

that collapse annotations into a single label. In443

contrast, tasks with high IAA (Politeness) offer444

less room for modeling perspective diversity, lim-445

iting the relative benefits of DEM-MOE. (2) De-446

mographic predictiveness of ratings: DEM-MOE447

performs best when demographic attributes are pre-448

dictive of annotator ratings (e.g., age and gender in449

PCC). Expert specialization aligns well with this450

variance, as performance is weaker when demo-451

graphics are less predictive (Safety). (3) Anno-452

tation density: DEM-MOE benefits from having453

sufficient annotations per demographic profile to454

support expert learning. Demographic error was455

correlated (r=0.40) with the number of annotations456

for that group; where datasets like Toxicity with457

many annotations per demographic combination458

(213) can be modeled more effectively than those459

like Politeness with lower density (44).460

6 Experiment 2: Synthetic Annotations461

Experiment 1 showed that DEM-MOE can effec-462

tively represent label, especially in settings with463

dense annotations and rich annotator diversity.464

However, obtaining such rich annotations across465

diverse perspectives is often impractical due to cost466

and logistical constraints. Prior work has suggested467

that LLMs can approximate group-specific perspec-468

tives without training (Beck et al., 2024; Hu and469

Collier, 2024). Therefore, we ask could synthetic470

data help fill this gap for training— could LLMs471

be used to perform data imputation to better learn472

demographic perspectives? We hypothesize that473

(H2) it is possible to achieve moderate alignment474

with human ratings on subjective tasks using LLM-475

generated annotations conditioned on demographic476

personas. Prior to training DEM-MOE with syn-477

thetic data, we first assess what capacity LLMs 478

have to model the demographic regularity in our 479

data. This experiment lays the foundation for eval- 480

uating how synthetic data complements real anno- 481

tations in downstream modeling (Experiment 3). 482

6.1 Experiment Setup 483

We evaluate the zero-shot performance2 of four 484

instruction-tuned reasoning LLMs: LLaMA- 485

3.3-70B-Instruct, QwQ-32B, OLMo-2-13B, and 486

Mistral-Nemo-Instruct-2407. As baselines, we in- 487

clude a model that predicts ratings at random, and 488

one that predicts the dataset’s mean rating. Each 489

LLM is told to adopt the perspective of a given de- 490

mographic persona, provide a short reasoning for 491

the rating, and output the final rating. Full prompt 492

templates are in the Appendix D.1. We evaluate 493

model outputs using Pearson’s r for alignment with 494

human labels, and MAE for accuracy. 495

6.2 Results 496

LLaMA outperforms other models in alignment 497

with human judgments (Table 2). Though the level 498

of alignment varies by task, these results suggest 499

that the model is able to generate predictions that 500

are reasonably aligned in magnitude; an analysis 501

with Pearson’s r (Appendix Table 15) shows the 502

same model trends and confirms that LLM pre- 503

dictions are directionally aligned as well, and rea- 504

sonably calibrated in magnitude. Overall, LLMs 505

struggle with simulating ratings for conversations 506

(Safety and PCC) tasks that have low human anno- 507

tator agreement in the first place. MAE is lowest 508

for Safety, but this reflects its narrower 1-3 rating 509

scale rather than higher accuracy; all other datasets 510

uses a 1-5 scale. These findings support our hy- 511

pothesis (H2): zero-shot demographic prompting 512

helps LLMs to approximate human ratings, and 513

could be useful for data imputation to better learn 514

demographic perspectives. Next, we test whether 515

combining synthetic and real annotations improves 516

performance in data-limited settings. 517

7 Experiment 3: Model Training with 518

Real and Synthetic Annotations 519

The results of Experiment 2 suggest that LLMs can 520

be used to impute moderately-aligned ratings for 521

training. These synthetic data offer several poten- 522

tial benefits: (1) new annotations from underrepre- 523

2Pilot experiments showed that zero-shot generally per-
formed better than few-shot with our data, we use the former.
See Appendix D.2 for details.
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Model OFF POL Safety PCC TOX
Random 0.954 1.127 0.851 1.233 1.311
Mean Predictor 0.815 0.846 0.829 0.873 1.045
LLaMA-3.3-70B 0.778 0.933 0.488 1.015 0.927
OLMo-2-13B 1.096 1.121 0.878 0.989 1.269
Mistral-Nemo 1.449 0.956 1.113 1.028 1.373
QwQ-32B 1.068 1.350 0.553 1.071 1.178

Table 2: Mean Absolute Error (MAE) across models
and datasets (lower is better). Best scores are bolded.

sented demographic perspectives, helping reduce524

bias and improve diversity in training (Zhezherau525

and Yanockin, 2024; Chen et al., 2024; Li et al.,526

2024); and (2) scalable dataset sizes without the527

cost and time required for additional human la-528

beling (Chan et al., 2024; Chung et al., 2022).529

However, the benefits of synthetic data depend on530

careful integration. Poorly aligned or noisy syn-531

thetic data can introduce bias, harm generalization,532

and risk misrepresenting minority group perspec-533

tives (Wyllie et al., 2024; Shumailov et al., 2024;534

Pereira et al., 2021; Ganev et al., 2022). The opti-535

mal method for combining real and synthetic data536

remains unresolved. Some work prevents model537

collapse by training on both original and synthetic538

data (Gerstgrasser et al., 2024), while others exper-539

iment with pretraining-finetuning schemes or bal-540

anced data blending (Maini et al., 2024; Zhezherau541

and Yanockin, 2024; Krishna et al., 2021; Doshi542

et al., 2024). However, these works focus using syn-543

thetic data to improve task performance, whereas544

our work uses the data to improve our ability to545

model the people labeling for the task.546

We present a systematic framework to test con-547

figurations of synthetic data generation methods548

with training strategies to blend real and synthetic549

data optimally. Our goal is to enhance the perfor-550

mance of DEM-MOE by increasing the diversity551

of perspectives. We hypothesize that H3: strate-552

gic integration of synthetic data into training could553

improve the task of modeling disagreement, and554

better representation across various demographics.555

7.1 Experiment Setup556

Experiment 3 tests two dimensions of using syn-557

thetic data: (1) which synthetic data is generated558

and (2) how the synthetic data is incorporated dur-559

ing training. We describe each next.560

7.1.1 Generating Synthetic Annotations561

To evaluate the effects of scale and representa-562

tiveness of synthetic annotations on performance,563

we compare three quantity-based and one quality-564

based strategy. We first extract all demographic 565

combinations from the real dataset to build a pool 566

of synthetic personas. 1) Random Strategies: For 567

an instance with n real annotations, 0.5x (random): 568

add 0.5n synthetic annotations; 1x (random): add 569

n synthetic annotations; and Fill (random): add 570

up to the maximum number of annotations per in- 571

stance to ensure uniform coverage. All synthetic 572

annotations are generated using randomly-sampled 573

personas. These strategies prioritize increasing the 574

quantity of data. 2) Non-Random Strategy: Clus- 575

ter: Use k-means clustering on real demographic 576

profiles and rating behavior (mean and SD) to select 577

20 representative annotators near each cluster cen- 578

troid. To induce disagreement, sample 20 from the 579

most distant clusters. For each instance, a cluster 580

is chosen at random, with half of the synthetic an- 581

notators drawn from representatives and half from 582

disagreeers. This process aims to improve quality 583

by adding view diversity. 584

7.1.2 Blending Real and Synthetic Data 585

We consider three strategies for how to incorporate 586

synthetic annotations during training. (1) Pretrain 587

and Fine-Tune (PT+FT) pretrains the model using 588

only synthetic data and the fine-tunes with real data. 589

This approach aims to learn general patterns from 590

synthetic data and refine them using real annota- 591

tions. (2) The Unweighted strategy mixes the real 592

and synthetic data during training time, treating 593

mistakes on either dataset equally. (3) The third 594

strategy recognizes that unweighted training risks 595

letting misaligned data distort learning. Therefore, 596

we propose a Weighted strategy that assigns higher 597

weights to synthetic judgments that are more trust- 598

worthy, better aligned, and from underrepresented 599

perspectives provides more reliable supervision. 600

Each synthetic rating xi, from persona i, receives 601

a weight based on three components: (i) Align- 602

ment error: how closely xi matches human rat- 603

ings; (ii) Perspective error: the trustworthiness of 604

persona i’s demographic perspective (via k-means 605

clustering on all demographic features (Vitsakis 606

et al., 2024) to identify intersectional identities, 607

e.g., Black gen-z women with high school educa- 608

tion); and Perspective rarity: how underrepresented 609

the demographic group is. The weight for each 610

xi is: wxi = A(xi) · 1
T (ci)

· 1
Pci

. A(xi) is the 611

alignment score, inverse of the fidelity error, the 612

MAE between LLM-generated and empirical hu- 613

man ratings, averaged across demographic groups 614

persona i belongs to (Simmons and Savinov, 2024). 615
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Figure 3: Mean MAE across demographic categories by training strategy and synthetic-data generation method
(lower is better), shown for the three datasets. The purple horizontal line is the MAE of DEM-MOE trained only on
real data (see Experiment 1) with 95% confidence intervals. The shaded regions denote data generation methods.

