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ABSTRACT

We study decision making with structured observation (DMSO). Previous work
[FKQR21, FGH23] has characterized the complexity of DMSO via the decision-
estimation coefficient (DEC), but left a gap between the regret upper and lower
bounds that scales with the size of the model class. To tighten this gap, [FGQT23]
introduced optimistic DEC, achieving a bound that scales only with the size of the
value-function class. However, their optimism-based exploration is only known
to handle the stochastic setting, and it remains unclear whether it extends to the
adversarial setting.

We introduce Dig-DEC, a model-free DEC that removes optimism and drives
exploration purely by information gain. Dig-DEC is always no larger than opti-
mistic DEC and can be much smaller in special cases. Importantly, the removal
of optimism allows it to handle adversarial environments without explicit reward
estimators. By applying Dig-DEC to hybrid MDPs with stochastic transitions and
adversarial rewards, we obtain the first model-free regret bounds for hybrid MDPs
with bandit feedback under linear reward and several general transition structures,
resolving the main open problem left by [LWZ25].

We also improve the online function-estimation procedure in model-free learning:
For average estimation error minimization, we refine [FGQ*23]’s estimator to
achieve sharper concentration, improving their regret bounds from T%to T3 (on-
policy) and from T' 80T (off-policy). For squared error minimization in Bellman-
complete MDPs, we redesign their two-timescale procedure, improving the regret
bound from T3 to v/T. This is the first time a DEC-based method achieves
performance matching that of optimism-based approaches [JLM21, XFB*23] in
Bellman-complete MDPs.

1 INTRODUCTION

[FKQR21, FGH23] developed the framework of decision-estimation coefficient (DEC) that character-
izes the complexity of general online decision making problems and provides a general algorithmic
principle called Estimation-to-Decision (E2D). In the state-of-the-art result by [FGH23], regret lower
and upper bounds are established with a gap of log | M|, where M is the model class where the
underlying true model lies. This log | M| reflects the price of model estimation. Essentially, the
lower bound in [FGH23] only captures the complexity of decision-making / exploration, while the
upper bound additionally includes the complexity of model estimation. Since E2D is a model-based
algorithm that learns over models, it necessarily incurs this cost of model estimation.

On the other hand, a large class of existing reinforcement learning (RL) algorithms are model-free
value-based algorithms, which only estimate value functions. To better capture the decision-making
complexity in this case, [FGQ'23] proposed a variant of E2D, called optimistic E2D, that achieves
a regret upper bound characeterized by the complexity measure called optimistic DEC. However,
unlike the model-based DEC/E2D framework [FKQR21, FGH23] which drives exploration only
through information gain, optimistic DEC/E2D leverages the optimism principle to drive exploration,
which may not be fundamental and could lead to sub-optimal performance in certain cases. Overall,
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the precise tradeoff between model estimation complexity and decision-making complexity, along
with the gap between upper and lower bounds, remain largely unsolved.

A parallel line of reserach seeks to relax the assumption that the environment remains stationary.
[FRSS22] and [XZ23] studied the pure adversarial setting where the environment can choose a
different model in every round. In this case, their algorithms only estimate the optimal policy
and the price of estimation becomes log |II| where II is the policy class. In such pure adversarial
environment, however, the decision-making complexity could become prohibitively high and is
often vacuous in Markov decision processes (MDPs). A simpler and more tractable setting is the
that of hybrid MDPs where the transition is stochastic but the reward is adversarial. This setting
has been studied in various settings: tabular MDPs [NGSA13, RM19, JJL20, SERM20], linear
(mixture) MDPs [LWL21, DLWZ23, SKM23, LWZ24, KZWL23, LZZ24], and low-rank MDPs
[ZYW124, LMWZ24]. The work of [LWZ25] first leveraged the DEC framework to obtain results
for bilinear classes. However, they only gave a model-based algorithm (incurring large estimation
error) and a model-free algorithm that requires full-information reward feedback, leaving the model-
free bandit case open.

We provide a unified framework that advances both directions discussed above:

* In the stochastic setting, we introduce a new model-free DEC notion, Dig-DEC, that improves over
the optimistic DEC of [FGQ™23]. Our approach does not rely on the optimism principle, but ad-
heres more closely to the general idea of DEC that drives exploration purely with information gain.
For canonical settings such as bilinear classes or Bellman-complete MDPs with bounded Bellman
eluder dimension or coverability, we recover their complexities with improved 7T'-dependence in
the regret, while in some constructed settings, the improvement can be arbitrarily large.

* We establish the first sublinear regret for model-free learning in hybrid bilinear classes and Bellman-
complete coverable MDPs with linear reward and bandit feedback, resolving the open question in
[LWZ25].

* We improve the online function estimation procedure both in the case of average estimation error
and squared estimation error. This allows us to improve the T' & /T 8 regret of [FGQ™23] to

T3 / T'% in the former case, and improve the T3 regret of [FGQ123] to v/T in the latter case. The
techniques we use to achieve them could be of independent interest.

Tables that compare our results with previous ones are provided in Appendix A. Notably, our
framework generalizes the Algorithmic Information Ratio (AIR) framework of [XZ23] and [LWZ25],
substantially simplifying the analysis while enhancing algorithmic flexibility (Section 4). This
generalization may facilitate future development in this line of research.

We remark that, similar to [FGQ*23], the term “model-free” learning in our work does not mean
that the learner has no access to the model class M or has computational constraints. Instead, it only
means that the regret bound is independent of the size of the model set M. This implicitly restricts
the learner from making fine-grained estimation over M.

2 PRELIMINARY

We consider Decision Making with Structured Observations (DMSO) [FKQR21]. Let M be a model
space, I a policy space, O an observation space, and V' a value function. For simplicity, we |II] is
finite. Each model M € M is a mapping from policy space II to a distribution over observations
A (O). Every model M € M is associated with a value function V) : IT — [0, 1] that specifies the
expected payoff of policy w € II in model M. We denote my; = argmax, cr; Vas (7).

