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ABSTRACT

Numerical simulations for reservoir management for energy recovery optimiza-
tion involve solving partial differential equations across numerical grids, provid-
ing detailed insights into fluid flow, heat transfer, and other critical reservoir be-
haviors. However, their computational demands often hinder practical implemen-
tation due to lengthy runtimes and resource-intensive processes. In this paper,
we propose a deep learning methodology to address these challenges. Our ap-
proach leverages a neural operator that directly parameterizes the integral kernel
in Fourier space. By doing so, we facilitate swift and efficient predictions, ef-
fectively reducing the computational burden associated with multiple numerical
simulations. The robustness of the proposed approach has been evaluated for sim-
ulations of the steam injection process in high-viscosity oil reservoirs, an advanced
thermal recovery method used to extract heavy oil from underground reservoirs.
Key features of the proposed methodology are that it slashes computational time
from hours to seconds, making it feasible for real-time reservoir management de-
cisions. We use input data and corresponding output fields from five numerical
models for the steam injection process as training data. This allows the ML model
to learn from the complete evolution of the process across diverse simulations.
During inference, the ML model relies on the first 10 time steps of numerical
simulation results. It then predicts the subsequent 40 time steps in an autoregres-
sive manner, capturing temporal dependencies effectively. The ML model accu-
rately forecasts simulation outcomes at the numerical grid level, with error rates
consistently below 10 percent. Beyond reservoir simulation, our approach holds
promise for other fields, including computational fluid dynamics (CFD), structural
engineering, and weather forecasting.

1 INTRODUCTION

Constructing numerical models to represent the physics of oil and gas reservoirs is a demanding
task, requiring several steps. Initially, a reservoir geometry model is constructed, comprising grid
blocks where partial differential equations (PDEs) are solved to determine pressure and oil/gas sat-
uration. Geological attributes, fluid properties, and rock-fluid characteristics serve as inputs, with
rock properties being particularly uncertain due to limited measurements Aziz (1979). To validate
the reservoir model, a process called history matching is performed Chavent et al. (1975); Kruger
et al. (1961); Van Leeuwen (1999); Wahl et al. (1962); Slater & Durrer (1971); Nourozieh et al.
(2015), where the model’s response is compared against field pressure and fluid flow rate data.
Achieving a match involves iteratively adjusting inputs, a laborious task Erbas & Christie (2007). In
the reservoir’s lifecycle, history matching is performed repeatedly Soares et al. (2021). A history-
matched model has to be updated several times during the life of an oil field as we learn more from
the reservoir properties, thereby reducing uncertainty as we produce from it and observe recovered
fluid properties, flow rates, and pressures at the wellbores.

Various attempts, ranging from gradient-based optimization methods to global optimization ap-
proaches, have been made to automate the history matching process and address computational
challenges in numerical reservoir simulations Tyler et al. (1993); Van Leeuwen (1999); Evensen
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(2003); Haugen et al. (2008); Aanonsen et al. (2009); Szklarz et al. (2011); Rotondi et al. (2006);
Erbas & Christie (2007); Maucec et al. (2007). However, the complexity and size of simulation mod-
els significantly impact the performance of optimization models for history matching Shahkarami
et al. (2018). These challenges have spurred the development of data-driven reservoir simulator
models, offering significant reductions in computational time compared to physics-based simulators
Tang et al. (2020); Nwachukwu et al. (2018); Zheng et al. (2019); Guo et al. (2018); Zhao et al.
(2017); Zhang et al. (2021); Soares et al. (2021); Ghassemzadeh et al. (2021). For instance, pro-
posals have been made for ML-based and statistical reduced-order models (ROMs), also known as
response surface models. These models aim to simplify governing equations by reducing the number
of variables, inevitably overlooking certain details in the relationships between inputs and outputs.
However, limitations exist with these methods. For instance, when designing multiple responses,
more response surface models are needed to predict outputs, increasing complexity. Moreover, cre-
ating reduced-order models typically requires a large number of simulation runs. Additionally, these
methods assume a smooth variation in response based on input parameter continuity, which may not
hold for systems with many discrete input parameters, imposing practical limitations.

There are also a handful of ML-based surrogate approaches proposed in the literature. Most of these
methods require substantial pre-processing steps (data transformation and feature engineering) for
training ML models, and the algorithms used are generally not sophisticated enough to account for
shock waves. The proposed approach aims to solve numerical reservoir simulations by leveraging
a novel neural operator that parameterizes the integral kernel directly in Fourier space, accelerating
predictions by a factor of 103. This significantly cuts down the computational expense, crucial
for tasks like history matching, which typically require numerous simulations. With minimal pre-
processing overhead, only a few simulations are needed to construct the ML model, predicting grid-
level dynamics with less than 5% error. Unlike ROMs, there is no underlying assumption, ensuring
predictions match numerical simulations’ granularity without overlooking details.

