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ABSTRACT
Graph Neural Networks (GNNs) have expressed remarkable capabil-

ity in processing graph-structured data. Recent studies have found

that most GNNs rely on the homophily assumption of graphs, lead-

ing to unsatisfactory performance on heterophilous graphs. While

certain methods have been developed to address heterophilous

links, they lack more precise estimation of high-order relationships

between nodes. This could result in the aggregation of excessive

interference information during message propagation, thus degrad-

ing the representation ability of learned features. In this work, we

propose a Disparity-induced Structural Refinement (DSR) method

that enables adaptive and selective message propagation in GNN,

to enhance representation learning in heterophilous graphs. We

theoretically analyze the necessity of structural refinement during

message passing grounded in the derivation of error bound for node

classification. To this end, we design a disparity score that combines

both features and structural information at the node level, reflecting

the connectivity degree of hopping neighbor nodes. Based on the

disparity score, we can adjust the aggregation of neighbor nodes,

thereby mitigating the impact of irrelevant information during mes-

sage passing. Experimental results demonstrate that our method

achieves competitive performance, mostly outperforming advanced

methods on both homophilous and heterophilous datasets.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies→ Neural networks.

KEYWORDS
Graph neural network, homophily and heterophily, structural learn-

ing, message passing.

1 INTRODUCTION
Graph-structured data are prevalent in the real world, exempli-

fied by social networks and molecular structures. To effectively

address such non-Euclidean data, Graph Neural Networks (GNNs)

have emerged as powerful tools, extensively applied across var-

ious domains, including traffic prediction [8, 12, 41], molecular

exploration [13, 35, 37], classification and clustering [10, 23, 32]
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and others [1, 20, 24]. As a pivotal stage of GNNs, message pass-

ing transforms and disseminates information through the graph’s

topology, significantly enhancing the expressiveness of learned

feature. Most GNNs [6, 11, 16] are designed under the homophily

assumption, where nodes with similar labels or features tend to

be connected. However, real-world applications frequently involve

highly heterophilous graphs, such as in the case of amino acids of

different types forming connections. Consequently, many previ-

ous GNNs proposed for homophilous networks, such as GEGCN

[21], JKNet [38] and APPNP [15], struggle to effectively capture

heterophily, resulting in an unsatisfactory performance on het-

erophilous networks.

Real-world graphs typically contain both homophilous and het-

erophilous edges. A graph is considered homophilous when the for-

mer outnumber the latter; otherwise, it is viewed as heterophilous.

Recent studies have revealed that the smoothing operation inher-

ent in GNNs can generate similar node features for nodes with

different labels, when applied to graphs with heterophily [7, 19, 26].

To mitigate the negative impact of this issue on node classifica-

tion tasks, various designs have been developed to enhance the

discriminative capabilities of GNNs in heterophilous scenarios. One

typical strategy is to construct augmented graphs by introducing

additional semantics to prevent nodes from different classes from

adopting similar representations. For instance, Huang et al. [9]

utilized known edge labels to identify other links, thus facilitating

message passing by removing all heterophilous edges. Pei et al. [29]

redefined graph convolution by utilizing geometric relationships in

the latent space. These methods primarily focus on the detrimental

effects of heterophilous connections. However, they often overlook

the potential advantages of effectively identifying and leveraging

heterophilous edges.

Another established approach involves learning signed edges to

cluster similar nodes while repelling dissimilar ones, which relo-

cates edges and facilitates message passing adopting the whole

graph topology. In this context, homophilous relationships are

assigned positive signs, whereas heterophilous connections are

designated negative signs. For instance, graph attention functions

were used to compute signed edges such that node representations

were better learned [2, 40]. To better define signed edges, [4, 39] de-

signed both low-pass and high-pass filters to differentiate between

various connections. In graphs with high heterophily, direct neigh-

bors often exhibit greater heterophily than multi-hop neighbors.

Consequently, these algorithms aggregate high-order information

by applying signed convolutional filters multiple times, effectively

utilizing edges with assigned signs and weights for information

propagation and fusion. Nevertheless, these methods encounter

several limitations in the context of heterophilous graphs: i) They

solely rely on node features to infer node relationships, neglect-

ing structure information, which can easily establish inaccurate

estimation; ii) The interplay between the discriminative capacity

1
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of models and the nature of homophilous/heterophilous graphs

remains unclear.

To address the issues aforementioned, we propose a Disparity-

induced Structural Refinement (DSR) framework with the integra-

tion integrated with GNN, named DSR-GNN, aimed at enhancing

node representations in heterophilous graphs. Grounded in the

theory of error bound for node classification, we first conduct a

theoretical analysis of the factors affecting the model’s capacity

to handle heterophilous graphs, underscoring the necessity of ex-

ploring refined graph structures. Our proposed architecture inte-

grates two collaborative steps: assessing node relationships and

performing message passing on refined graphs. In the initial step,

we evaluate high-order node relationships in graphs by calculating

a disparity score that combines distances of aggregated features

and differences in homophily ratios. Subsequently, the score drives

the construction of layer-wise adjacency edges by removing links

with significant disparity. This refinement process ensures that

message passing is conducted on graphs with minimized interfer-

ence from irrelevant high-order information. Notably, the updated

node representations from message passing can, in turn, update the

disparity score. Together, these two collaborative steps facilitate

the attainment of more discriminative node representations.

Our contributions can be summarized in three aspects:

i) We propose a disparity-induced structural refinement frame-

work, theoretically dissecting the relationship between

model capacity and homo/heterophilous ratios, to enhance

representation learning in heterophilous graphs.

ii) We propose a disparity score that integrates both features

and structural information at the node level, facilitating

structural refinement and mitigating the impact of irrele-

vant information during message passing.

iii) Extensive experiments demonstrate that the proposedmodel

achieves state-of-the-art performance on heterophilous graphs

and competitive accuracy on homophilous networks.

Overview. In the remainder of this paper, we first introduce the

primary preliminaries used in the paper in Section 2. Following

this, Section 3 analyzes the theoretical background of our research,

and Section 4 presents our framework DSR-GNN. Finally, we con-

duct extensive experiments in Section 5 and conclude our work in

Section 6.

2 PRELIMINARIES
2.1 Notations
Given an undirected graph G(𝑉 , 𝐸) with 𝑁 nodes ({𝑣𝑖 ∈ 𝑉 |𝑁𝑖=1})
and 𝑒 edges, where𝑉 = 𝑉

lab
∪𝑉

unlab
with labeled node set𝑉

lab
and

unlabeled node set 𝑉
unlab

, and 𝑒𝑖 𝑗 ∈ 𝐸 denotes the edge between

the 𝑖-th and 𝑗-th nodes. The topological relationships among nodes

are expressed as A ∈ R𝑁×𝑁 , where 𝐴𝑖 𝑗 = 1 if nodes 𝑖 and 𝑗 are

connected, 0 otherwise. Moreover, Â = A + I stands for A with

added self-loops, while Ã = D̂−1/2ÂD̂−1/2 denotes the symmetric

normalized adjacency matrix. Note that the renormalization trick

on the adjacency matrix is used to prevent gradient explosion. Here,

D̂ is the diagonal degree matrix, where �̂�𝑖𝑖 =
∑𝑁
𝑗=1𝐴𝑖 𝑗 . X ∈ R𝑁×𝑑

indicates node features, in which x𝑖 with𝑑-dimensions is the feature

vector of the 𝑖-th node. Among the 𝑁 nodes, 𝑁
lab

nodes are labeled,

with their labels captured in the ground truth matrix Y ∈ R𝑁lab×𝐶
,

where𝐶 is the number of classes, and each row y𝑖 of Y is a one-hot

vector representing the label of node 𝑣𝑖 .

