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Abstract

Over-parameterization of neural networks is a well known issue that comes
along with their great performance. Among the many approaches pro-
posed to tackle this problem, low-rank tensor decompositions are largely
investigated to compress deep neural networks. Such techniques rely on a
low-rank assumption of the layer weight tensors that does not always hold
in practice. Following this observation, this paper studies sparsity inducing
techniques to build new sparse matrix product layer for high-rate neural
networks compression. Specifically, we explore recent advances in sparse
optimization to replace each layer’s weight matrix, either convolutional or
fully connected, by a product of sparse matrices. Our experiments validate
that our approach provides a better compression-accuracy trade-off than
most popular low-rank-based compression techniques.

1 Introduction

The success of neural networks in the processing of structured data is in part due to their
over-parametrization which plays a key role in their ability to learn rich features from the
data (Neyshabur et al., 2018). Unfortunately, this also makes most state-of-the-art models
so huge that they are expensive to store and impossible to operate on devices with limited
resources (memory, computing capacity) or that cannot integrate GPUs (Cheng et al., 2017).
This problem has led to a popular line of research for “neural networks compression”, which
aims at building models with few parameters while preserving their accuracy.

State of the art techniques for neural network compression. Popular matrix or
tensor decomposition methods including Singular Value Decomposition (SVD), CANDE-
COMP/PARAFAC (CP) and Tucker have been used to address the problem of model com-
pression by a low-rank approximation of the neural network’s weights after learning. Sainath
et al. (2013) describe a method based on SVD to compress weight matrices in fully con-
nected layers. Denton et al. (2014); Lebedev et al. (2015); Kim et al. (2016) generalize this
idea to convolutional layers and then reduce the memory footprint of convolution kernels
by using higher-order low-rank decompositions such as CP or Tucker decompositions.
Besides, the Tensor-Train (TT) decomposition has been explored to compress both dense
and convolutional layers after a pre-training step (Novikov et al., 2015). This approach
may achieve extreme compression rates but it also have impractical downsides that we
demonstrate now. In a TT format, all the elements of a M -order tensor are expressed by a
product ofM matrices whose dimensions are determined by the TT-ranks (R0, R1, . . . , RM ).
For each of theM dimension of the initial tensor, the corresponding matrices can be stacked
into an order 3 tensor called a “core” of the decomposition. Hence, the layer weight is
decomposed as a set of M cores of small dimensions. Novikov et al. (2015) use this tensor
representation to factorize fully connected layers. They first reshape the matrix of weights
into an M -order tensor, then apply the TT decomposition. By choosing sufficiently small
Rm values, this technique allows to obtain a high compression ratio on extremely wide ad hoc
neural architectures. Garipov et al. (2016) have adapted this idea to convolutional layers.
However, the current formulation of such TT convolutional layer involves the multiplication
of all input values by a matrix of dimension 1 × R1 thus causing an inflation of R1 times
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the size of the input in memory. This makes the available implementation (Garipov, 2020)
unusable for recent wide convolutional networks at inference time.
Other compression methods include unstructured pruning techniques that we review more
in details in Section 2.3 and structured pruning techniques that reduce the inner hidden
dimensions of the network by completely removing neurons (Anwar et al., 2017). According
to the recent paper of Liu et al. (2018) however, these techniques are more akin to Neural
Architecture Search than actual network compression. Finally, quantization-based compres-
sion maps the columns of the weight matrices in the network to a subset of reference columns
with lower memory footprint (Guo, 2018).
Sparse matrices product for full rank decompositions. We are specifically inter-
ested in high-rate compression of neural networks via the efficient factorization of the layer
weight matrices. Most known approaches to layer decomposition usually makes low-rank
assumption on the layer weight tensors which does not always hold in practice. As we
will show in the experiments, this makes the Tucker and SVD based techniques unable to
effectively reach high compression rates for standard architectures including both convo-
lutional and fully connected layers, such as VGG19 or ResNet50, whose weight matrices
usually exhibit full rank. In this paper, we propose instead to express the weight matrices
of fully-connected or convolutional layers as a product of sparse factors which contains very
little parameters but still can represent high-rank matrices. Moreover, products of matri-
ces with a total sparsity budget are strictly more expressive than single matrices with that
sparsity (Dao et al., 2019), which motivates our interest in products of multiple matrices.
Usually, a linear operator (a matrix) from RD to RD has a time and space complexities
of O(D2). But some well known operators like the Hadamard or the Fourier transforms
can be expressed in the form of a product of logD sparse matrices, each having O(D)
non-zero values (Dao et al., 2019; Magoarou & Gribonval, 2016). These linear operators,
called fast-operators, thus have a time and space complexities lowered to O(D logD). This
interesting feature of fast-operators have inspired the design of new algorithms that learn
sparse matrix product representations of existing fast-transforms (Dao et al., 2019) or even
that computes sparse product approximations of any matrix in order to accelerate learn-
ing and inference (Magoarou & Gribonval, 2016; Giffon et al., 2019). Even though these
new methods were initially designed to recover the logD factors corresponding to a fast-
transform, they are more general than that and can actually be used to find a factorization
with Q < logD sparse matrices.
Contributions. We introduce a general framework for neural network compression using
the factorization of layers into sparse matrix products. We explore the use of the recently
proposed palm4MSA algorithm (Magoarou & Gribonval, 2016) on every layer of a pre-trained
neural network to express them as a product of sparse matrices. The obtained sparse
matrices are then refined by gradient descent to best fit the final prediction task. When there
is only one sparse matrix in the decomposition, our approach recovers the simple procedure
of hard thresholding the weights of a matrix after pre-training. We evaluate the effect of
different hyper-parameters on our method and show that layers can be factorized into two or
three sparse matrices to obtain high compression rates while preserving good performance,
compared to several main state-of-the-art methods for neural network compression.