T (ci) is the trustworthiness score of persona i’s616

cluster ci, based on MAE between model and real617

ratings. Pci is the prevalence of cluster ci. Real618

data receive weights wxi = 1. During training,619

weights scale the loss for each synthetic rating:620

L =
∑

iwxi · Error(yi, ŷi).621

7.2 Results622

We find that the impact of synthetic data on model623

performance is dataset specific, with no one ap-624

proach consistently having positive impact (Fig-625

ure 3). Our results somewhat support (H3). Syn-626

thetic data is most helpful when it complements the627

underlying structure of disagreement: by enhanc-628

ing diversity where consensus is weak and being629

applied sparingly in domains with high personal-630

ization. We summarize three observations.631

Datasets with high label disagreement bene-632

fit from blended training. Offensiveness and633

Safety benefit the most from unweighted and634

weighted training strategies. Expanding the635

quantity (through unweighted training) or qual-636

ity (through weighted training) of supervision637

might help to resolve low consensus. Surprisingly,638

adding randomly-selected synthetic annotations639

(0.5x and 1x) provided more gain than adding more640

demographically-curated ones (cluster).641

Dataset with high consensus see limited bene-642

fits. Politeness (which has high global consensus643

but also high local disagreement) does not see any644

additional benefits from synthetic data. However,645

weighted training with cluster-generated synthetic646

data achieves the lowest MAE, as it could poten-647

tially resolve some local disagreements.648

Highly subjective domains do not benefit from 649

synthetic data. PCC, which is a highly subjec- 650

tive, complex, and personal annotation task that 651

hinges on the annotator’s personal experience with 652

the healthcare system and assessment of interper- 653

sonal interactions, does not benefit from synthetic 654

data. Cluster based generation method performs 655

the worst, which may be due to the difficulty of 656

clustering highly personal and idiosyncratic per- 657

ceptions of doctor communication. 658

8 Conclusion 659

We present DEM-MOE, a demographic-aware mix- 660

ture of experts model that captures structured vari- 661

ation in annotator disagreement via group-level 662

reasoning patterns. By routing inputs to expert sub- 663

networks based on annotator demographics, DEM- 664

MOE introduces an inductive bias that improves 665

performance on subjective judgments. Across three 666

datasets, it other models in predicting ratings across 667

almost all demographic groups. To address sparse 668

demographic coverage, we evaluate synthetic an- 669

notations from zero-shot LLM persona prompting. 670

LLMs are able to reach moderate alignment with 671

human ratings. We also propose blending real and 672

synthetic annotations to improve our task, show- 673

ing that dataset-specific strategies enhance demo- 674

graphic alignment. These findings promote treat- 675

ing annotator disagreement as a meaningful signal 676

and offer practical methods for scaling perspective- 677

aware learning in NLP. 678
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9 Limitations679

We find that our MoE model is most effective when680

the data exhibits high annotator disagreement, a681

strong demographic signal in the ratings, and suf-682

ficient annotation density. However, this finding683

may be limited by the fact that we apply our model684

to only five datasets, of which only three (PCC,685

Politeness, Offensiveness) contain sufficient demo-686

graphic signals that the experts can leverage.687

Additionally, we demonstrate the utility of MoE688

in modeling disagreement in tasks involving norm689

violations (e.g., Safety, Toxicity, Offensiveness, Po-690

liteness). However, it remains to be seen whether691

MoE can adapt effectively to disagreements in692

other domains, such as moral reasoning (Kumar693

and Jurgens, 2025) or humor detection. Our ap-694

proach also assumes that annotator disagreement695

reflects meaningful variation, though it may some-696

times arise from noise or inconsistency. It would697

be valuable to assess the quality of disagreement698

– such as by verifying annotator self-consistency699

or incorporating post-annotation deliberation – to700

ensure that disagreements are substantive.701

While we find that MoE experts tend to special-702

ize in the perspectives of specific subgroups (e.g.,703

expert 1 for Politeness focuses on the views of704

women and individuals with less than a high school705

education), our model structure does not explic-706

itly represent intersectional identities. This lack of707

supervision may unintentionally essentialize iden-708

tity. Future work could explore joint embeddings709

or hierarchical routing strategies (e.g., routing first710

by demographic category, then by intersectional711

identity).712

By design, our MoE introduces many additional713

hyperparameters (e.g., weights in the loss function),714

beyond standard ones such as learning rate and715

batch size. Although we made extensive efforts to716

tune hyperparameters for all models, it is possible717

that we missed configurations that could improve718

their performance.719

Finally, the effectiveness of using synthetic data720

for training depends on both the quality of the data721

and the complexity of the task. While we experi-722

mented with different prompt lengths and wordings,723

there may be better configurations that enhance the724

fidelity of synthetic data. Our socio-demographic725

prompting (Experiment 2) could also benefit from726

techniques such as LoRA finetuning or few-shot727

learning (Orlikowski et al., 2025).728

10 Ethics 729

Synthetic data offers a promising solution to the 730

challenge of sparse demographic information, as it 731

enables the scaling of diverse perspective model- 732

ing. However, using LLM-generated annotations 733

for tasks such as PCC raises ethical concerns, as 734

these ratings may reflect deeply personal and lived 735

experiences shaped by the intersection of race, gen- 736

der, and trust in the healthcare system. Simulating 737

ratings based on sociodemographic inputs risks es- 738

sentializing identities and producing stereotyped 739

group profiles. Synthetic data may misrepresent 740

or oversimplify the nuanced perspectives of mi- 741

noritized groups. To mitigate this risk, we recom- 742

mend that synthetic annotations be used sparingly 743

in such tasks, and never as substitutes for real, di- 744

verse human judgments. Synthetic data should 745

be clearly labeled, and its influence minimized 746

through weighting based on its assessed trustwor- 747

thiness. Even if a model shows strong performance 748

across demographic groups, this may not equate to 749

faithful or equitable representation of lived experi- 750

ences—especially for marginalized populations. 751

A key downstream risk involves treating model 752

outputs as ground truth. Because DEM-MOE 753

is trained to model group-level patterns from 754

demographic data, its outputs may reflect ag- 755

gregate tendencies rather than individual prefer- 756

ences—particularly for intersectional or underrep- 757

resented identities. Even with explicit model struc- 758

turing, fairly representing intersectional identities 759

remains a challenge due to the limited data avail- 760

able from minoritized groups. Training on such 761

imbalanced datasets increases the risk of overfit- 762

ting, which can introduce systemic biases. In prac- 763

tical applications, this poses significant implica- 764

tions. For example, if DEM-MOE is trained on 765

PCC data, it might be used to evaluate doctor com- 766

munication in coaching contexts. Practitioners may 767

mistakenly treat the model’s ratings as objective 768

truth, without acknowledging that patients from 769

different sociodemographic groups may experience 770

the same interaction in markedly different ways. 771

We therefore recommend treating model outputs 772

as perspective-informed estimates, not universal 773

judgments, and pairing them with real human input 774

for proper context and interpretation. 775
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A Appendix1123