2.2 Node-level Homophily and Heterophily
Given a set of nodes with labels, the homophily ratio of each

node calculates the tendency of the node to have the same la-

bel as its neighbors. Considering node 𝑣𝑖 , we assume its neigh-

bor set as N𝑖 , then the homophily ratio of node 𝑣𝑖 is defined as:

ℎ+
𝑖
=
| {y𝑖=y𝑗 |𝑣𝑗 ∈N𝑖 } |

|N𝑖 | . ℎ+
𝑖
ranges in [0, 1], with values close to 1

indicating high homophily (or low heterophily) and values close

to 0 indicating the opposite. Corresponding, the heterophily ratio

ℎ−
𝑖
= 1 − ℎ+

𝑖
. Therefore, the node-level homophily in the graph G

can be measured byH(G) =
∑𝑁

𝑖=1 ℎ
+
𝑖

𝑁
. Many previous works have

explored heterophily using the above node-level homophily metric

and have proposed various approaches, such as signed edges, to

reduce the impact of confusing information brought by non-similar

neighbors [4, 39].

2.3 Graph Neural Network for Semi-supervised
Classification

The core of GNN is the message passing, which collects the neigh-

borhood information to update node representations. Consider a

GNN with 𝐿 layers, where the output of the 𝑙-th layer is given

by: h(𝑙 )
𝑖

= 𝜎

(
Aggregate({h(𝑙−1)

𝑗
|𝐴𝑖 𝑗 = 1})Θ(𝑙 )

)
. Here, Θ(𝑙 ) is the

trainable parameter matrix of the 𝑙-th layer and 𝜎 (·) indicates the
ReLU(·) or Softmax(·) activation function. After gaining the final

representation H(𝐿) , the cross-entropy loss consisted of H(𝐿) and
Y is attained: L𝑐𝑒 = −∑

𝑖∈Ω
∑𝐶
𝑗=1 𝑌𝑖 𝑗 ln(𝐻

(𝐿)
𝑖 𝑗
). Here, Ω is the set

of labeled samples. To simplify the model parameter, some models

[3, 15] firstly use the fully connected neural network on the fea-

ture matrix X to generate the hidden state features H(0) and then

propagate them via the message passing. Their updating rule can

be defined as: H(𝑙 ) = 𝜎 (ÃH(𝑙−1) + H(0) ),H(0) = Φ𝜃 (X), where 𝜃
is the parameter set of the neural network Φ.

3 THEORETICAL DISPARITY ANALYSIS
Classic graph convolution methods typically assume that nodes

belonging to the same class are more likely to be connected, which

fails to hold in heterophilous graphs. To investigate the factors

affecting the model’s ability to differentiate between nodes, we

derive an error bound for node classification, which can boost

the design of effective message-passing for heterophilous graphs.

Theoretically, drawing inspiration from PAC-Bayes analysis [5, 27],

we delineate the key assumptions and definitions related to graph

data and classifiers, followed by a thorough derivation of the error

bound applicable to any unlabeled nodes.

Definition 1. Let’s define a 𝐿-layer GNN classifier 𝑓 , for node 𝑣𝑖 ,
the prediction score is 𝑓𝑖 (X,G) = 𝑓 (𝑔𝑖 (X,G);Θ(1) ,Θ(2) , · · · ,Θ(𝐿) ),
where 𝑔 denotes a feature aggregation function and 𝑓 is a ReLU-
activated 𝐿-layer MLP with learnable parameters {Θ(𝑙 ) }𝐿

𝑙=1
. We as-

sume that the maximum number of hidden units across all layers is
𝑏.

2
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Definition 2. For any node 𝑣𝑖 , the distance of aggregated features
from it to other node 𝑣 𝑗 is defined as

𝜖𝑖 𝑗 = ∥𝑔𝑖 (X,G) − 𝑔 𝑗 (X,G)∥2 . (1)

Definition 3. Given a labeled node 𝑣 𝑗 ∈ 𝑉lab with label 𝑦 𝑗 , there
exists a margin 𝛾 ≥ 0 satisfing

𝑓𝑗 (X,G)[𝑦 𝑗 ] ≤ 𝛾 +max𝑐≠𝑦 𝑗 𝑓𝑗 (X,G)[𝑐], (2)

where 𝑓𝑗 (X,G)[·] is to take an element of the predicted probability
vector (w.r.t classifier).

Definition 4. The expected loss L𝛾
𝑖
(𝑓 ) of the classifier 𝑓 on 𝑣𝑖

for a margin 𝛾 and any distribution D is defined as [25, 28]:

L𝛾
𝑖
(𝑓 ) := P𝑣𝑖∼D

[
𝑓𝑖 (X,G)[𝑦𝑖 ] ≤ 𝛾 +max𝑐≠𝑦𝑖 𝑓𝑖 (X,G)[𝑐]

]
. (3)

The empirical loss is denoted as ˆL𝛾
𝑖
(𝑓 ) that is the empirical estimate

of the expected loss.

According to the above definitions, the error bound for semi-

supervised node classification is illustrated as below. It aims to

bound the expected loss L0

𝑖
of classifier on the unlabeled node 𝑣𝑖

for a margin 0. Here, the empirical loss on the labeled node 𝑣 𝑗 for a

margin 𝛾 is denoted as
ˆL𝛾
𝑗
.

Theorem 1 (Error Bound for Unlabeled Node Classifica-

tion). Let 𝑓 be a classifier in the classifier family F with learnable
parameters {Θ(𝑙 ) }𝐿

𝑙=1
that conform with the normal distribution, then

for any unlabeled node 𝑣𝑖 and 𝛾 ≥ 0, we have

L0

𝑖 (𝑓 ) ≤ ˆL𝛾
𝑗
(𝑓 ) + O

( 𝐶𝜌
√
2𝜋𝜎
(𝜖𝑖 𝑗 + 𝜌 |ℎ+𝑖 − ℎ

+
𝑗 |)

+
∑𝐿
𝑙=1
∥𝚯(𝑙 ) ∥2

𝐹

𝜎2

)
,

(4)

where𝜎 = min

( (𝛾/8𝜖𝑖 𝑗 )1/𝐿√
2𝑏 (1+ln(2𝑏𝐿) )

,
𝛾

84𝐿𝐵𝑖𝛽
𝐿−1
√
𝑏 ln(4𝑏𝐿)

)
,𝐵𝑖 = ∥𝑔𝑖 (X,G)∥2,

ℎ+
𝑖
denotes the homophily ratio of node 𝑣𝑖 and 𝜌 is original feature

separability of nodes.

Proof. The proof is deferred to Appendix. □

This theorem elucidates that the primary factors influencing the

error bound are the distance of aggregated feature 𝜖𝑖 𝑗 = ∥𝑔𝑖 (X,G)−
𝑔 𝑗 (X,G)∥2 and the disparity in homophily ratios

1
: |ℎ+

𝑖
− ℎ+

𝑗
|. Con-

ventional GNN methods primarily emphasize minimizing the dis-

tance of aggregated feature to enhance representation learning,

often neglecting the significance of homophily ratios, which funda-

mentally reflect the underlying graph structure.