The learner interacts with the environment for 7" rounds. In eachround ¢ = 1, ..., T, the environment
first chooses a model M; € M without revealing it to the learner. Then the learner selects a policy
m¢ € 11, and observes an observation o, ~ M;(-|m;). The regret with respect to policy 7* € Il is

T
Reg(m*) = D (Var, (1) — Var, (m)) -

Markov Decision Process A Markov decision process is defined by a tuple (S, A, P, R, H, s1),
where S is the state space, A is the action space, P : S x A — A(S) is the transition kernel,
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R : S8 x A — A([0,1]) is the reward distribution (with abuse of notation, we also use R(s,a)
to denote the expected reward R(s,a) € [0,1]), H the horizon, and s; the initial state. Assume
S = UhH:1 Sp with §; NS = O fori # j,and S; = {s1}. Inevery step h = 1,2,..., H within
an episode, the learner observes the state s;, € Sj, and selects an action a;, € A. The learner then
transitions to the next state via s, 41 ~ P(-|sp, ap), which is only supported on Sy 1, and receives

the reward rj, ~ R(sp, ap). We assume that the reward is constrained such that Zthl ry, € [0,1] for
any policy almost surely. Given a policy 7 : S — A, the Q-function and V' -function for s € Sy, are
defined by Q™ (s,a) = E™ [Zg:h ry|sp = s,ap =aland V7 (s) = Q7 (s,m(s)). The Q-function
and V-function of an optimal policy 7* are abbreviated with @* and V*. We use Q™ (s, a; M) and
Q* (s, a; M) to denote the Q)-functions under model M = (P, R).

Learning in MDPs is a DMSO problem where M = P x R with P being the set of transition
kernels and R the set of reward functions. A round in DMSO corresponds to an MDP episode,
and observation o = (s1,a1,71, S2, 02,72, ..., 7x) is the trajectory. For any function g, we write
E™M[g(0)] = Eounr(.mlg(0)]. If g(o) only depends on (s1, a1, s2,az,...,ag), we also write it

as E™ P [g(0)]. We use Var(r) = EM [ ] to denote the expected total reward obtained by

policy 7 in MDP M, and dZ’M(s, a) (or dZ’P (s, a)) the occupancy measure on step h under policy
7 and model M (or transition P).

2.1 ®-RESTRICTED LEARNING

For DMSO, [FKQR21, FGH23] and [CMB25] studied the stochastic setting where M; = M*
for all . They showed that the DEC characterizes the regret lower bound and captures the complexity
of decision making. They proposed model-based algorithms with near-optimal upper bounds up to
the model estimation complexity log |M|. On the other hand, [FRSS22] and [XZ23] studied the pure
adversarial setting where M, arbitrarily changes over time. For this setting, they identified that DEC
of the convexified model class characterizes the regret lower bound, which could be significantly
larger than DEC of the original model class. Their upper bound replaces log | M| by log |II|, reflecting
that they perform policy-based learning without finegrained estimation of the model.

Several works go beyond pure model learning or pure policy learning. [FGQ™23] considered model-
free value learning in the stochastic setting where only the value function is estimated, aiming to
only incur log | F| estimation complexity, where F is the value function set. [LWZ25] and [CR25]
considered the hybrid setting where part of the environment is stochastic and part adversarial, and the
target of estimation is only on the optimal policy and the stochastic part of the environment.

We base our presentation in [LWZ25]’s formulation, which can cover all cases mentioned above.

Definition 1 (Infosets and ® [LWZ25, CR25]). Let ® be a collection of subsets of M x 11 satisfying:
1) The subsets are disjoint, i.e., for any ¢, ¢’ € ®, if ¢ # ¢/, then ¢ N ¢’ = (. 2) Every ¢ contains a
single policy, i.e., if (M, m),(M', ") € ¢, then ™ = 7'. We call a ¢ € ® an information set (infoset).
Due to 2) above, each ¢ € ® is associated with a unique policy. We denote this policy as m4. We also
define ¥ éU¢€¢¢gM x II.

With Definition 1, for given p € A(®), p € A(Il), v € A(V), and n > 0, [LWZ25] defined ®-AIR:

. 1
AlRﬁ(p, v p) = EWNPE(M,W*)NVEONM(~|7T) VM(W ) - VM(Tr) - EKL(V¢('|7T?0)7 p) ; (1

where vy (-|m,0)! is the posterior over ¢ given (m,0), which satisfies v(¢|m,0) o
(M,xyeg VM, )M (o|m). ®-AIR can characterize the decision-making complexity in the ®-
restricted environment defined below:
Definition 2 (®-resitricted environment [LWZ25, CR25]). A ®-restricted environment is an (adver-
sarial) decision making problem in which the environment commits to ¢* € ® at the beginning of the
game and henceforth selects (My, wg«) € ¢* in every round t arbitrarily based on the history.
Theorem 3 ([LWZ25]). For ®-restricted environment defined in Definition 2, there exists an algo-
rithm ensuring E[Reg(m4+)] < E[ Y, min, max,, AIR?(p, vip)| + @.

'We use the notational convention in [LWZ25]: the bold subscript in v4(-|, 0) specifies the identity of the
variable represented by - ’, instead of a realized value of that variable. The subscript may be omitted when clear.
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2.2 RESULTS AND OPEN QUESTIONS IN [LWZ25]

[LWZ25]’s main results are based on ®-AIR: For model-free learning in stochastic MDPs, [LWZ25]
obtained /T regret for linear Q*/V* MDPs (before their result, the best known rate is T%). Unfor-
tunately, their algorithm cannot handle other canonical settings such as bilinear classes, MDPs with
bounded Bellman-eluder dimension, or MDPs with bounded coverability. For model-based learning
in hybrid MDPs where the transition is fixed but the reward function changes arbitrarily over time,
[LWZ25] obtained near-optimal regret bounds for general cases up to a log(|P||II|) factor.

An attempt was made by [LWZ25] to handle model-free learning in hybrid MDPs based on an
extension of the optimistic DEC approach [FGQ"23]. However, their result only handles full-
information reward feedback. Extension to the bandit setting is challenging under this framework as
the optimistic update requires an explicit construction of the reward estimator.

In this work, we focus on model-free learning in both stochastic and hybrid MDPs. Our results
generalize those of [LWZ25] in both directions: Our framework handles all canonical settings for
model-free learning in stochastic MDPs, improving previous results by [FGQ™23]. It also handles
model-free learning in hybrid MDPs with bandit feedback under the same reward assumption as
[LWZ25].

3 SETTINGS AND ASSUMPTIONS

Below, we show how to view model-free learning in stochastic and hybrid MDPs as learning in
®-restricted environments (Definition 2), and introduce the assumptions used in the paper.

