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Summary
While sequential decision-making environments often involve high-dimensional observa-

tions, not all features of these observations are relevant for control. In particular, the observa-
tion space may capture factors of the environment which are not controllable by the agent, but
which add complexity to the observation space. The need to ignore these “noise” features in
order to operate in a tractably-small state space poses a challenge for efficient policy learning.
Due to the abundance of video data available in many such environments, task-independent
representation learning from action-free offline data offers an attractive solution. However, re-
cent work has highlighted theoretical limitations in action-free learning under the Exogenous
Block MDP (Ex-BMDP) model, where temporally-correlated noise features are present in the
observations. To address these limitations, we identify a realistic setting where representation
learning in Ex-BMDPs becomes tractable: when action-free video data from multiple agents
with differing policies are available. Concretely, this paper introduces CRAFT (Comparison-
based Representations from Action-Free Trajectories), a sample-efficient algorithm leveraging
differences in controllable feature dynamics across agents to learn representations. We provide
theoretical guarantees for CRAFT’s performance and demonstrate its feasibility on a toy ex-
ample, offering a foundation for practical methods in similar settings.

Contribution(s)
1. We present a provably sample-efficient algorithm, CRAFT, that can learn high-accuracy

latent state encoders under the Ex-BMDP model, when provided with two sets of of-
fline observation trajectories, without action labels, that are collected by two agents with
sufficiently-distinct policies.
Context: Misra et al. (2024) has shown that efficient representation learning in Ex-BMDPs
using a single offline dataset without action labels is in general not possible. This work
therefore represents to our knowledge the first positive theoretical result for this problem.
The Ex-BMDP model was introduced by Efroni et al. (2022), who propose a provably
sample-efficient algorithm for online representation learning in this model. Efroni et al.
(2022) assume near-deterministic latent-state dynamics, while we make a strict determin-
ism assumption on latent-state dynamics. However, the negative result given by Misra et al.
(2024) applies even to the full-determinism variant.

2. We prove the correctness of CRAFT and prove sample-complexity bounds.
Context: None.

3. We demonstrate the feasibility of CRAFT on a toy problem, and present the results.
Context: None.
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Abstract

While sequential decision-making environments often involve high-dimensional obser-1
vations, not all features of these observations are relevant for control. In particular, the2
observation space may capture factors of the environment which are not controllable by3
the agent, but which add complexity to the observation space. The need to ignore these4
“noise” features in order to operate in a tractably-small state space poses a challenge5
for efficient policy learning. Due to the abundance of video data available in many such6
environments, task-independent representation learning from action-free offline data of-7
fers an attractive solution. However, recent work has highlighted theoretical limitations8
in action-free learning under the Exogenous Block MDP (Ex-BMDP) model, where9
temporally-correlated noise features are present in the observations. To address these10
limitations, we identify a realistic setting where representation learning in Ex-BMDPs11
becomes tractable: when action-free video data from multiple agents with differing12
policies are available. Concretely, this paper introduces CRAFT (Comparison-based13
Representations from Action-Free Trajectories), a sample-efficient algorithm leverag-14
ing differences in controllable feature dynamics across agents to learn representations.15
We provide theoretical guarantees for CRAFT’s performance and demonstrate its feasi-16
bility on a toy example, offering a foundation for practical methods in similar settings.17

1 Introduction18

Many sequential decision-making settings, such as robotic navigation environments, involve high-19
dimensional observations with many uncontrollable noise features. In order to efficiently learn poli-20
cies for many downstream tasks, techniques for task-independent representation learning have been21
proposed. These techniques learn encoders that map the large observation space into a much smaller22
set of learned latent states, which can then be used to learn policies for downstream objectives more23
efficiently than learning from observations directly.24

In some such settings, such as social navigation, large amounts of offline video data are available,25
collected either with similar robots or with human agents. In video data, observations are available,26
but action labels are not. Past work has shown that this offline data can be used to learn encodings27
that can be leveraged for downstream tasks (Ma et al., 2023; Nair et al., 2023; Seo et al., 2022).28

However, in recent work, Misra et al. (2024) has shown an important theoretical limitation to this29
approach: for some important classes of environments, efficient action-free representation learning30
is not possible. In particular, the Exogenous Block MDP (Ex-BMDP) model (Efroni et al., 2022) de-31
scribes a class of environments where observations depend both on a deterministic, action-controlled32
latent state, and a potentially high-dimensional temporally-correlated noise factor, which is action-33
independent. The goal of representation learning in the Ex-BMDP setting is to learn a mapping from34
the observation space to the much-smaller space of action-controlled latent states, while ignoring the35
noise factor. Misra et al. (2024) show that, even with high coverage over latent states, representa-36
tion learning from Ex-BMDPs is not possible in general. This property of Ex-BMDPs is in contrast37
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to Block MDPs, where the observation noise is not time-correlated, and which Misra et al. (2024)38
demonstrates are amenable to efficient action-free representation learning. At a high level, Misra39
et al. (2024)’s hardness result stems from the fact that, without action labels, action-controllable fea-40
tures are indistinguishable from uncontrollable features. (For example, if the observations capture41
both the controllable ego-agent’s state and other uncontrollable “background” agents’ states, it is42
ambiguous what state should be encoded in the learned representation.)43

In this work, we describe a realistic setting where representation learning for Ex-BMDPs is in fact44
tractable, and propose a provably sample-efficient algorithm for this setting. Specifically, we con-45
sider cases where videos are available of multiple distinct agents operating in the same environment.46
Intuitively, the idea is that controllable latent features will differ in their dynamics between datasets47
collected by different agents, while uncontrollable features will have the same dynamics in the two48
datasets. Our main result is that, if two agents’ policies sufficiently differ at every latent state, then,49
under assumptions similar to those in Misra et al. (2024) and Efroni et al. (2022), sample-efficient50
representation learning from offline action-free data collected by the two agents is possible.51

To show this fact, we propose a provably sample-efficient algorithm for Ex-BMDP representation52
learning without action labels, which we call Comparison-based Representations from Action-Free53
Trajectories, or CRAFT. CRAFT enjoys a sample complexity that depends only on the size of,54
and coverage assumptions on, the controllable latent states of the environment, and, logarithmically,55
on the size of the encoder hypothesis class. The sample complexity has no explicit dependence of56
the size of the space of exogenous noise. At a high level, CRAFT works by clustering sequential57
observation-pairs together based on how likely the pairs are to have been observed by each agent.58

In this work, we introduce CRAFT, prove its correctness and sample-complexity, and validate its use59
on a toy example problem. To our knowledge, this is the first work to propose a provably sample-60
efficient algorithm for action-free offline representation learning in the Ex-BMDP setting. While this61
work is theoretical in nature due to some restrictive assumptions on the setting (which are inherited62
from the prior work upon which we build; see discussion in Section 6), we expect that the CRAFT63
algorithm can inspire practical methods that rely on the same principle of comparing action-free64
video datasets from diverse agents, in order to extract controllable feature representations.65

2 Background66

In this section, we define notation, formally introduce the action-free offline Ex-BMDP setting, and67
state our technical assumptions.68

2.1 General Notation69

We use [N ] to denote the set {1, ..., N}. For a sequence x1, ..., xN , we use xi:j to denote the70
subsequence xi, xi+1..., xj . For multisets A, B, we use A ⊎ B to denote the union of the two71
multisets, with multiplicities added.72

2.2 Ex-BMDP Framework73

The Ex-BMDP model describes a class of sequential decision-making environments where an74
agent’s actions only operate on a hidden latent state, while the observations that the agent receives75
are also functions of a temporally-correlated exogenous “noise” factor, in addition to this control-76
lable latent state. Following Efroni et al. (2022), we consider the finite horizon variant of this model,77
and also assume that the controllable latent dynamics are deterministic.1 Formally, a (reward-free)78
Ex-BMDP can be described as a tuple, M = ⟨H,A,X1:H ,S∗

1:H , E1:H ,Q1:H , T2:H , T e
2:H , s∗1, P

e
1 ⟩,79

where H is the horizon (the number of steps per episode). At each timestep h ∈ [H], the observation80

1Efroni et al. (2022) presents an algorithm for efficient online representation learning of Ex-BMDPs with near-
deterministic latent dynamics: the controllable latent state deviates from deterministic behavior with frequency ≪ one time
per episode. See Section 6 for further discussion.
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xh ∈ Xh is determined by two latent factors, s∗h ∈ S∗
h and eh ∈ Eh. We assume that S∗

h is finite,81
while the Eh and the observation space Xh may be continuous.82

The controllable latent state s∗h evolves deterministically, depending on the action ah taken by the83
agent: s∗h+1 = Th+1(s

∗
h, ah), where Th+1 ∈ S∗

h ×A → S∗
h+1 is a deterministic function, and A is84

the set of possible actions, which we assume to be finite. Note that s∗1 is a constant. (Each episode85
starts at the same controllable latent state, so S∗

1 = {s∗1}.)86

By contrast, the exogenous (noise) state evolves stochastically as a Markov chain, independent of87
actions. The initial exogenous state e1 is sampled from the distribution P e

1 ∈ P(E1), and subsequent88
observations are sampled as eh+1 ∼ T e

h+1(eh), where T e
h+1 ∈ Eh → P(Eh+1). We can refer to89

the distribution of exogenous states eh at time h as P e
h = T e

h (T e
h−1(...T e

2 (P
e
1 )...)), and the joint90

distribution of exogenous states eh and eh+1 as P e
h:h+1.291

The observation xh is then sampled as xh ∼ Qh(s
∗
h, eh), where Qh ∈ S∗

h × Eh → P(Xh) is the92
emission function. Under the Ex-BMDP model, we assume that the latent variables s∗h and eh can93
always be inferred from xh: that is, Qh has a deterministic inverses ϕ∗

h and ϕe
h, such that if xh is94

sampled from Qh(s
∗
h, eh), then ϕ∗

h(xh) = s∗h and ϕe
h(xh) = eh. (This assumption is the block95

assumption referred to in the name “Exogenous Block MDP.”)96

The agent does not have access to s∗h, eh, or the “ground-truth” encoders ϕ∗
h, ϕ

e
h; instead, it only97

has access to the observations xh. The goal of representation learning is to learn an encoder ϕh :98
Xh → N for each timestep h, that approximates ϕ∗

h, up to label permutation. (We are not interested99
in learning the exogenous encoder ϕe

h, because it is assumed that this noise factor is irrelevant for100
control, and may be very large.)101

2.3 Action-Free, Offline Setting102

In this work, we consider a setting where the learner has access to multiple sets of offline trajectories103
collected by different agents, but where only the observations xh, and not the actions at, are avail-104
able. For simplicity, in this work we assume that there are only datasets from two distinct agents,105
but the proposed method could be straightforwardly generalized to support more agents.106

We refer to the two trajectory datasets as τA and τB . Each trajectory in τA (or τB) is a se-107
quence of observations x1:H . We use (τA)h:h+i to refer to the multiset of tuples of observations108
(xh, xh+1, ..., xh+i) for each trajectory in τA, and use τA[{i, i′, i′′}] to refer to the subset con-109
sisting of three trajectories (indexed i, i′ and i′′) in τA. We use D∗

A(s
∗
h, s

∗
h+1) to refer to the110

multiset consisting of all observation pairs (xh, xh+1) ∈ (τA)h:h+1 such that ϕ∗
h(xh) = s∗h and111

ϕ∗
h+1(xh+1) = s∗h+1; and D∗(s∗h, s

∗
h+1) := D∗

A(s
∗
h, s

∗
h+1) ⊎ D∗

B(s
∗
h, s

∗
h+1). We also define D∗(s∗h)112

as the multiset of observations in xh ∈ (τA)h ⊎ (τB)h such that ϕ∗
h(xh) = s∗h.113

2.4 Technical Assumptions: Data Collection Method114

As in previous works in offline representation learning in the Ex-BMDP setting (Misra et al., 2024;115
Islam et al., 2023; Levine et al., 2024; Lamb et al., 2023), we assume that the agents’ actions ah116
are chosen independently of the observations x1:h, given the controllable latent states s∗1:h. In other117
words, roughly speaking, we assume that the agents used to collect the offline data choose actions118
based only on the controllable latent state, not on the full observation. Misra et al. (2024) justifies119
this assumption by positing that the offline data are likely collected by expert agents which “would120
not make decisions based on noise.” We discuss this assumption further in Section 6.121

Beyond sharing this noise-independence assumption, our technical assumptions on the data-122
collection policies are otherwise significantly weaker that those in Misra et al. (2024). While Misra123
et al. (2024) assumes that each trajectory is generated by a Markovian policy (i.e, that ah ∼ π(s∗h),124
for some π ∈ S∗

h → P(A)), and furthermore that the policies used to generate each trajectory are125

2Note that in general, P e
h:h+1 ̸= P e

h × P e
h+1.
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chosen i.i.d., we make neither such assumption. In other words, we allow for both non-Markovian126
behavioral policies – for example, we could have a policy in the form ah ∼ π(s∗1:h) – and non-i.i.d.127
sampling of behavioral policies between episodes – for example: the data collector could evolve128
over time between episodes, in order to, for instance, maximize the diversity of visited latent states.129