The study employs numerical reservoir simulation, focusing on steam injection in heavy oil reser-
voirs. Steam injection is an advanced thermal recovery method used to extract heavy oil and bitumen
from deep underground reservoirs. It involves drilling two horizontal wells: a steam injection well
and a production well. Steam injection reduces oil viscosity, facilitating gravity-driven flow to the
production well. It is primarily used in oil sands reserves like the Athabasca oil sands in Canada but
is also suitable for heavy oil reservoirs worldwide.

In the numerical simulation of the steam injection process, several sets of PDEs are solved to model
bitumen, water, and steam behavior in the reservoir. These include mass conservation equations for
each phase, Darcy’s law for fluid flow, heat transfer equations, phase behavior models, relative per-
meability and capillary pressure models, thermal front tracking, and optional geomechanical effects
Butler et al. (1981). The simulator discretizes the reservoir domain, advances in time using itera-
tive techniques, and predicts the steam chamber’s movement. These simulations optimize recovery
strategies and provide insights into reservoir behavior before field implementation.

The inputs to the simulator are 1/ reservoir properties such as rock type, porosity, and permeability,
2/ fluid Properties such as bitumen viscosity, density, and thermal conductivity, 3/ well configuration
such as well depths, spacing, and injection rates, and 4/ operating conditions such as steam temper-
ature, pressure, and duration. The outputs of the simulations are 1/ oil production rates over time,
2/ heat distribution and how heat spreads within the reservoir. Steam is injected to make the viscous
bitumen flow, so understanding temperature profiles is crucial, 3/Pressure variations during steam
injection and oil production.

2 OBJECTIVES

A novel category of neural network architectures has recently emerged, aimed at revolutionizing the
approach to learning PDEs Li et al. (2020a;b;c). The fundamental concept driving the development
of these architectures is to devise ML algorithms capable of mapping a specific input set to the solu-
tion of a PDE. Subsequently, these ML models are employed to predict solutions for the same PDE
but under varying initial and boundary conditions or grid resolutions, effectively achieving zero-shot
generalization. Essentially, the ML algorithms are engineered to facilitate the learning of PDEs, en-
abling them to find solutions for a given set of coefficients and initial/boundary conditions. Notably,
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these models function as general-purpose solvers, operating by mapping two infinite-dimensional
functions through operator learning rather than vector-to-vector learning.

The objective of this work is to employ a deep learning model featuring a neural operator that di-
rectly parameterizes the integral kernel in Fourier space to predict the entire steam injection process
lifecycle (i.e., the output fields for all the simulation timesteps). That is, by inputting reservoir
properties, well configuration, and operating conditions, we obtain grid-level information on oil sat-
uration, production rates, viscosity, and temperature distribution across hundreds of time steps with
a fraction of time and computational resources of running numerical simulations with less than 10%
prediction error at the grid-level (less than 5% at the aggregated reservoir level). This advance-
ment promises enhanced reservoir management, optimized production, and reduced environmental
impact.

3 SIMULATION OF THE STEAM INJECTION PROCESS

Numerical simulations of the steam injection process were carried out using CMG STARS, a thermal
reservoir simulator capable of handling multiple phases and components Butler et al. (1981).

A 2D heterogeneous model (rock properties (porosity and permeability) in each grid block) was
constructed with uniform grid block sizes. Figure 1 illustrates the permeability distribution within
the model. Figure 2 illustrates the temperature and oil saturation profiles for the model after 1, 2, 3,
and 5 years of steam injection.

4 NEURAL NETWORK ARCHITECTURE

Let D ⊂ Rd and A = A(D;Rda) and U = U(D;Rdu) are the input and output function spaces,
respectively. The aim is to build a parametric map such that

Kθ : A −→ U, θ ∈ Θ , (1)

where Θ is the parameter space and uj = Kθ(aj) and {aj , uj}Nj=1 are the set of observations. In
order to learn the neural operator (Kθ), an iterative process ν0 → ν1 → · · · → νn is utilized where
νi for i = 1, . . . , n− 1 are a sequence of functions. In each iteration, νi+1 is determined from νi by

νi+1(x) := σ (Wνi(x) + (K(a; θ)νi) (x)) , x ∈ D . (2)

In the above equation, which is described in more detail below, σ is a non-linear activation function,
W is a linear transformation, and K is a non-local integral operator Li et al. (2020a;b;c).