2 Learning sparse matrix products for network compression

We describe how to compress NN weight matrices by sparse matrix factorization. We call
our procedure PSM for Product of Sparse Matrices. It is obvious to see that a product of
sparse matrices with a given sparsity budget can recover a full rank matrix or a matrix with
more non-zero values than the initial sparsity budget. This observation motivates the use of
a sparse matrix factorization in place of usual low-rank decomposition and sparsity inducing
techniques for neural network compression. We first recall linear transform operations in
fully-connected and convolutional layers. Then, inspired by recent work on learning linear
operators with fast-transform structures, we propose to use a product of sparse matrices to
replace linear transforms in neural networks. We also introduce a procedure to learn such
factorization for every layers in deep architecture. Finally, we review some known neural
network compression techniques that appear as particular cases of our framework.
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2.1 Weight matrices as product of sparse matrices

Fully-connected and convolutional layers are based on the computation of linear operations.

In a fully-connected layer, the output z ∈ RD′ is simply given by z = a(Wx) where a is
some non-linear activation function. W ∈ RD′×D is the weight matrix of the layer and
x ∈ RD is the output of the preceding layer.
The linear operation in a convolutional layer can be represented by a doubly-block Toeplitz
matrix (Wang et al., 2020). An other way to perform the operation is to employ reshap-
ing operators to represent the linear operator as a dense matrix applied to all the patches
extracted from the input (Garipov et al., 2016). In this work, we focus on this latter represen-
tation of the convolution operation. More formally, let rS : RH×W×C 7→ RHW×CS2 be the
reshape operation that creates the matrix of all vectorized patches of size (height and width)
S2 on an input image with C channels. The matrix of K filters W ∈ RCS2×K can then
be applied to these patches (multiplied with rS) to produce the output of the convolutional
layer in a matrix shape. Finally, a second reshape operator t : RHW×K 7→ RH×W×K is ap-
plied on the feature map matrix to reconstruct the output tensor of the layer Z ∈ RH×W×K .
Altogether, the convolution operation can be written as Z = a(t(rS(X )W)) where a is some
non-linear activation function and X is the output 3-D tensor of the preceding layer. We
preserve simplicity in notation here, assuming without loss of generality that the stride
used by rS is equal to 1 and that the input tensor is padded with bS2 c zeros vertically and
horizontally. The whole process is depicted in Supplementary Material A.2.
Our general idea is to replace the weight matrix of each neural network layer with a product
of Q sparse matrices, hence reducing the storage and computational complexities of the
layer. Indeed, for an initial matrix of dimension (D × D′), if all sparse matrices store
O(D) non-zero values, then the total complexity of the product becomes O(QD) instead
of O(DD′). To define a fast-transform operator, one would use Q = logD but in practice
we show that we can chose much smaller Q and achieve huge compression rates without
lowering much the performance. Supplementary Material A.1 illustrates the effect of our
compression scheme on a simple architecture including one convolution layer and a single
dense layer. Given an input vector x ∈ RD, expressing the weight matrix W ∈ RD′×D of a
fully connected layer as a product of sparse matrices gives output z such that:

z = a
(

Q∏
i=1

Six
)
, (1)

where ||Si||0 = O(D) so that the complexity in time and space of this layer is reduced to
O(QD) instead of O(DD′).
Similarly, in the convolution layers, the output Z ∈ RH×W×K is obtained from an input
tensor X ∈ RH×W×C :