Explicitly, our only assumption on the data-collection mechanism is that the process which generates130
action sequences a1:H – and therefore, equivalently, controllable latent-state sequences s∗1:H – is131
independent from observation noise over both entire datasets. Formally, for a dataset τ that consists132
of trajectories x1:H , let ϕ∗(τ) denote the corresponding set of controllable latent state trajectories133
s∗1:H , and ϕe(τ) denote the corresponding set of exogenous state trajectories e1:H . Then, our only134
requirement on the data collection mechanism is that it ensures:135

Pr(τA, τB) = Pr(ϕ∗(τA), ϕ
∗(τB))

· Pr
P e

1 ,T e
(ϕe(τA)) · Pr

P e
1 ,T e

(ϕe(τB)) · Pr
Q
(τA|ϕ∗(τA), ϕ

e(τA)) · Pr
Q
(τB |ϕ∗(τB), ϕ

e(τB)).
(1)

To see why Equation 1 is a sufficiently strong assumption to allow for useful analysis despite136
its apparent generality, fix any two latent states s∗h, s

∗
h+1 ∈ S∗

h:h+1, and consider the multiset137
D∗

A(s
∗
h, s

∗
h+1) as defined in Section 2.3; also let n := |D∗

A(s
∗
h, s

∗
h+1)|. Then the marginal distri-138

bution of D∗
A(s

∗
h, s

∗
h+1) can be described as:139

D∗
A(s

∗
h, s

∗
h+1) ∼ [(Q(s∗h, eh),Q(s∗h+1, eh+1))|eh, eh+1 ∼ P e

h:h+1]
n. (2)

We see that D∗
A(s

∗
h, s

∗
h+1) consists of i.i.d. samples from a fixed, policy-independent distribution.140

Consequently, this property will frequently allow us to use standard concentration bounds in our141
analysis, while still allowing for a wide class of non-Markovian, non-i.i.d. behavioral policies.142

While we do not require the behavioral policies to be Markovian, it will be useful to refer to the143
“empirical policies” πemp.

A and πemp.
B , defined as:144

πemp.
A (s∗h+1|s∗h) :=

|D∗
A(s

∗
h, s

∗
h+1)|∑

s′∈S∗
h+1

|D∗
A(s

∗
h, s

′)|
, (3)

and likewise for πemp.
B . This is the empirical likelihood in the provided data that agent A (respec-145

tively, B) chooses an action that results in a transition from s∗h to s∗h+1.146

2.5 Technical Assumptions: Coverage, Policy Diversity, and Realizability147

In order to learn accurate latent state encoders ϕ1:H , we need to ensure adequate coverage over all148
latent states sh. For all timesteps h, and all pairs of latent states (s∗h, s

∗
h+1) ∈ S∗

h × S∗
h+1 such that149

s∗h+1 = Th(s
∗
h, a) for some action a, we require that150

|D∗(s∗h, s
∗
h+1)|

|τA|+ |τB |
≥ ν, (4)

for some known lower-bound ν. This coverage assumption is presented in terms of the actually151
realized offline datasets τA and τB . By contrast, Misra et al. (2024) assumes that trajectories in the152
offline dataset are sampled i.i.d., and makes coverage assumptions on the policies used sample them.153

We also require that the two agents, which produced datasets τA and τB , behaved sufficiently differ-154
ently so that we can infer the latent dynamics from their differences. In particular, for some known155
lower bound α > 0, we require that, ∀h ∈ [H − 1],∀s∗h ∈ S∗

h, and for any two successor states156
s∗h+1, s

′∗
h+1 ∈ S∗

h+1, such that s∗h can transition to either s∗h+1 or s′∗h+1 under Th, we have, either:157

eα ·
πemp.
B (s′∗h+1|s∗h)

πemp.
B (s∗h+1|s∗h)

≤
πemp.
A (s′∗h+1|s∗h)

πemp.
A (s∗h+1|s∗h)

, or, eα ·
πemp.
A (s′∗h+1|s∗h)

πemp.
A (s∗h+1|s∗h)

≤
πemp.
B (s′∗h+1|s∗h)

πemp.
B (s∗h+1|s∗h)

. (5)
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In other words, the relative likelihood of transitioning to s′∗h+1, versus transitioning to s∗h+1, is dif-158
ferent in τA and τB by a multiplicative factor of at least eα.159

Finally, we also require that the difference in total state coverage between τA and τB for any pair of160
sequential latent states (s∗h, s

∗
h+1) is not too extreme. We require that, for a known lower-bound η:161

|D∗
A(s

∗
h, s

∗
h+1)|

|D∗(s∗h, s
∗
h+1)|

≥ η, (6)

and likewise for D∗
B(s

∗
h, s

∗
h+1). Our sample-complexity bound also depends on an additional param-162

eter ν′, which does not need to be known a priori. This is the minimum single-state coverage ratio:163

ν′ := min
h∈[H],s∗h∈S∗

h

|D∗(s∗h)|
|τA|+ |τB |

. (7)

Function Approximation Assumptions. We assume access to hypothesis classes of encoder func-164
tions Φ1:H , as well as binary classification functions Gh ⊆ Xh → {0, 1}. We make standard realiz-165
ability assumptions (in brief, ϕ∗

h ∈ Φh, and ∀s∗h, s′∗h ,∃g ∈ Gh such that g can perfectly distinguish166
between observations of s∗h and those of s′∗h ) and assume access to training oracles. See Appendix A167
for further information about these assumptions. We use |Φ| to denote maxh |Φh|. We also assume168
a known upper-bound Ns on maxh |Sh|; that is, the maximum output range of any encoder in Φh.169

3 Method170

In this section, we describe the CRAFT algorithm. First, however, we motivate its design by exam-171
ining a simpler version of the problem setting and of the algorithm.172

3.1 Intuition: Single-step, Binary Action Case173

In this section, we present a toy algorithm for an extremely simplified version of the Ex-BMDP174
representation learning problem: an explanation of the toy algorithm captures some of the intu-175
itions of CRAFT, while the limitations of the toy algorithm will motivate some of the less-intuitive176
algorithmic details. We can call this naive, “first draft” form of the CRAFT algorithm “DRAFT.”177

We first consider the Ex-BMDP model with H = 2 and |A| = |S∗
2 | = 2. In this setting, the178

representation learning problem reduces to the task of learning to distinguish the two latent states s∗2179
and s′∗2 ∈ S∗

2 that can occur at h = 2. (See Figure 1a.)

s∗1

s∗2

s′∗2

(a) Latent-state transition graph. (b) Composition of the datasets (τA)2 and (τB)2.

Figure 1: Dynamics and composition of the two-step Ex-BMDP example in Section 3.1.

180

We will also assume that |τA| = |τB | = m. Then, (τA)1 and (τB)1 both consist entirely of m i.i.d.181
samples of the same distribution Q(s∗1, P

e
1 ). The structures of (τA)2 and (τB)2 are (slightly) more182

complex. If we let γA := πemp.
A (s∗2|s∗1) and γB := πemp.

B (s∗2|s∗1), then we see that the dataset (τA)2183
consists of m · γA i.i.d. samples of the distribution Q(s∗2, P

e
2 ) and m · (1− γA) i.i.d. samples of the184

distribution Q(s′∗2 , P
e
2 ), while (τB)2 consists of m · γB i.i.d. samples of the distribution Q(s∗2, P

e
2 )185

and m · (1− γB) i.i.d. samples of the distribution Q(s′∗2 , P
e
2 ). (See Figure 1b.)186
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Now, by assumption, the agents generating datasets τA and τB are not behaviorally identical: this187
means that γA ̸= γB . Without loss of generality, assume that γA > γB . Our key insight is that, in188
the limit as m → ∞, the Bayes optimal classifier to distinguish a sample x2 selected from (τA)2189
from a sample x2 selected from (τB)2 is in fact (up to label permutation) the latent state encoder190
ϕ∗
2(x2). Concretely, consider a classifier ϕ′

2 trained to minimize the 0-1 classification loss between191
(τA)2 and (τB)2. In the limit of infinite data, we can define this classification loss function as:192

Lpop(ϕ2) := lim
m→∞

E
x∈(τA)2

ϕ2(x) + E
x∈(τB)2

1− ϕ2(x), (8)

From Equation 8 and the composition of the datasets:193

Lpop(ϕ2) = γA E
x∼Q(s∗2 ,P

e
2 )
ϕ2(x) + (1− γA) E

x∼Q(s′∗2 ,P e
2 )
ϕ2(x)

+ γB E
x∼Q(s∗2 ,P

e
2 )
(1− ϕ2(x)) + (1− γB) E

x∼Q(s′∗2 ,P e
2 )
(1− ϕ2(x))

= (γA − γB)[ E
x∼Q(s∗2 ,P

e
2 )
ϕ2(x) + E

x∼Q(s′∗2 ,P e
2 )
1− ϕ2(x)] + C

= −(γA − γB)(Pr(ϕ2(x) = 0|ϕ∗(x) = s∗2) + Pr(ϕ2(x) = 1|ϕ∗(x) = s′∗2 )) + C

(9)

where C is independent of ϕ2. Under the mapping (0 → s∗2, 1 → s′∗2 ), we see that Lpop(ϕ2) scales194
linearly with the rate that ϕ2 produces incorrect encodings, with a δ-increase in Lpop corresponding195
to an O((γA − γb) · δ) increase in encoder failure. In particular, Lpop is uniquely minimized by the196
ground-truth encoder ϕ∗

2. We now examine how this simple algorithm functions with finite datasets:197

Algorithm 1 “DRAFT” algorithm for H = 2 Ex-BMDPs.
Require: Datasets τA, τB with H = 2, hypothesis class Φ2 ∈ X2 → {0, 1}.

Let ϕ′
1 := X1 → 0, and ϕ′

2 := argminϕ2∈Φ2
L(ϕ2), where:

L(ϕ2) :=
1

|τA|
∑

x∈(τA)2

ϕ2(x) +
1

|τB |
∑

x∈(τB)2

1− ϕ2(x). (10)

Return: ϕ′
1, ϕ

′
2

198

With finite m, our main concern is overfitting: if Φ2 is large enough such that some ϕ′
2 ∈ Φ2 can199

perfectly distinguish the samples that happen to fall into (τA)2 from those in (τB)2, then this ϕ′
2 will200

attain a lower empirical loss than ϕ∗
2, while being bad at distinguishing Q(s∗2, P

e
2 ) from Q(s′∗2 , P

e
2 )201

in general. However, as long as |Φ2| is controlled, we can use standard concentration inequalities to202
limit this overfitting. In particular,203

|L(ϕ2)− Lpop(ϕ2)| ≈ O(1/
√
m). (11)

By combining Equations 11 and 9, we can determine how quickly ϕ′
2 = argminL(·) will approach204

ϕ∗
2 = argminLpop(·) as m increases, in terms of accuracy as a latent state encoder. To ensure ϕ′

2205

approximates ϕ∗
2 with a failure rate of at most ϵ, we need m ≈ O

(
1

(γA−γb)2ϵ2

)
samples. Intuitively,206

the smaller the difference between behavior policies of the two agents (γA − γB), the more samples207
are required to attain a given accuracy of encoder.208

3.1.1 “DRAFT” doesn’t generalize easily to the long-horizon setting209

A naive first attempt to extend “DRAFT” to the H > 2 case might be to apply it recursively. That210
is, once the two distinct latent states at h = 2 can be decoded, we can extract from (τ)A and (τ)B211
the trajectories which contain (say) s∗2, and then run DRAFT again on these samples, to obtain212
an encoder that can separate the two states into which s∗2 can transition.3 We can then repeat this213

3Here, we are continuing to assume |A| = 2, and that the two actions have different effects from each other in each state.
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procedure for s′∗2 . If s′∗2 and s∗2 both transition to the same latent state (say s′∗3 ), we can easily detect214
this situation by attempting to learn binary classifiers between the observations of each state that215
succeeds s∗2 and each state that succeeds s′∗2 : if it is impossible distinguish these observations better216
than by random chance, then the two successor states are the same:

Run DRAFT

Run DRAFT

Run DRAFT

Merge if 
indistinguishable

Merge if 
indistinguishable

Merge if 
indistinguishable

Merge if 
indistinguishable

Figure 2: Illustration of recursive use of the “DRAFT” algorithm.