In analogy to the conventional deep neural network (DNN), the above function simply takes a set
of input functions ({aj}Nj=1) and transforms them from layer νi to νi+1. There are two main differ-
ences between the conventional DNN and the neural operator approach. First, in conventional DNN
architectures, a vector-to-vector transform occurs, whereas the neural operator architecture maps
two infinite-dimensional functions. The second difference is that an integral kernel operator is used
as the transformation tool between two consecutive layers since functions are transferred rather than
vectors. The integral kernel operator, akin to the Green’s function method to solve PDEs, is defined
as

(K(a; θ)νi)(x) =

∫
D

k (x, y, a(x), a(y); θ) νi(y), dy . (3)

where k(θ) is the kernel function that is learned from the data and as an analogy to convolutional
neural networks, plays a similar role as the kernel matrix which is applied to an input image. The
choice of k(θ) depends on the problem and several variations including the graph neural operator,
multipole graph neural operator, low-rank neural operator, and Fourier neural operator have been
implemented in the literature. The Fourier neural operators have been proved to be applicable for
solving PDEs such as the Navier-Stokes equation Li et al. (2020a).

The Fourier and inverse Fourier transform of a function is defined as

(Ff)j(k) =

∫
D

fj(x)e
−2iπ⟨x,k⟩dx , (F−1f)j(x) =

∫
D

fj(k)e
2iπ⟨x,k⟩dk , (4)
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where F denotes the Fourier transform of function f , F−1 denotes the inverse Fourier transform,
and i is the imaginary unit. Applying the convolution theorem to the equation:

(K(a; θ)νi)(x) = F−1 (F (kθ) · F (νi)) . (5)

This model incorporates a neural operator, which parameterizes the integral kernel directly in Fourier
space, enabling DNN to be independent of the mesh. The architecture of the DNN is detailed in (Li
et al., 2020a;b;c).

5 PROBLEM SET UP

Our proposed methodology involves developing and evaluating an ML model to serve as a surro-
gate for the numerical simulations for 2D reservoir models. We begin by generating six numerical
models, each with randomly altered input parameters, specifically focusing on the rock permeability
distribution. For these models, we run numerical simulations to observe their behavior throughout
the entire simulation period (400 time steps). The input data and corresponding output fields from
five of these models serve as training data for the ML model. By doing so, the ML model learns
from the complete evolution of the steam injection process across these different simulations.

To assess the robustness of our model, we compare its predictions with numerical simulation results
from a reservoir model that was not part of the training data. This additional reservoir model is
constructed using a different random permeability field from those in the training models. During
inference, the ML model requires only the first 10 time steps of numerical simulation results and
generates the results for the subsequent 40 time steps in an autoregressive manner. That is the last
10 predicted time steps serve as input for the next set of inference steps, and this process continues
until predictions are made for the entire desired length (400 time steps). By incorporating this
autoregressive technique, we enhance the model’s ability to capture temporal dependencies and
improve its robustness in predicting the evolution of the steam injection process over time. Finally,
we compare the ML model’s results with those obtained from numerical simulations at the grid level.

6 RESULTS AND DIACUSSIONS

Figures 3, 4, 5, and 6 display a comparison of temperature, pressure, oil saturation, and viscosity
predictions obtained from our surrogate models versus numerical simulation results at time steps
100, 200, 300, and 400, respectively. In each figure, the left column illustrates predictions from the
ML model, while the right column shows the ground truth (numerical simulation results). Addition-
ally, columns 3 and 4 illustrate the absolute differences between model predictions and numerical
simulation results at the grid level, along with the error distribution for each time step.

The ML model demonstrates the capability to predict numerical simulation results at the grid level,
spanning from the initial state to the end of a 400-time-step simulation, where 99% of the error values
are bounded within 10% error. These results are particularly promising, as our proposed technique
drastically reduces the computational cost of numerical simulations, from hours to seconds.

7 CONCLUSIONS

Numerical simulations provide valuable insights into fluid flow, heat transfer, and other reservoir
behaviors for energy recovery optimization. However, their computational demands can be pro-
hibitive. To tackle this challenge, we propose a deep learning approach that utilizes a neural operator
to parameterize the integral kernel in Fourier space. This methodology significantly reduces compu-
tational time, enabling real-time reservoir management. The model has been successfully applied to
a steam injection use case, accurately predicting simulation outcomes with error rates consistently
within 10 percent.

4



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

REFERENCES

S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds, and B. Vallès. The ensemble kalman filter
in reservoir engineering—a review. SPE J, 14(3):393–412, 2009.