Z = a
(

t
(

rS (X )
Q∏
i=1

Si

))
, (2)

where ||Si||0 = O(max(S2C,K)) so that the time complexity of the layer is reduced from
O(HWCS2K) to O(HWQ ·max(CS2,K)) and the complexity in space is reduced from
O(CS2K) to O(Q ·max (CS2,K)).
Since there is no constraint on the rank of factors, the sparse matrix products of each layer
can reach full rank, unlike low-rank decomposition methods. Moreover, the reconstruction
of a sparse matrix product with a total of O(QD) non-zero values can produce a matrix
with more than O(QD) non-zero values. This is consistent with the intuition that a product
of sparse matrices can be more expressive than a single sparse matrix.

2.2 Full Neural Network Compression

The full compression pipeline we propose includes first the learning of a standard NN, second
the compression of each layer independently as a product of sparse matrices, and finally a
fine tuning of the compressed NN whose layers are all expressed as PSM layers.
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The second step requires approximating each weight matrix W (of a dense or a convolutional
layer) as a product of sparse factors, which is cast as the following optimization problem:

min
{Si}Q

i=1

∥∥∥∥∥W−
Q∏
i=1

Si

∥∥∥∥∥
2

F

+
Q∑
i=1

δEi(Si), (3)

where for each i ∈ JQK, δEi(Si) = 0 if Si ∈ Ei and δEi(Si) = +∞ otherwise. Ei is the set
of solutions that respect a sparsity constraint (e.g. number of non zeros values). Although
this problem is non-convex, non-differentiable, and the computation of a global optimum
cannot be ascertained, the palm4MSA algorithm proposed by Magoarou & Gribonval (2016)
is able to learn such factorization by finding a local minimum with convergence guarantees.
For more details about palm4MSA, see Supplmentary Materiel A.4.
Once every layer’s weight matrix is approximated by a product of sparse matrices, these
PSM layers are assembled in a compressed NN which is refined to optimize the initial task
objective while the sparsity support of all factors is kept fixed.

2.3 Related work

Some techniques based on inducing sparsity in neural connections, e.g. zeroing single weights
in layer tensors, can be seen as particular cases of our method. The most straightforward
approach to this is to simply remove the weights with lowest magnitude until a given sparsity
ratio is reached. This can be done in a very trivial fashion by just removing weights on a
pre-trained network and then finetuning the remaining connections. This method can be
seen as the particular case of ours when there is only one factor to approximate weight
matrices (i.e., Q = 1). As we show in the experiments, this method doesn’t allow high
compression rate without degradation of the accuracy. Zhu & Gupta (2017) proposed instead
to intertwine the removal of the connections by finetuning remaining weights, achieving
better classification performance. Others, approaches for inducing sparsity in the network
were proposed (Molchanov et al., 2017; Louizos et al., 2018-06-22) but they do not seem to
offer performance improvements in general settings (Gale et al., 2019).
The idea of replacing layers by sparse factorization has been previously explored but re-
stricted to particular structures. In Deep Fried Convnets, Yang et al. (2015) propose to
replace dense layers of convolutional neural networks by the Fastfood approximation (Le
et al., 2013). This approximation is a product of diagonal matrices, a permutation matrix,
and a Hadamard matrix which can itself be expressed as a product of logD sparse matrices
(Dao et al., 2019). The Fastfood approximation thus provides a product of sparse factors
and from this perspective, the Fastfood layer proposed by Yang et al. (2015) is a particu-
lar, constrained, case of our more general framework. Moreover, the Deep Fried Convnets
architecture is based on the Hadamard matrix that imposes a strong structural constraint
on the factorization, which might not be suitable for all layers of a deep architecture.
The term sparse decomposition used in Liu et al. (2015) for network compression refers
to separate products between dense and sparse matrices to represent the weights of the
convolution kernels in a network. Finally, Wu et al. (2019) have recently proposed a very
similar framework than ours along with a regularization strategy to learn the sparsity in
the sparse factors but their method does not allow for more than two sparse factors and
the compression of the convolutional layers is not considered although best performing
architectures tend to store most of their parameters in these layers.