217

However, it turns out that it is difficult (and may be impossible) to prove an efficient sample-218
complexity bound for this recursive algorithm. This is for two reasons:219

1. After the first timestep, the input datasets to subsequent applications of DRAFT are corrupted220
by mis-classified samples, such that the datasets are no longer mixtures of i.i.d. samples from221
distributions Q(s∗, P e

h) for multiple values of s∗ ∈ S∗
h.222

2. DRAFT is highly sensitive to small changes in its input dataset.223

To see (1), note that the encoder ϕ′
2 returned by the first application of DRAFT will misclassify some224

O(
√
m/(γA − γB)) samples. Moreover, these misclassified samples will not be chosen uniformly:225

the encoder ϕ′
2 may rely on some spurious features of the observations x2, which depend on e2,226

to classify these observations. Consequently, because e3 also depends on e2, the exogenous noise227
distributions of the observations x3 of state s′∗3 (for instance, in the dynamics example in Figure 2)228
present in the datasets for the recursive DRAFT instances associated with s∗2 and s′∗2 will differ229
from each other, and each will differ from Q(s′∗3 , P

e
h), in a way that depends on the choice of ϕ′

2.230
Moreover, because ϕ′

2 is trained to distinguish τA from τB , this distribution shift may have different231
effects on the distributions of observations from the two agents.232

For (2), consider the (single step) DRAFT algorithm with some small number ϵbad · m of samples233
from X2 arbitrarily introduced to the datasets (τA)2 and (τB)2. For concreteness, we will replace234
some of the samples in (τA)2 for which ϕ∗

2(x) = s′∗2 with “bad” samples for which it still holds235
that ϕ∗

2(x
′
bad) = s′∗2 , but which are not drawn i.i.d. from Q(s′∗2 , P

e
2 ). Instead, we assume that these236

samples belong to some part of the support of Q(s′∗2 , P
e
2 ) which is typically sampled with negligible237

probability; we can call their distribution D′
bad. Similarly, we replace ϵbad ·m samples of (τB)2 for238

which ϕ∗
2(x) = s∗2 with “bad” samples for which ϕ∗

2(xbad) = s∗2, but which are drawn from Dbad.239
We consider the infinite-dataset limit. From Equation 8 and the composition of the datasets:240

Lpop(ϕ2) = γA E
x∼Q(s∗2 ,P

e
2 )
ϕ2(x) + (1− γA − ϵbad) E

x∼Q(s′∗2 ,P e
2 )
ϕ2(x) + ϵbad E

x∼D′
bad

(ϕ2(x))

+ (1− γB) E
x∼Q(s′∗2 ,P e

2 )
(1− ϕ2(x)) + (γB − ϵbad) E

x∼Q(s∗2 ,P
e
2 )
(1− ϕ2(x)) + ϵbad E

x∼Dbad

(1− ϕ2(x))

= −(γA − γB + ϵbad)
(
Pr(ϕ2(x) = 0|x ∼ Q(s∗2, P

e
2 )) + Pr(ϕ2(x) = 1|x ∼ Q(s′∗2 , P

e
2 ))
)

− ϵbad
(
Pr(ϕ2(x) = 1|x ∼ Dbad) + Pr(ϕ2(x) = 0|x ∼ D′

bad)
)
+ C

Note that the ground-truth encoder ϕ∗
2 has loss Lpop(ϕ

∗
2) = −(γA−γB+ϵbad)+C. However, we can241

construct an encoder ϕ′
2 that incorrectly encodes all samples in Dbad as belonging to s′∗2 (i.e., returns242

1 on these samples), and incorrectly encodes all samples in D′
bad as belonging to s∗2. Furthermore, we243

can construct this ϕ′
2 to also have an accuracy of only 1−ϵbad/(γA−γB+ϵbad) on the samples in the244

“natural” distributions Q(s∗2, P
e
2 ) and Q(s′∗2 , P

e
2 ). Surprisingly, by the above expression for Lpop,245
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we see that this less-accurate encoder also has loss Lpop(ϕ
′
2) = −(γA−γB + ϵbad)+C. Therefore,246

if this encoder ϕ′
2 is included in the hypothesis class Φ2, then the ERM step of Algorithm 1 may just247

as easily return ϕ′
2 rather than ϕ∗

2. (Furthermore, the realizability assumption does not guarantee that248
any lower-loss “third option” encoders exist.) Consequently, the misclassification rate can “blow up”249
from ϵbad to ϵbad/(γA − γB + ϵbad), that is, by a multiplicative factor of 1/(γA − γB + ϵbad) – even250
before accounting for finite datasets.251

We can now see that DRAFT both (1) can make non-uniformly-distributed encoding errors, and (2)252
given as input a dataset with (non-uniform) errors, can produce output “next-state” datasets with253
a multiplicatively-increased error rate. Therefore, it seems difficult to derive a sample-complexity254
analysis of “recursive DRAFT” that does not require a number of samples exponential in the Ex-255
BMDP horizon H .4 In the next section, we present our CRAFT algorithm, which is intention-256
ally designed to solve the multiple-agent action-free Ex-BMDP representation learning problem257
while avoiding recursively training state classifiers on datasets derived from the output of previous-258
timestep state classifiers. We then can sidestep the issues with “Recursive DRAFT” shown here.259

Note that, for Ex-BMDPs with deterministic latent dynamics, the issues with recursion seen here260
are unique to the offline, action-free setting. In the online setting, as in Efroni et al. (2022), once261
the dynamics up to timestep h have been learned, “fresh” samples of any given latent state s∗h can262
then be constructed via closed-loop planning: there are no issues with compounding error.5 The263
action-free offline setting thus presents a new set of issues requiring a novel algorithmic solution.264

3.2 CRAFT: High-Level Description of Method265

Here, we give a high-level overview of the CRAFT algorithm. The complete algorithm is presented266
as Algorithm 2 in Appendix C. See also Figure 3 for a pictorial overview of the approach.267

In CRAFT, we initially treat each trajectory as a sequence of observation pairs: (x1, x2), (x2, x3),268
... (xH−1, xH). (See Figure 3-a.) For each timestep-pair (h, h+ 1), we train a model fh to predict,269
given a sample (xh, xh+1), whether the pair was collected by agent A or agent B: that is, whether270
(xh, xh+1) was selected from (τA)h,h+1 or (τB)h,h+1. However, unlike in “DRAFT”, we do not271
treat this problem as hard binary classification. Instead, we train fh(xh, xh+1) to predict the log-272
odds ratio between the two possibilities, for a given (xh, xh+1). That is, we train fh to predict273

ln

(
Pr[(xh, xh+1) ∈ (τA)h,h+1|(xh, xh+1) ∈ (τA ⊎ τB)h,h+1]

Pr[(xh, xh+1) ∈ (τB)h,h+1|(xh, xh+1) ∈ (τA ⊎ τB)h,h+1]

)
. (12)

To accomplish this task, we can train fh to minimize the following loss function:274

L(fh) :=
∑

(xh,xh+1)∈(τA)h,h+1

ln(1+ e−f(xh,xh+1))+
∑

(xh,xh+1)∈(τB)h,h+1

ln(1+ ef(xh,xh+1)). (13)

Note that in the limit of infinite data, the fh that minimizes this loss will return275

f∗
h(xh, xh+1) → ln

( |D∗
A(ϕ

∗
h(xh), ϕ

∗
h+1(xh+1))|

|D∗
B(ϕ

∗
h(xh), ϕ∗

h+1(xh+1))|

)
. (14)

Consequently (for sufficiently-large datasets) we expect the values of fh(xh, xh+1) of all276
observation-pairs (xh, xh+1) corresponding to the same latent-state pair (ϕ∗

h(xh), ϕ
∗
h+1(xh+1)) =277

(s∗h, s
∗
h+1) to “cluster together” around the same value (See Figure 3-b): this effect can be quantified278

4We are not claiming that “Recursive DRAFT” actually does require exponential samples in H , simply that there are
clear obstacles to proving that it does not.

5Even with offline data, if action labels are available and the latent dynamics up to timestep h are known perfectly (which
is achievable if the latent dynamics are deterministic), then “error-free” datasets can still be constructed for timestep h+ 1.
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Models fh predict log-odds that agent A or 
agent B collected each pair (xh,xh+1).

Sets of observation pairs (xh,xh+1) which 
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Observation pairs in each pairs(sh) are clustered 
by fh(xh,xh+1) to infer states succeeding sh.

Putative states sh+1 are merged if their associated 
sets of observations xh+1 are indistinguishable

States sh+1 have now been inferred, and their 
associated trajectories identified.

Figure 3: Schematic of the CRAFT algorithm. See text of Section 3.2.

using standard concentration arguments. Note that the training of models fh and resulting “cluster-279
ing” of observation-pairs can be carried out simultaneously and independently for all time-steps h:280
there is no “recursion” here, and so each model fh is trained on an “untainted” dataset.281

Side note on realizability and discretization: To ensure that an fh can be found that minimizes282
Equation 13, we need fh to be chosen from a sufficiently-expressive hypothesis class Fh. We can283
construct such an Fh as Φh × Φh+1 × (N2

s → R): by the realizability assumptions on Φh and284
Φh+1, we are ensured that this class contains the optimal predictor in Equation 14. However, the285
(N2

s → R) component of this hypothesis class makes it non-finite. In order to allow for a simple286
finite-hypothesis analysis, we instead construct Fh as Φh × Φh+1 × (N2

s → Ξ), where Ξ is a287
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discrete space (roughly, every (α/4)-th interval on a range determined by η). It turns out that this288
discretization still ensures that a function “close enough” to f∗

h will always exist, and additionally289
greatly simplifies the identification of “clusters” in the output distribution of fh on finite data.290

While we expect the values of fh(xh, xh+1) to cluster for sets of observations-pairs with the same291
latent-state-pair, it does not immediately follow that the values of fh(xh, xh+1) and fh(x

′
h, x

′
h+1)292

will differ if (sh, sh+1) ̸= (s′h, s
′
h+1). In fact, this is not true in general: two distinct “clusters” may293

overlap entirely. This is where the assumption given in Equation 5 becomes useful: from Equation 5294
and algebra, we can see that for any fixed s∗h and distinct s∗h+1, s

′∗
h+1 which can both follow s∗h that:295 ∣∣∣∣ln( |D∗

A(s
∗
h, s

∗
h+1)|

|D∗
B(s

∗
h, s

∗
h+1)|

)
− ln

( |D∗
A(s

∗
h, s

′∗
h+1)|

|D∗
B(s

∗
h, s

′∗
h+1)|

)∣∣∣∣ ≥ α. (15)

In other words, the “clusters” associated with two pairs (s∗h, s
∗
h+1) and (s′∗h , s

′∗
h+1) are guaranteed to296

be distinct if s∗h = s′∗h . One consequence is that the observation-pairs (x1, x2) associated with each297
possible latent-state pair (s∗1, s

∗
2) must form distinct, well-separated clusters (because these pairs298

all share the same initial latent state s∗1). Therefore, datasets of observations associated with each299
latent state s2 can be immediately identified (as shown in green in Figure 3-b; note that we omit the300
asterisk, to indicate that these are inferred, rather than ground-truth, latent states.).301

CRAFT then continues “recursively”: once the trajectories which contain a particular s′2 ∈ S are302
known, we can then examine the spectrum of values of f2(x2, x3) for only observation pairs (x2, x3)303
from this subset of trajectories (referred to in Algorithm 2 as pairs(s′2)). Because these observation-304
pairs all (up to an error factor) share the same initial state s′∗2 , we expect to see well-separated clusters305
for each latent state which can succeed s′2. Note that we do not retrain f2 on only these samples in306
pairs(s′2). Therefore, any errors (missing or extra trajectories) in the construction of pairs(s′2) can307
only substantially affect the outcome of this step by compromising CRAFT’s ability to recognize308
distinct clusters in the precomputed values of f2(x2, x3). Due to the discretization of the range of309
Fh, this “cluster identification” is robust to even adversarial errors affecting a bounded number of310
trajectories. The total number of misclassified trajectories then grows only linearly with H . (In311
Figure 3-c, we show the spectrum of values of f2(x2, x3) for each subset pairs(s2), pairs(s′2), and312
pairs(s′′2 ); Figure 3-d shows the result of the cluster identification: the observation-pairs (x2, x3)313
corresponding to each state in S3 which can succeed each of s2, s′2, and s′′2 have been identified).314

Once we identify each latent state that can succeed each s′2 ∈ S2 individually, we now determine315
whether or not any of these successor states to distinct states s2, s′2 are in fact the same latent state316
s3 ∈ S3. This can be accomplished easily, by attempting to learn binary classifiers between the ob-317
servations x3 which are part of the observation-pair sets. If these observations are indistinguishable,318
then the sets of observation-pairs represent the same latent state; if they are perfectly distinguish-319
able, then they represent different latent states. Figure 3-e illustrates this process. Note that while320
there may be errors in these observation sets, each binary-classifier training ultimately produces a321
boolean result (either the sets are distinguishable, or they are not) with a substantial allowance for322
error in the input sets: there is (with high probability) no accumulation of errors due to this process.323

Finally, the observations corresponding to each unique latent state S3 have been identified. (See324
Figure 3-f). We can then continue to timestep h = 4, and so on. As mentioned above, both the325
cluster-identification and state-merging processes are robust to bounded errors in their input data, so326
the total number of misclassified states grows only linearly in H . As a final step, the encoders ϕ′

h327
are trained on the assembled datasets for each timestep h.328

3.3 Guarantees329

We prove the following polynomial sample-complexity guarantee for CRAFT in Appendix C:330

Theorem 3.1. Assume that CRAFT (Algorithm 2 in the Appendix) is given datasets τA and τB such331
that the assumptions given in Equations 1, 4,5, and 6 all hold. Then there exists an332

f

(
H, |Φ|, Ns,

1

δ
,
1

ϵ0
,
1

ν
,
1

ν′
,
1

η
,
1

α

)
∈ O∗

(
H2(ln(|Φ|/δ) +N2

s )