Remark 1. In previous studies, two key aspects of debate have
emerged regarding heterophily (conversely homophily) in graph con-
volution. One perspective asserts that heterophily is detrimental to
message passing, as connections between nodes of different classes
can lead to mixed features, resulting in indistinguishable node repre-
sentations [4, 42]. Another viewpoint posits that heterophilous edges
can be advantageous, as they not only enhance the differentiation
of inter-class information but also facilitate long-distance message
passing [9, 39]. Different from them, according to Theorem 1, we
should consider the disparity of structure (|ℎ+

𝑖
− ℎ+

𝑗
|) and feature

1 |ℎ+𝑖 − ℎ+𝑗 | = |ℎ−𝑖 − ℎ−𝑗 | , as ℎ+𝑖 + ℎ−𝑖 = 1.

(𝜖𝑖 𝑗 ) between nodes during message passing to balance advantages
and disadvantages of heterophilous links, rather than simply adjusting
heterophily/homophily.

To this end, we attempt to devise an effective structural adjust-

ment strategy that leverages the disparity of homophily ratios as

well as the distance of aggregated features. This strategy aims to

reduce error bounds and enhance the discriminative capacity of

the model. The central idea is to refine graph structures to mitigate

the influence of irrelevant high-order information while facilitating

more meaningful message passing, thereby improving the model’s

discernibility.

4 DISPARITY-INDUCED STRUCTURAL
REFINEMENT

In this section, we present the disparity-induced structural refine-

ment method, designed for integration with graph neural network,

inspired by the insights from Theorem 1. This method consists of

three critical steps: evaluating edge signs, computing the disparity

score, and adjusting message propagation. We finally aggregate the

node representations updated across all refined graphs to obtain

the final predicted results.

4.1 Assign Homo/Heterophile Edges
In order to estimate the node-level homophily ratio, it is essential

to annotate the homophily and heterophily properties of the 𝑘-hop

neighboring nodes surrounding a given node. It sometimes aligns

with the concept of signed edges, which could enhance the pu-

rity of neighbor information gathered during message aggregation.

Specifically, we assign positive signs to edges connecting nodes

of the same class (i.e., homophilous edges) and negative signs to

those linking nodes of distinct categories (i.e., heterophilous edges).

By doing so, the use of signed edges allows the model better cap-

ture graph structure, thereby improving discrimination between

nodes belonging to distinct classes. Incorrectly assigning a negative

sign to a homophilous edge or a positive sign to a heterophilous

edge can not only hinder model performance but may also lead to

degradation, as demonstrated in GGCN [39]. Therefore, accurately

matching signs to edges is paramount. To address this, we propose

a pre-training process that enhances the accuracy of signed edges,

effectively mitigating the influence of noise in the raw data, rather

than merely relying on the cosine similarity of the original node

features as utilized in [39].

Concretely, we learn a way of generating signed edges from the

training set, leveraging the set of labeled nodes. Let 𝐸
lab

denotes the

set of edges just that exist solely between labeled samples. We can

then define a signed matrix W ∈ R𝑁×𝑁 restricted to the labeled

edges during the training phase, with elements drawn from the set

{−1, 0, 1}. Formally,

𝑊𝑖 𝑗 =


1, if 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉lab & 𝑒𝑖 𝑗 ∈ 𝐸lab & y𝑖 = y𝑗 ,
−1, if 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉lab & 𝑒𝑖 𝑗 ∈ 𝐸lab & y𝑖 ≠ y𝑗 ,
0, otherwise.

(5)

Eq. (5) indicates the true signed edges for the training phase. In order

to learn a prediction model of signed edges, we concatenate the

representations of two connected nodes to form the feature of the

corresponding edge. Formally, the feature of the edge connecting

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference ’25, April 28, 2025, Sydney, Australia Anon. Submission Id: 11

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

nodes 𝑣𝑖 and 𝑣 𝑗 is denoted as [x𝑖 | |x𝑗 ], where | | represents vector
concatenation. To predict the sign of each edge, we input these

edge features into a multi-layer perceptron (MLP) as follows,

𝑊𝑖 𝑗 ← sgn(Tanh(MLP( [x𝑖 | |x𝑗 ]))), (6)

where “sgn" is the sign function, “Tanh" is the hyperbolic tangent ac-

tivation function that maps values to the range [-1, 1]. We optimize

the MLP through gradient backpropagation on the Mean Squared

Error (MSE) loss, defined as:L𝑚𝑠𝑒 = 1

|𝐸lab |
∑
(𝑣𝑖 ,𝑣𝑗 ) ∈𝐸lab (𝑊𝑖 𝑗−𝑊𝑖 𝑗 )2.

Based on the learnt prediction model, we can generate a signed

matrix W̃, whose elements are whether predicted signs of unsigned

edges (in testing) or true signed edges (in training).

Remark 2. The pre-training procedure of edge assignment de-
scribed above utilizes existing training edges, whereby labeled samples
are interconnected. In the absence of such conditions, our model can
proceed without pre-training, instead estimating edge signs based on
the similarity between nodes. Following the prediction of edge signs
using W̃, we can gain the final representations through a step-wise
integration of various high-order neighbor signals.

4.2 Compute Disparity Scores
Building on Theorem 1, we conclude that the classification error is

primarily influenced by the distance between aggregated features

and the disparity in homophily ratios. To address this, we incor-

porate these two critical factors into a unified disparity score, the

calculation of which is detailed in this subsection.

After learning the signed matrix W̃ with Eq. (6), the 𝑘-hop ho-

mophily ratio of node 𝑣𝑖 is defined as

ℎ
(𝑘 )
𝑖

=
|{𝑣 𝑗 |𝑣 𝑗 ∈ N (𝑘 )𝑖

,𝑊
(𝑘 )
𝑖 𝑗

> 0}|

|N (𝑘 )
𝑖
|

, (7)

where the superscript (𝑘) denotes the 𝑘-hop neighbors
2
. Hereby,

we can compute the 𝑙-hop disparity score between node 𝑣𝑖 and its

neighbor 𝑣 𝑗 as follows,

𝑆
(𝑙 )
𝑖 𝑗

= ∥h(𝑙−1)
𝑖

− h(𝑙−1)
𝑗
∥2 + |ℎ (𝑙 )𝑖 − ℎ

(𝑙 )
𝑗
|. (8)

The first term represents the aggregated-feature distance with

h(𝑙 )
𝑖

= ReLU

(
𝑔({h(𝑙−1)

𝑗
|𝑣 𝑗 ∈ N (𝑙 )𝑖 })

)
, where 𝑔(·) is an aggrega-

tion function. The second term encapsulates the disparity in ho-

mophily ratios, reflecting the differences of neighbor substructure

surrounding nodes 𝑣𝑖 and 𝑣 𝑗 . The score reflects the disparity be-

tween a given node and its the 𝑙-hop neighbor nodes, both in terms

of feature and structure spaces, thereby serving to guide message

propagation along accurate paths for obtaining discriminative node

representations.