3 Experiments

Section 3.1 details the experimental settings and parameters to ensure reproducibility. We
provide an in depth analysis of our method in Section 3.2. Finally we report in Section 3.3
a comparative study of our method with state-of-the-art methods.
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3.1 Experimental setting

Our analysis is focused on image classification tasks, we investigate the compression of
standard architectures (pretrained models) with our approach and with a few state of the
art methods. We evaluate all methods by measuring both the compression ratio and the
accuracy of compressed models. We first present implementation details and datasets, then
we detail the baselines and the hyperparameters we used.

Implementation details. The code was written in Python, including the palm4MSA al-
gorithm (it will be made available on github). NNs were implemented with Keras (Chollet,
2015) and Tensorflow (Abadi et al., 2015). Due to the lack of efficient implementation
of the sparse matrices in Tensorflow, we had to hijack the implementations of the dense
matrix product and convolution offered by Keras in order to make the learning of networks
as efficient as possible (See Supplementary material A.3 for details).

Datasets and Neural Architectures. Our experiments are conducted on four stan-
dard image classification data sets of varying difficulty: MNIST (Deng, 2012), SVHN (Netzer
et al., 2011), CIFAR10, CIFAR100 (Krizhevsky, 2009). Pretrained NNs to be compressed
are classically used with these data sets i.e. Lenet(LeCun et al., 1998), VGG19(Simonyan &
Zisserman, 2015), Resnet50 and Resnet20 (He et al., 2016). Details on datasets and neural
architectures may be found in Supplementary Material A.5.

Competing baselines. We present below the baselines and the variants of our approach
that we considered. In all cases the methods were applied on the same pre-trained models
and all compressed models were fine-tuned after compression:

• Low-rank factorization methods, including Tensor-Train decomposition
(Novikov et al., 2015; Garipov et al., 2016) (named TT hereafter) and an hybrid
of Tucker decomposition (Kim et al., 2016) and SVD (Sainath et al., 2013) (named
Tucker-SVD) where Tucker and SVD decomposition are used respectively for the
compression of convolutional and dense layers.

• Two sparsity inducing pruning techniques. The first one is a simple magni-
tude based projection of weight matrices on a sparse support. This can be seen as
a particular case of our model where only one sparse factor is required. We name
this strategy “Hard pruning” (HP in the following). The second method, named
Iterative pruning (IP) is the iterative strategy proposed by Zhu & Gupta (2017),
which refine magnitude based projection with finetuning steps.

• Finally, we evaluate the interest of using the palm4MSA algorithm to discover a
sparse matrix decomposition of the layers compared to some random decomposition.
More precisely, we evaluate (I) the performance of a model whose layers would be
decomposed by palm4MSA but whose weights would be re-initialized while peserving
the sparsituy support; and (II) the performance of a model whose weights and
sparsity support would be randomly sampled at initialization.

Note that we initially considered Deep Fried convnets as an additional baseline but we finally
did not include it on our experimental study since this method is originally dedicated to
compress fully connected layers and our attempts to make it able to compress convolutional
layers as well actually failed, preventing the method to be applied to compress many state
of the art architectures that contain mostly convolutional layers.

Hyper-parameters. The stopping criteria used for the palm4MSA algorithm is 300 iter-
ations or a relative change between two iterations below 10−6. The projection method is
the one used in Magoarou & Gribonval (2016). With K the desired level of sparsity, this
method ensures that each sparse factor contains at least K non-zero values per row and per
column and at most 2K on average.
For experiments with random sparsity support, the initialization of the weights must be
adapted to the reduced number of connections in the layer. To do this, we adapt the
initializations Xavier (Glorot & Bengio, 2010) and He (He et al., 2015) to the initialization
of sparse matrices (See Supplementary Material A.3).
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We chose M = 4 cores for the Tensor-Train decomposition of any tensor and the maximum
possible rank value of the decompositions is specified by the value R in the experiments.
In the hybrid of Tucker and SVD decomposition, the rank of the Tucker decomposition is
automatically detected by the Variational Bayes Matrix Factorization method, as explained
by Kim et al. (2016); the rank of the SVD in the dense layers is chosen such that only a
certain percentage (specified in the experiments) of the singular values are kept.
Fine-tuning of the Lenet network was done with the RMSProp optimizer and 100 learning
epochs. The VGG19 and Resnet networks are fine-tuned with Adam (Kingma & Ba, 2014)
optimizer and respectively 300 and 200 epochs. For each compression method and con-
figuration, the best learning rate is chosen using the classification error on a validation
sample after 10 iterations, with learning rate values in {10−3, 10−4, 10−5}. Standard data
augmentation is applied: translation, rotation and flipping.