νη2α4
·max

(
1

ν2
,

1

ϵ20ν
′2

))
, (16)
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where O∗(f(x)) := O(f(x) logk(f(x))), such that for any given δ, ϵ0 ≥ 0, if ∀s∗h, s∗h+1 such that s∗h333

can transition to s∗h+1, |D∗(s∗h, s
∗
h+1)| ≥ f

(
H, |Φ|, Ns,

1
δ ,

1
ϵ0
, 1
ν ,

1
ν′ ,

1
η ,

1
α

)
, then, with probability334

at least 1− δ, the encoders ϕ′
h returned by the algorithm will each have accuracy on at least 1− ϵ0,335

in the sense that, under some bijective mapping σh : Sh → S∗
h,336

∀s∗ ∈ S∗
h, Pr

x∼Q(s∗,P e
h)
(ϕ′

h(x) = σ−1
h (ϕ∗

h(x))) ≥ 1− ϵ0. (17)

337

4 Simulation Results338

We test CRAFT on a toy environment which captures CRAFT’s ability to distinguish controllable339
features in the observation space from time-correlated uncontrollable features. In the environment,340
s∗1 = 0,A = S∗

h>1 = {0, 1} and s∗h+1 = ah; in other words, the agent can simply set the next latent341
state using the action. The exogenous state consists of M − 1 factors: e = (e1, e2, ..., eM−1). Each342
exogenous factor is a two-state Markov Chain: for e2, ...eM−1, the initial state distribution and state343
transition probabilities are arbitrary parameters chosen uniformly at random for each chain, while e1344
has Pr(e11 = 0) = 0.5 and transition probabilities of zero. The observation xh ∈ {0, 1}M consists345
of s∗h concatenated with (s∗h XOR eih), for each i ∈ [H − 1]. Additionally, at each timestep, the346
order of s∗h and the other factors is permuted by some arbitrary permutation which depends on h.347
The hypothesis classes are Φh := {(xh) → (xh)i|i ∈ [M ]}. The representation learning problem is348
then to determine, for each h, which of the M components of the observation xh is the controllable349
factor s∗h (or, failing at that, to find a component corresponding to a (s∗h XOR eih) where eih is low-350
entropy, so the encoder imperfect but still useful). Agent A selects actions uniformly at random,351
while for agent B, Pr(ah = s∗h) = 3/4.352

Results are shown in Table 1. The setting is designed to prevent various “shortcuts” to learning an353
encoder from working. Simply choosing the component of xh that best predicts the policy ("Single-354
observation classification" in Table 1) will not work, because at any sufficiently large timestep h,355
the latent state distributions of the two policies are essentially identical (with a total-variation gap356
of 2−h). Furthermore, given observations of a pair of sequential timesteps (xh, xh+1), choosing357
the components of xh and xh+1, respectively, that together best predict the agent also will not358
work ("Paired-observation classification"). In particular, the “distractor” features (s∗h XOR e1h) and359
(sh+1 XOR e1h+1) are, taken together, about as informative about the agent’s identity as s∗h and360
s∗h+1, but provide no information about the latent state s∗h or s∗h+1. In Table 1, we see that, given361
sufficient data (≥ 1000 trajectories for each agent), CRAFT is capable of learning highly-accurate362
encoders in this setting, while these two “shortcut” techniques are not. In particular, while the363
“Paired-observation classification" shortcut is about as effective as CRAFT in the very-low data364
regime, its performance plateaus (and even seems to drop) as more data becomes available. (The365
drop in performance is likely because the adversarially-designed “distractor” features (s∗h XOR e1h)366
and (s∗h+1 XOR e1h+1) are more likely to be chosen by this method as more data becomes available.)367

Table 1: Results of toy environment simulation, with H = 30,M = 128, averaged over 20 random
seeds. See text of Section 5, and Appendix D for further details.

Technique Avg. Encoder Acc. (|τA| = |τB | = 500) " " 1000 " " 5000
CRAFT 86.4% 97.7% >99.9%

Single-obs. classification 67.8% 68.7% 69.7%
Paired-obs. classification 87.4% 86.1% 82.1%

368
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5 Related Works369

Action-free representation learning Many prior works have tackled action-free representation370
learning in practical scenarios, demonstrating empirically-validated methods. Common approaches371
utilize observation reconstruction losses (Seo et al., 2022) or temporal contrastive losses (Nair et al.,372
2023). Some of these works infer “latent actions” by finding a compact representation that is highly373
informative for predicting forward dynamics (Edwards et al., 2019; Menapace et al., 2021; Ye et al.,374
2023; Schmidt & Jiang, 2024) Another line of work augments large action-free offline datasets with375
significantly smaller action-labeled datasets. For example, an offline dataset action-free dataset can376
be used to train a goal-conditioned value function (Xu et al., 2022; Ma et al., 2023; Ghosh et al.,377
2023; Park et al., 2023). Alternatively, an inverse-dynamics model can be learned from the action-378
labelled data to “fill in” missing actions (Schmeckpeper et al., 2021; Zheng et al., 2023; Baker et al.,379
2022). By contrast, in this work we are interested in provable sample-efficiency of representation380
learning, and assume no access to action-labeled data during pretraining.381

Learning in Ex-BMDPs. As discussed throughout this work, numerous prior works consider the382
Ex-BMDP model (Efroni et al., 2022; Mhammedi et al., 2024), including in the offline setting (Islam383
et al., 2023; Lamb et al., 2023; Levine et al., 2024). Misra et al. (2024) in particular demonstrates384
a hardness result: that Ex-BMDP latent representations cannot be learned in general from offline385
action-free data. In this work, we demonstrate a special case where this representation learning386
problem is in fact tractable: the case where offline data from multiple diverse agents are available.387

6 Discussion and Limitations388

One major assumption of this work (as well as Misra et al. (2024); Islam et al. (2023) and other389
prior works) is that offline data are collected by a policy which acts independently of observation390
noise. This assumption stems from the fact that, if noise features influence the behavioral policy,391
they (indirectly) influence the latent-state dynamics of the agent: these noise features may then be392
erroneously captured in the learned representation. However, in real-world settings, it may actually393
be beneficial to capture such features in the learned representation: if “expert” agents are relying394
on some uncontrollable feature, this feature may be relevant to the expert agents’ reward functions,395
and may therefore also be relevant to downstream tasks for which our learned representations will396
be used. Therefore, the noise-independent policy assumption might not be necessary in practice.397

An additional restrictive assumption of this work is that the latent dynamics are deterministic, and398
that each episode starts at the same latent state s∗1. However, this assumption is also essentially399
present even in the best-known result for provably sample-efficient Ex-BMDP representation learn-400
ing in the online setting (Efroni et al., 2022) – that work does allow for rare departures from deter-401
ministic dynamics, however, and it may be possible to adapt the analysis of CRAFT to that setting402
as well, although we have focused on the strictly-deterministic case here for ease of presentation.403
Mhammedi et al. (2024) proposes an online algorithm for learning Ex-BMDPs with nondeterminis-404
tic latent dynamics, but that work assumes “simulator access”: the ability to reset the environment405
to any previously-visited observation. Several works (Lamb et al., 2023; Levine et al., 2024; Islam406
et al., 2023) consider learning Ex-BMDPs from offline data (with action labels) without assuming407
restarts to s∗1: these works are “practical” algorithms that do not provide sample-complexity guar-408
antees. A similar “practical” algorithm for the action-free, multiple-agent setting based on the ideas409
presented in this work may also be possible.410

The assumption that two policies differ substantially at every latent state may also be impractical.411
One direction for future work may be to leverage data from several agents, such that it is more likely412
that some agent has a distinct behavior at each latent state.413

While access to training oracles is a common assumption in representation learning (Agarwal et al.,414
2020; Efroni et al., 2022; Uehara et al., 2022), the optimization of Equation 13, on a discretized415
domain, may be troublesome in practice. Additionally, the sample complexity bounds in Equation416
16, while polynomial, may not be optimal: these issues are potential directions for future work.417
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A Hypothesis Classes and Realizability Assumptions499

As mentioned in Section 2.5, we assume access to hypothesis classes of encoder functions Φ1:H .500
We make a realizability assumption: that is, the true encoder ϕ∗

h ∈ Φh. Moreover, we assume501
that for any arbitrary permutation σ, σ(ϕ∗

h(x)) ∈ Φh – this allows us to train an encoder in Φh on502
datasets of observations representing each latent state without knowing the “correct” ordering of the503
latent states. Similar realizability assumptions are common in representation learning literature for504
structured MDPs (Du et al., 2019; Efroni et al., 2022; Misra et al., 2020; 2024; Uehara et al., 2022;505
Agarwal et al., 2020).506

We use a second set of hypothesis classes, Gh ⊆ Xh → {0, 1}, for which, for any pair of latent states507
s∗h, s

′∗
h , there exists some g ∈ Gh that can perfectly distinguish observations of s∗h from observations508

of s′∗h . In our sample-complexity results, we assume that |Gh| ≤ |Φh|. In this work, we are chiefly509
concerned with sample-complexity: we make use of training oracles for a variety of loss functions510
which may not be tractable to optimize in practice. See Section 6 for further discussion.511

B Algorithm512

The full CRAFT algorithm is presented as Algorithm 2.513

C Proofs514

In this section, we prove the correctness and sample complexity bounds of CRAFT presented in515
Theorem 3.1. First, though, we prove various lemmas the will be helpful in proving the final result.516

C.1 Preliminary Note517

Recall Equation 1 in the main text:518

Pr(τA, τB) =Pr(ϕ∗(τA), ϕ
∗(τB)) · Pr

P e
1 ,T e

(ϕe(τA)) · Pr
P e

1 ,T e
(ϕe(τB))

·Pr
Q
(τA|ϕ∗(τA), ϕ

e(τA)) · Pr
Q
(τB |ϕ∗(τB), ϕ

e(τB))

Throughout our proofs, we will make use of this assumption in the following way: we will treat the519
controllable latent state trajectories ϕ∗(τA), ϕ

∗(τB) as fixed but arbitrary, not as random variables,520
and treat the exogenous noise Markov chains ϕe(τA), ϕ

e(τB) and the emission function Q as the521
only random variables. Then, if the algorithm succeeds with high probability for any such fixed,522
arbitrary ϕ∗(τA), ϕ

∗(τB), we can conclude by the independence assumption that it also succeeds523
with high probability under any data-generating process for which Equation 1 holds.524

C.2 Concentration Lemmas525

In this section, we present concentration bounds on the loss functions used in Algorithm 2. We start526
with the log-odds loss given in Equation 13:527

Lemma C.1. . Given m distributions D1, ...,Dm ∈ P(X ), each with two corresponding positive528
integers ai, bi, for i ∈ [m], let Ai ∼ Dai and Bi ∼ Dbi be two multi-sets consisting of ai and bi i.i.d.529
samples from Di, respectively. Then, for any ξ > 0 and nΞ ∈ N+ such that ∀i, | ln(ai/bi)| ≤ nΞξ

2 ,530
let Ξ = {−nΞξ

2 ,−nΞξ
2 + ξ,−nΞξ

2 + 2ξ, ..., nΞξ
2 }. Further, let c̄i ∈ Ξ be the smallest value in531

Ξ greater than or equal to ln(ai/bi), and ci ∈ Ξ be the largest value in Ξ less than or equal to532
ln(ai/bi). Also, assume that ∀i, ai+bi∑m

i′=1
ai′+bi′

≥ ν.533

Given any function f ∈ X → Ξ, define:534

L(f) :=
m∑
i=1

[∑
x∈Ai

ln(e−f(x) + 1) +
∑
x∈Bi

ln(ef(x) + 1)

]
. (18)
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Algorithm 2 CRAFT
Require: Trajectory datasets τA, τB , known lower-bounds α, η, and ν, encoder function classes Φh ⊆ Xh →

Ns and classification function class Gh ⊆ Xh → {0, 1}.
1: α← min(1, α).
2: Let ξ := α/4; nΞ := ⌈8 ln(η−1 − 1)/α⌉.
3: η ← 1/(1 + enΞα/8).
4: Let Ξ := {−nΞξ

2
,−nΞξ

2
+ ξ,−nΞξ

2
+ 2ξ, ..., nΞξ

2
}.

5: Initialize S1 := {s1}, DA,1(s1) := [|τA|], DB,1(s1) := [|τB |]. \\ First timestep should
have a single state rep., associated with every trajectory index.

6: Let ϕ′
1 := X1 → 0.

7: for h ∈ {1, 2, ..., H − 1} do
8: Initialize Sh+1 := {}.
9: Let the inverse-actor-prediction function class Fh ⊆ X ×X → Ξ be composed as Fh = Φh×Φh+1×

(N2
s → Ξ).

10: Find the fh ∈ Fh which minimizes Equation 13.
11: Let qthresh. := hν

8H
.