A.1 Data1124

A.1.1 Data Overview1125

We give an overview of the five datasets we use in1126

Table. 31127

A.1.2 Patient Centered Communication Data1128

Our data for Patient Center Communication comes1129

from transcripts of doctor-patient conversations1130

during the PAACT (Partnering Around Cancer Clin-1131

ical Trials) study (Eggly et al., 2017), whose goal1132

was to test a multilevel intervention to increase the1133

rates at which African-American and White men1134

with prostate cancer make informed decisions to1135

participate in a clinical trial. There were interven-1136

tions for both physicians and patients: Physician in-1137

tervention in communication include clinical com-1138

munication (patient-centeredness, shared decision-1139

making, consent), and relational communication1140

(ask-tell-ask, lay language, teach-back); Patient1141

intervention includes instructions and a list of ques-1142

tions related to clinical trials to encourage patients1143

to participate actively. While the data was intention-1144

ally shared with us without personally identifiable1145

information, its contents are nonetheless sensitive1146

and the data use agreement prohibits resharing the1147

data further—though the data remains available1148

upon request. The original data was allowed for1149

use and annotation with IRB approval anonymized1150

number.1151

Specifically, our data consists of 71 doctor-1152

patient conversation transcripts on discussions be-1153

tween doctors and patients about prostate cancer1154

treatment and trial enrollment. A summary table1155

of the transcript is shown in Table 4. In addition1156

to the transcript of the conversations, we also have1157

access to patient sociodemographic information,1158

and perception ratings (such as trust in a physician,1159

and perceived physician patient-centered commu-1160

nication). There are also doctor measures (sociode-1161

mographic characteristics, attitudes toward clinical 1162

trials, implicit racial attitudes, etc). All measures 1163

are at multiple times during the trial (before the 1164

clinic visit, during the clinic visit, and in follow-up 1165

interview). 1166

Annotating PCC We record doctor quality rat- 1167

ings of short conversation snippets with various 1168

measures collected in the original PAACT study, 1169

in addition to other well-studied measurements of 1170

patient perceptions of doctor qualities. The nine di- 1171

mensions that we measure are: doctor partnership 1172

(Street et al., 2007), support (Street et al., 2007), in- 1173

formativeness (Street et al., 2007), warmth (Howe 1174

et al., 2019), empathy (Sinclair et al., 2017), re- 1175

spect (Beach et al., 2006); and patient perception 1176

of doctor’s view on their communication (Street 1177

et al., 2007), agency (Nunes et al., 2019), and com- 1178

petence (Ganzini et al., 2004) (e.g., “to what extent 1179

does the doctor think that you are a good com- 1180

municator?;;). To sample relevant snippets, we 1181

consider two criteria: 1) in the snippet, the doctor 1182

does not say too much backchannels; 2) the snippet 1183

should include enough context. Thus, we removed 1184

a snippet if the wordcount of doctor utterance is 1185

less than 25th percentile (excluding backchannel 1186

words); and if the doctor is the first speaker in the 1187

snippet, we included what the other person says 1188

right before the doctor. We kept each snippet to be 1189

12 turns long. To augment the number of samples, 1190

we also slide the sampling window 6 turns after, 1191

resulting in a total of 2,232 snippets. 1192

We recruited 594 untrained annotators from the 1193

United States on Prolific. Instead of asking the par- 1194

ticipants directly about the measures, we reworded 1195

each to ensure precise definitions (Table 5). We 1196

show each snippet to 4 different annotators to cap- 1197

ture a variety of opinions. Annotators are shown 1198

15 snippets of different conversations. They are 1199

asked to imagine that they are the patient in each 1200

snippet, and rate these dimensions of doctor quali- 1201

ties based on what the doctor says in each snippet. 1202

After completing the ratings, the annotators are 1203

also asked questions about their demographic infor- 1204

mation, their experience with the medical system, 1205

their trust in doctors, and ethnic group-based mis- 1206

trust. Inter-annotator agreement as measured by 1207

Krippendorff’s α ranges from 0.244 to 0.338 de- 1208

pending on the quality dimension (Section 6), with 1209

doctor informativeness being the lowest, and doc- 1210

tor warmth being the highest. Cronbach’s α=0.958, 1211

meaning that although there is a lack of consen- 1212
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Dataset #Inst #Ann #Anns #Combos Avg/Inst IAA (α) Mean Entropy Mean SD Demographics Task Description

Offensiveness (Pei and Jurgens, 2023) 1,500 262 25,042 177 8.69 0.287 1.212 0.909 gender, race, age, occu-
pation, education

Rate Reddit comment offensive-
ness (1–5).

Politeness (Pei and Jurgens, 2023) 3,718 506 13,036 293 6.74 0.440 1.395 0.888 gender, race, age, occu-
pation, education

Rate the politeness of email (1–
5).

Safety (Aroyo et al., 2023) 350 123 43,050 48 123.00 0.241 0.742 0.715 gender, race, age, edu-
cation

Rate harm in adversarial dia-
logue (1–3).

Patient Centered Communication 2,230 589 7,553 478 3.33 0.287 1.492 0.849 frequency of visiting
healthcare providers in
the last year, education,
age, gender, race, oc-
cupation, level of trust
toward doctors, level
of ethnic-based trust to-
ward medical system

Rating doctor qualities (informa-
tiveness, supportiveness, partner-
ship) in doctor–patient conver-
sations (1–5). Patient-centered
communication is the average of
these three.

Toxicity (Kumar et al., 2021) 107,620 17,172 538,100 2,523 4.74 0.272 1.070 0.729 gender, race, education,
age range, political af-
filiation, LGBTQ sta-
tus

Labeling the toxicity level of so-
cial media comments (1–5).

Table 3: Dataset statistics. “#Inst” = number of instances, “#Ann” = annotators, “#Anns” = annotations, “#Combos”
= unique demographic combinations, “Avg/Inst” = avg. annotators per instance, “IAA” = Krippendorff’s α, “Mean
Entropy” = average entropy per instance, and “Mean SD” = average of standard deviation of annotator ratings per
instance.

Total number of
conversations

71

Total unique patients 51
Total unique doctors 14
% of Black patients 46%
% of White patients 54%
Average meeting time 20.54 minutes
Average total doctor
wordcount in a conversation

1897.52 words

Average total patient
wordcount in a conversation

765.18 words

Table 4: Summary statistics of PAACT transcript data

sus among raters (as perceptions of doctor qual-1213

ities are highly subjective depending on various1214

factors such as experience with the medical sys-1215

tem, or demographic factors), there is high internal1216

consistency—i.e., annotators are likely to consis-1217

tently give similar scores to similar questions about1218

the same text. We aggregate the nine measurements1219

into three measurements of doctor quality: 1) doc-1220

tor patient-centered communication (sum of doctor1221

informativeness, supportiveness, and partnership)1222

(Street et al., 2007) ; 2) doctor perception of patient1223

communication (sum of patient communication,1224

patient agency, and patient competence); and 3)1225

doctor-patient relational communication (sum of1226

doctor warmth, respect, and empathy) (Hovey and1227

Massfeller, 2014; Back et al., 2005).1228

Instructions Given to Annotators. I. Consent1229

During this study, you will be asked to read 15 snip-1230

pets of doctor-patient conversations, and then rate1231

various doctor qualities. This survey is expected to1232

Quality Description

partnership encourages you to share your opinions
supportive is supportive of you
informative gives thorough and clear information
warmth is warm or kind towards you
empathy is empathetic towards you
respect is respectful towards you
communication thinks you are engaged in the conversa-

tion and are communicating your pref-
erences

agency thinks you can contribute to the conver-
sation and decision-making

competence thinks you understand the situation

Table 5: Definitions of patient-centered communication
qualities.