3.1 THE STOCHASTIC SETTING

Definition 4 (Stochastic setting). In the stochastic setting, the environment commits to M* at the
beginning of the game and sets My = M™ in every round t.

For model-free learning in the stochastic setting, we assume the following:

Assumption 1 (® for model-free learning in stochastic MDPs). In the stochastic setting, in addition
to (M,I1,0,V) in the DMSO framework (Section 2), the learner is provided with a function set F.
Each model M € M induces a function f € F. Assume that models inducing the same f have
the same Q* function and hence the same optimal policy s (for example, an F that contains all
possible Q* functions satisfies this, though F could also provide additional information). With this,
® is created by partitioning M according to the function they induces: Define ® = {¢5 : f € F}
where ¢y = {(M,mpr) = M induces f}. With abuse of notation, we write M € ¢ to indicate that
(M, ) € ¢. We denote by my the common optimal policy for all M € ¢, and by fy(s,a) the
Q* function induced by M € ¢, i.e, fs(s,a) = Q*(s,a; M) for all M € ¢. Define fy(s) =
max, f4(s,a). We also use V4 (my) := f4(s1) to denote the value of policy T4 under any model in

3.2 THE HYBRID SETTING

Definition 5 (Hybrid setting). In the hybrid setting, the environment commits to P* € P at the
beginning of the game. In every round, the environment selects R; € ‘R arbitrarily based on the
history and sets My = (P*, Ry).

For model-free learning in the hybrid setting, the definition of ® becomes more involved as it
partitions over three dimensions (II, P, R) in different ways. Formally, the partition should satisfy
the following Assumption 2. We provide an illustration in Figure 1 in Appendix B to help the reader
understand this assumption.

Assumption 2 (P for learning in hybrid MDPs [LWZ25]). The learner is provided with a function set
FT for every m € 11. For any fixed T, each transition P € ‘P induces a function f € F". ® is created
by partitioning P x R x 1l firstly according to w, and then according to the f the transition induces in
F7: Define ® = {¢ s :m€Il, f € F*}, where ¢ y = {(P,R,7) : Pinduces f in F*,R € R}.
We write P € ¢ if there exists R, m such that (P, R,7) € ¢, and write M = (P,R) € ¢ if P € ¢.
We denote by 7y the unique € 11 defining ¢ € ®.
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The next assumption describes the requirement for the function set in our work.

Assumption 3 (Unique reward to value mapping given ¢ [LWZ25]). Let ® satisfy Assumption 2.
Assume that for any fixed ¢ and P, P’ € ¢, it holds that Q™ (s,a; (P, R)) = Q™ (s,a; (P', R))
forany s,a, R. We denote fy(s,a; R) = Q™ (s,a; (P, R)) for any P € ¢, and define f4(s; R) =
Eory(s)[fe (s, a; R)]. We also use Vg r(1g) = fo(s1; R) to denote the value of policy my under
(P, R) forany P € ¢.

To understand Assumption 2 and Assumption 3 better, we take adversarial linear MDP [LWZ24]
for example. In adversarial linear MDPs, the learner is given a known feature mapping ¢(s,a) €
R?, such that the reward function can be represented as R(s,a) = ¢(s,a) " 6 and the transition
as P(s'|s,a) = ¢(s,a) "wp(s’). In this case, one can show that for any m, Q" (s,a; P1, R) =
Q™ (s,a; P2, R) Vs,a, R if and only if E™"1[¢(sy,, ar)] = E™2[¢(sp, ap)] for all h. Based on
Assumption 3, we would like to put such P; and P; in the same partition under 7 (see Figure 1 for
an illustration). In other words, in Assumption 2, each f € F™ corresponds to a unique value of
(E™P[¢(sn, an)])nerr € R, and as long as two P’s share this value, they both belong to ¢ ;.

We remark that while Assumption 3 is a reasonable generalization of Assumption 1 to the hybrid
setting, it does not capture all learnable hybrid MDPs we are aware of. For example, if the transition
space is partitioned according to Assumption 3 for hybrid low-rank MDPs with unknown reward
feature, then log |®| will scale polynomially with the number of possible feature mappings. In
contrast, the work of [LMWZ24] handles this case with the regret scaling only logarithmically with
the number of possible feature mappings. There is still technical difficulty in handling this case in
our framework, and we leave it as future work.> We also remark that the previous work by [LWZ25]
has the same limitation even in the full-information case.

Therefore, in this work, for the hybrid setting, we consider linear reward with known features, formally
stated in the next assumption.

Assumption 4 (Linear reward with known feature). There exists a feature mapping ¢ : S x A — R?
known to the learner such that for any R € R, R(sn,an) = ¢(sn,an) " 0n(R) for all (sy,ap) €
Si, x A for some 0;,(R) € R%,

While the stochastic setting (Definition 4) and the hybrid setting (Definition 5) are special cases of
®-restricted environments (Definition 2), the adversary in these special cases has additional restriction:
for example, in the stochastic setting, the adversary is allowed to choose M * € ¢* at the beginning
of the game, but has to stick to M™* throughout interactions. Similarly, P* has to be fixed in the
hybrid setting. This is different from the general ®-restricted setting where the adversary is allowed
to choose M, € ¢* arbitrarily in every round. However, using such a “coarser” partition ® to model
these settings is crucial for obtaining an improved estimation error that only scales with the size of
the value function set.

4 GENERAL FRAMEWORK

This section introduce a general framework and complexity measure for the ®-restricted environment,
which covers model-free learning in stochastic and hybrid MDPs as special cases. For given p €
A(®), define for p € A(II) and v € A()

1
AR (9,5 p) = Ernp E(at mt ) | Var(m*) = Vir () — 5Dﬂ(’/||p) ; )

for some divergence measure D™ (v||p) convex in v for any 7 and p. ®-AIR defined in Eq. (1) is a
special case where D™ (v||p) = EnrmiEomns(r) [KL(vg (-|7, 0), p)]. The general algorithm designed
based on Eq. (2) is shown in Algorithm 1.