12: for spred ∈ Sh do
13: Initialize merged_already(s) := False for all s ∈ Sh+1.
14: Initialize Snew := {}
15: Let pairs(spred) := (τA)h:h+1[DA,h(spred)] ∪ (τB)h:h+1[DB,h(spred)]. \\ All

transitions which start at sprev.
16: ∀j ∈ {0, ..., nΞ}, Let pred_succ[j] := {(xh, xh+1) ∈ pairs(spred)|f(xh, xh+1) = jξ − nΞξ

2
}.

17: Initialize j := 0
18: while j ≤ nΞ do
19: if |pred_succ[j]| ≥ qthresh.(|τA|+ |τB |) then
20: Let j′ be the minimum integer > j such that |pred_succ[j′]| < qthresh.(|τA| + |τB |), or nΞ if

no such integer exists.
21: Let Dnew_pairs := {x′|(x, x′) ∈

⊎j′

k=max(0,j−1) pred_succ[k]}, Dnew := {x′|(x, x′) ∈
Dnew_pairs}

22: Initialize new_state? ← True.
23: for s ∈ Sh+1, such that merged_already(s) == False do
24: Let Ds := (τA)h+1[DA,h+1(s)] ⊎ (τB)h+1[DB,h+1(s)]
25: Train a classifier g ∈ G to distinguish Dnew and Ds, with loss L(g) given in Equation 53.
26: if the loss L(g) on Dnew and Ds is > 0.5 then
27: Append to DA,h+1(s) indices of trajectories in τA that observations in Dnew are from.
28: Append to DB,h+1(s) indices of trajectories in τB that observations in Dnew are from.
29: merged_already?(s)← True
30: new_state? ← False
31: break.
32: end if
33: end for
34: if new_state? then
35: Add new state snew to Snew

36: Initialize DA,h+1(snew) as indices of trajectories in τA that observations in Dnew are from.
37: Initialize DB,h+1(snew) as indices of trajectories in τB that observations in Dnew are from.
38: end if
39: j ← j′ + 2
40: else
41: j ← j + 1
42: end if
43: end while
44: Sh+1 := Sh+1 ∪ Snew

45: end for
46: ϕ′

h+1 := argminϕ∈Φh+1

∑
s∈Sh+1

[
1

|Ds|
∑

x∈Ds
(1− 1(ϕ(x)=s))

]
, where Ds :=

(τA)h+1[DA,h+1(s)] ⊎ (τB)h+1[DB,h+1(s)]
47: end for
48: Return: ϕ′

1, ...ϕ
′
H
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Further, define:535

Lref :=

m∑
i=1

[
min

ci∈{c̄i,ci}
ai ln

(
e−ci + 1

)
+ bi ln (e

ci + 1)

]
, (19)

and let η := (enΞξ/2 + 1)−1. For any ϵ and δ, if:536

∀i ∈ [m], ai + bi ≥
50 ln(2/δ) ln2(1/η)

νϵ2η2ξ4
(20)

then the probability that both L ≤ Lref, and:537

∃i ∈ [m] :
∣∣∣{x ∈ Ai ⊎Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ > ϵ(ai + bi) (21)

is at most δ.538

Proof. We can define539

Li
ref := min

ci∈{c̄i,ci}
ai ln

(
e−ci + 1

)
+ bi ln (e

ci + 1) , (22)

So that Lref =
∑m

i=1 Li
ref, and also define540

Li
pop(f) := ai

(
E

x∼Di

ln(e−f(x) + 1)

)
+ bi

(
E

x∼Di

ln(ef(x) + 1)

)
(23)

and Lpop :=
∑m

i=1 Li
pop.541

First, we consider the “population loss” for each distribution:542

Li
pop(f) = ai

(
E

x∼Di

ln(e−f(x) + 1)

)
+ bi

(
E

x∼Di

ln(ef(x) + 1)

)

= ai

∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) · ln(e−ζ + 1)


+ bi

∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) · ln(eζ + 1)


=
∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) ·
(
ai ln(e

−ζ + 1) + bi ln(e
ζ + 1)

)
=
∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) · ai
((

1 +
bi
ai

)
ln(eζ + 1)− ζ

)

(24)

We can define hγ(ζ) :=
(
1 + γ−1

)
ln(eζ + 1)− ζ, so that543

Li
pop(f) = ai

∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) · hai/bi
(ζ) (25)

Now, note that:544

h′
γ(ζ) =

(
1 + γ−1

) eζ

eζ + 1
− 1 (26)

and545

h′′
γ(ζ) =

(
1 + γ−1

) eζ

(eζ + 1)2
. (27)
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Then, we see that hγ(ζ) is a convex function, with a global minimum at ζ = ln(γ), and second-546
derivative at least547

(
1 + γ−1

) enΞξ/2

(enΞξ/2 + 1)2

(
=
(
1 + γ−1

) e−nΞξ/2

(e−nΞξ/2 + 1)2

)
(28)

everywhere on the interval [−nΞξ/2, nΞξ/2].548

Due to the convexity of hai/bi
(ζ), we have, ∀j > 0,549

ai·hai/bi
(ln(ai/bi)) ≤ min(ai·hai/bi

(c̄i), ai·hai/bi
(ci)) (= Li

ref ) ≤ ai·hai/bi
(c̄i) < ai·hai/bi

(c̄i+jξ)

and, similarly, ∀j > 0:550

ai·hai/bi
(ln(ai/bi)) ≤ min(ai·hai/bi

(c̄i), ai·hai/bi
(ci)) (= Li

ref ) ≤ ai·hai/bi
(ci) < ai·hai/bi

(ci−jξ).

In particular, by a second-order Taylor bound, we have that, for j > 0:551

Li
ref ≤ ai · hai/bi

(c̄i + jξ)− ai ·
(
1 + (ai/bi)

−1
) enΞξ/2

(enΞξ/2 + 1)2
· (jξ)

2

2

≤ ai · hai/bi
(c̄i + jξ)− (ai + bi)

enΞξ/2

(enΞξ/2 + 1)2
· ξ

2

2

(29)

and similarly for ai · hai/bi
(ci − jξ):552

Li
ref ≤ ai · hai/bi

(ci − jξ)− (ai + bi)
enΞξ/2

(enΞξ/2 + 1)2
· ξ

2

2
. (30)

In particular, by Equation 25,553

Li
pop(f) ≥ Li

ref + Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) · (ai + bi)
enΞξ/2

(enΞξ/2 + 1)2
· ξ

2

2
. (31)

In terms of η, this is:554

Li
pop(f) ≥ Li

ref + Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) · (ai + bi) (η − η2) · ξ
2

2

≥ Li
ref + Pr

x∼Di

(f(x) ̸∈ {ci, c̄i}) · (ai + bi) ·
ηξ2

4

(32)

where we use the fact that η ≤ 1/2 in the last inequality. This gives us:555

Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) ≤
4(Li

pop(f)− Li
ref )

(ai + bi)ηξ2
(33)

Because Li
pop − Li

ref ≥ 0, this implies:556

∀i ∈ [m],

(ai + bi) · Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) ≤
4(Li

pop(f)− Li
ref )

ηξ2
≤

4
∑m

i=1(Li
pop(f)− Li

ref )

ηξ2

=
4(Lpop(f)− Lref )

ηξ2

(34)

Meanwhile, from Equations 18 and 23 applying (one-sided) Hoeffding’s lemma gives us, with prob-557
ability at least 1− δ/2:558
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L(f)− Lpop(f) +

√√√√ m∑
i=1

(ai + bi) ln(1/η)
√

2 ln(2/δ) ≥ 0. (35)

which implies, by assumption:559

∀i, L(f)− Lpop(f) +
√

ai + bi
√

1/ν ln(1/η)
√

2 ln(2/δ) ≥ 0. (36)

Combining Equations 34 and 36 gives, with probability at least 1− δ/2, we have that ∀i ∈ [m],560

(ai + bi) Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) ≤
4(L(f)− Lref )

ηξ2
+

4(
√
ai + bi) ln(1/η)

√
2 ln(2/δ)√

νηξ2
. (37)

Then, with probability at least 1− δ/2, the condition L(f) ≤ Lref implies:561

∀i ∈ [m], (ai + bi) Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) ≤
4
√
ai + bi ln(1/η)

√
2 ln(2/δ)√

νηξ2
. (38)

We can apply Hoeffding’s lemma once for each i ∈ [m], to the binary variable of whether on not562
f(x) ∈ {ci, c̄i}, where x is sampled (ai+bi) times to produce the dataset Ai∪Bi. By union bound,563
we have, with probability at least 1− δ, L(f) ≤ Lref implies:564

∀i ∈ [m],
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ ≤√
(ai + bi) ln(2m/δ)/2 +

4
√
ai + bi ln(1/η)

√
2 ln(2/δ)√

νηξ2
≤

√
(ai + bi)

√
2

(√
ln(2m/δ)

2
+

4
√

ln(2/δ) ln(1/η)√
νηξ2

)
≤

√
(ai + bi)

√
2
ln(1/η)

ηξ2

(√
ln(2/δ)

2
+

√
ln(m)

2
+

4
√
ln(2/δ)√
ν

)
,

(39)

where in the last line, we used triangle inequality and the fact that η = 1/(enΞξ/2+1) ≤ 1/(eξ/2+1),565
which in turn implies:566

ln(1/η)

ηξ2
≥ (eξ/2 + 1) ln(eξ/2 + 1)

ξ2
> 1 (∀ξ > 0). (40)

Note that, because each ai + bi contains at least a ν-fraction of the total
∑m

i ai + bi, we must have567
m ≤ 1/ν. Then:568 √

ln(m)

2
≤
√
ln(1/ν)

2
≤ 1

2
√
e
√
ν
≤ 1

2
√
e
√

ln(2)

√
ln(2/δ)√

ν
≤
√
ln(2/δ)

2
√
ν

(41)

Therefore (and noting ν < 1), we can combine terms in Equation 39 to conclude:569

∀i ∈ [m],
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ ≤ 5
√

2(ai + bi) ln(2/δ) ln(1/η)√
νηξ2

. (42)

Now, to ensure ∀i ∈ [m],
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ ≤ ϵ(ai + bi), we need,570

∀i ∈ [m],
5
√

2(ai + bi) ln(2/δ) ln(1/η)√
νηξ2

≤ ϵ(ai + bi) (43)



Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

or:571

∀i ∈ [m],
50 ln(2/δ) ln2(1/η)

νϵ2η2ξ4
≤ ai + bi (44)

as provided by Equation 20. Note that because the implication572

L(f) ≤ Lref → ∀i ∈ [m],
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ ≤ ϵ(ai + bi) (45)

holds with probability at least (1− δ), this implication can only be broken, by the case that573

L(f) ≤ Lref ∧ ∃i ∈ [m] :
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ > ϵ(ai + bi) (46)

with probability at most δ.574

Corollary C.2. Let D∗(s∗h, s
∗
h+1) be the multiset of observation pairs (xh, xh+1) from both575

τA and τB in Algorithm 1, such that ϕ∗
h(xh) = s∗h and ϕ∗

h+1(xh+1) = s∗h+1, and let576
D∗

A(s
∗
h, s

∗
h+1) and D∗

B(s
∗
h, s

∗
h+1) be the elements of D∗(s∗h, s

∗
h+1) originating from τA and τB577

respectively. Further, let c̄s∗h,s∗h+1
∈ Ξ be the smallest value in Ξ greater than or equal to578

ln(|D∗
A(s

∗
h, s

∗
h+1)|/|D∗

B(s
∗
h, s

∗
h+1)|), and cs∗h,s∗h+1

∈ Ξ be the largest value in Ξ less than or equal579

to ln(|D∗
A(s

∗
h, s

∗
h+1)|/|D∗

B(s
∗
h, s

∗
h+1)|).580

Further, assume the realizability condition that ϕ∗
h ∈ Φh and ϕ∗

h+1 ∈ Φh+1.581

If ∀s∗h, s∗h+1, such that s∗h can transition to s∗h+1,582

|D∗(s∗h, s
∗
h+1)| ≥

50(ln(2|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νϵ2η2ξ4
(47)

then with probability at least 1 − δ, the function f(·) found in Line 10 of Algorithm 2 will be such583
that, ∀s∗h, s∗h+1, such that s∗h can transition to s∗h+1,584 ∣∣∣{x ∈ D∗(s∗h, s

∗
h+1)|f(x) ̸∈ {cs∗h,s∗h+1

, c̄s∗h,s∗h+1
}
∣∣∣ ≤ ϵ

∣∣∣D∗(s∗h, s
∗
h+1)

∣∣∣. (48)

585

Proof. By application of Lemma C.1 with δ′ := δ/(|Φ|2 · (nΞ + 1)(N
2
s )) ≤ δ/|Fh|, we have that,586

for any fixed hypothesis f ′, the probability that L(f ′) ≤ Lref and Equation 48 is violated is at most587
δ/|Fh|. Then by union bound, the probability that any such f ′ exists in Fh is at most 1−δ. However,588
by the realizability assumption, we know that an f∗ exists in F which achieves loss L(f∗) = Lref589
and also that respects Equation 48. (In particular, this f∗ is simply (ϕ∗

h, ϕ
∗
h+1) composed with a590

mapping from the representations corresponding to each (s∗h, s
∗
h+1) to the corresponding cs∗h,s∗h+1

or591
c̄s∗h,s∗h+1

which minimizes Equation 22.) Therefore with probability at least 1− δ, the f ∈ Fh which592
minimizes L(f) must respect Equation 48.593