3.2 Analysis of the method

We first provide an in-depth analysis of our method to validate the use of Palm4MSA for the
decomposition of layer weight matrices into a product of sparse matrices. We then evaluate
the impact of hyper-parameters Q and K on model accuracy and compression rate.

Approximation error. We evaluate the quality of the Palm4MSA approximation of orig-
inal weight matrices, and its influence on the final performance of the method. We report
results gained on the compression VGG19 trained on CIFAR100 as illustration. Figure 2 shows
the approximation error between the product of Q sparse factors W̃ :=

∏Q
q=1 Sq and the

original weights W for each layer. It is computed as the normalized distance between the
matrices: error = ‖W− W̃‖2

F /‖W‖2
F .

Figure 2 further shows that higher K, i.e. the minimum number of non-zero values per row
and per column, yield better approximation. We observe that for some layers, the error can
be high, despite relative good accuracy performance observed in Table 1, suggesting the use
of the Palm4MSA is limited. In order to examine this usefulness, we have built two other
types of models that implement the decomposition of layers into product of sparse matrices,
either with random sparsity support, or with random weights, rather than considering those
provided by Palm4MSA:

• “PSM random”: We construct completely random sparse factorization. The sparsity
support is chosen by projecting a reduced centered Gaussian matrix. The weights
are initialized using the procedure described in Section 3.1;

• “PSM re-init.”: We use the sparsity support obtained by Palm4MSA but we re-
initialize the weights using the procedure described in Section 3.1.

Table 1 shows the network with the Palm4MSA method obtains the best performance in clas-
sification after refining the network (more results in Table 4 of Supplementary Material A.7).
Overall «PSM re-init» and «PSM random» may perform very badly on some cases, which
suggests the importance of both weights and sparsity support found by Palm4MSA.

MNIST Lenet SVHN VGG19 CIFAR10 VGG19 CIFAR100 VGG19 CIFAR100 Resnet20 CIFAR100 Resnet50
PSM Q=3 K=14 0.99 0.95 0.92 0.62 0.70 0.72
PSM re-init. Q=3 K=14 0.99 0.89 0.84 0.31 0.60 0.58
PSM random Q=3 K=14 0.99 0.93 0.84 0.51 0.60 0.59

Table 1: Performance of NN models compressed by 3 techniques of layer decomposition
into sparse matrix products. “PSM” refers to the proposed procedure using Palm4MSA on
the pre-trained layers; “PSM re-init” uses Palm4MSA to define the sparsity support but the
weights are re-initialized; “PSM random” randomly initializes weights and sparsity support.

Sparsity level and the number of factors. Sparsity level corresponds to the approxi-
mate number of non-zero values in each row and each column of the sparse matrices consti-
tuting the sparse decomposition. Figure 1 and Table 4 show the performance of our model
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(a) MNIST Lenet (b) SVHN VGG19

(c) CIFAR10 VGG19 (d) CIFAR100 VGG19

(e) CIFAR100 Resnet20 (f) CIFAR100 Resnet50

Figure 1: Accuracy vs number of parameters (log scale) for compressing standard architec-
ture (pretrained models) on few datasets. Comparative results of our approach (PSM ), the
hybrid SVD-Tucker (Tucker-SVD), the TT method (TT ), the Hard (Hard Pruning) and
iterative (Iterative Pruning) pruning techniques. Details on the hyperparameters for each
tested method are included in the name of the methods. Base stands for the uncompressed
pretrained model.

obtained with various sparsity levels K and numbers of factors Q. We notice that the num-
ber of factors seems to have a rather limited effect on the quality of the performance, while
sparsity level is a more determining factor of the quality of the approximation. Note that
we did not considered the Hierarchical version of Palm4MSA (Magoarou & Gribonval, 2016)
since it requires Q = logD factors, which greatly increases the number of non-zero values
in the decomposition without significantly improving the final performance of the model.