’The algorithm of [LMWZ24] begins with reward-free exploration to learn a feature mapping, followed by
online learning over that fixed feature mapping. While this two-phase approach could potentially be integrated
into our DEC framework in special cases, our goal is to explore approaches that avoid such design to address
more general scenarios.
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Algorithm 1 General Framework

Input: Set of partitions ® and its union ¥ (defined in Section 2.1).

p(6) = 1/|2], Vo € .

fort=1,2,...,7do

Set py, v as the solution of the following minimax optimization (defined in Eq. (2)):

AIRYP (p, v; py). 3
pén&h) e (p,v; pt) 3)

Execute m; ~ py, and observe o; ~ My (+|m).
Update p;+1 = POSTERIORUPDATE (v, p, ¢, Ot ). 4

Algorithm 1 has two main steps. First, given the infoset distribution p; € A(®), solve the policy
distribution p, and the worst-case world distribution v; in the saddle-point problem Eq. (3). This
is similar to the previous AIR framework in [XZ23] and [LWZ25]. After taking policy m; ~ p;
and receiving the observation o, ~ M;(+|m;), perform a posterior update by incorporating new
information from o; (Eq. (4)) and obtain the new infoset distribution p;+1 € A(®P). In [XZ23] and
[LWZ25], this posterior update step is simply p:1+1(¢) = v:(¢p|m, 0r), but it could take different
forms in our case depending on the specific divergence D instantiated later.

The ability of our algorithm to handle a general divergence D is enabled by our new analysis
techniques. The update rule p;1(¢) = vi(@p|mt, 0¢) in [XZ23] and [LWZ25] and the corresponding
regret analysis heavily relies on a “constructive minimax theorem” [XZ23] that is restricted to strictly
convex divergence measures and somewhat cumbersome to generalize to divergence other than KL.
Our new analysis, on the other hand, is more flexible and nicely connects to the standard analysis of
mirror descent.

Our analysis goes as follows. For any (M, ) € M X II, denote §57,» € A(M xII) as the Kronecker
delta function centered at (M, 7). Thatis, 0pr,-(M,7) = 1 and dpr-(M’, 7") = 0 for any other
(M’,7"). By a simple first-order optimality condition (Lemma 18) and the fact that v; is a best
response to p; (Eq. (3)), we have (recall the definition of 74+ in Definition 2)

1
Ernpe | Vg, () — Var, () — 5D”(5Mt,w ||Pt)} o

1 1
< % ErmEatanyes | Var(n) = Vir(5) = 207 0l11)| = Brp | SBr68 o (Bt )

where Breg - (x,y) = F(z) — F(y) — (VF(y),z — y) > 0 is the Bregman divergence defined with
a convex function F'. Since p; is minimax solution in Eq. (3), after rearrangement of Eq. (5) and
summation over t, we get

T
> Vit () = B, [V, (7)) ©)

-1 Est

T T

1
< min max AIR¢ V5 + — E;n [D” OM, 71 — Breg - OM, . 7su sV },
= 22 pEAln veA(w) (p, v pe) ﬂ; Dt (6, 4) [p¢) gD (‘Hpt)( My,mg +)

where we use the definition in Eq. (2). From Eq. (6), we have the following theorem.

Theorem 6. Algorithm I achieves E[Reg(my+)] < E[ Y, min, max, AIR Pp,vipe) + Esq

The POSTERIORUPDATE in Eq. (4) has to be further designed in order to minimize Est. In Ap-
pendix C, we show how our new analysis recovers previous results of [XZ23] and [LWZ25] easily.
We remark that when recovering [LWZ25]’s result for model-based learning in hybrid MDPs with
, while they
achieve it with a more complex two-level algorithm. This shows the flexibility of our framework. In
the next two subsection, we discuss about the two terms in the regret bound of Theorem 6.
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4.1 DIVERGENCE MEASURE IN ALGORITHM 1 AND dig-dec

To handle the MDPs of interest in Section 3, we will instantiate Algorithm 1 with the following
divergence D:

D™ (v]lp) = EatsBomrt( iy [KL (v(:17,0),0) + o, [ D7 (0]10D)]] ™

where D" (¢|| M) is another divergence that measures the discrepancy between infoset ¢ and model
M. Two choices of D will be introduced later in Section 4.2: averaged estimation error and squared
estimation error.

With this definition of D7 (v||p), the first term in the regret bound in Theorem 6 can be bounded by
the following complexity:

®,D
0

dig—dec,?jé max min max AIR D,V;p)

PEA(P) pe A(II) vEA(T)

= max min max
PEA(P) pEA(IT) vEA(D)

1 1 —
Brs bt ey | Vi (5°) = Vir() = T KL 17,0),9)] = 2B (D700
(®)

As both the KL and the D terms in Eq. (8) are measures of information gain, we call this complexity
notion dual information gain decision-estimation coefficient (Dig-DEC). In Section 6, we compare in
more detail how DigDEC is upper bounded by optimistic DEC — the complexity achieved by the
prior work [FGQ™23] in the stochastic setting, and when the improvement can be arbitrarily large.

4.2 POSTERIORUPDATE AND BOUNDS FOR Est

The D we would like to use in Eq. (7) depends on the MDP class we consider. Below, we describe
two classes of problems that are associated with different choices of D, under which the achievable
rates for Est are different.

4.2.1 AVERAGE ESTIMATION ERROR

Assumption 5 (Average estimation error). There exists an estimation function £y, : ® x O —
[~ B, B]N for every h such that for any ¢ € ® and any M € ¢, it holds that for any 7 € TI,

E™M [0 (¢;0n)] = 0.

Additionally, assume that the adversary is restricted such that for any 7, ¢ and t,t' € [T, it holds
that E™M[£3,(¢; 0,)] = E™Me [£3,(¢5 01,)].

The estimation function ¢ in Assumption 5 will be instantiated as the average Bellman error in
Lemma 8 for all concrete examples. In this case, Assumption 5 is essentially the standard realizability
assumption. We adopt the more general terminology of “estimation error” following [DKL*21].

Theorem 7. Assume Assumption 5 holds. Then Algorithm 4 with Algorithm 2 as POSTERIORUPDATE
L =T =T 2
with D" (¢|| M) = Dy, (]| M) £ max;je(n) grg Soney (B [n(¢;01);])" ensures

E[Est] < N log(|®[)T3.

Lemma 8. In the stochastic setting, Assumption 1 implies Assumption 5 with N = 1 estimation
function £ (p;01) = fo(sn,an) — rh — fe(Sny1). In the hybrid setting, Assumption 2, Assump-
tion 3 and Assumption 4 imply Assumption 5 with N = d estimation functions lp(¢;0p); =
fo(snyan;e;) —(sn,an) " e; — fo(sni1; €;), where e as a reward represents the reward function
defined as R(s,a) = (s, a);.