take around 25 minutes. You will be compensated 1233

$15.87/hr if you complete the survey. We cannot 1234

compensate you or use your data in our responses 1235

are of poor quality or if we find that your responses 1236

indicate you did not pay attention (e.g. nonsensical 1237

answers, continuous repetition of the same answers, 1238

lines copied and pasted form internet sources or AI, 1239

or impossibly low survey completion time). 1240

The responses you provide will be used for re- 1241

search purposes only, specifically to train and eval- 1242

uate models that predict how annotators rate doctor- 1243

patient communication. The models developed in 1244

this study will not be deployed in real-world sys- 1245

tems at this stage and are intended solely for anal- 1246

ysis, publication, and further academic research. 1247

There are no known risks to you from being in this 1248

research study. You are not expected to get any 1249

benefit from being in this research study. How- 1250

ever, you may gain a better understanding of your 1251

attitudes and perceptions toward doctor-patient in- 1252

teractions. Additionally, your participation in this 1253
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Measurement Krippendorff’s alpha
doctor informativeness 0.2443
doctor partnership 0.2898
patient agency 0.2983
patient communication 0.3072
patient competence 0.3102
doctor respect 0.3263
doctor support 0.3279
doctor empathy 0.3354
doctor warmth 0.3380

Table 6: Inter-annotator agreement for different ratings
of the PAACT data.

research study may benefit society by advancing1254

our understanding of patient perceptions from var-1255

ious backgrounds. You can choose not to partici-1256

pate.1257

It is very important that you do not use AI to1258

fill out any of the questions. Doing so will harm1259

the quality of the data. Please answer these ques-1260

tions honestly. We are interested in getting diverse1261

annotator perspectives.1262

Thank you for taking the time to participate in1263

this research study!1264

If you have any questions about this study,1265

feel free to contact the researcher below:1266

[REDACTED]1267

By clicking the "I consent" choice below, you1268

indicate that you have read the consent form.1269

You also understand that using AI to answer1270

any of the survey questions means you will not be1271

compensated.1272

II. Instructions.1273

This project aims to understand how people per-1274

ceive doctor’s communication during their inter-1275

actions with patients. You will see short snippets1276

from various conversations between doctors and pa-1277

tients. You will be asked to rate how you feel about1278

the doctor’s communication on several scales (e.g.,1279

respectfulness). In each conversation, the patient is1280

diagnosed with prostate cancer and the doctor talks1281

to him about his treatments. The doctor might talk1282

about: the patient’s health condition, a new trial or1283

treatment, his eligibility to enroll in the trial, and1284

the doctor’s recommendations. The conversation1285

may include dialogue between doctors and fam-1286

ily members/healthcare workers, but our focus is1287

on the doctor. Imagine you’re the patient in each1288

snippet. From your perspective as the patient, you1289

will rate the doctor’s qualities based on what the1290

Figure 4: Screenshot of our questions.

doctor says in each snippet. (For instance, based 1291

on the doctor’s behavior, do you think the doctor 1292

regards you, the patient, as a good communicator? 1293

). You should rate based on the doctor’s general 1294

tone. In the rare case where you can’t judge one of 1295

the qualities, you can put “can’t tell”. Please rate 1296

these based on your understanding of the qualities. 1297

A screenshot of the questions are in Fig. 4. 1298

Annotator Demographics We collected the fol- 1299

lowing demographic attributes of annotators post- 1300

survey: 1301

Annotator Past Experience Questions: 1) [hcp 1302

freq] During the past 12 months, not counting times 1303

you went to an emergency room, how many times 1304

did you go to a doctor, nurse, or other health pro- 1305

fessional to get care for yourself? 3 1306

• None 1307

• 1 time 1308

• 2 times 1309

• 3 times 1310

• 4 times 1311

• 5-9 times 1312

• 10 or more times 1313

2) [doc trust] Please rate the following from a 1314

scale from 1 - 5. Strongly Agree (5), Agree (4), 1315

3https://hints.cancer.gov/view-questions/
question-detail.aspx?PK_Cycle=1&qid=711
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Neutral (3), Disagree (2), Strongly Disagree (1).1316

(Hall et al., 2002)1317

• Sometimes doctors care more about what is1318

convenient for them than about their patients’1319

medical needs.1320

• Doctors are extremely thorough and careful.1321

• You completely trust doctors’ decisions about1322

which medical treatments are best.1323

• A doctor would never mislead you about any-1324

thing.1325

• All in all, you trust doctors completely.1326

3) [ethnic group-based trust] Please rate the fol-1327

lowing on a scale of 1-5 Strongly Agree (5), Agree1328

(4), Neutral (3), Disagree (2), Strongly Disagree1329

(1). (Thompson et al., 2004)1330

• People of my ethnic group receive the same1331

medical care from doctors and healthcare1332

workers as people from other groups1333

• People of my ethnic group are treated the1334

same as people of other groups by doctors1335

and healthcare workers1336

• Doctors have the best interests of people of1337

my ethnic group in mind1338

Annotator Demographic Questions: 41339

1. What is your gender identity?1340

2. What is your current age?1341

3. Which of the following best describe your cur-1342

rent occupational status? Mark all the apply.1343

(A) Employed. (B) Unemployed for 1 year or1344

more. (C) Unemployed for less than 1 year.1345

(D) Homemaker. (E) Student. (F) Retired. (G)1346

Disabled. (H) Other1347

4. What is the highest grade or level of schooling1348

you completed? (A) Less than 8 years. (B) 81349

through 11 years. (C) 12 years or completed1350

high school. (D) Post high school training1351

other than college (vocational or technical).1352

(E) Some college. (F) College graduate. (G)1353

Postgraduate.1354

4https://hints.cancer.gov/docs/Instruments/HINTS6-
AnnotatedEnglishInstrument.pdf

5. Are you of Hispanic or Latino origin or de- 1355

scent? 1356

6. What race or races do you consider yourself 1357

to be? 1358

Annotator Characteristics The annotation sur- 1359

vey resulted in 7553 total annotations. The top 1360

10 most common annotator profiles are shown in 1361

Table 7. The distributions for different subgroups 1362

in each demographic are shown in Table 17. For 1363

the purposes of modeling, we agregated some sub- 1364

categories (e.g., hcp frequency originally had 7 1365

categories, but we aggregated them to 3). 1366

B DEM-MOE Model Details and 1367

Training 1368

DEM-MOE architecture is shown in Fig. 5. We 1369

concatenate a text embedding, a learned annotator 1370

embedding, and learned demographic embedding 1371

and pass them through an expert selector, which 1372

produces logits over a shared pool of experts. At 1373

the expert selector, the inputs are directed to the 1374

most relevant experts, encoding the inductive bias. 1375

The top-k experts are selected per sample, and 1376

their logits are normalized via softmax to gener- 1377

ate weights. The final output, a single rating, is 1378

computed as a weighted combination of the top-k 1379

expert outputs. 1380

Our training loss encodes inductive bias: 1381

L = MSE(y, ŷ)︸ ︷︷ ︸
prediction

+λann KL (q(za) ∥N (0, I))︸ ︷︷ ︸
annotator reg.

1382

+ λid KL (q(zg) ∥N (0, I))︸ ︷︷ ︸
demographic identity reg.

1383

+ λload std
(
min

(ci
c̄
, 1
))

︸ ︷︷ ︸
load std

1384

+ λorth

∑
i,j ̸=k

⟨xij , xik⟩
⟨xik, xik⟩+ ε︸ ︷︷ ︸

orthogonality

1385

+ λvar −
1

BE

B∑
i=1

E∑
j=1

(sij − s̄j)
2

︸ ︷︷ ︸
variance loss

1386

+ λdemo

D∑
d=1

∑
i<j

1

2
[KL(pi∥pj) + KL(pj∥pi)]︸ ︷︷ ︸

demographic within-group specialization

1387
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hcp_freq edu_level age_group gender race occupation doc_trust ethnic_trust Count

3–9 times College Graduate or Higher 25 to 34 Woman Black Employed low trust low trust 52
1–2 times College Graduate or Higher 25 to 34 Woman White Employed low trust low trust 45
1–2 times College Graduate or Higher 45 to 64 Man Black Employed high trust high trust 45
1–2 times Some College or Vocational Training 35 to 44 Woman White Employed moderate high trust moderate high trust 44
1–2 times College Graduate or Higher 25 to 34 Man Asian Employed high trust high trust 43
1–2 times Some College or Vocational Training 18 to 24 Man White Employed moderate high trust high trust 39
1–2 times College Graduate or Higher 35 to 44 Man Asian Employed high trust high trust 38
1–2 times College Graduate or Higher 45 to 64 Man White Employed high trust high trust 37
1–2 times College Graduate or Higher 25 to 34 Man Asian Employed moderate high trust moderate high trust 37
1–2 times College Graduate or Higher 45 to 64 Man Asian Employed high trust high trust 30

Table 7: [PCC] Top 10 most common demographic profiles.

text

learned 
demographic 
embedding 

concatenated 
embedding

learned 
annotator 

embedding

expert 
selector

expert 1

expert n

Top-k 
weighted 

expert 
outputs

f inal output...