3.3 Comparative study

Figure 1 reports comparative results gained on standard benchmark datasets with well
known architectures. We discuss below the main comments to be drawn from these results.

Reliability. First of all, the behaviour of the baseline methods seems quite dependent on
the experiment. For instance TT performance may vary depending on the chosen rank (e.g.
see rank 10 in figure 1-(b)); Hard Pruning technique performs badly on MNIST. Moreover
these baselines are not always manageable in practice (e.g. no results of TT on Resnet
compression, see below). On the contrary, we observe some more stable performances with
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Figure 2: Relative error approximation by layers using Palm4MSA for VGG19 architecture. è

regards to the choice of hyper-parameters and a systematic very low variance obtained with
our method.

Comparison to low rank decomposition techniques. Our approach significantly out-
performs the Tucker-SVD method in any case. We believe that the low rank approximation
may make more difficult to reach high compression rates while preserving good performance.
This emphasizes our point that standard low rank decomposition methods cannot afford
high compression regime, e.g. low-rank assumption, without degradation of the accuracy of
the network. On the contrary, the TT formulation may achieve higher compression rates
than Tucker, as was already observed in past works. It seems better suited than Tucker
decomposition and may performs similarly or better as our method in some cases. Yet, the
method has few drawbacks: first it may exhibit very strong variance, especially for high
compression rates (see results in figures 1-(b) to 1-(d) on SVHN, CIFAR10-100) ; second, as
illustrated in Supplementary Material A.6, the implementation provided by authors do not
allow getting results in any case, when the product of the number of filters and of the TT
rank is large. In particular we were unable to run experiments on models such as Resnet20
and Resnet50 because the memory footprint is increased considerably (figures 1-(e) and
1-(f)). We thus are unable to get results for higher compression rates that those in the
figure with VGG19 (figures 1-(c) and 1-(d)).

Comparison with pruning techniques. In the “Hard” pruning case, the compressed
network perform very badly. This confirms that a sparse factorization with more than one
factor is profitable. When applying the procedure of Zhu & Gupta (2017), however, the
magnitude based pruning method preserve good accuracy while removing up to 98% of the
connections from the model, except for the MNIST dataset. While our approach significantly
outperforms the Hard pruning technique in any case, its Iterative pruning variant Zhu &
Gupta (2017) may sometimes leads to significantly higher performance compression in high
compression settings than our approach, this is the case in particular with Resnet models on
CIFAR100 (figures 1-(e) and 1-(f)). Otherwise, in other settings on Resnet models, and for
compressing other models, this technique allows similar performance vs compression trade-
off than our method. Since the Hard pruning technique may be viewed as a special case of
our method, this suggests that an iterative-like extension of our method could reach even
better results, which is a perspective of this work.

4 Conclusion

The proposed approach is able to compress dense and convolutional layers of a neural
network by decomposing weight matrices into sparse matrices products. Unlike common
decomposition methods, our method does not make any assumptions on the rank of the
weight matrices and allows high compression rate while maintaining good accuracy. The
experiments show the interest of using a product of multiple sparse matrices instead of a
single sparse matrix to convey, in theory, more information for a fixed number of non-zero
values. A possible extension of this work would be to study a strategy for progressive
sparcity inducing Zhu & Gupta (2017) that could offer further improvements.
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A Supplementary Material

A.1 Illustration of the proposed method

The proposed method allows network compression through the factorization of layers
weights. Figure 3 highlight the difference between the standard and compressed archi-
tecture composed of a convolutional and a fully connected layer, where each layer weight
matrix is replaced by a product of sparce matrices.

(a) Standard architecture

(b) Compressed architecture

Figure 3: Illustration of the proposed sparse factorization method.

A.2 Reshape operations in convolutional layers

In order to apply factorization of convolutions weights, we employ reshaping operators to
represent the linear operator as a dense matrix applied to all the patches extracted from an
input (Garipov et al., 2016), see Figure 4 for more details.