4.3 Adjust Message Propagation
According to disparity scores from Eq. (8), we adjust the aggregated

neighboring nodes to mitigate the latent noise from surrounding

neighbor information. Formally, for a given node 𝑣𝑖 , the aggregated

2
Different hopping levels utilize distinct sign matrices.

nodes in the 𝑙-th layer are defined as,

A (𝑙 )
𝑖

:= {𝑣 𝑗 |𝑣 𝑗 ∈ N (𝑙 )𝑖 ∧ 𝑆 (𝑙 )
𝑖 𝑗
≤ 𝜏
(𝑙 )
𝑖
}, (9)

s.t., 𝜏
(𝑙 )
𝑖

=
1

|N (𝑙 )
𝑖
|

∑︁
𝑣𝑗 ∈N (𝑙 )𝑖

𝑆
(𝑙 )
𝑖 𝑗

,

where 𝜏
(𝑙 )
𝑖

represents the average score between node 𝑣𝑖 and its

𝑙-order neighbors. The construction of {A (𝑙 )
𝑖
}𝐿
𝑙=1

is guided by dis-

parity scores, preserving high-order neighbors that exhibit minimal

differences to avoid the influence of irrelevant high-order infor-

mation. Thus, given a set A (𝑙 )
𝑖

containing neighbors of node 𝑣𝑖 to

be aggregated in the 𝑙-th layer, we can perform message passing

during graph convolution.

The message aggregation for the 𝑙-th layer is defined as follows,

h(𝑙 )
𝑖

=

gCov(
∑︁

𝑣𝑗 ∈{𝑣𝑖 }∪A (𝑙 )𝑖

𝑊
(𝑙 )
𝑖 𝑗
(𝐷 (𝑙 )
𝑖𝑖

𝐷
(𝑙 )
𝑗 𝑗
)−1/2h(𝑙−1)

𝑗
,Θ1), (10)

where 𝑙 = 1, · · · , 𝐿, h(0)
𝑖

is gained using a fully-connected neural

network with parameter Θ1 ∈ R𝑑×𝑚 on x𝑖 , and “gCov" denotes a

conventional graph convolution layer followed by a ReLU activation

function. Here,𝐷
(𝑙 )
𝑖𝑖

represents the degree of node 𝑖 , calculated from

the aggregation neighbor structure A (𝑙 ) for the normalization

purpose. Note that message aggregation is applied solely to the

refined graph structures A (𝑙 ) besides the node itself. Furthermore,

the representation h(𝑙 )
𝑖

, obtained by aggregating messages from

A (𝑙 )
𝑖

, can iteratively update the disparity scores used in the (𝑙+1)-th
layer.

Through multi-layer message propagation, the final output can

be derived by aggregating features from all layers as:

ŷ𝑖 = Softmax

(( 𝐿∑︁
𝑙=0

𝜆𝑙h
(𝑙 )
𝑖

)
Θ2

)
, (11)

where 𝜆𝑙 is a learnable parameter that indicates the importance

of features from each layer, and Θ2 ∈ R𝑚×𝑐 is a weight matrix

optimized for predicting class scores. The final outputs are then

combined with the labels from the training data to compute the

cross-entropy loss, facilitating model optimization.

In conclusion, we begin by learning a signed matrix that reflects

the homophily and heterophily of links, utilizing edges between

labeled samples. Subsequently, based on the node-level homophily

ratios provided by the signed matrix and the aggregated features

obtained by graph convolution, we compute the disparity score re-

vealing high-order relationships between nodes. The disparity score

explores key links from both node features and structures to obtain

improved graph structures. Message propagation and aggregation

are then performed on these refined graphs to derive discriminative

node representations. Network parameters are optimized through

backpropagation of the cross-entropy loss consisted of the final out-

put and the labels from the training data. Algorithm 1 summarizes

the updating process of variables. The network is implemented in

Pytorch and uses GPU acceleration to boost training efficiency.

4
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Algorithm 1: DSR-GNN

Input: Node features {x𝑖 ∈ R𝑑 }𝑁𝑖=1, original adjacency
matrix A, the signed matrix W̃, ground truth matrix

Y, layer number 𝐿.

Output: The predicted class label.

1 Initialize parameters Θ1, Θ2, {𝜆𝑙 }𝐿𝑙=0;
2 h(0)

𝑖
= ReLU(x𝑖Θ1);

3 for 𝑙 = 1→ 𝐿 do
4 Calculate 𝑆

(𝑙 )
𝑖 𝑗

with Eqs. (7) and (8);

5 Compute 𝜏
(𝑙 )
𝑖

= 1

|N (𝑙 )
𝑖
|
∑
𝑣𝑗 ∈N (𝑙 )𝑖

𝑆
(𝑙 )
𝑖 𝑗

and obtain A (𝑙 )
𝑖

with Eq. (9);

6 Update h(𝑙 )
𝑖

with Eq. (10);

7 Obtain ŷ𝑖 = Softmax

(( ∑𝐿
𝑙=0

𝜆𝑙h
(𝑙 )
𝑖

)
Θ2

)
;

8 Update parameters via backpropagation of the cross-entropy

loss consisting of Y and Ŷ from the training data;

9 return The predicted class label of the 𝑖-th node is given by

argmax ŷ𝑖 .

4.4 Connect to Other Methods
DSR-GNNVs. DropEdge.DropEdge [30] constructs an augmented

adjacency matrix by randomly removing partial edges, and the ma-

trix is shared by all layers. Its strategy is sample and intuitive, but

it doesn’t fully leverage the inherent data structure of the graph.

Compared to DropEdge, DSR-GNN uses the disparity score to guide

the sampling procedure, ensuring that layer-wise adjacency ma-

trices more accurately capture high-order relationships between

nodes.

DSR-GNN Vs. GPR-GNN. Both GPR-GNN [4] and DSR-GNN

adopt weighted summation to generate the final node representa-

tions. Differently, the key component of GPR-GNN lies in exploring

learnable weights to adapt to the homophily or heterophily patterns

within the graph; while DSR-GNN focuses on leveraging signed

edges and structural refinement techniques. These schemes balance

the topological propagation abilities with the inherent heterophily

in the graph, resulting in more discriminative node representations.

DSR-GNNVs. GGCN.GGCN [39] proposes two edge correction

strategies based on the theoretical analysis, including structure-

based and feature-based methods. The former rescales edge weights

to satisfy the required node degree conditions; while DSR-GNN

emphasizes exploring node-level high-order homophily structures.

Moreover, its feature-based method leverages cosine similarity to

gain edge signs, but DSR-GNN adopts a pre-training scheme to

predict signs for unknown edges.

5 EXPERIMENTS
In this section, we construct a series of experiments to assess the

effectiveness of DSR-GNN. Our model is implemented in PyTorch

on a workstation with AMD Ryzen 9 5900X CPU (3.70GHz), 64GB

RAM and RTX 3090GPU (24GB caches). We answer several key

questions via experiments:

• Q1: How does DSR-GNN perform on both homophilous

and heterophilous datasets?

• Q2: What is the impact of signed edges on model perfor-

mance in heterophilous and homophilous graphs?

• Q3: How can we empirically verify the influence of struc-

tural refinement driven by the disparity score on perfor-

mance?

• Q4: In what ways does the refined graph differ structurally

from the original graph?

• Q5: How does high-order information affect the final rep-

resentations learned by DSR-GNN?

5.1 Experimental Setups
Datasets. To validate the performance of DSR-GNN, we use three

homophilous datasets: Cora, Citeseer and Pubmed [31], which are

citation networkswhere nodes represent publications and edges cor-

respond to citation links. Additionally, we test on four heterophilous

datasets: Texas, Wisconsin, Cornell, and Actor [29]. In the Texas,

Wisconsin, and Cornell datasets, nodes represent webpages, and

edges denote hyperlinks between them. For the Actor dataset, each

node represents an actor, with edges indicating co-occurrence on

the same Wikipedia page. A summary of the dataset statistics is

provided in Table 1.