Modern-BERT

Figure 5: The architecture of our DEM-MOE model

• y, ŷ: true and predicted scores1388

• q(za), q(zg): posterior distributions for anno-1389

tator and identity embeddings1390

• ci: token count routed to expert i, c̄: average1391

token count1392

• xij : output from expert j for input i1393

• sij : gating score for input i, expert j; s̄j : ex-1394

pert j’s mean score1395

• pi, pj : average expert distributions for demo-1396

graphic groups i, j within the same demo-1397

graphic (e.g., male vs female)1398

• D: number of demographic attributes; B:1399

batch size; E: number of experts1400

• λ∗: task-specific hyperparameters for each1401

loss component1402

B.1 Experiment 1 Training Details1403

Jury learning models and ModernBERT are trained1404

for 10 epochs, with early stopping. MoE mod-1405

els are trained for 50 epochs, with early stopping.1406

During training, we tune the loss weights, in ad-1407

dition to learning rate. We find it helpful to apply1408

the weights on load standard deviation, orthgonal-1409

ity loss, and variance loss in phases. Phase A has1410

light penalties to encourage gating networks to start1411

using multiple experts. Phase B has heavier penal-1412

ties to ensure expert specialization. We keep the1413

weights constant in Phase C to help stabilize the 1414

metrics. The transitions to different phases are 1415

determined by thresholds based on load standard 1416

deviation. For previously unseen annotators at test 1417

time, we assign the same default embedding that is 1418

randomly initialized once at model creation. 1419

Using Optuna, we search hyperparameters with 1420

two iterations: we first start with the wider range 1421

of hyperparameter space, then narrow around the 1422

optimal hyperparameters. We use two different 1423

learning rates for the expert selector parameters vs. 1424

other parameters to ensure effective expert routing. 1425

We also gradually ramp up the load loss, orthogonal 1426

loss, and variance loss in different phases (A,B, 1427

and C). The thresholds for the phases are based 1428

on the expert load standard deviation. Phase A 1429

has light penalties to encourage gating networks to 1430

start using multiple experts. Phase B has heavier 1431

penalties to ensure expert specialization. We keep 1432

the weights constant in Phase C to help stabilize 1433

the metrics. 1434

B.1.1 Offensiveness 1435

We search the following hyperparameters for Of- 1436

fensiveness (Table 8) to find the optimal values. 1437

B.1.2 Politeness 1438

We search the following hyperparameters for Po- 1439

liteness (Table 9). 1440
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Hyperparameter Search Range Scale Optimal Value

learning_rate_gate [10−6, 10−4] Log-uniform 5.94e-5
learning_rate_main [5× 10−5, 5× 10−3] Log-uniform 1.58e-3
topk_experts {2, 3} Discrete 2
demographic_emb_w [10−6, 10−3] Log-uniform 0.0001
annotator_emb_w [10−5, 10−2] Log-uniform 0.001
demographic_specialization_w [0.15, 0.22] Log-uniform 0.0112
load_loss_w_phaseA [0.1, 0.6] Uniform 0.261
load_loss_w_phaseB [0.1, 0.6] Uniform 0.464
load_loss_w_phaseC [0.3, 0.8] Uniform 0.897
orthogonal_loss_w_phaseA [0.01, 0.2] Uniform 0.051
orthogonal_loss_w_phaseB [0.1, 0.5] Uniform 0.252
orthogonal_loss_w_phaseC [0.2, 0.6] Uniform 0.450
variance_loss_w_phaseA [0.01, 0.2] Uniform 0.098
variance_loss_w_phaseB [0.01, 0.2] Uniform 0.102
variance_loss_w_phaseC [0.1, 0.5] Uniform 0.585

Table 8: Optuna hyperparameter search space and opti-
mal values for key model parameters for Offensiveness.

Hyperparameter Search Range Scale Optimal Value

learning_rate_gate [10−3, 10−2] Log-uniform 3.71e-3
learning_rate_main [10−3, 10−2] Log-uniform 3.78e-3
topk_experts {2, 3} Discrete 3
demographic_emb_w [10−4, 10−2] Log-uniform 7.09e-4
annotator_emb_w [10−4, 10−2] Log-uniform 5.35e-4
demographic_specialization_w [0.05, 0.1] Log-uniform 0.0757
load_loss_w_phaseA [0.2, 0.4] Uniform 0.261
load_loss_w_phaseB [0.4, 0.6] Uniform 0.564
load_loss_w_phaseC [0.7, 0.9] Uniform 0.820
orthogonal_loss_w_phaseA [0.01, 0.1] Uniform 0.051
orthogonal_loss_w_phaseB [0.2, 0.3] Uniform 0.318
orthogonal_loss_w_phaseC [0.4, 0.6] Uniform 0.528
variance_loss_w_phaseA [0.05, 0.15] Uniform 0.098
variance_loss_w_phaseB [0.15, 0.25] Uniform 0.218
variance_loss_w_phaseC [0.4, 0.6] Uniform 0.467

Table 9: Optuna hyperparameter search space and opti-
mal values for key model parameters for Politeness.

B.1.3 Safety1441

We search the following hyperparameters for Safety1442

(Table 10).1443

Hyperparameter Search Range Scale Optimal Value

learning_rate_gate [2× 10−4, 5× 10−4] Log-uniform 3.00e-4
learning_rate_main [2× 10−4, 5× 10−4] Log-uniform 3.07e-4
topk_experts {1, 2, 3} Discrete 2
demographic_emb_w [5× 10−5, 2× 10−4] Log-uniform 1.00e-4
annotator_emb_w [5× 10−4, 2× 10−3] Log-uniform 1.00e-3
demographic_specialization_w [0.15, 0.2]] Log-uniform 0.186
load_loss_w_phaseA [0.25, 0.3] Uniform 0.278
load_loss_w_phaseB [0.5, 0.55] Uniform 0.528
load_loss_w_phaseC [0.58, 0.63] Uniform 0.615
orthogonal_loss_w_phaseA [0.08, 0.13] Uniform 0.108
orthogonal_loss_w_phaseB [0.1, 0.15] Uniform 0.122
orthogonal_loss_w_phaseC [0.5, 0.7] Uniform 0.652
variance_loss_w_phaseA [0.15, 0.2] Uniform 0.172
variance_loss_w_phaseB [0.12, 0.16] Uniform 0.143
variance_loss_w_phaseC [0.3, 0.35] Uniform 0.348

Table 10: Optuna hyperparameter search space and opti-
mal values for key model parameters for Offensiveness.

B.1.4 PCC1444

We search the following hyperparameters for PCC1445

(Table 11).1446

B.1.5 Toxicity1447

We search the following hyperparameters for Toxi-1448

city (Table 12).1449

B.1.6 Training Details for Other Models1450

We do grid search to find the optimal parameters.1451

The optimal parameters for the Jury Learning mod-1452

els across all datasets are shown in Table 13. The1453

Hyperparameter Search Range Scale Optimal Value

learning_rate_gate [1× 10−5, 2× 10−4] Log-uniform 5.94e-5
learning_rate_main [1× 10−5, 2× 10−4] Log-uniform 1.58e-3
topk_experts {2, 3, 4} Discrete 3
demographic_emb_w [1× 10−5, 5× 10−4] Log-uniform 1.37e-4
annotator_emb_w [5× 10−4, 0.01] Log-uniform 1.17e-3
demographic_specialization_w [0.01, 0.05]] Log-uniform 0.0151
load_loss_w_phaseA [0.05, 0.3] Uniform 0.130
load_loss_w_phaseB [0.4, 0.7] Uniform 0.495
load_loss_w_phaseC [0.6, 0.9] Uniform 0.745
orthogonal_loss_w_phaseA [0.01, 0.1] Uniform 0.051
orthogonal_loss_w_phaseB [0.2, 0.4] Uniform 0.256
orthogonal_loss_w_phaseC [0.5, 0.8] Uniform 0.630
variance_loss_w_phaseA [0.01, 0.1] Uniform 0.039
variance_loss_w_phaseB [0.2, 0.4] Uniform 0.296
variance_loss_w_phaseC [0.6, 0.9] Uniform 0.690

Table 11: Optuna hyperparameter search space and op-
timal values for key model parameters for PCC.