In order to minimize Est in Eq. (6), we have to obtain an estimator of D, (¢||M*) for all ¢.
This can only be achieved via batching, which results in the design of Algorithm 4: In each epoch
k=1,2,...,T/7, the learner uses the same policy 7, to interact with the MDP for 7 episodes. While
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similar epoching mechanism has been proposed in [FGQ™23], our construction of the estimator
improves their rate of Est from VT to T5. To see the difference, consider the case N = 1

. . . . . . . * 2 .
in the stochastic setting, in which the goal is to approximate > 1, (E™-M 10, (5 01)])". With
observations (o', ..., 0") drawn from M*(-|7) in epoch k, we construct an unbiased estimator as

Li(o) =0, (2 ZZ? Cn(9303,)) (232721 241 £n(8;0},)), while [FGQ™ 23] constructs a biased

estimator as Li(¢) = Y1, (257, £n(e; 02))2. The detail of this estimation procedure is
provided in Appendix F.1.

4.2.2 SQUARED ESTIMATION ERROR

Under stronger assumptions on the estimation function, we can improve the rate further. This is
motivated by the class of Bellman-complete MDPs, given as followed.

Definition 9 (Bellman completeness for the stochastic setting). A © satisfying Assumption 1 is
Bellman complete under model M = (P, R) if for any ¢ € ®, there exists an ¢’ € ® such that for
any s, a,

fd)’ <S7 a) = R(Sv a) + Es’wPHs,a) [f(ﬁ(sl)}'
A ® is Bellman complete if it is Bellman complete under all model M € M3.

Definition 10 (Bellman completeness for the hybrid setting). A ® satisfying Assumption 3 is Bellman
complete under transition P if for any ¢ € ®, there exists an ¢' € ® such that my = w4 and for any
s,a, R,

f¢>’ (Sv a; R) = R(87 a) + Es’wPHs,a) [f(ﬁ(sl; R)]
A ®© is Bellman complete if it is Bellman complete under all transition P € P.
Assumption 6. There exists £, : ® x ® x O — [0, B?] for every h and Ty : ® — ® for every M

such that for any ¢ and any M € ¢, it holds that ¢ = Tyr¢. Furthermore, for any ¢', ¢ € ®, any
M e M, and any w € 1],

4B EM [64(¢), $50n) = §u(Tard di0n)] = E™M [(€0(6/, d50n) = &0(Tard, d:0n))°)

Additionally, assume that the adversary is restricted such that Ty, ¢ = T, ¢ for all ¢ and all
t,t e [T).

Similar to Assumption 5, the function £ in Assumption 6 will be instantiated as the square Bellman
error in Lemma 12 for all concrete examples. In this case, Assumption 6 corresponds to the standard
realizability plus Bellman-completeness assumption.

Theorem 11. Assume Assumption 6 holds. Then Algorithm 1 with Algorithm 3 as POSTERIORUP-
DATE with D" (¢]|M) = D (8| M) £ Faz Y4, E™M [6(6, 65 0n) — &n(Tard, 5 0n)] ensures
E[Est] < log?|®|.

Lemma 12. In the stochastic setting, Assumption I together with Bellman completeness (Definition 9)
implies Assumption 6 with the estimation function &, (¢, ¢;0n) = (for (Shyan) — h — f(Sn+1))?
and B?> = 1. In the hybrid setting, Assumption 2, Assumption 3 and Assumption 4 together
with Bellman completeness (Definition 10) imply Assumption 6 with the estimation function
En(®'sds0n) = [(for(sn,anse;) — @(sn,an)"ej — fo(sni1se;))jelall® and B> = d, where

e; as a reward represents the reward function defined as R(s,a) = (s, a);.

With Assumption 6, POSTERIORUPDATE no longer needs to rely on batching. We leverage a
two-timescale POSTERIORUPDATE learning procedure similar to that of [FGQ™23], which in turn
builds on [AZ22]. We refine their approach so Est can be bounded by a constant, improving over
[FGQT23]’s T3 bound. In addition, our approach comes with a simpler regret analysis. Our
POSTERIORUPDATE features a two-layer learning structure with a biased loss on the top layer.
It is related to model selection algorithms with comparator-dependent second-order bounds (e.g.,
[CLW21]), but also has its special structure not seen in prior work. Thus, we believe it is of
independent interest. The detail of this estimation procedure is provided in Appendix F.2.

31n fact, it suffices to assume Bellman completeness only under the ground-truth model M™* (as in [FGQ™23)).
However, it is without loss of generality to assume Bellman completeness under all M € M, as one can
preprocess the model set M by eliminating models under which Bellman completeness does not hold. For
simplicity, we assume the latter. Similar for Definition 10.
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5 APPLICATIONS

By Theorem 6, the worst-case regret of Algorithm 1 is ), min, max,, AIR?’D(p, v;p) + Est/n <
Tdig—dec,q; Doy Est/7. In Section 4.2, we provided bounds on Est for two types of D, i.e., D,, and

Dsq. Below, we provide upper bounds for dig-decf’D in concrete settings associated with each D.

5.1 STOCHASTIC SETTINGS

For the stochastic setting, we consider MDP class M and its associated ® with bounded bilinear
rank [DKL"21], Bellman-eluder dimension [JLM21], and coverability [XFB*23]. The results are
summarized in Table 1. The on-policy/off-policy in Table 1 should not be confused with the standard
on-policy/off-policy training in standard RL. Instead, they are two subclasses of the bilinear class
[DKL*21] and correspond to the Q-type/V -type Bellman eluder dimension in [JLM21]. The on-
policy case has smaller regret because the executed policies provides sufficient exploration to notice a
model missmatch, while in the off-policy case, the learner needs to execute an additional exploration
policy for this purpose.

Table 1: Summary of the applications in the stochastic settings. BE stands for MDPs with bounded
Bellman-eluder dimensions. Dig-DEC bounds are provided in Appendix H.3 for bilinear classes,
Appendix H.4 for BE, and Appendix H.5 for coverable MDPs. Bilinear classes marked with x are

restricted to estimation function specified in Lemma 29, under which it holds that dig-decg> Dsaq <

dig—decf]) ‘Do Band N are parameters specified in Assumption 5 or Assumption 6. The regret bound

is given by 7" - dig-decg) S /n with Est given in Theorem 7 or Theorem 11, with the optimal 7.