We now give two simple results for classification under corrupted data. First though, we prove a594
minor claim, which is simply some “deferred algebra” for the lemmas which follow:595

Proposition C.3. Consider a multiset Z = {z1, ..., zm} of items zi ∈ [0, 1], and a modified multiset596
Z ′, also consisting of items in [0, 1], such that the symmetric difference between Z and Z ′ has size597
at most k (that is, Z ′ can be constructed from Z by inserting and/or removing a total of at most k598
items). Then599 ∣∣∣∣∣∑

Z

z

|Z|
−
∑
Z′

z′

|Z ′|

∣∣∣∣∣ ≤ k

m
(49)
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Proof. Define Zremoved,Zadded, and Zkept such that Z = Zkept + Zremoved, and Z ′ = Zkept +600
Zadded. Note that k = |Zremoved| + |Zadded| and m = |Zremoved| + |Zkept|. We first as-601
sume that |Z| ≥ |Z ′|. In other words, we assume |Zremoved| ≥ |Zadded|. Then we can con-602
struct Z ′ from Z by (1) removing some arbitrary subset Z ′

removed ⊆ Zremoved from Z , such that603
|Z ′

removed| = |Zadded|; then (2) inserting the samples Zadded; and then finally (3) removing the604
multiset Z ′′

removed = Zremoved \ Z ′
removed. Let the intermediate set constructed after step (2) be605

Z ′′ := (Z \ Z ′
removed) ⊎ Zadded = Z ′ ⊎ Z ′′

removed. Note that |Z| = |Z ′′|, and606 ∣∣∣∣∣∑
Z

z

|Z|
−
∑
Z′′

z′′

|Z ′′|

∣∣∣∣∣ =
∣∣∣∣∣∑

Z

z

|Z|
−
∑
Z′′

z′′

|Z|

∣∣∣∣∣ =
1

|Z|

∣∣∣∣∣∑
Z

z −
∑
Z′′

z′′

∣∣∣∣∣ = 1

|Z|

∣∣∣∣∣ ∑
Z′

removed

z −
∑

Zadded

z

∣∣∣∣∣ ≤ |Zadded|
|Z|

(50)

Additionally, note that:607 ∣∣∣∣∣∑
Z′′

z′′

|Z ′′|
−
∑
Z′

z′

|Z ′|

∣∣∣∣∣ = 1

|Z ′′|

∣∣∣∣∣∑
Z′′

z′′ −
|Z ′′|

∑
Z′ z′

|Z ′|

∣∣∣∣∣ =
1

|Z|

∣∣∣∣∣ |Z ′|
∑

Z′ z′

|Z ′|
+

|Z ′′
removed|

∑
Z′′

removed
zr

|Z ′′
removed|

−
|Z ′′|

∑
Z′ z′

|Z ′|

∣∣∣∣∣ =
1

|Z|

∣∣∣∣∣ |Z
′′
removed|

∑
Z′′

removed
zr

|Z ′′
removed|

−
|Z ′′

removed|
∑

Z′ z′

|Z ′|

∣∣∣∣∣ =
|Z ′′

removed|
|Z|

∣∣∣∣∣
∑

Z′′
removed

zr

|Z ′′
removed|

−
∑

Z′ z′

|Z ′|

∣∣∣∣∣ ≤ |Z ′′
removed|
|Z|

(51)

Finally, by triangle inequality, we have that608 ∣∣∣∣∣∑
Z

z

|Z|
−
∑
Z′

z′

|Z ′|

∣∣∣∣∣ ≤
∣∣∣∣∣∑

Z

z

|Z|
−
∑
Z′′

z′′

|Z ′′|

∣∣∣∣∣+
∣∣∣∣∣∑
Z′′

z′′

|Z ′′|
−
∑
Z′

z′

|Z ′|

∣∣∣∣∣
≤ |Zadded|

|Z|
+

|Z ′′
removed|
|Z|

≤ |Zadded|
|Z|

+
|Zremoved|

|Z|
≤ k

m

(52)

as desired. A similar argument can be made for the case of |Z| < |Z ′|.609

We now give the classification lemmas:610

Lemma C.4. Given a finite hypothesis class G ⊆ X → {0, 1}, and two datasets (multisets) A,B ⊂611
X , let:612

g′ := argmin
g∈G

L(g)

L(g) := 1

|A|
∑
a∈A

(1− g(a)) +
1

|B|
∑
b∈B

g(b).
(53)

Let n = min(|A|, |B|), and assume that A and B are constructed as follows:613

• A′ ∼ D|A′|
A614

• B′ ∼ D|B′|
B615

• At most a total of m arbitrary (non-i.i.d.) samples are either added to or removed from A′ or B′,616
or moved from A′ to B′ or vice-versa, to create A and B.617



Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Then, if618

n ≥ 8m and n ≥ 128

7
ln(2|G|/δ) (54)

then with probability at least 1− δ,619

• If DA = DB , then L(g′) > 1/2620

• Conversely, if DA and DB have disjoint support, such that some g∗ ∈ G maps all elements in the621
support of DA to 1 and all elements in the support of DB to 0, then L(g′) ≤ 1/2.622

Proof. Define623

Lclean(g) :=
1

|A′|
∑
a∈A′

(1− g(a)) +
1

|B′|
∑
b∈B′

g(b). (55)

Then, fix any g ∈ G. From some algebra (see Proposition C.3), it can be shown that624

Lclean(g)−
2m

n
≤ L(g) ≤ Lclean(g) +

2m

n
(56)

Now, note that Lclean is the sum of |A′| random variables bounded on [0, 1/|A′|], and |B′| random625
variables bounded on [0, 1/|B′|], all of which are i.i.d. Then, by Hoeffding’s Lemma and Equation626
56, with probability 1− δ/|G|:627

E[Lclean(g)]−

√(
1

|A′|
+

1

|B′|

)
ln(2|G|/δ)/2− 2m

n
< Lclean(g)−

2m

n
≤ L(g)

≤ Lclean(g) +
2m

n
< E[Lclean(g)] +

√(
1

|A′|
+

1

|B′|

)
ln(2|G|/δ)/2 + 2m

n

(57)

Because |A′|, |B′| ≥ n − m, and applying union bound over all g ∈ G, we have, with probability628
1− δ:629

∀g ∈ G, E[Lclean(g)]−
√

ln(2|G|/δ)
n−m

− 2m

n
< L(g) < E[Lclean(g)]+

√
ln(2|G|/δ)
n−m

+
2m

n
. (58)

Note that:630
∀g ∈ G, E[Lclean(g)] = 1− Ex∈DA

[g(x)] + Ex∈DB
[g(x)]. (59)

If DA = DB , then ∀g ∈ G, E[Lclean(g)] = 1, so by Equation 58, we have, with probability 1− δ:631

∀g ∈ G, 1−
√

ln(2|G|/δ)
n−m

− 2m

n
≤ L(g), (60)

and in particular:632

1−
√

ln(2|G|/δ)
n−m

− 2m

n
< L(g′). (61)

Conversely, if DA and DB have disjoint support, such that some g∗ ∈ G maps all elements in the633
support of DA to 1 and all elements in the support of DB to 0, then we have:634

E[Lclean(g
∗)] = 1− Ex∈DA

[g∗(x)] + Ex∈DB
[g∗(x)] = 1− 1− 0 = 0. (62)

Then, with probability at least 1− δ:635

L(g′) ≤ L(g∗) <
√

ln(2|G|/δ)
n−m

+
2m

n
. (63)

To complete the proof, we only need to show that636 √
ln(2|G|/δ)
n−m

+
2m

n
≤ 1

2
. (64)
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With m ≤ n/8, this condition becomes:637 √
8 ln(2|G|/δ)

7n
≤ 1

4
. (65)

or638

n ≥ 128

7
ln(2|G|/δ) (66)

639

Lemma C.5. Given a finite hypothesis class Φ ⊂ X → N, and N datasets (multisets)640
D1, D2, ...DN ⊂ X , let:641

ϕ′ := argmin
ϕ∈Φ

L(ϕ)

L(ϕ) :=
N∑
i=1

[
1

|Di|
∑
x∈Di

(1− 1(ϕ(x)=i))

]
(67)

Let n = mini(|Di|), and assume that each Di is constructed as follows:642

• ∀i, D′
i ∼ D|D′

i|
i643

• At most a total of m arbitrary (non-i.i.d.) samples are arbitrarily moved between the datasets D′
i,644

to create the datasets Di.645

Additionally, assume that ∃ϕ∗ ∈ Φ : ∀i, x ∼ Di =⇒ ϕ∗(x) = i. Then, if646

n ≥ 8m

ϵ
and n ≥ 64N ln(2|Φ|/δ)

7ϵ2
(68)

then with probability at least 1− δ,647

∀i ∈ [N ], Pr
x∼Di

(ϕ′(x) = i) ≥ 1− ϵ. (69)

648

Proof. Define649

Lclean(ϕ) :=

N∑
i=1

 1

|D′
i|
∑
x∈D′

i

(1− 1(ϕ(x)=i))

 . (70)

Then, fix any ϕ ∈ Φ. From Proposition C.3 (regarding each transfer of a sample as removing a650
sample into one multiset D′

i, and inserting a new sample into another) we see that:651

Lclean(ϕ)−
2m

n
≤ L(ϕ) ≤ Lclean(ϕ) +

2m

n
(71)

Now, note that Lclean is the sum of |D′
1| random variables bounded on [0, 1/|D′

1|], and |D′
2| random652

variables bounded on [0, 1/|D′
2|], et cetera, all of which are i.i.d. Then, by Hoeffding’s Lemma and653

Equation 71, with probability 1− δ/|Φ|:654

E[Lclean(ϕ)]−

√√√√√
∑

i∈[N ]

1

|D′
i|

 ln(2|Φ|/δ)/2− 2m

n
< Lclean(ϕ)−

2m

n
≤ L(ϕ)

≤ Lclean(ϕ) +
2m

n
< E[Lclean(ϕ)] +

√√√√√
∑

i∈[N ]

1

|D′
i|

 ln(2|Φ|/δ)/2 + 2m

n

(72)
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Because ∀i, |D′
i| ≥ n − m, and applying union bound over all ϕ ∈ Φ, we have, with probability655

1− δ, ∀ϕ ∈ Φ, :656

E[Lclean(ϕ)]−

√
N ln(2|Φ|/δ)
2(n−m)

− 2m

n
< L(ϕ) < E[Lclean(ϕ)] +

√
N ln(2|Φ|/δ)
2(n−m)

+
2m

n
. (73)

Then we have:657

E[Lclean(ϕ
′)] < L(ϕ′) +

√
N ln(2|Φ|/δ)
2(n−m)

+
2m

n
≤

L(ϕ∗) +

√
N ln(2|Φ|/δ)
2(n−m)

+
2m

n
< E[Lclean(ϕ

∗)] +

√
2N ln(2|Φ|/δ)

(n−m)
+

4m

n
=√

2N ln(2|Φ|/δ)
(n−m)

+
4m

n
.