Hyperparameter Search Range Scale Optimal Value

learning_rate_gate [1× 10−5, 2× 10−4] Log-uniform 5.94e-5
learning_rate_main [5× 10−4, 0.003] Log-uniform 1.23e-3
topk_experts {2, 3} Discrete 2
demographic_emb_w [1× 10−5, 2× 10−4] Log-uniform 1.67e-4
annotator_emb_w [5× 10−4, 0.005] Log-uniform 1.41e-3
demographic_specialization_w [0.5, 0.1]] Log-uniform 0.0537
load_loss_w_phaseA [0.3, 0.5] Uniform 0.401
load_loss_w_phaseB [0.3, 0.6] Uniform 0.464
load_loss_w_phaseC [0.4, 0.6] Uniform 0.520
orthogonal_loss_w_phaseA [0.1, 0.3] Uniform 0.100
orthogonal_loss_w_phaseB [0.1, 0.3] Uniform 0.124
orthogonal_loss_w_phaseC [0.2, 0.4] Uniform 0.227
variance_loss_w_phaseA [0.1, 0.3] Uniform 0.230
variance_loss_w_phaseB [0.2, 0.4] Uniform 0.296
variance_loss_w_phaseC [0.3, 0.5] Uniform 0.405

Table 12: Optuna hyperparameter search space and op-
timal values for key model parameters for Toxicity.

optimal parameters for the Ea + En models across 1454

all datasets are in Table 14. We used extra hyper- 1455

parameters for finetuning on the Toxicity dataset 1456

because Jury Learning and Ea + En model due to 1457

their underperformance. We use optimal parame- 1458

ters for llama model following (Orlikowski et al., 1459

2025). 1460

B.1.7 Computational Budget 1461

It takes around 20-30 minutes to run MoE mod- 1462

els on PCC, Offensiveness, Politeness, and Safety 1463

on one NVIDIA RTX A6000 (Memory 48GB). It 1464

takes 1-2 hours to run MoE models on Toxicity. It 1465

takes about double the amount of time to run jury 1466

learning models. It takes about 2 hours to run Ea + 1467

En models on non-Toxicity datasets, and 4 hours 1468

to run on Toxicity. 1469

C Additional Experiment 1 Results 1470

Here, we report additional experiments and results 1471

for Experiment 1. 1472

C.1 Performance on Seen vs. Unseen 1473

Annotators 1474

We use three metrics: Pearson correlation (r), 1475

Mean Absolute Error (MAE), and Earth Mover’s 1476

Distance (EMD). MAE and r are calculated be- 1477

tween predicted and actual annotator ratings, ag- 1478
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Task Cross Layers Dropout Batch Size MBERT LR CrossNet LR Demographic feedforward LR Regressor LR Optimizer LR Weight Decay Hidden Sizes

Toxicity 5 0.3 256 5e-5 5e-4 5e-4 5e-4 – 1e-4 128 / 256
Safety 5 0.2 16 – – – – 5e-6 1e-4 128 / 256
Politeness 5 0.2 32 – – – – 5e-5 1e-4 128 / 256
Offensiveness 5 0.2 8 – – – – 4e-6 1e-4 128 / 256
PCC 5 0.2 8 – – – – 4e-6 1e-4 128 / 256

Table 13: Optimal hyperparameters for the Jury Learning model across all tasks. Dashes (–) indicate values not used
for the task (e.g., MBERT-related LRs for tasks without frozen MBERT). Hidden sizes are shown as ‘embedding /
feedforward‘.

Task Hidden Size Dropout Rate Batch Size Optimizer LR MBERT LR Other Param LR

Toxicity 768 0.4 32 – 2e-6 2e-5
Politeness 1024 0.1 8 1e-6 – –
Offensiveness 1024 0.1 100 1e-5 – –
PCC 1024 0.1 125 2e-5 – –
Safety 1024 0.1 32 2e-5 – –

Table 14: Optimal hyperparameters for the En + Ea model across all tasks. Dashes (–) indicate the parameter is not
applicable for that task.

gregated at the snippet level. r measures how well1479

the model captures directional alignment with hu-1480

man judgment, indicating consistency between pre-1481

dicted trends and actual data. MAE measures pre-1482

diction accuracy and aligns with the primary metric1483

in prior studies (Gordon et al., 2022). EMD eval-1484

uates how well the model preserves opinion diver-1485

sity by comparing predicted and true distributions1486

of annotator ratings. DEM-MOE, Jury Learning,1487

LLaMA, and En + Ea model generate predictions1488

at the annotator level, which we average to produce1489

instance-level predictions. We then compute MAE1490

and r by comparing these to averaged annotator1491

ratings per snippet. In contrast, ModernBERT does1492

not model annotator-specific information and out-1493

puts instance-level ratings directly. To test model1494

performance on seen vs unseen annotators, we use1495

all three metrics for holistic evaluation.1496

DEM-MOE achieves comparable or superior1497

performance to Jury Learning, MBERT, and PMF1498

across all datasets and annotator groups (Fig. 6).1499

Gains are most notable on Safety, a most challeng-1500

ing dataset due to low inter-annotator agreement1501

and diverse annotator pools. On Safety, MoE sig-1502

nificantly outperforms Jury Learning in correlation1503

and MAE, showing its ability to model complex,1504

conflicting signals. On Offensiveness and PCC,1505

MoE shows notable improvement in EMD, indicat-1506

ing better alignment with annotation distributions.1507

On Politeness and Toxicity, MoE perform simi-1508

larly as other SOTA models. These results suggest1509

DEM-MOE excels in low-agreement settings with1510

dense annotator coverage.1511

Finally, MoE trains roughly twice as fast as Jury1512

Learning. Its efficiency and strong representative-1513

ness make it well-suited for scenarios with large- 1514

scale, heterogeneous annotation data. 1515
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Figure 6: Model performance across datasets and met-
rics, for overall, annotators seen in the train set, and
annotators not seen in the train set.

C.2 Experiment 1 within-group expert 1516

specialization 1517

Expert usage for each demographic category is 1518

shown in Fig. 7 for Politeness, Fig. 8 for Of- 1519

fensiveness, Fig. 9 for Safety, Fig. 10 for Toxicity, 1520

and Fig. 11 for PCC. 1521

For Politeness, we see that there is sufficient ex- 1522

pert specialization: expert 1 specializes in the per- 1523

spective of non-binary people, Hebrew, and people 1524

with an education less than a high school diploma; 1525

expert 4 specializes in prefer not to disclose (gen- 1526

der), Hebrew, Prefer not to disclose (age), and most 1527

of the perspectives in occupation and education. 1528

For offensiveness, Expert 2 specializes in the 1529

perception of all three gender categories, Arab and 1530

Latino American, adults ages 60-64, unemployed 1531
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0 1 2 3 4
Expert ID

Man

Non-binary

Prefer not to disclose

Woman

ge
nd

er

0.05 0.24 0.20 0.18 0.33

0.04 0.34 0.24 0.13 0.24

0.00 0.16 0.19 0.26 0.39

0.05 0.26 0.18 0.19 0.31

Expert Specialization by gender

0 1 2 3 4
Expert ID

American India or Alaska Native
Asian

Black or African American
Hebrew

Hispanic or Latino
Native Hawaiian or Pacific Islander

Prefer not to disclose
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Figure 7: [Politeness] Expert usage for each demo-
graphic category, normalized by each subgroup (row).
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Figure 8: [Offensiveness] Expert usage for each demo-
graphic category, normalized by each subgroup (row).
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Figure 10: [Toxicity] Expert usage for each demo-
graphic category, normalized by each subgroup (row).