Competitors. We compare DSR-GNN against 13 algorithms: 1)

A baseline: 2-layer MLP; 2) Two classic GNN models: vanilla GCN

[14] and GAT [34]; 3) Two recent models performing well on ho-

mophilous graphs: GCNII [3] and GCNet [36]; 4) Seven advanced

models designed specifically to handle heterophily: FAGCN [2],

H
2
GCN [42], GPR-GNN [4], GGCN [39], ACM-GCN [22], LRGNN[18]

and PCNet [17].

Experimental Settings. We exploit accuracy (ACC) as the evalu-

ation metric to measure the model’s performance in correctly classi-

fying samples. For all datasets, we randomly split training/validation/

testing samples into 48%/32%/20% of all samples. For heterophilous

datasets, the learning rate, weight decay, dropout rate and number

of hidden units are set to 0.01, 5e-4, 0.1 and 128, respectively. For

homophilous graphs, the configurations are largely analogous, with

the exception that the weight decay is set to 0. Each experiment

is performed 10 times, and the mean and standard deviation are

recorded. Our code is available athttps://anonymous.4open.science
/r/DSR-GNN-5876.

5.2 (Q1) Classification Results on
Benchmark Datasets

Table 2 presents a comparison of test accuracy across all algorithms

on real-world datasets with different homophily levels. From this

table, we draw the following observations:

• DSR-GNN obtains the optimal and suboptimal performance

on most datasets, particularly on heterophilous networks.

On homophilous datasets, DSR-GNN maintains its compet-

itive performance, which is within 1% of the best model.

• MLP is a solid baseline for handling heterophilous graphs,

outperforming models with implicit homophily assump-

tions, such as GCNII and GCNet. This observation under-

scores that message passing over indistinguishable edges

can negatively impact performance.
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Table 1: Benchmark dataset statics.

Datasets #Nodes #Edges #Features #Classes #Training/Testing/Validation

Citeseer 3,327 4,676 3,703 7 1,597/1,065/665

Cora 2,708 5,278 1,433 6 1,300/867/541

Pubmed 19,717 44,327 500 3 9,464/6,309/3,944

Texas 183 295 1,703 5 88/59/36

Wisconsin 251 466 1,703 5 121/80/50

Cornell 183 280 1,703 5 121/80/50

Actor 7,600 26,752 931 5 3,648/2,432/1,520

Table 2: Node classification results on real-world datasets: Mean accuracy (%) ± Standard deviation (%). Best performance is
highlighted in bold, and runner-up accuracy is highlighted in underline.

Methods/Datasets Citeseer Cora Pubmed Texas Wisconsin Cornell Actor

MLP 74.02±1.90 75.69±2.00 87.16±0.37 80.81±4.75 85.29±3.31 81.89±6.40 36.53±0.70

GCN 76.50±1.36 86.98±1.27 88.42±0.50 55.14±5.16 51.76±3.06 60.54±5.30 27.32±1.10

GAT 76.55±1.23 87.30±1.10 86.33±0.48 52.16±6.63 49.41±4.09 61.89±5.05 27.44±0.89

GCNII 77.33±1.48 88.37±1.25 90.15±0.43 77.57±3.83 80.39±3.40 77.86±3.79 37.44±1.30

GCNet 74.29±0.50 86.13±0.38 86.29±0.09 72.54±1.66 66.75±2.81 73.56±3.95 27.66±0.20

FAGCN 74.01±1.85 86.34±0.67 76.57±1.88 77.56±6.11 79.41±6.55 78.64±5.47 34.85±1.61

H
2
GCN 77.11±1.57 87.87±1.20 89.49±0.38 84.86±7.23 87.65±4.98 82.70±5.28 35.70±1.00

GPR-GNN 77.13±1.67 87.95±1.18 87.54±0.38 78.38±4.36 82.94±4.21 80.27±8.11 34.63±1.22

GGCN 77.14±1.45 87.95±1.05 89.15±0.37 84.86±4.55 86.86±3.29 85.68±6.63 37.54±1.56

ACM-GCN 77.32±1.70 87.91±0.95 90.00±0.52 87.84±4.40 88.43±3.22 85.14±6.07 36.28±1.09

LRGNN 77.53±1.31 88.33±0.89 90.24±0.64 90.27±4.49 88.23±3.54 86.48±5.65 37.34±1.78

PCNet 77.50±1.06 88.41±0.66 89.51±0.28 88.11±2.17 88.63±2.75 82.61±2.70 37.80±0.64
DSR-GNN 78.38±0.81 88.64±0.61 89.58±0.15 92.61±2.98 90.60±1.80 90.50±2.79 37.57±0.81

• The highest and second-highest results are achieved by

models specifically designed to handle heterophilous graphs,

suggesting that effectively harnessing heterophilous links

can significantly improvemodel performance. Notably, DSR-

GNN surpasses these models by successfully balancing

propagation capabilities with the inherent heterophily of

the graph.

5.3 (Q2 & Q3) Ablation Study
To demonstrate the impact of signed edges on model performance,

we evaluate the role of different adjacency matrices. We first con-

struct JGNN, a variant of DSR-GNN that omits structural refinement.

In Figure 1, “with Ori. Adj." denotes JGNN utilizing the original

adjacency matrix without signed edges. “with Cos." and “with Pre."

indicate JGNN using signs generated by the cosine similarity and

the proposed pre-training method, respectively. The figure high-

lights several key points: 1) We note that JGNN with Pre. achieves

superior performance across most datasets, particularly on het-

erophilous graphs. 2) Assigning signs to edges helps the model to

distinguish neighbors, significantly enhancing the model’s discrim-

inative power. 3) JGNN with Pre. substantially outperforms JGNN

using cosine similarity on both homophilous and heterophilous

graphs. The suboptimal performance of JGNN with cosine simi-

larity can be attributed to inaccuracies in sign prediction caused

by noise in the raw data. Moreover, we observe that predicting

edge signs using similarity shows only marginal improvements

over the original adjacency matrix, and in some cases, even leads to

performance degradation. This indicates that incorrectly assigning

a negative/positive sign to a homophilous/heterophilous edge can

adversely affect model performance.

(a) Homophilous graphs (b) Heterophilous graphs

Figure 1: Performance of JGNN using various adjacency ma-
trices on homophilous and heterophilous datasets, where
JGNN is DSR-GNN w/o structural refinement.
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Table 3: Ablation study: Mean accuracy (%) ± Standard deviation (%). Best performance is highlighted in bold.