Settin - —
class sub-classg completeness d ig—decg)’D b BN E[Reg(mas-)]
bilinear | on-policy H?dn D, | 1 |1 H./dlog |®|T3
bilinear | off-policy VH3d APy | Doy | Al | 1| H(dAPPlog|®|)sTs
BE Q-type H2dn D.| 1 |1 H\/dlog |®|T3
BE V-type VH3dAln | Dy | 1 | 1| H(dAllog|®|)sTs
bilinear* | on-policy v H?dn Dy | 1 | - H+/dT log |®|
bilinear* | off-policy v VH3d APy | Dy | |Al | - | H(dA]?log? |®])sT5
BE Q-type v H?dn Dy | 1 | - H+/dT log |®|
BE V-type v VH3dAln | D | 1 | = | H(d|A|log?|®|)5T5
coverable - v H?dn Dy | 1 | - H+/dT log ||

We remark without giving details that in the stochastic setting, we can achieve same results in Table 1
with high-probability if we replace the Epr,Eonr(.|x) [KL(vg(:|7, 0), pt)] term by KL (v, pt) in
the definition of D in Eq. (7). This variant, however, cannot handle the hybrid setting.

5.2 HYBRID SETTINGS
For the hybrid setting, with known linear reward feature, we consider transition structure including

hybrid bilinear classes [LWZ25] and coverability [XFB™23]. While it is possible to also extend
Bellman-eluder dimension to the hybrid setting, we omit it for simplicity.

6 COMPARISON WITH PRIOR COMPLEXITIES IN STOCHASTIC MDPS

Compared with dig-decfﬁ in Eq. (8) achieved by our algorithm, the complexity of optimistic E2D
[FGQ™ 23] defined for the stochastic setting is

_ -
-dec;” = i ErrpBranEomp | Vi(ms) = Var(m) — =D ($|M)| (9
o-dec,” = max min WA EnpBaaiEony |Volmo) = Var(m) = 2D (6IM) | 9
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Table 2: Summary of the applications in the hybrid settings. Dig-DEC bounds are provided in
Appendix 1.2 for hybrid bilinear classes and Appendix 1.3 for coverable MDPs. Bilinear classes
marked with % are restricted to estimation function specified in Lemma 36, under which it holds that

dig—decf])’D“‘ < dig-dec;);’D“.

Settin - —
class sub—classg completeness dig—decg”D b B N E[Reg(ms)]
bilinear | on-policy (H5d3n)s D., 1 d d(H5log |®|)3Ts
bilinear | off-policy (HSd®|AP?n)s | Da | |A] | d | (HSdYA]?log|®|)sT
bilinear* | on-policy v (HPd*n)3 De | Vd | - d(H®log? |®|)3 T3
bilinear* | off-policy v (HSd* A?n) | Do | Vd|A| | = | (HSd*| A2 log?|®|)5T5
coverable - v (H>d*n) 3 De | Vd | - d(H®log® |®|)3 T3

for the same choices of D. Another model-free DEC in [LWZ25] is

1
decyy = i ErnpB(at,m)ow *) = Var () = =Eouns(jm) [KL(1g (¢, 0),
ecy = e min IR BrpBummy | V() = Var(m) = 2 Bomnrim) (KL (7, 0), p)

It is clear that dig-decS’D < dec?; for any non-negative divergence D. Furthermore, we have

Theorem 13. In the stochastic setting, dig-decf’)’ﬁ < o-dec;{;’5 + n for any D.

Since DECs with parameter 7 is usually of order (nd)® for some intrinsic dimension d and exponent
a < 1, Theorem 13 implies that for any setting that can be handled by optimistic E2D with a
certain D, it can also be covered by our algorithm with the same D. Compared to optimistic DEC
(Eq. (9)), Dig-DEC (Eq. (8)) has an extra KL term E ., Ens 0 B ar () [KL(vg (-], 0), p)] that can
be further decomposed into two terms KL(vg, p) + ExpBaswEomnr(.x) [KL(vg (-7, 0), v4)]. They
have different purposes: The first term KL(vy, p) is for regularization, which makes the marginal
distribution of v not overly distant from p. This is the key that allows us to avoid the optimism
mechanism in [FGQ"23] (i.e., the Vj(7y) in Eq. (9)). We remark that by regularization only, we
can recover the bounds achieved by optimistic DEC in the stochastic setting (this can be seen from
the proof of Theorem 13), though it is unclear whether it can give strict improvement. However, the
removal of optimism turns out to be important in the hybrid setting (Section 5.2) as it avoids explicit
construction of the reward estimator. The second term Ex pEns 0w Eoonr () [KL(vg (|7, 0), v4)]
is an information gain that allows Dig-DEC to strictly improve over optimistic DEC even in the
stochastic setting. This is because all common choices of D such as bilinear divergence and squared
Bellman error are mean-based and ignore distributional differences, and the KL. information gain
term can capture them. We give a toy example in the next theorem to show this, with a detailed proof
provided in Appendix J.

Theorem 14. There exists a 3-armed bandit instance where for any T > 1 andn < 1, the algorithm in
[FGQ23] suffers max, E[Reg(a)] > Q(v/T), while our algorithm achieves max, E[Reg(a)] < 1.

7 CONCLUSION

We introduced a new model-free DEC approach that removes optimism in prior work and incorporates
two information-gain terms into the AIR objective for decision making. In addition, we refined the
online function estimation procedure. Together, they yield improved regret bounds in the stochastic
setting and establish the first regret bounds for model-free learning in hybrid MDPs with bandit
feedback. Future directions include relaxing Assumption 3 and Assumption 4, and investigating the
fundamental limits of model-free learning.
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A REGRET BOUND COMPARISON WITH PREVIOUS WORK

Table 3: Regret for model-free learning in stochastic MDPs (only showing 7' dependence). “Toy
3-arm” is defined in Theorem 14. The two bounds in the same cell correspond to the cases with
on-policy and off-policy estimation.

Algorithm | Bilinear or BE + {BBellll];;f ggiﬁlgtrec_‘_o(\;i%é;}cy Toy 3-arm Exploration Mechanism
[DKL721]
[JLM21] T3 /T3 VT VT optimism
[XFB*23]
[FGQ™23] Ti / TS T3 VT information gain + optimism
Ours T3 / Ts VT 1 information gain

Table 4: Regret for learning in hybrid MDPs (stochastic transition and adversarial reward). The
model-free learning guarantees in [LWZ25] and our work cannot handle general reward but rely on
Assumption 4.