(74)

Where we use the fact that, by the definition of ϕ′ as a minimizer, L(ϕ′) ≤ L(ϕ∗), as well as the658
fact that, by definition, Lclean(ϕ

∗) = 0.659

Also, note that by the definition of Lclean, we have that, for any ϕ,660

E[Lclean(ϕ)] =
∑
i∈[N ]

1− Pr
x∼Di

(ϕ(x) = i) (75)

Then, for any particular i ∈ [N ], we have that 1 − Prx∼Di
(ϕ(x) = i) ≤ E[Lclean(ϕ)]. Then, by661

Equation 74, we have, ∀i ∈ [N ]:662

1− Pr
x∼Di

(ϕ′(x) = i) <

√
2N ln(2|Φ|/δ)

(n−m)
+

4m

n
. (76)

By algebra, our desired result (Equation 69) holds as long as:663 √
2N ln(2|Φ|/δ)

(n−m)
+

4m

n
≤ ϵ (77)

Which follows from the given conditions on n.664

C.3 Main Proof of Theorem 3.1665

Here, we present the proof of Theorem 3.1. We first split out correctness proof of the main recursive666
step of the algorithm as a lemma:667

Lemma C.6. In Algorithm 2, suppose that the ground-truth data coverage assumptions given in668
Equations 4,5, and 6 all hold. Additionally, assume that the relative coverage lower-bound η can be669
written in the form670

η =
e−nΞα/8

1 + e−nΞα/8
(78)

for some non-negative integer nΞ. Further, assume that for each s∗ ∈ S∗
h, there exists some s ∈671

Sh that represents approximately the same set of observations. In particular, each index in [|τA|]672
appears in at most one set DA,h(s) for some s (and likewise for [|τB |] and DB,h(s)), and there673
exists some bijective mapping σh : Sh → S∗

h, such that for most indices j in [|τA|]674

j ∈ DA,h(σ
−1
h (ϕ∗

h((τA)h[j]))) (79)
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and for most indices j in [|τB |]675

j ∈ DB,h(σ
−1
h (ϕ∗

h((τB)h[j]))), (80)

with at most a combined β(|τA|+ |τB |) indices in either dataset for which this does not hold.676

For any ϵ such that:677

ϵ <
ν

8
− β, (81)

and678

ϵ+ β ≤ qthresh. <
ν(1− ϵ)

2
− β, (82)

where qthresh. is the threshold defined on Line 11 of the algorithm, assume that679
∀s∗h, s∗h+1, such that s∗h can transition to s∗h+1,680

|D∗(s∗h, s
∗
h+1)| ≥

12800(ln(4|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νϵ2η2α4
. (83)

Then, with high probability, for each s∗ ∈ S∗
h+1, there exists some s ∈ Sh+1 that represents ap-681

proximately the same set of observations. In particular, each index in [|τA|] appears in at most one682
set DA(s) for some s (and likewise for [|τB |] and DB(s)), and there exists some bijective mapping683
σh+1 : Sh+1 → S∗

h+1, such that for most indices j in [|τA|]684

j ∈ DA,h+1(σ
−1
h+1(ϕ

∗
h+1((τA)h+1[j]))) (84)

and for most indices j in [|τA|]685

j ∈ DB,h+1(σ
−1
h+1(ϕ

∗
h+1((τB)h+1[j]))), (85)

with at most a combined (β+ ϵ)(|τA|+ |τB |) indices in either dataset for which this does not hold.686

Proof. We first show that the datasets of observation pairs Dnew_pairs defined in Line 21 of the algo-687
rithm each correspond uniquely to a pair of ground truth latent states in S∗

h×S∗
h+1, such that no pair688

of observations is included in more than one such Dnew_pairs sets, and, with high probability, each689
pair of observations x, x′ is included in the correct Dnew_pairs corresponding to (ϕ∗

h(x), ϕ
∗
h+1(x

′)),690
with up to at most (β + ϵ)(|τA|+ |τB |) exceptions.691

For any s∗pred ∈ S∗
h, consider any two distinct s∗, s′∗ ∈ S∗

h+1, such that692
|D∗(s∗pred, s

∗)|, |D∗(s∗pred, s
′∗)| > 0.693

Recall the assumption that, without loss of generality,694

eα ·
πemp.
B (s′∗|s∗pred)
πemp.
B (s∗|s∗pred)

≤
πemp.
A (s′∗|s∗pred)
πemp.
A (s∗|s∗pred)

, (86)

Multiplying both sides by πemp.
A (s∗|s∗pred)/π

emp.
B (s′∗|s∗pred) yields695

eα ·
πemp.
A (s∗|s∗pred)

πemp.
B (s∗|s∗pred)

≤
πemp.
A (s′∗|s∗pred)

πemp.
B (s′∗|s∗pred)

, (87)

From the definition of πemp., this is:696

eα ·
|D∗

A(s
∗
pred, s

∗)|/|D∗
A(s

∗
pred)|

|D∗
B(s

∗
pred, s

∗)|/|D∗
B(s

∗
pred)|

≤
|D∗

A(s
∗
pred, s

′∗)|/|D∗
A(s

∗
pred)|

|D∗
B(s

∗
pred, s

′∗)|/|D∗
B(s

∗
pred)|

. (88)

Multiplying both sides by |D∗
A(s

∗
pred)|/|D∗

B(s
∗
pred)| and taking the logarithms yields:697

α+ ln

(
|D∗

A(s
∗
pred, s

∗)|
|D∗

B(s
∗
pred, s

∗)|

)
≤ ln

(
|D∗

A(s
∗
pred, s

′∗)|
|D∗

B(s
∗
pred, s

′∗)|

)
. (89)
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By the definitions of cs∗h,s∗h+1
and c̄s∗h,s∗h+1

in Corollary C.2, and the fact that ξ = α/4, we see that698
there must be at least two values in Ξ between c̄s∗pred,s∗ and cs∗pred,s′∗ ; that is to say:699

cs∗pred,s∗ ≤ c̄s∗pred,s∗ < c̄s∗pred,s∗ + ξ < cs∗pred,s′∗ − ξ < cs∗pred,s′∗ ≤ c̄s∗pred,s′∗ (90)

Therefore, by Corollary C.2 we have, with probability at least 1 − δ/2, for any s∗ such that700
|D∗(s∗pred, s

∗)| > 0:701

• At least (1 − ϵ)|D∗(s∗pred, s
∗)| of the samples in D∗(s∗pred, s

∗) will be mapped by f to cs∗pred,s∗702
or c̄s∗pred,s∗703

• for some choice of ĉs∗pred,s∗ ∈ {cs∗pred,s∗ , c̄s∗pred,s∗}, at least (1 − ϵ)/2 · |D∗(s∗pred, s
∗)| of the704

samples in D∗(s∗pred, s
∗) will be mapped to ĉs∗pred,s∗ .705

• By definition, {cs∗pred,s∗ , c̄s∗pred,s∗} ⊂ {ĉs∗pred,s∗ − ξ, ĉs∗pred,s∗ , ĉs∗pred,s∗ + ξ}.706

• Furthermore, for no two states s∗, s′∗, with ĉs∗pred,s∗ ∈ {cs∗pred,s∗ , c̄s∗pred,s∗} and ĉs∗pred,s′∗ ∈707

{cs∗pred,s′∗ , c̄s∗pred,s′∗} chosen arbitrarily, will the sets {ĉs∗pred,s∗ − ξ, ĉs∗pred,s∗ , ĉs∗pred,s∗ + ξ} and708

{ĉs∗pred,s′∗ − ξ, ĉs∗pred,s′∗ , ĉs∗pred,s′∗ + ξ} overlap (By Equation 90).709

• Recall that by assumption, |D∗(s∗pred, s
∗)| ≥ ν(|τA| + |τB |). Therefore, at least (ν(1 −710

ϵ)/2)(|τA|+ |τB |) of the samples in D∗(s∗pred, s
∗) will be mapped to ĉs∗pred,s∗ .711

• The total number of samples in D∗(s∗pred, s
′∗), over all choices of s′∗, which are not mapped by712

f to a value in the respective set {ĉs∗pred,s′∗ − ξ, ĉs∗pred,s′∗ , ĉs∗pred,s′∗ + ξ}, is at most ϵ|D∗(s∗pred)|.713

• ϵ|D∗(s∗pred)| ≤ ϵ(|τA|+ |τB |).714

Therefore, as long as (ν(1− ϵ)/2) > ϵ, then among the pairs in D∗(s∗pred, ·) := ⊎s′∗D∗(s∗pred, s
′∗),715

if there is any z ∈ Ξ such that > ϵ(|τA|+ |τB |) of the pairs are mapped by f to z, then we know that716
the set of elements in D∗(s∗pred, ·) which are mapped to {z − 1, z, z + 1} contains at least (1 − ϵ)717
of the elements of the set D∗(s∗pred, s

∗) for some s∗; furthermore, such a z exists for each possible718
value of s∗ where |D∗(s∗pred, s

∗)| > 0, and, for distinct s∗ and s′∗, these values ({z − ξ, z, z + ξ}719
and {z′ − ξ, z′, z′ + ξ}) are non-overlapping. Consequently, by identifying subsets of D∗(s∗pred, ·)720
of size greater than ϵ(|τA|+ |τB |) that f maps to the same value, and expanding these subsets to the721
elements in D∗(s∗pred, ·) mapped to adjacent values in Ξ, we can partition D∗(s∗pred, ·) into subsets722
corresponding to each D∗(s∗pred, s

∗), with at most ϵ|D∗(s∗pred, ·)| errors.723

Note however that we do not have access to D∗(s∗pred, ·), only to pairs(spred) (where σh(spred) =724
s∗pred). However, by assumption, D∗(s∗pred, ·) and pairs(spred) differ (in terms of symmetric differ-725
ence) by at most β(|τA|+ |τB |). Therefore, we claim that, if726

ϵ+ β ≤ qthresh. <
ν(1− ϵ)

2
− β (91)

then, we can identify values of ĉs∗pred,s′∗ (for some s′∗) as those values jξ− nΞξ
2 for which (as shown727

in Line 20 of Algorithm 2):728

pred_succ[j] > qthresh.(|τA|+ |τB |), (92)

and, conversely, if729

pred_succ[j] ≤ qthresh.(|τA|+ |τB |), (93)

then jξ − nΞξ
2 does not correspond to some c̄s∗pred,s′∗ or cs∗pred,s′∗ .730

To validate this claim, note that if Equation 91 holds, then:731
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# of samples (x, x′) in pairs(spred) such that f(x, x′) = z, if ̸ ∃s∗ : z ∈ {c̄s∗pred,s∗ , cs∗pred,s∗} ≤

# of samples (x, x′) in D∗(s∗pred) such that f(x, x′) = z, if ̸ ∃s∗ : z ∈ {c̄s∗pred,s∗ , cs∗pred,s∗}

+ |pairs(spred) \ D∗(s∗pred)| ≤
ϵ(|τA|+ |τB |) + |pairs(spred) \ D∗(s∗pred)| ≤

(Note this line:) ϵ(|τA|+ |τB |) + β(|τA|+ |τB |) ≤
qthresh.(|τA|+ |τB |) <

(ν(1− ϵ)/2)(|τA|+ |τB |)− β(|τA|+ |τB |) ≤
(ν(1− ϵ)/2)(|τA|+ |τB |)− |D∗(s∗pred) \ pairs(spred)| ≤

# of samples (x, x′) in D∗(s∗pred) such that f(x, x′) = z, if ∃s∗ : z ∈ {c̄s∗pred,s∗ , cs∗pred,s∗}

− |D∗(s∗pred) \ pairs(spred)| ≤
# of samples (x, x′) in pairs(spred) such that f(x, x′) = z, if ∃s∗ : z ∈ {c̄s∗pred,s∗ , cs∗pred,s∗}

Therefore, for any s∗pred, we can define:732

D∗
new_pairs(s

∗
pred, j, j

′) := {(x, x′)|(x, x′) ∈
j′⊎

k=j−1

pred_succ∗[k]} (94)

where733

pred_succ∗[k] := {(xh, xh+1) ∈ D∗(s∗pred, ·)|f(xh, xh+1) = kξ − nΞξ

2
}. (95)

If j and j′ are chosen as in Line 19 and 20 of Algorithm 2, then for any pair (s∗pred, s
∗) there734

is a unique set D∗
new_pairs(s

∗
pred, j, j

′) containing at least a (1 − ϵ) fraction of the samples in735
D(s∗pred, s

∗). Furthermore, note that by assumption, summing over all pairs (s∗pred, s
∗), the sets736

D∗
new_pairs(s

∗
pred, j, j

′) and Dnew_pairs can differ by at most β(|τA| + |τB |) members in total (be-737
cause all datasets D∗(s∗pred, ·) and pairs(spred) differ by at most this many members in total). There-738
fore, we have shown that, with high probability, each pair of observations x, x′ is included in the739
correct Dnew_pairs corresponding to (ϕ∗

h(x), ϕ
∗
h+1(x

′)), with up to at most (β + ϵ)(|τA| + |τB |)740
exceptions. (Furthermore, different sets Dnew_pairs are non-overlapping by construction.) Then we741
only need to show that, with high probability, Line 26 of Algorithm 2 will only merge two sets Dnew742
if these sets correspond to the same latent state. By Lemma C.4, taking a union bound over all pairs743
of latent-state sequential latent-state pairs, we have, with probability at least 1− δ/2 that, if744

ν ≥ 8(β + ϵ) and |D∗(s∗h, s
∗
h+1)| ≥

128

7
ln(4 · (# of latent state pairs) · |Gh+1|/δ) (96)

then the classifiers trained in Line 25 will have loss greater than 1/2 if and only if the two datasets745
being compared correspond to the same latent state. Also note that (# of latent state pairs) ≤ 1/ν;746
then, under the assumption that |Gh+1| ≤ |Φ|(≤ |Φ|2), we have747

128

7
ln(4 · (# of latent state pairs) · |Gh+1|/δ) ≤

128

7
(ln(4|Φ2|/δ) + ln(1/ν)). (97)

Note that by Equation 40 (and ξ = α/4), we have748

16 ln(1/η)

ηα2
≥ 1, (98)

so we can write:749

128

7
ln(4·(# of latent state pairs)·|Gh+1|/δ) ≤

128 · 256
7

(ln(4|Φ2|/δ) + ln(1/ν)) ln2(1/η)

η2α4
. (99)
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Also noting that ϵ ≤ 1, and ln(4|Φ|2/δ) ≥ ln(4) ≥ 1, and 1/ν ≥ {ln(1/ν), 1}, we have:750

128

7
ln(4 · (# of latent state pairs) · |Gh+1|/δ) ≤

128 · 256
7

(ln(4|Φ2|/δ) + ln(4|Φ2|/δ)) ln2(1/η)
νϵ2η2α4

.