Datasets

Structural

refinement

Aggregated-feature

distance

Homophily

difference

ACC Datasets

Structural

refinement

Aggregated-feature

distance

Homophily

difference

ACC

Citeseer

78.62±0.54

Cora

88.62±0.83

✓ 77.44±0.88 ✓ 87.31±0.59

✓ ✓ 78.30±0.88 ✓ ✓ 88.31±0.49

✓ ✓ ✓ 78.38±0.81 ✓ ✓ ✓ 88.64±0.61

Texas

89.50±3.30

Wisconsin

89.20±1.60

✓ 90.75±3.30 ✓ 88.20±1.40

✓ ✓ 92.89±3.56 ✓ ✓ 89.60±1.50

✓ ✓ ✓ 92.61±2.98 ✓ ✓ ✓ 90.60±1.80

Cornell

88.94±3.61

Actor

36.06±0.83

✓ 90.78±3.77 ✓ 36.01±0.94

✓ ✓ 90.00±2.79 ✓ ✓ 36.92 (0.79)

✓ ✓ ✓ 90.50±2.79 ✓ ✓ ✓ 37.57 (0.81)

To validate the role of disparity-induced structural refinement,

we conduct an ablation study of each focal component, as displayed

in Table 3. When DSR-GNN solely uses the signed adjacency matrix

obtained by the pre-training procedure for message passing, perfor-

mance declines, particularly on heterophilous graphs. However, this

variant still outperforms other competitors on some datasets (e.g.,

Texas) due to the effective pre-training scheme. Subsequently, we

incorporate structural refinement through random edge dropping,

which positively impacts the model but still leaves room for fur-

ther enhancement. Observations reveal that eliminating some het-

erophilous links to rationally balance graph heterophily with graph

topology can optimize the embedding generated by DSR-GNN.

Moreover, the disparity score with only the aggregated-feature

distance provides minimal benefits, as it considers feature-level

relationships but neglects structural information. In brief, superior

accuracy is obtained by the model combining three components. It

is worth noting in the table that on homophilous datasets Cora and

Citeseer, due to clear connections between nodes of the same class,

signed edges assisting nodes to distinguish inter-class information

have allowed the model to achieve comparable performance.

5.4 (Q4) Comparison of Original and
Refined Graphs

To highlight the differences between the refined and original graphs,

we compare heterophily ratios of various datasets across distinct

layers, as shown in Table 4. The data reveal that the heterophily

ratio fluctuates on most datasets rather than showing a consistent

decline, which indicates that DSR-GNN accomplishes refinement

based on high-order disparity score instead of merely removing het-

erophilous edges. Meanwhile, as shown in Table 3, the performance

achieved by the original graph is suboptimal compared to that of

the refined graph, which may remove homophilous edges. These

phenomenons illustrate that the influence of homo./hete. links on

performance is not strictly positive/negative. The proposed struc-

tural refinement scheme effectively balances both types of links,

thereby mitigating the adverse effects of extraneous high-order

information.

Moreover, to intuitively compare the original and refined graphs,

Figure 2 visualizes the graph structures used by DSR-GNN in the

(ii) Refined graph(ii) Refined graph(ii) Refined graph

(i) Original graph (i) Original graph (i) Original graph

(a) Texas (b) Cornell (c) Wisconsin

Figure 2: Visualizations of the original graph and the refined
graph used in 4th layer on the (a) Texas, (b) Cornell and (c)
Wisconsin datasets, respectively. Here, blue/red lines indicate
heterophilous/homophilous links, and the red circles high-
light areas where significant changes occur between them.

4th layers on the Texas, Cornell and Wisconsin datasets, respec-

tively. Initially, it is evident that heterophilous links outnumber

homophilous links in these datasets. However, due to their pro-

nounced heterophily, the number of heterophilous links is notably

reduced after the refinement process.

5.5 (Q5) Visualization of Layer-wise
Weights {𝜆𝑙 }𝐿𝑙=0

To intuitively understand the impact of high-order information on

the gained representations, we visualize the learned weights {𝜆𝑙 }4𝑙=0
of DSR-GNN with four convolutional layers on several datasets, as

illustrated in Figure 3. From this figure, we observe that for three

heterophilous graphs (Texas, Cornell and Winconsin), the weights

assigned to neighbors decrease as the number of hops increases.

Although the structural refinement operation allows the model to

aggregate high-order neighbors with minimal disparity scores, they
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Table 4: Heterophily ratio of various graphs varies across different layers, where the heterophily ratio in the 𝑙-th refined graph

G (𝑙 ) isH− (G (𝑙 ) ) = 1 −
∑𝑁

𝑖=1 ℎ
(𝑙 )
𝑖

𝑁
.

Datasets/Hete. ratio Citeseer Cora Pubmed Texas Wisconsin Cornell Actor

H− (G) 0.2609 0.1900 0.1976 0.8923 0.8039 0.6946 0.7812

H− (G (2) ) 0.2883 0.1648 0.2139 0.8684 0.8497 0.6810 0.7612

H− (G (3) ) 0.2908 0.1746 0.2143 0.8776 0.8507 0.6781 0.7606

H− (G (4) ) 0.2906 0.1758 0.2140 0.8585 0.8231 0.6735 0.7624

(d) Wisconsin

(a) Cora

(c) Cornell

(b) Texas

Figure 3: Visualizations of learnable layer-wise weights {𝜆𝑙 }4𝑙=0 of 4-layer DSR-GNN, where the vertical axis represents the
number of epochs.

Figure 4: Loss curves during the training procedure of DSR-
GNN on seven datasets.

provide less information and thus receive lower weight. Notably,

the significance of 3-hop and 4-hop interactions is quite similar,

suggesting that the model effectively mitigates the incorporation of

noise as the number of hops increases. For the homophilous graph

Cora, the weights assigned to each hop are more balanced, indicat-

ing a strong feature similarity between nodes. This characteristic

facilitates consistent message passing across layers.

Moreover, the loss values of DSR-GNN across seven datasets dur-

ing the training process are depicted in Figure 4. Notably, the losses

decrease significantly throughout the training epochs, followed

by a gradual stabilization. This phenomenon underscores that the

model is effective and can achieve stable state through continuous

optimization.

6 CONCLUSION
In this paper, we proposed a novel framework that integrated a

Disparity-induced Structural Refinement (DSR) scheme with Graph

Neural Network (GNN), termed DSR-GNN, to enhance representa-

tion learning on heterophilous graphs. The model incorporated two

collaborative steps to optimize message propagation and fusion. In

specific, the initial step designed a disparity score, derived from the

theory of error bound for node classification, to evaluate high-order

relationships between nodes based on both features and structure

information. The score derived the construction of layer-wise edges

by eliminating links with significant disparity, thereby minimizing

the impact of irrelevant high-order information during message

passing. Meanwhile, the gained node representations can optimize

the disparity score in return. Extensive experiments of the proposed

model on both heterophilous and homophilous datasets demon-

strated that DSR-GNN outperformed existing methods, showcasing

its effectiveness in handling heterophilous links.
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A APPENDIX
A.1 Proofs

Definition 5. Let’s define a 𝐿-layer GNN classifier 𝑓 , for node 𝑣𝑖 ,
the prediction score is 𝑓𝑖 (X,G) = 𝑓 (𝑔𝑖 (X,G);Θ(1) ,Θ(2) , · · · ,Θ(𝐿) ),
where 𝑔 denotes a feature aggregation function and 𝑓 is a ReLU-
activated 𝐿-layer MLP with learnable parameters {Θ(𝑙 ) }𝐿

𝑙=1
. We as-

sume that the maximum number of hidden units across all layers is
𝑏.

Definition 6. For any node 𝑣𝑖 , the distance of aggregated features
from it to other node 𝑣 𝑗 is defined as

𝜖𝑖 𝑗 = ∥𝑔𝑖 (X,G) − 𝑔 𝑗 (X,G)∥2 . (12)

Definition 7. Given a labeled node 𝑣 𝑗 ∈ 𝑉lab with label 𝑦 𝑗 , there
exists a margin 𝛾 ≥ 0 satisfing

𝑓𝑗 (X,G)[𝑦 𝑗 ] ≤ 𝛾 +max𝑐≠𝑦 𝑗 𝑓𝑗 (X,G)[𝑐], (13)

where 𝑓𝑗 (X,G)[·] is to take an element of the predicted probability
vector (w.r.t classifier).