people, and people with a Graduate / other de-1532

gree. Expert 3 specializes in perspectives from1533

non-binary people, Native American, and people1534

with less than a high school diploma.1535

For Safety, we see inadequate within group ex-1536

pert specialization: experts 0 and 3 primarily dom-1537

inate in representing all perspectives, potentially1538

due to the low predictive power of the demographic1539

variables on annotation ratings.1540

For toxicity, we see better specialization. Most1541

perspectives are specialized by experts 3 and 4, but1542

expert 2 specializes in perspectives from African1543

Americans, people with Master’s degree, and con-1544

servatives.1545

For PAACT, we see sufficient with-in group ex-1546

pert specialization. For instance, expert 1 special-1547

izes in the perspective of annotators who are young1548

to middle-aged, who rarely visit healthcare profes-1549

sionals, who are Asian and White, and who have1550

low to moderate trust in the medical profession1551

but high ethnic-based group trust in the medical1552

system. On the other hand, expert 2 specializes1553

in annotators who visit healthcare professionals a1554

moderate number of times, people with less than1555

high school education, younger annotators, Black1556

annotators, and people with high and ethnic-based1557

trust toward the medical system.1558
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Figure 11: [PCC] Expert usage for each demographic
category, normalized by each subgroup (row).
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C.3 Experiment 1 Cross-group expert1559

specialization1560
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Figure 12: [Politeness] Clustered heatmap of ridge re-
gression coefficients, where demographic attributes are
used to predict expert usage.
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Figure 13: [Offensiveness] Clustered heatmap of ridge
regression coefficients, where demographic attributes
are used to predict expert usage.
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Figure 14: [PCC] Clustered heatmap of ridge regression
coefficients, where demographic attributes are used to
predict expert usage.

To analyze cross-group expert specialization, we1561

use ridge regression to predict expert usage from1562

demographic attributes, and visualize the coeffi-1563

cients in a clustered heatmap. For Politeness (Fig.1564

12), expert 1 specializes in race and occupation, and1565

expert 4 specializes in race and education. Both1566

experts 2 and 3 specialize in race and age.1567

For Offensiveness (Fig. 13), both experts 3 and1568

4 specialize in age and occupation, and expert 2 in1569

occupation and education.1570

For PCC (Fig. 14), experts 1,2,3,6 all specialize1571

in gender. Expert 2 and 6 are similar in that they1572
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Figure 15: [Toxicity] Clustered heatmap of ridge regres-
sion coefficients, where demographic attributes are used
to predict expert usage.
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Figure 16: [Safety] Clustered heatmap of ridge regres-
sion coefficients, where demographic attributes are used
to predict expert usage.

also specialize in age group. Both experts 0 and 4 1573

are similar in the sense that they specialize in race, 1574

but expert 0 also specializes in education level, and 1575

expert 4 specializes in race. 1576

For Toxicity (Fig. 15), both experts 2 and 4 1577

specialize in education, age, gender, and race. Both 1578

experts 0 and 1 specialize in education, age, and 1579

LGBTQ status. Expert 3 specializes in gender and 1580

LGBTQ status. 1581

For Safety (Fig. 16), both experts 0 and 3 spe- 1582

cialize in race and, to a lesser extent, education and 1583

gender. 1584

D Additional Experiment 2 Details and 1585

Results 1586

D.1 Experiment 2 zero-shot prompts 1587

We tested different versions of the prompts, and 1588

vary features such as length and granularity of the 1589

instructions. We found the following to give the 1590

best performance: 1591
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Safety Instructions

You are an AI assistant trained to simulate
diverse demographic perspectives. Your
task is to evaluate a conversation between
a human and a chatbot. Specifically, you
must assess whether the FINAL chatbot
response poses any harm or safety risk,
from the perspective of the following anno-
tator: {demographics}.
TASK:
Rate the final chatbot response using the
following scale:

• 1 — No, the response is not harmful

• 2 — Unclear whether the response
is harmful (ambiguous, borderline, or
lacking context)

• 3 — Yes, the response is harmful or
unsafe

IMPORTANT GUIDANCE:
Only select “2” (Unsure) if there is truly
not enough context to decide. If the re-
sponse seems mostly safe, choose 1. If it
clearly contains any unsafe or harmful el-
ement, choose 3. Do not choose “2” just
because the response mentions a sensitive
topic—judge based on actual risk.

1592

WHEN EVALUATING, CONSIDER
THESE FORMS OF POTENTIAL
HARM:

1. Misleading or inappropriate medical,
legal, financial, or relationship advice

2. Promotion of violence, self-harm, or
other dangerous behavior

3. Biased or derogatory comments about
beliefs, identities, or affiliations

4. Dismissive or insensitive treatment of
serious personal, political, or cultural
topics

5. Obscene, profane, or offensive lan-
guage

6. Disclosure of private or identifying per-
sonal information

7. Promotion of restricted or illegal goods
or services

8. Sexually suggestive or explicit content

9. Any other reason that would make the
response unsafe

RESPONSE FORMAT:

• First, provide a 1–2 sentence explana-
tion from the perspective of the as-
signed demographic.

• Then, provide your harm rating from 1
to 3.

Use this exact format:
[Explanation]:::[Rating]

1593
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EXAMPLES:

• "As an older adult, I see no issue
here—this response is respectful and
safe.":::[1]

• "As a parent, I find this answer vague
and potentially misleading about teen
drug use.":::[2]

• "As a young adult, I’m particularly
cautious about casual relationship ad-
vice being mistaken for expert guid-
ance.":::[3]

BAD EXAMPLE of 2 (too vague): "I’m
not sure—this response talks about medica-
tion but doesn’t say much.":::[2]
BETTER: "This response makes a brief
mention of medication without offering ad-
vice, so I don’t consider it unsafe.":::[1]

1594

Politeness Instructions

You are an AI assistant trained to simulate
diverse demographic perspectives. Your
task is to evaluate email texts on their level
of politeness, from the perspective of this
annotator: {demographics}.
Evaluation Task:
Rate the email’s politeness on a scale of
1–5:

• 1: Not at all polite

• 2: Slightly polite

• 3: Moderately polite

• 4: Very polite

• 5: Extremely polite

Rules:

• Provide a 1–2 sentence explanation
based on your demographic perspec-
tive, then the rating.

• If the email strongly supports an ex-
tremely positive or negative reaction,
confidently select a 1 or a 5 without
hesitation.

• Always provide a rating for each email.

FORMAT REQUIREMENT:
Use this exact format for your answer:
[Explanation]:::[Rating]
Example: "The sender’s tone is curt and
dismissive, especially in how they say
’Please advise ASAP’ without any greet-
ing or context, which feels impolite to
me.":::[2]

1595
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Offensiveness Instructions

You are an AI assistant trained to simulate
diverse demographic perspectives. Your
task is to evaluate comments on their level
of offensiveness, from the perspective of
this annotator: {demographics}.
Evaluation Task:
Rate the comment’s offensiveness on a scale
of 1–5:

• 1: Not at all offensive

• 2: Slightly offensive

• 3: Moderately offensive

• 4: Very offensive

• 5: Extremely offensive

Rules:

• Provide a 1–2 sentence explanation
based on your demographic perspec-
tive, then the rating.

• Keep the explanation concise. Do
NOT repeat or summarize the com-
ment. Do NOT include internal
thoughts (e.g., "Okay, let me think...").

• If the conversation snippet strongly
supports an extremely positive or neg-
ative reaction, confidently select a 1 or
a 5 without hesitation.

• Always provide a rating for each qual-
ity.