A.3 Implementation details

Implementation of sparse matrices. In our implementation, a sparse matrix is in
fact defined as the Hadamard product �, or pairwise product, between a dense matrix that
encodes the weights to be learned and a matrix of constant binary elements that encodes the
sparsity support. Thus, the implementation of a sparse matrix S ∈ RD×D, ‖S‖0 = O(D)
is:

S = W�M, (4)

where W ∈ RD×D is a dense weight matrix and M ∈ {0, 1}D×D, ‖M‖0 = O(D) is a con-
stant binary matrix. With this implementation, the values of the gradient weights of W
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Figure 4: Description of the reshape operations and locally linear transformations computed
in the convolutional layers. The grey box represent the receptive field of the convolution
filters at the black dot coordinate. The white squares in the second step correspond to the
zero padding of the input.

outside the sparsity support defined by M are always equal to zero and thus the correspond-
ing weights of W are never updated. In other words, the sparsity support of S is fixed by
M. Although this implementation allows to evaluate ou method, the dense storage of all the
values of W and M is required. Specifically, 2D2 values are stored to simulate the sparsity
of a matrix of size D2 containing O(D) non-zero values. This non-optimal implementation
takes advantage of the parallel algorithms of the matrix product and is actually faster on
GPU than an implementation that would use Tensorflow’s SparseTensor class 1.

Implementation of the convolution. To compute the convolutions in the network,
we rebuild the convolution kernel from the product of sparse matrices. Then this convolution
kernel is directly used as a parameter of the Tensorflow function conv2d for fast computation.

Implementation of the Tensortrain decomposition. The decomposition is per-
formed by applying the decomposition function matrix_product_state provided by the
Tensorly library on the tensors obtained on the pre-trained networks.

Implementation of pruning as a function of magnitude. To implement the
method from Zhu & Gupta (2017), we used the function prune_low_magnitude from the
library tensorflow_model_optimization provided by Tensorflow. With this method, the
pruning and the refinement of the weights are combined by progressively removing the
connections during the learning process until the desired percentage of pruning is obtained.

(Re)-Initialization of the weights of a sparse matrix decomposition. When
the weights of a sparse matrix factorization are not provided by palm4MSA, the initialization
of the weights must be adapted to the reduced number of connections in the layer. We
adapt the Xavier (Glorot & Bengio, 2010) and He (He et al., 2015) initialization methods for
sparse matrices. Specifically, the first sparse factor is initialized using the He method because
ReLU activation function is apllied yielding values that are not zero-centered. The following
sparse factors are initialized using the Xavier method since there is no non-linearity between
factors.

A.4 palm4MSA algorithm

The palm4MSA algorithm Magoarou & Gribonval (2016) is given in Algorithm 1 together
with the time complexity of each line, using A = min(D,D′) and B = max(D,D′) for a
matrix to factorize W ∈ RD×D′ . Even more general constraints can be used, the constraint

1One can use the SparseTensor in conjunction with the Variable class to implement these
layers sparingly and have exactly a reduced number of parameters but this implementation was
slower and we preferred not to use it for experiments.
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sets Eq are typically defined as the intersection of the set of unit Froebenius-norm matrices
and of a set of sparse matrices. The unit Froebenius norm is used together with the λ factor
to avoid a scaling indeterminacy. Note that to simplify the model presentation, factor λ
is used internally in palm4MSA and is integrated in factor S1 at the end of the algorithm
(Line 14) so that S1 does not satisfy the unit Froebenius norm in E1 at the end of the
algorithm. The sparse constraints we used, as in Magoarou & Gribonval (2016), consist
of trying to have a given number of non-zero coefficients in each row and in each column.
This number of non-zero coefficients is called sparsity level in this paper. In practice, the
projection function at Line 9 keeps the largest non-zero coefficients in each row and in each
column, which only guarantees the actual number of non-zero coefficients is at least equal
to the sparsity level.

Algorithm 1 palm4MSA algorithm

Require: The matrix to factorize U ∈ RD×D′ , the desired number of factors Q, the con-
straint sets Eq , q ∈ JQK and a stopping criterion (e.g., here, a number of iterations I
).