Definition 8. The expected loss L𝛾
𝑖
(𝑓 ) of the classifier 𝑓 on 𝑣𝑖

for a margin 𝛾 and any distribution D is defined as [25, 28]:

L𝛾
𝑖
(𝑓 ) := P𝑣𝑖∼D

[
𝑓𝑖 (X,G)[𝑦𝑖 ] ≤ 𝛾 +max𝑐≠𝑦𝑖 𝑓𝑖 (X,G)[𝑐]

]
. (14)

The empirical loss is denoted as ˆL𝛾
𝑖
(𝑓 ) that is the empirical estimate

of the expected loss.

Assumption 1. Let 𝑃 be a distribution on the classifier family F ,
defined by sampling the vectorized𝑀𝐿𝑃 parameters from N

(
0, 𝜎2𝐼

)
for some 𝜎2 ≤ (𝛾/8𝜖𝑖 𝑗 )

2/𝐿

2𝑏 (𝜆+ln 2𝑏𝐿) .

Lemma 1. (Lemma 2 in [26]) With assumptions (1) A balance class
distribution with P(Y = 1) = P(Y = 0) and (2) Aggregated feature
distribution shares the same variance 𝜎I. When nodes 𝑣𝑖 and 𝑣 𝑗 have
the same aggregated features ∥f𝑖 − f𝑗 ∥ = 𝜖𝑖 𝑗 , we can have:��P1 (𝑦𝑖 = 𝑐1 | f𝑖 ) − P2

(
𝑦 𝑗 = 𝑐1 | f𝑗

) �� ≤
𝜌
√
2𝜋𝜎
(𝜖𝑖 𝑗 + 𝜌

���ℎ+𝑖 − ℎ+𝑗 ���), (15)

where 𝜌 = ∥𝝁1 − 𝝁2∥ is original feature separability of nodes, P1
and P2 are the conditional probability and ℎ+

𝑖
denotes the node-level

homophily ratio of node 𝑣𝑖 . Specifically, the node features follow the
Gaussian distribution: x𝑖 ∼ 𝑁 (𝝁1, I) for 𝑖 ∈ 𝑉lab and x𝑖 ∼ 𝑁 (𝝁2, I)
for 𝑖 ∉ 𝑉lab.

Theorem 2. (Node Pair Generalization of Deterministic Classifiers
[25]). Let 𝑓 be any classifier in F . For any node 𝑣𝑖 , for any 𝜆 > 0 and
𝛾 ≥ 0, for any “prior" distribution 𝑃 on F that is independent of the
training data 𝑣 𝑗 , with probability at least 1 − 𝛿 over the sample of 𝑦 𝑗 ,

for any𝑄 on F such that Pr𝑓 ∼𝑄
(𝑓𝑖 (𝑋,𝐺) − 𝑓𝑖 (𝑋,𝐺)


∞

<
𝛾
8

)
> 1

2
,

we have

L0

𝑖 (𝑓 ) ≤ L̂
𝛾

𝑗
(𝑓 ) + 1

𝜆

(
2 (𝐷KL (𝑄 ∥𝑃) + 1) + ln

1

𝛿
+ 𝜆2

4

+ lnE𝑓 ∼𝑃𝑒
𝜆 (L𝛾/4

𝑖
(𝑓 )−L𝛾/2

𝑗
(𝑓 ) )

) (16)

Lemma 2. Suppose an L-layer GNN classifier 𝑓 is associated with
model parameters 𝚯(1) , . . . ,𝚯(𝐿) . Define 𝑇𝑓 := max𝑙=1,...,𝐿

𝚯(𝑙 )
2

.

For any node 𝑣𝑖 and 𝛾 ≥ 0, if 𝜖𝑖 𝑗𝑇𝐿𝑓 ≤
𝛾
4
, then

L𝛾/2
𝑖
(𝑓 ) − L𝛾

𝑗
(𝑓 ) ≤ 𝐶𝜌

√
2𝜋𝜎
(𝜖𝑖 𝑗 + |ℎ+𝑖 − ℎ

+
𝑗 |𝜌) . (17)

Proof. Wedenote 𝑓𝑖 as 𝑓𝑖 (X,G) and𝜂𝑐 (𝑖) as 𝑃𝑟 (𝑦𝑖 = 𝑐 |𝑔𝑖 (X,G)).
Following the above analysis, we have

L𝛾/2
𝑖
(𝑓 ) − L𝛾

𝑗
(𝑓 )

=E𝑦𝑖L𝛾/2 (𝑓𝑖 , 𝑦𝑖 ) − E𝑦 𝑗L𝛾 (𝑓𝑗 , 𝑦 𝑗 )

=

𝐶∑︁
𝑐=1

𝜂𝑐 (𝑖)L𝛾/2 (𝑓𝑖 , 𝑐) −
𝐶∑︁
𝑐=1

𝑃𝑟 (𝑦 𝑗 = 𝑐)L𝛾 (𝑓𝑗 , 𝑐)

=

𝐶∑︁
𝑐=1

(
𝜂𝑐 (𝑖)L𝛾/2 (𝑓𝑖 , 𝑐) − 𝜂𝑐 ( 𝑗)L𝛾 (𝑓𝑗 , 𝑐)

)
=

𝐶∑︁
𝑐=1

(
𝜂𝑐 (𝑖) (L𝛾/2 (𝑓𝑖 , 𝑐) − L𝛾 (𝑓𝑗 , 𝑐))

+ (𝜂𝑐 (𝑖) − 𝜂𝑐 ( 𝑗))L𝛾 (𝑓𝑗 , 𝑐)
)

≤
𝐶∑︁
𝑐=1

(
(L𝛾/2 (𝑓𝑖 , 𝑐) − L𝛾 (𝑓𝑗 , 𝑐)) + (𝜂𝑐 (𝑖) − 𝜂𝑐 ( 𝑗))

)
.

(18)

According to Lemma 1, we have

𝜂𝑐 (𝑖) − 𝜂𝑐 ( 𝑗) ≤
𝜌
√
2𝜋𝜎
(𝜖𝑖 𝑗 + |ℎ+𝑖 − ℎ

+
𝑗 |𝜌). (19)

Moreover, we have

∥ 𝑓𝑖 − 𝑓𝑗 ∥∞ ≤
𝛾

4

. (20)

Therefore, we can rewrite it as follows

𝑓𝑖 (X,G) [𝑦𝑖 ] − 𝑓𝑗 (X,G)
[
𝑦 𝑗

]
≤ 𝛾

4

. (21)

According to the definition of Expected Margin Loss, we have

L𝛾/2 (𝑓𝑖 , 𝑐) ≤ L𝛾 (𝑓𝑗 , 𝑐), (22)

Consequently, the original bound can be scaled as

L𝛾/2
𝑖
(𝑓 ) − L𝛾

𝑗
(𝑓 ) ≤ 𝐶𝜌

√
2𝜋𝜎
(𝜖𝑖 𝑗 + |ℎ+𝑖 − ℎ

+
𝑗 |𝜌), (23)

which completing the proof. □

Lemma 3. For any node 𝑣𝑖 , any 𝜆 > 0 and 𝛾 ≥ 0, assume the
"prior" 𝑃 on F is defined by sampling the vectorized parameters from

N
(
0, 𝜎2𝐼

)
for some 𝜎2 ≤ (𝛾/8𝜖𝑖 𝑗 )

2/𝐿

2𝑏 (𝜆+ln 2𝑏𝐿) . We have

lnE𝑓 ∼𝑃𝑒
𝜆 (L𝛾/4

𝑖
(𝑓 )−L𝛾/2

𝑗
(𝑓 ) ) ≤ ln 3+ 𝐶𝜌

√
2𝜋𝜎
(𝜖𝑖 𝑗 + |ℎ+𝑖 −ℎ

+
𝑗 |𝜌) . (24)

Proof. Under the condition in Lemma 2, we can split the classi-

fier’s space into two regimes. (a): 𝑃𝑟 (𝜖𝑖 𝑗𝑇𝐿𝑓 ≤
𝛾
8
) and (b): 𝑃𝑟 (𝜖𝑖 𝑗𝑇𝐿𝑓 >

𝛾
8
).