(100)
Then, because N2

s ln(nΞ + 1) > 0, and 128 · 256 · 2/7 ≤ 12800, we have751

128

7
ln(4 · (# of latent state pairs) · |Gh+1|/δ) ≤

12800(ln(4|Φ2|/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νϵ2η2α4
.

(101)
Therefore, the number of observations of each latent state pair |D∗(s∗h, s

∗
h+1)| assumed in Equation752

83 is sufficient to ensure that all datasets Dnew will be merged correctly. Then, by union bound, with753
probability at least 1 − δ, the samples corresponding to the indices in DA,h+1(s) and DB,h+1(s)754
will correspond to the observations of a unique latent state s∗, with up to at most (β+ϵ)(|τA|+ |τB |)755
exceptions.756

The following lemma is essentially Theorem 3.1, with a minor additional assumption:757

Lemma C.7. Assume that Algorithm 2 is given datasets τA and τB such that the assumptions given758
in Equations 1, 4,5, and 6 all hold. Additionally, assume that the relative coverage lower-bound η759
can be written in the form760

η =
e−nΞα/8

1 + e−nΞα/8
(102)

for some non-negative integer nΞ. Then, for any given δ, ϵ0 ≥ 0, if761
∀s∗h, s∗h+1, such that s∗h can transition to s∗h+1,762

|D∗(s∗h, s
∗
h+1)| ≥

819200H2(ln(8H|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νη2α4
·max

(
1

ν2
,

1

ϵ20ν
′2

)
,

(103)
then, with probability at least 1 − δ, the encoders ϕ′

h returned by the algorithm will each have763
accuracy on at least 1− ϵ0, in the sense that, under some bijective mapping σh : Sh → S∗

h,764

∀s∗ ∈ S∗
h, Pr

x∼Q(s∗,P e
h)
(ϕ′

h(x) = σ−1
h (ϕ∗

h(x))) ≥ 1− ϵ0. (104)

765

Proof. Note that the conclusion applies at timestep h = 1 vacuously: there is only one latent state,766
and ϕ′

1 returns a constant value. Further, DA,1(s1) and DB,1(s1) contain exactly the sets of trajec-767
tories in τA and τB which visit s∗1 at step 1.768

For subsequent steps, we apply Lemma C.6 recursively, with:769

• ϵ = min( ν
8H , ν′ϵ0

8H )770

• β = (h− 1)ϵ771

• δLemma C.6 := δ/(2H).772

Note that the assumptions in Equations 81 and 82 are met, because:773

ϵ = ϵ+ β − β = hϵ− β < Hϵ− β = Hmin(
ν

8H
,
ν′ϵ0
8H

)− β <
Hν

8H
− β <

ν

8
− β (105)

and774

ϵ+ β = hmin

(
ν

8H
,
ν′ϵ0
8H

)
≤ hν

8H
= qthresh. (106)
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and775

qthresh. =

qthresh. + β +
ϵν

2
− β − ϵν

2
=

hν

8H
+ (h− 1 + ν/2)min

(
ν

8H
,
ν′ϵ0
8H

)
− β − ϵν

2
≤

hν

8H
+

(h− 1 + ν/2)ν

8H
− β − ϵν

2
<

2Hν

8H
− ϵν

2
− β <

ν(1− ϵ)

2
− β.

(107)

Also, note that the assumption of Equation 83 is met (by comparison to Equation 103, with ϵ =776
min( ν

8H , ν′ϵ0
8H ) and δLemma C.6 := δ/(2H).) Finally, the inductive hypothesis, that DA,h(s) and777

DB,h(s) correspond to observations of some state s∗, with at most β(|τA| + |τB |) exceptions, can778
be shown to hold. In particular, at iteration h ≥ 2, we have that the input dataset has at most779
βh(|τA|+|τB |) = (βh−1+ϵ)(|τA|+|τB |) errors: we can confirm that βh = (h−1)ϵ = (h−2)ϵ+ϵ =780
βh−1 + ϵ for all h ≥ 2, with β1 = 0 (because there are no errors in DA,1(s1) and DB,1(s1)).781

Therefore, by induction and union bound, we can conclude that, with probability at least 1−δ/2, for782
each h ∈ [H] and each s∗ ∈ S∗

h, there exists some s ∈ Sh that represents approximately the same783
set of observations. In particular, each index in [|τA|] appears in at most one set DA(s) for some s784
(and likewise for [|τB |] and DB(s)), and there exists some bijective mapping σh : Sh → S∗

h, such785
that for most indices j in [|τA|]786

j ∈ DA,h(σ
−1
h ((ϕ∗(τA)h[j]))) (108)

and for most indices j in [|τA|]787

j ∈ DB,h(σ
−1
h (ϕ∗((τB)h[j]))), (109)

with at most a combined (H−1)min( ν
8H , ν′ϵ0

8H )(|τA|+ |τB |) indices in either dataset for which this788

does not hold. Note in particular that fewer than ν′ϵ0
8 (|τA|+ |τB |) indices will be mis-categorized at789

any timestep. Then, by application of Lemma C.5 with n ≥ ν′(|τA|+ |τB |), m = ν′ϵ0
8 (|τA|+ |τB |),790

δLemma C.5 = δ/(2H) and ϵ = ϵ0, we have that as long as:791

ν′(|τA|+ |τB |) ≥
64 ·maxi |Si| · ln(4H|Φ|/δ)

7ϵ20
, (110)

then, by union bound, with probability at least 1− δ, the encoders learned on line 46 of Algorithm 2792
will each have accuracy at least 1− ϵ0 as in Equation 104, as desired. All that remains to be shown793
is that Equation 110 holds. Note that this equation can be re-written as:794

|τA|+ |τB | ≥
64 ·maxh |Sh| · ln(4H|Φ|/δ)

7ν′ϵ20
. (111)
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Then, we have:795

|τA|+ |τB | ≥
|D∗(s∗h, s

∗
h+1)| ≥

819200H2(ln(8H|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νη2α4
·max

(
1

ν2
,

1

ϵ20ν
′2

)
≥

819200H2(ln(8H|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

ϵ20ν
′2νη2α4

≥

(by Equation 98)
3200H2(ln(8H|Φ|2/δ) +N2

s ln(nΞ + 1))

ϵ20ν
′2ν

≥

(log. of integer ≥ 0)
3200H2 ln(8H|Φ|2/δ)

ϵ20ν
′2ν

≥

(By definition, (1/ν′ ≥ max
h

|Sh|)
3200H2 maxh |Sh| ln(8H|Φ|2/δ)

ϵ20ν
′ν

≥

64 ·maxh |Sh| · ln(4H|Φ|/δ)
7ν′ϵ20

(112)

completing the proof.796

Finally, we prove Theorem 3.1:797

Theorem 3.1. Assume that CRAFT (Algorithm 2 in the Appendix) is given datasets τA and τB such798
that the assumptions given in Equations 1, 4,5, and 6 all hold. Then there exists an799

f

(
H, |Φ|, Ns,

1

δ
,
1

ϵ0
,
1

ν
,
1

ν′
,
1

η
,
1

α

)
∈ O∗

(
H2(ln(|Φ|/δ) +N2

s )

νη2α4
·max

(
1

ν2
,

1

ϵ20ν
′2

))
, (16)

where O∗(f(x)) := O(f(x) logk(f(x))), such that for any given δ, ϵ0 ≥ 0, if ∀s∗h, s∗h+1 such that s∗h800

can transition to s∗h+1, |D∗(s∗h, s
∗
h+1)| ≥ f

(
H, |Φ|, Ns,

1
δ ,

1
ϵ0
, 1
ν ,

1
ν′ ,

1
η ,

1
α

)
, then, with probability801

at least 1− δ, the encoders ϕ′
h returned by the algorithm will each have accuracy on at least 1− ϵ0,802

in the sense that, under some bijective mapping σh : Sh → S∗
h,803

∀s∗ ∈ S∗
h, Pr

x∼Q(s∗,P e
h)
(ϕ′

h(x) = σ−1
h (ϕ∗

h(x))) ≥ 1− ϵ0. (17)

Proof. This final theorem follows close-to-directly from Lemma C.7, with the caveat that we no804
longer assume that η = (e−nΞα/8)/(1 + e−nΞα/8) for some non-negative integer nΞ. To do this, it805
is important to note that the provided η is a lower bound: if we replace η in the algorithm with any806
arbitrary η′ ≤ η, then Lemma C.7 will still apply, with a sample-complexity in terms of η′ rather807
than η. Similarly, α is a lower-bound, and so Lemma C.7 will apply for any smaller α′. Our task is808
then to replace η and α with some η′ and α′, such that the asymptotic sample complexity as given809
by Equation 16 still applies. For simplicity, we can write the sample-complexity given in Equation810
103 as:811

|D∗(s∗h, s
∗
h+1)| ≥

(C1 + C2 ln(nΞ + 1)) ln2(1/η′)

η′2α′4 , (113)

where C1 and C2 are independent of α, η, and nΞ. Now, we must choose η′ such that:812

η ≥ η′ =
e−nΞα/8

1 + e−nΞα/8

(
=

1

1 + enΞα/8

)
. (114)

An obvious choice is to take (recalling that by definition, η ≤ 1/2, so ln(η−1 − 1) > 0):813

nΞ := ⌈8 ln(η−1 − 1)/α⌉ (115)



Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

so that:814

η′ =
1

1 + e⌈8 ln(η−1−1)/α⌉α/8 (116)

Then we have:815

η ≥ η′ ≥ 1

1 + e(8 ln(η−1−1)/α+1)α/8
≥ η · e−α/8 (117)

so that we have sufficient samples for Lemma C.7 if:816

|D∗(s∗h, s
∗
h+1)| ≥

(C1 + C2 ln(8 ln(η
−1 − 1)/α′ + 2))(ln(1/η) + α′/8)2eα

′/4

η2α′4 , (118)

Strictly speaking, Equation 118 with α′ = α satisfies the “big-O” asymptotic complexity given in817
Equation 16 in terms of 1/α and 1/η as these quantities approach infinity. However, if we just take818
α′ = α, notice that Equation 118 seems to require an exponentially large number of samples for819
large α. Recall though that α is a lower bound, so we can simply select an arbitrarily lower α′ in820
the case of large α. In particular, if we take α′ = min(1, α), then α′ ≤ α as needed, and (ignoring821
lower-order polynomial terms and all logarithmic factors), the dependence of our sample complexity822
on α becomes:823

min(eα/4/α4, e1/4/14) = min(eα/4/α4, e1/4) ≤ C · 1/α4 (119)

so that the sample complexity is bounded even for large α.824

These modifications to η and α are performed on Lines 1-3 of Algorithm 2, so the overall asymptotic825
sample complexity given in Equation 16 holds for the algorithm overall, with the input α and η.826

D Experiment Details827

For the hyperparameters η, ν and α of CRAFT, we use the “population” values based on the ground-828
truth dynamics and policy. In other words, we set:829

eα = min
s∗h,s

∗
h+1,s

′∗
h+1

max

[(
PrπA

(s′∗h+1|s∗h)/PrπA
(s∗h+1|s∗h)

PrπB
(s′∗h+1|s∗h)/PrπB

(s∗h+1|s∗h)

)
,

(
PrπB

(s′∗h+1|s∗h)/PrπB
(s∗h+1|s∗h)

PrπA
(s′∗h+1|s∗h)/PrπA

(s∗h+1|s∗h)

)]
=

0.75/0.25

0.5/0.5
= 3

(120)

so α = ln(3), and830

ν = min
s∗h,s

∗
h+1

PrπA
(s∗h, s

∗
h+1) + PrπB

(s∗h, s
∗
h+1)

2
=

1/4 + 1/16

2
=

5

32
, (121)

and831

η = min
s∗h,s

∗
h+1

PrπB
(s∗h, s

∗
h+1)

PrπA
(s∗h, s

∗
h+1) + PrπB

(s∗h, s
∗
h+1)

=
1/16

1/4 + 1/16
=

1

5
. (122)

For the “Single observation classification” and “Paired observation classification” baselines, we se-832
lect the feature ϕh (or feature-pair ϕh, ϕh+1) such that the mutual information between ϕh(xh)833
(respectively, (ϕh(xh), ϕh+1(xh+1))) and the agent’s identity is maximized on the collected trajec-834
tories.835

The “Average Encoder Accuracy” was computed based on the “population” behavior of the envi-836
ronment: that is, the accuracy of encoder ϕ′

h which extracts the feature (s∗h XOR eih) from xh is837
computed as max(Pr(eih = 1),Pr(eih = 0)), which can be determined analytically from the param-838
eters of Markov chain ei. For a given algorithm, this quantity was then averaged over timesteps for839
the returned encoder.840

For the “Paired observation classification” baseline, note that for timesteps h = 2 through h = H−1,841
the suggested baseline could refer two distinct encoders: the encoder ϕh such that ϕh(xh) and some842
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ϕh+1(xh+1) are together most informative at predicting the agent observing (xh, xh+1); or the843
encoder ϕ′

h such that ϕ′
h(xh) and some ϕh−1(xh−1) are together most informative at predicting the844

agent observing (xh−1, xh). In reporting the final encoder accuracies, took the average accuracy of845
these two encoders.846