1: λ← ||S1||F {O(B)}
2: S1 ← 1

λS1 {O(B)}
3: for i ∈ JIK while the stopping criterion is not met do
4: for q = Q down to 1 do
5: Lq ←

∏q−1
l=1 S(i)

l

6: Rq ←
∏Q
l=q+1 S(i+1)

l

7: Choose c > λ2||Rq||22||Lq||22 {O(A logB +B)}
8: D← Siq − 1

cλLTq
(
λLqSiqRq −U

)
RT
q {O(AB logB)}

9: S(i+1)
q ← PEq

(D) {O(A2 logA) or O(AB logB)}
10: end for
11: Û:=

∏Q
j=1 S(i+1)

q {O(A2 logB +AB)}
12: λ← Trace(UT Û)

Trace(ÛT Û) {O(AB)}
13: end for
14: S1 ← λS1 {O(B)}
Ensure: {Sq : Sq ∈ Eq}q∈JQK such that

∏
q∈JQK Sq ≈ U

A.5 Dataset details

Experiments are conducted on four public image classification dataset: MNIST, SVHN,
CIFAR10, and CIFAR100, with three pretrained network architectures: Lenet, VGG-19,
Resnet50, and Resnet20. Table 2 details the datasets’ characteristics and the corresponding
NN models on which we evaluated compression methods.

Nom Input shape # classes Train size Validation size Test size NN models
MNIST (28× 28× 1) 10 40 000 10 000 10 000 Lenet
SVHN (32× 32× 3) 10 63 257 10 000 26 032 VGG19

CIFAR10 (32× 32× 3) 10 50 000 10 000 10 000 VGG19
CIFAR100 (32× 32× 3) 100 50 000 10 000 10 000 VGG19, Resnet50, Resnet20

Table 2: Datasets: attributes and investigated NN models.

A.6 Experiments on Tensor Train memory overhead

Although Tensor Train can obtain impressive compression rates the method may require
large amounts of memory. This memory requirement does not allow to experiment on
architectures with many convolution layers with many filters, such as ResNet. Table 3
highlights the increase in memory when experimenting on investigated architectures for few
hyperparameter settings. The row Others stands for requirement of all other methods.
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MNIST Lenet SVHN VGG19 Cifar10 VGG19 Cifar100 VGG19 Cifar100 Resnet20 Cifar100 Resnet50
Others 1024 65,536 65,536 65,536 65,536 262,144
Tensortrain R=6 K=4 2,304 393,216 393,216 393,216 393,216 1,572,864
Tensortrain R=10 K=4 3,840 655,360 655,360 655,360 655,360 2,621,440
Tensortrain R=14 K=4 5,376 917,504 917,504 917,504 917,504 3,670,016

Table 3: Magnification of a sample’s representation induced by the Tensortrain layers.
The maximum number of non-zero values in a sampl’s representatio during architecture
execution is displayed.

A.7 Experiments of the proposed method

Since the error of the matrix approximation can be high, despite the relative good accuracy,
we investigate other factorization method than Palm4MSA. Specifically, two other methods
are evaluated. «PSM re-init.» use the same sparsity support as palm with re-initialized
weights and «PSM random» has random sparsity support and weights. Table 4 present the
results and shows the supperiority of Palm4MSA.

MNIST Lenet SVHN Vgg19 Cifar10 Vgg19 Cifar100 Vgg19 Cifar100 Resnet20 Cifar100 Resnet50
Base 0.99 0.96 0.93 0.67 0.73 0.76
PSM Q=2 K=2 0.99 0.92 0.84 0.46 0.56 0.67
PSM re-init. Q=2 K=2 0.99 0.82 0.81 0.42 0.53 0.57
PSM random Q=2 K=2 0.98 0.91 0.81 0.44 0.48 0.41
PSM Q=2 K=14 0.99 0.95 0.92 0.64 0.69 0.72
PSM re-init. Q=2 K=14 0.99 0.44 0.86 0.57 0.63 0.63
PSM random Q=2 K=14 0.99 0.92 0.85 0.58 0.62 0.62
PSM Q=3 K=2 0.99 0.94 0.85 0.42 0.57 0.67
PSM re-init. Q=3 K=2 0.98 0.91 0.80 0.32 0.48 0.51
PSM random Q=3 K=2 0.98 0.90 0.79 0.39 0.29 0.47
PSM Q=3 K=14 0.99 0.95 0.92 0.62 0.70 0.72
PSM re-init. Q=3 K=14 0.99 0.89 0.84 0.31 0.60 0.58
PSM random Q=3 K=14 0.99 0.93 0.84 0.51 0.60 0.59

Table 4: Performance of neural network models compressed by 3 techniques of layer de-
composition into sparse matrix products. «PSM» refers to the proposed procedure using
Palm4MSA on the pre-trained layers; «PSM re-init» uses Palm4MSA to define the sparsity
support but the weights are re-initialized; «PSM random» randomly initializes weights and
sparsity support.
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