Firstly, by Lemma 2, we have 𝑒
𝜆 (L𝛾/4

𝑖
(𝑓 )−L𝛾/2

𝑗
(𝑓 ) ) ≤ 𝑒

𝜆𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 )

for any 𝜖𝑖 𝑗𝑇
𝐿
𝑓
≤ 𝛾

8
. Then, for 𝜖𝑖 𝑗𝑇

𝐿
𝑓
>
𝛾
8
, according to Assumption

3 in [25], with probability at least 1 − 𝑒 ,

𝑒
𝜆

(
L𝛾/4
𝑖
(𝑓 )−L𝛾/2

𝑗
(𝑓 )

)
≤ 𝑒

𝜆+ 𝜆𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 ) . (25)
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Notably, this assumption is satisfied since we are considering rela-

tionships between pairs of nodes in this paper. Moreover, according

to [33] and under the condition 𝜎2 ≤ (𝛾/8𝜖𝑖 𝑗 )2/𝐿
2𝑏 (𝜆+ln 2𝑏𝐿) , we have the

following inequality:

𝑃𝑟 (𝜖𝑖 𝑗𝑇𝐿𝑓 >
𝛾

8

) ≤ 𝑒−𝜆 . (26)

Therefore, we have

lnE𝑓 ∼𝑃𝑒
𝜆 (L𝛾/4

𝑖
(𝑓 )−L𝛾/2

𝑗
(𝑓 ) )

≤ ln
(
𝑃𝑟

(
𝜖𝑖 𝑗𝑇

𝐿
𝑓
>

𝛾

8

) (
(1 − 𝑒−1)𝑒𝜆+

𝜆𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 )

+ 𝑒−1𝑒𝜆
)
+ 𝑃𝑟

(
𝜖𝑖 𝑗𝑇

𝐿
𝑓
≤ 𝛾

8

)
𝑒

𝜆𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 )

)
≤ ln

(
𝑃𝑟

(
𝜖𝑖 𝑗𝑇

𝐿
𝑓
>

𝛾

8

)
𝑒
𝜆+ 𝜆𝐶𝜌√

2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 ) + 𝑒𝜆−1

+ 𝑒
𝜆𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 )

)
≤ ln

(
𝑒−𝜆𝑒

𝜆+ 𝜆𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 ) + 𝑒𝜆−1

+ 𝑒
𝜆𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 )

)
≤ ln

(
1 + 𝑒

2𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 )

)
≤ ln 𝑒

3𝐶𝜌√
2𝜋𝜎
(𝜖𝑖 𝑗+|ℎ+𝑖 −ℎ+𝑗 |𝜌 ) = ln 3 + 𝐶𝜌

√
2𝜋𝜎
(𝜖𝑖 𝑗 + |ℎ+𝑖 − ℎ

+
𝑗 |𝜌) .

(27)

In the later steps of formula derivation, we set 𝜆 = 1 since we are

considering the relationships between pairs of nodes. □

Theorem 3 (Error Bound for Node Classification). Let 𝑓
be a classifier in the classifier family F with learnable parameters
{Θ(𝑙 ) }𝐿

𝑙=1
that conform with the normal distribution, then for any

node 𝑣𝑖 and 𝛾 ≥ 0, we have

L0

𝑖 (𝑓 ) ≤ L̂
𝛾

𝑗
(𝑓 ) + O

( 𝐶𝜌
√
2𝜋𝜎
(𝜖𝑖 𝑗 + 𝜌 |ℎ+𝑖 − ℎ

+
𝑗 |)

+
∑𝐿
𝑙=1
∥𝚯(𝑙 ) ∥2

𝐹

𝜎2

)
,

(28)

where𝜎 = min

( (𝛾/8𝜖𝑖 𝑗 )1/𝐿√
2𝑏 (1+ln(2𝑏𝐿) )

,
𝛾

84𝐿𝐵𝑖𝛽
𝐿−1
√
𝑏 ln(4𝑏𝐿)

)
,𝐵𝑖 = ∥𝑔𝑖 (X,G)∥2,

ℎ+
𝑖
denotes the homophily ratio of node 𝑣𝑖 and 𝜌 is original feature

separability of nodes.

Proof. According to Theorem 1 and Lemma 3, we have the

following inequality:

L0

𝑖 (𝑓 ) ≤ L̂
𝛾

𝑗
(𝑓 ) + 1

𝜆

(
2 (𝐷KL (𝑄 ∥𝑃) + 1) + ln

1

𝛿
+ 𝜆2

4

+ ln 3 + 𝐶𝜌
√
2𝜋𝜎
(𝜖𝑖 𝑗 + |ℎ+𝑖 − ℎ

+
𝑗 |𝜌)

) (29)

As before, we set 𝜆 = 1 since we are considering the relationships

between pairs of nodes. Therefore, we can rewritten this inequality

as follows:

L0

𝑖 (𝑓 ) ≤L̂
𝛾

𝑗
(𝑓 ) +

(
2(𝐷KL (𝑄 ∥𝑃) + 1) +

1

4

+ ln 3

𝛿

+ 𝐶𝜌
√
2𝜋𝜎
(𝜖𝑖 𝑗 + |ℎ+𝑖 − ℎ

+
𝑗 |𝜌)

) (30)

Moreover, according to [33], 𝑃 and 𝑄 are normal distributions, we

have

𝐷𝐾𝐿 (𝑄 | |𝑃) ≤
∑𝐿
𝑙=1
∥𝚯(𝑙 ) ∥2

𝐹

𝜎2
, (31)

where𝜎 = min

( (𝛾/8𝜖𝑖 𝑗 )1/𝐿√
2𝑏 (1+ln(2𝑏𝐿) )

,
𝛾

84𝐿𝐵𝑖𝛽
𝐿−1
√
𝑏 ln(4𝑏𝐿)

)
. Consequently,

we derive the following bound corresponding to pairs of nodes:

L0

𝑖 (𝑓 ) ≤L̂
𝛾

𝑗
(𝑓 ) + O

( 𝐶𝜌
√
2𝜋𝜎
(𝜖𝑖 𝑗 + 𝜌 |ℎ+𝑖 − ℎ

+
𝑗 |)

+
∑𝐿
𝑙=1
∥𝚯(𝑙 ) ∥2

𝐹

𝜎2

)
.

(32)

Note that the above derivation process can be applied to the case

of unlabeled nodes (i.e. for any unlabeled node 𝑣𝑖 ). □
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