Algorithm | Bilinear + Bel{llrilalllr?eca(frgglce ?evir?;)rﬁ};olicy Model-Free | Bandit Feedback | General Reward
[LWZ25] | VT/T3 VT X v v
[LWZ25] | T3/T5 - v X X

Ours TS /Ti5 T3 v v X

B PARTITIONING OVER P x R x II FOR HYBRID MDPs

II

Figure 1: Partitioning for hybrid MDPs

Figure 1 illustrates the partition scheme over M x II = P x R x II described in Assumption 2.
Each infoset ¢ (represented by the green block in Figure 1) is associated with single policy 7, a
subset of transitions, and all reward functions. As shown in Figure 1, the partition over the P space
could be different for different 7.

14
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C OMITTED DETAILS IN SECTION 2
In this section, we show that the algorithms in [XZ23] and [LWZ25] are special cases of Algorithm 1.

C.1 RECOVERING THEOREM 3

The decision rule of [LWZ25]’s algorithm corresponds to Eq. (3) with D™(v|lp) =
EnsevEom s m) [KL(vg (-, 0), p)]. It can be shown that Bregp(, (v,v")

ErsovBomnr(r) [KL(vg (|7, 0), 4 (|7, 0))] in this case.  Furthermore, notice that when

v =0, r,., We have vg(-|m, 0) = §¢* according to Definition 2. Thus, the estimation error term in
Eq. (6) in [LWZ25]’s algorithm is

E[Est] = E

S (KL ) = Egront, (KL, ()5 e, o))})]

t=1

T
-k Z (KL(5¢*’pt) o KL(§¢*’ (Vt)¢<'|7rt’0t ] lz log d) 7Tt’)Ot)‘| )

t=1

where in the second equality we use that o; is drawn from M (-|m;). Thus, by letting prr1(0) =
ve(@|mt, 0r), their algorithm achieves E[Est] = E {Zt 1 log L )} < log - (¢*) = log|®|.

pe(d*)
Using this in Eq. (6) proves Theorem 3. The results of [XZ23] can also be recovered as they are
special cases of [LWZ25].

C.2 RECOVERING RESULTS FOR ADVERSARIAL MDP WITH FULL-INFORMATION FEEDBACK
[LWZ25]

For learning with full information feedback in the adversarial MDPs, the learner can observe the
full reward function at the end of each episode. In other words, at episode ¢, the reward function
R, : S x A — [0, 1] is part of the observation o;. In this setting, the log |TI| dependence in the regret
bound can be improved to log |.A|. To achieve this, [LWZ25] designed a two-level algorithm and
define a new notion called InfoAIR. We can recover this result by instantiating our Algorithm 1 with
® = {dp(a.).cs : P € P,as € A Vs € S} where ¢p (4,)..c = {(P,R),7*): R € R,m* =
(as)ses}, that is, partitioning M x II according to the transition kernel and the actions taken by the
policy on all states. Then define

D™ (v|lp) = Ep,r.x*)~vBonnip p(|m) Es~arp [KL(va, p(-|T,0), pa,.P)]

where Mp r denotes the MDP model with transition kernel P and reward function R, and p,_ p
denotes p’s marginal distribution over (as, P) following our notational convention. Finally, update
the posterior as p; 1 = argmin, ) s KL (pa, P, Va, P(:|Tt, 0t)). This recovers the same regret
bound as in [LWZ25] without the need for the two-level design. We also note that the analysis for
this result requires our new proof strategy in Eq. (5), as the D™ (v||p) here is not strictly convex in v
and the previous proof [XZ23, LWZ25] cannot be applied.

15
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D CONCENTRATION INEQUALITY

Lemma 15 (Freedman’s inequality [BLLV11]). Let X1, X», ... be a martingale difference sequence
with respect to a filtration §1 C Fo C - - - such that E[X|§:] = 0 and assume X; < B almost surely.
Then for any o > B, with probability at least 1 — 6,

T T
1
> X, < =Y B[X7I3] + alog(1/5). (10)
@
t=1 t=1
Lemma 16 (Empirical Freedman’s inequality). Let X1, Xo, ... be a sequence with respect to a

Siltration §1 C Fo C -+ such that B[ X{|F:] = p and assume max{X; — pus, X;} < B almost
surely. Then for any o > 4B, with probability at least 1 — 6,

T 4 T
D (= Xe) < — 3 XP + alog(1/0). (11)
t=1

t=1

Proof. Denote E;[-] = E[- | §]. We have at any time step
1 4
E; [GXP (a(Mt - X) — aQXtZ)]

1 4 1 4 2
2 2
<E |1+ a(ﬂt - X)) - S XP+ <a(”t - X)) — ath) ]

2

4
<1+E [—OKQXE + (e = X0)? + Xf)] <1

Markov inequality finishes the proof. O

Lemma 17. Let (X1,Y1),(X2,Y2) ... be a sequence with respect to a filtration §1 C 2 C -+~
such that | X;| < B and 0 < Y; < B almost surely. Furthermore, E[X{|F:] > E[Y:|§:] and
BE[X,|§:] > E[X?|S:]. Then with probability at least 1 — 6,

1< d 1
DY ENIEI <Y (xt - 414) 9B 1og(1/6). (12)
t=1 t=1

Also, with probability at least 1 — 6,
1 & 4 1
52 X< (Xt - 41@) +9Blog(1/6). (13)
t=1 t=1

Proof. Denote E,[-] = E[- | §:]. Let ¢ € [3,1] be a fixed constant, and define Z;, = c¢X; — 1V;.
Applying Lemma 15 with a = 9B gives

T

PNAVAEARS

t=1

B¢ [(Ee[Z] — Z1)*] + 9B log(1/6)

Ne}
Sl
M%

~
Il
-

E¢[Z2] + 9B log(1/6)

A
Ne}

=/ -
M’ﬂ

t=1

2
16

A
Ne}

=/ -
M’ﬂ

(281&4){3} + Et[Yf]) +9Blog(1/6)

t

> <202Et [X:] + %Et [Xt]> + 9log(1/6)

t=1

1

IN
Ol

(E:[Y;?] < BE;[Y;] because Y; € [0, B])

16



Under review as a conference paper at ICLR 2026

Rearranging:

d 22 1 d
E |z, — (25 + = < .
; t[ ; < 5 +72) Xt] 7;Zt+9310g(1/5) (14)

To prove Eq. (12), let ¢ = 1, which gives By |2, — (%" + & ) X, = B [X, - }v, - X/ >
1E.[X;]. Combining this with Eq. (14) proves Eq. (12). To prove Eq. (13), let ¢ = 1. which
gives By [ 2, — (2 + &) Xi| =Ei [3X, — 1% — 5X,] > 0. Combining this with Eg. (14) and
rearranging proves Eq. (13). O
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E MIRROR DESCENT

Lemma 18 (First-order optimality condition). For any concave and differentiable function F, if
V' € argmax, cq F'(v) for some convex set Q), then F'(v) < F(v') — Breg_p) (v, V') for any v € (L.