K. Aziz. Petroleum reservoir simulation. Applied Science Publishers, 1979.

R. Butler, G. McNab, and H. Lo. Theoretical studies on the gravity drainage of heavy oil during
in-situ steam heating. The Canadian journal of chemical engineering, 59(4):455–460, 1981.

G. Chavent, M. Dupuy, and P. Lemmonier. History matching by use of optimal theory. Society of
Petroleum Engineers Journal, 15(01):74–86, 1975.

D. Erbas and M. A. Christie. Effect of sampling strategies on prediction uncertainty estimation. In
SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2007.

G. Evensen. The ensemble kalman filter: Theoretical formulation and practical implementation.
Ocean dynamics, 53(4):343–367, 2003.

S. Ghassemzadeh, M. G. Perdomo, M. Haghighi, and E. Abbasnejad. A data-driven reservoir simu-
lation for natural gas reservoirs. Neural Computing and Applications, pp. 1–22, 2021.

Z. Guo, A. C. Reynolds, and H. Zhao. A physics-based data-driven model for history matching,
prediction, and characterization of waterflooding performance. SPE Journal, 23(02):367–395,
2018.

V. E. J. Haugen, G. Nævdal, L.-J. Natvik, G. Evensen, A. M. Berg, and K. M. Flornes. History
matching using the ensemble kalman filter on a north sea field case. Spe Journal, 13(04):382–
391, 2008.

W. Kruger et al. Determining areal permeability distribution by calculations. Journal of Petroleum
Technology, 13(07):691–696, 1961.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020a.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandku-
mar. Multipole graph neural operator for parametric partial differential equations. arXiv preprint
arXiv:2006.09535, 2020b.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandku-
mar. Neural operator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485, 2020c.

M. Maucec, S. G. Douma, D. Hohl, J. Leguijt, E. Jimenez, A. Datta-Gupta, et al. Streamline-
based history matching and uncertainty–markov-chain monte carlo study of an offshore turbidite
oil field. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers,
2007.

H. Nourozieh, M. Kariznovi, and J. Abedi. Density and viscosity of athabasca bitumen samples at
temperatures up to 200°c and pressures up to 10 mpa. SPE Reservoir Evaluation & Engineering,
18(03):375–386, 2015.

A. Nwachukwu, H. Jeong, M. Pyrcz, and L. W. Lake. Fast evaluation of well placements in hetero-
geneous reservoir models using machine learning. Journal of Petroleum Science and Engineering,
163:463–475, 2018.

M. Rotondi, G. Nicotra, A. Godi, F. M. Contento, M. J. Blunt, and M. Christie. Hydrocarbon
production forecast and uncertainty quantification: A field application. In SPE Annual Technical
Conference and Exhibition. Society of Petroleum Engineers, 2006.

A. Shahkarami, S. D. Mohaghegh, and Y. Hajizadeh. Assisted history matching using pattern recog-
nition technology. International Journal of Oil, Gas and Coal Technology, 17(4):412–442, 2018.

5



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

G. Slater and E. Durrer. Adjustment of reservoir simulation models to match field performance.
Society of Petroleum Engineers Journal, 11(03):295–305, 1971.

R. V. Soares, X. Luo, G. Evensen, and T. Bhakta. Handling big models and big data sets in history-
matching problems through an adaptive local analysis scheme. SPE Journal, 26(02):973–992,
2021.

S. Szklarz, R. G. Hanea, and E. Peters. A case study of the history matching of a sector of the
norne field using the ensemble kalman filter. In SPE EUROPEC/EAGE Annual Conference and
Exhibition. Society of Petroleum Engineers, 2011.

M. Tang, Y. Liu, and L. J. Durlofsky. A deep-learning-based surrogate model for data assimilation
in dynamic subsurface flow problems. Journal of Computational Physics, 413:109456, 2020.

K. Tyler, T. Svanes, and S. Omdal. Faster history matching and uncertainty in predicted production
profiles with stochastic modeling. In SPE Annual Technical Conference and Exhibition. OnePetro,
1993.

P. J. Van Leeuwen. Comment on “data assimilation using an ensemble kalman filter technique”.
Monthly Weather Review, 127(6):1374–1377, 1999.

W. Wahl, L. Mullins, R. Barham, and W. Bartlett. Matching the performance of saudi arabian oil
fields with an electrical model. Journal of Petroleum Technology, 14(11):1–275, 1962.

K. Zhang, J. Zhang, X. Ma, C. Yao, L. Zhang, Y. Yang, J. Wang, J. Yao, and H. Zhao. History
matching of naturally fractured reservoirs using a deep sparse autoencoder. SPE Journal, pp.
1–22, 2021.