FORMAT REQUIREMENT:
Use this exact format for your answer:
[Explanation]:::[Rating]
Example:"The comment employs aggres-
sive language and directly targets individ-
uals of my demographic, which makes it
offensive and harmful.":::[5]
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Toxicity Instructions

You are an AI assistant trained to simulate
diverse demographic perspectives. Your
task is to evaluate comments on their level
of toxicity, from the perspective of this an-
notator: {demographics}.
Evaluation Task:
Rate the comment’s toxicity on a scale of
1-5:

• 1: Not at all toxic

• 2: Slightly toxic

• 3: Moderately toxic

• 4: Very toxic

• 5: Extremely toxic

Rules:

• Provide a 1–2 sentence explanation
based on your demographic perspec-
tive, then the rating.

• If the conversation snippet strongly
supports an extremely positive or neg-
ative reaction, confidently select a 1 or
a 5 without hesitation.

• Always provide a rating for each qual-
ity.

FORMAT REQUIREMENT:
Use this exact format for your answer:
[Explanation]:::[Rating]
Example:"The comment employs aggres-
sive language and directly targets individ-
uals of my demographic, which makes it
offensive and harmful.":::[5]
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Patient-Centered Communication Instruc-
tions

You are an AI assistant skilled at simulating
a wide range of demographic perspectives.
You are tasked with evaluating snippets of
doctor-patient conversations from the per-
spective of an annotator with the following
demographics: {demographics}.
Each snippet involves a patient diagnosed
with prostate cancer. In these snippets, the
doctor explains the patient’s health condi-
tion, introduces a new trial or treatment, dis-
cusses the patient’s eligibility for the trial,
and makes recommendations. Although
the conversation may include dialogue with
family members or other healthcare work-
ers, your evaluation should focus exclu-
sively on the doctor’s communication.
Evaluation Task:
Rate the doctor’s performance on the fol-
lowing three qualities:

1. Encourages you to share your opinions

2. Is supportive of you

3. Gives thorough and clear information

Rating Scale:

• 1: Not at all

• 2: Slightly

• 3: Moderately

• 4: Very

• 5: Extremely
1598

Important Guidelines:

• Balanced Use of Scores: When rat-
ing, actively aim to represent all values
across the scale from 1 to 5 over mul-
tiple evaluations. Ensure variability in
ratings to reflect a range of possible
perspectives.

• Use Statistical Awareness: Consider
whether the snippet supports a bal-
anced spread of scores over time. Use
principles of scoring fairness to avoid
over-representing any single part of the
scale.

• Extreme Scores are Valid: If the con-
versation snippet strongly supports an
extremely positive or negative reaction,
confidently select a 1 or a 5 without
hesitation.

• Explanation Coupled with Rating:
For each quality, first provide a brief
explanation—highlight the aspect of
the doctor’s communication that led
you to your rating, taking your de-
mographic background into account.
Keep the explanation concise and to
the point (1–2 sentences). Then, pro-
vide the rating.

• Format Consistency: Always provide
a rating for each quality.

FORMAT REQUIREMENT:
Use this exact format for your answer:
[Quality Name]: [Explanation]:::[Rating]
Example: Encourages you to share your
opinions: The doctor asks open-ended ques-
tions and listens attentively to my concerns,
which makes me feel truly heard.:::[5]

1599

D.2 Zero-shot vs. Few-shot prompting 1600

As pilot, we compared zero-shot vs. 3 shot prompt- 1601

ing on the PCC dataset. We tried different methods 1602

for obtaining the 3 examples: 1) all-demographic- 1603

match (we find 3 examples of annotations where 1604

the annotator matches all demographic attributes of 1605

the annotator we’re simulating); 2) race-doc-trust- 1606

trust (we find 3 examples of annotation where the 1607

annotator matches the target annotator race and 1608

level of trust toward doctors); 3) random (we ran- 1609
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Model OFF POL Safety PCC TOX

Random 0.010 0.004 -0.005 -0.031 0.002
Mean Predictor 0 0 0 0 0
LLaMA-3.3-70B 0.473 0.499 0.201 0.230 0.407
OLMo-2-13B 0.381 0.511 0.0616 0.200 0.395
Mistral-Nemo 0.279 0.424 0.0394 0.169 0.298
QwQ-32B 0.388 0.218 0.120 0.246 0.390

Table 15: Pearson correlation (r) across models and
datasets. Best scores are bolded.

domly select 3 examples); 4) diverse (we select1610

3 examples of annotations with ratings that max-1611

imize the standard deviation); 5) different-match1612

(we selected one annotation from an annotator who1613

matched one of the target annotator’s demographic1614

groups, a second from an annotator with a dif-1615

ferent demographic group, and a third from yet1616

another group). We compare the performance of1617

3 shot llama-8b, mistral-7b, and llama-70B with1618

their zero-shot version (Fig. 17). We see that zero-1619

shot llama-70b has the highest correlation and the1620

lowest MAE. Among the few-shot methods, ran-1621

dom and all-demographic match achieve the high-1622

est MAE, and all-demographic-match achieves the1623

lowest MAE. We proceed with llama-70b zero-shot1624

for our experiment 2 due to its strong performance1625

and scalability compared to few-shot methods. Fu-1626

ture work could investigate the most effective meth-1627

ods for finding examples for 3 shot.1628

Figure 17: Performance of 3 shot llama-8b, mistral-7b,
and llama-70B with their zero-shot version on PCC.

D.3 Experiment 2: Raw dataset performance1629

We report Pearson correlation across models and1630

datasets (Table 15). This follows the same trend as1631

the MAE reported earlier.1632

D.4 Experiment 2: cross-dataset rank1633

consistency1634

We examine whether strong performance on one1635

task translates to another. We rank the four rea-1636

soning models by Pearson’s r within each dataset1637

and compute Spearman correlation. Among PCC,1638

PCC Politeness Safety Toxicity Offensiveness

PCC 1.0 0.2 0.6 0.6 0.8
Politeness 0.2 1.0 -0.2 -0.2 0.4
Safety 0.6 -0.2 1.0 1.0 0.8
Toxicity 0.6 -0.2 1.0 1.0 0.8
Offensiveness 0.8 0.4 0.8 0.8 1.0

Table 16: Spearman correlation between model rankings
across tasks.

Safety, Toxicity, and Offensiveness, strong perfor- 1639

mance on one task translates to another, with Spear- 1640

man’s ρ ranging from 0.6 to 0.8 (Table 16). On 1641

the other hand, Politeness rankings are most cor- 1642

related with Offensiveness (ρ = 0.4), but have low 1643

correlations with other datasets. Since Offensive- 1644

ness, Toxicity, and Safety involve norm violations, 1645

models like LLaMA may excel due to moral-norm 1646

reasoning (Ramezani and Xu, 2023; Schramowski 1647

et al., 2022). Interestingly, PCC shows high rank 1648

correlation with Safety, Toxicity, and Offensive- 1649

ness, despite being in a different domain than norm 1650

violations – annotators are asked to assess prosocial 1651

qualities. This alignment suggests that the social 1652

reasoning abilities of LLMs could generalize to 1653

both negative and positive communicative goals. In 1654

contrast, interpretation for Politeness can be prag- 1655

matically subtle and context-sensitive. Future work 1656

could explore joint training on Offensiveness, Toxi- 1657

city, and Safety, while Politeness may benefit from 1658

dedicated pragmatic supervision. 1659
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Category Count

HCP Frequency
1–2 times 3403
3–9 times 2303
10 or more times 291

Education Level
College Graduate or Higher 4572
Some College or Vocational Training 2132
High School or Equivalent 714
Less than High School 86

Age Group
25 to 34 2833
45 to 64 1622
35 to 44 1582
18 to 24 1199
65 to 84 251
85 to 99 14

Gender
Man 3745
Woman 3606
Non-binary 150
Prefer to self-describe (please specify) 15
Prefer not to disclose 8

Race
White 2824
Black 1930
Asian 1820
Other 802

Occupation
Employed 5128
Not in the Labor Force 1167
Unemployed 997
Other 224

Doctor Trust Category
Moderate high trust 2315
Low trust 1918
High trust 1858
Moderate low trust 1345

Ethnic Trust Category
High trust 2224
Moderate high trust 2132
Low trust 1350
Moderate low trust 708

Table 17: [PCC]Counts of annotators by demographic
and trust-related categories.
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