Y. Zhao, F. Forouzanfar, and A. C. Reynolds. History matching of multi-facies channelized reser-
voirs using es-mda with common basis dct. Computational Geosciences, 21(5):1343–1364, 2017.

J. Zheng, J. Y. Leung, R. P. Sawatzky, and J. M. Alvarez. An ai-based workflow for estimating shale
barrier configurations from sagd production histories. Neural Computing and Applications, 31
(9):5273–5297, 2019.

A APPENDIX

A.1 RESERVOIR MODEL DETAILS

The 2D model dimensions are 26 m × 1 m × 20 m. The model employed a uniform grid block size
of 1 m in all directions. An injector well and a producer well were positioned 5 m apart on one side
of the model. Table 1 provides a concise summary of the model details, while Figure 1 illustrates
the permeability distribution within the model. Figure 2 illustrates the temperature and saturation
profiles for the model after 1, 2, 3, and 5 years of steam injection.

A fluid model was constructed using literature data Nourozieh et al. (2015) as a basis. Within the
STARS software, the calculation of the partial molar volume of oil is performed by:

ν =
exp

(
ct1(T − TR) +

1
2ct2(T

2 − T 2
R)− cp(P − PR)− cpt(T − TR)(P − PR)

)
ρ0

(6)

The variable ρ0 denotes the partial mass density at reference pressure PR and temperature TR. Oil
density parameters were calibrated to achieve an Average Absolute Relative Deviation (AARD) of
0.06%. A molecular weight of 539 g/mol was assumed. Typical heavy oil viscosities were used,
defined by a temperature-dependent viscosity table in the fluid section.

In this investigation, standard steam relative permeability curves (following Kisman) were employed
to characterize the oil-water and gas-liquid relative permeabilities, illustrated in Figure 3. The Stone
2 method was applied to compute the three-phase oil relative permeabilities.

The model begins with a reservoir temperature of 13◦C and pressure of 1000 kPa. To simulate the
circulation/preheating phase of the steam injection, heater wells are employed for three months to
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Table 1: Reservoir and fluid parameters used in the model
Property Value
Initial reservoir pressure 1000 kPa
Initial reservoir temperature 13◦C
Reservoir top 500 m
Reservoir bottom 520 m
Pay thickness 20 m
Formation compressibility 3× 10−6 1/kPa
Rock volumetric heat capacity 2.3× 106 J/(m3.C)
Thermal conductivity of rock 1.61× 105 J/m-day-C
Thermal conductivity of oil 1.61× 105 J/m-day-C
Thermal conductivity of water 1.61× 105 J/m-day-C
Porosity 0.33
Permeability See figure
Initial oil saturation 0.75
Initial water saturation 0.25
Thermal diffusivity 8.1× 10−7 m2/s
Oil compressibility (cp in eq. 1) 3.358× 10−7 1/kPa
Oil thermal expansion coefficient 1 (ct1 in eq. 1) 4.751× 10−4 1/K
Oil thermal expansion coefficient 2 (ct2 in eq. 1) 3.81× 10−7 1/K2

Oil density cross-term (cpt in eq. 1) 2.29× 10−9 1/(K.kPa)
Steam injected temperature 215◦C
Steam injected pressure 2150 kPa
Steam quality 1.0
Time interval 1 January 2009 – 1 Nov 2015

establish initial communication between injector and producer. During steam injection, injection
pressure is maintained at 2150 kPa, and subcooling is used at the producer to prevent live steam pro-
duction. Steam at 215◦C with 100% quality is injected. Figure 2 depicts temperature and saturation
profiles after 1, 2, 3, and 5 years of steam injection.

A.2 FIGURES

Figure 1: The permeability distribution in the 2D reservoir model.
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Figure 2: Temperature and oil saturation distributions in the reservoir model at different times.

Figure 3: The results of temperature evolution with time for the unseen reservoir model (test model)
for time-steps 100, 200, 300, and 400. The first column represents the prediction from our neural
network model and the second column represents the results from the numerical simulator.
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Figure 4: The results of pressure evolution with time for the unseen reservoir model (test model)
for time-steps 100, 200, 300, and 400. The first column represents the prediction from our neural
network model and the second column represents the results from the numerical simulator.
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Figure 5: The results of oil saturation evolution with time for the unseen reservoir model (test model)
for time-steps 100, 200, 300, and 400. The first column represents the prediction from our neural
network model and the second column represents the results from the numerical simulator.
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Figure 6: The results of viscosity evolution with time for the unseen reservoir model (test model)
for time-steps 100, 200, 300, and 400. The first column represents the prediction from our neural
network model and the second column represents the results from the numerical simulator.
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