Proof. Define G = —F. Then G is convex and ' € argmin,, G(v'). We have by the definition of
Bregman divergence Breg(v,v') = G(v) — G(v') — (VG(V'),v — V'), and first-order optimality
condition (VG(v'),v — v') > 0. Thus, G(v) > G(v') + Breg.(v,v’), which is equivalent to
F(v) < F(V') + Breg_p) (v, 1/). O

Lemma 19. Let g : ® — [—1, 1] be any function and let v, p € A(®P). Then for any n > 0,
1
Egnr[g(0)] = Egnplg(9)] — 5KL(V7 p) <.

Proof.

Egs [9(6)] — Egplg(@)] < 2Drv(v, p) < 2/KL(vp) < %Kuu, o)+,

where we use Pinsker’s inequality and AM-GM inequality. O
Lemma 20 (Mirror descent with auxiliary terms). Let F; be a convex function over Ay, and let
ly, by € RN with (7 denoting (£;(1)%,...,,(N)?). Then the update p; = +1 and

. 1
Pra1 = argmm{ <p, Oy + 402 + bt> + Fi(p) + fKL(p,pt)}
PEAN Y

with v|(i)| < 15 and 0 < by (i) <  for all i € [N] ensures for any p* € Ay,

" <
> (i t)

=1

log N N N 1 . N
i + Z (<P e+ A0 + (", br) — 3 (pt,bt) + Fr(p*) — Fy(pe+1) — Bregp, (p 7Pt+1)>'
=1

~+

<

Proof. By Lemma 18,
1
(P41, by + 490 + by ) + Fy(pey1) + ;KL(ptﬂ,pt)

< (p* b+ 96 + b)) + F(p*) + %KL(p*,pt) — Bregg, (p*, pr41) — %KL(p*,pm)-
Rearranging gives
<pt, b+ 4’Y€§>
< (p* b+ 476) + (pr — pey1, b + 4907 + by ) — %KL(pm,pt)

+ KL(p*vpt) - KL(p*vthrl)
Y

Since Y[y (i) + 47 ()2 + by (i)| < £ 4+ 4 x (15)* + 7 < 1, by Lemma 19 we have

+ (p* — pe, be) + Fy(p*) — Fy(pe+1) — Bregp, (™, peg1). (15)

<Pt — pei1, by + 4y + bt> — —KL(pty1,P¢)

=~

<% <pt, (4 + 476? + bt)2>
< 29 {ps, (50:)%) + 27 (s, b7)

1
< (p,, vG) + B} (e, br) -

18
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Using this in Eq. (15) we get

1
(pe, 4y) < <p*7€t + 47€?> +(p*, by) — B (pe, be)
+ KL(p*apt) B KL(p*apt—‘rl)
Y

Summing over t gives the desired inequality.

+ Fi(p") — Fi(pe+1) — Bregp, (p%, pr41).
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F ESTIMATION PROCEDURES

We present the choices of POSTERIORUPDATE as standalone online learning algorithms because they
might be of independent interest.

F.1 AVERAGE ESTIMATION ERROR MINIMIZATION VIA BATCHING

Algorithm 2 Epoch-based learning algorithm for average estimation error

Input: An estimation function £}, : ® x O — [ B, B]" satisfying Assumption 5.
Parameter: 7 = T3, § = 77 N1, v = 35 ¢ = log(12N K H/9).
fork=1,2,..., K do

Receive observations o; ~ My (-|mg) forallt € T, = {(k — 1)7 +1,...,k7}.
Split Zj, into two sub-intervals of equal size:

T, ={(k=D7+1,...,(k=1)7+ 3} and I} ={(k—1)7+5+1,...,k7}.
Define for all j € [N],

H N
T 1
Le(9); = gy > [l > tu(bs00m); 7] Z bh(ds0en); |+ Ln(9) =D Li(0);.
h=1 ke ter; j=1
Let (F})tez, : A(P) — R be convex functions. Calculate
pra1 = argmin § (p, Ly + (4y + 287 L) + > Filp) + KL(P Pi) (16)
PEA(D) teT,

Lemma 21. With probability at least 1 — 0 /3, Algorithm 2 satisfies

K H
leH D2 on(9) Y max > (BTN [lh(don); ? < Zz,ok ( )+ BLk(¢)2) + 4810g(3/9).

=1 tez,” h=1 =1

Proof. By Assumption 5, for any t,¢ € Zy, it holds that
E™ M [0 (g5 0n)) = E™ M (64 (65 0n)] -
We denote 0, ,(¢) = E™ Mt [ (¢; 04)] for any t € Ty,.
Clearly, the left-hand side of the desired inequality is upper bounded by
Lf:Z:Pk ZZZ E™Me (e, (¢ o)) ZZPk ZN:EH: Cre.n(
B*H k=1 ¢ teTy j=1 h=1 ’ BQH k=1 ¢ j=1h=1

By construction, Ex[Lx(¢)] = 577 ZjV=1 Zthl Zkvh(gb)? due to the conditional independence of

the observations. Furthermore, we have Ly (¢) € [—7N, 7N]. Therefore, we can use Lemma 16 on
the sequence Xy = — 3 pi(#)Li(¢) with 3 > 77 N:

EQ—HZZpk(QS)ZZ&,h(@? < ;%: ( ) + 5Lk(¢)2> +4B10g(3/9) .

k=1 ¢ j=1h=1

Lemma 22. With probability at least 1 — /3,

ZLk 2 < KN?log?(12NKH/5).
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Proof. By Assumption 5 and Lemma 15, for any j, k, h, we have with probability 1 — 4,

> tn(@%00m)| =D a6 00n); — > E™M [0, (6% 0n)]| < By/Tlog(12/5)

tez,; tez, teT,

>l 00n)i| = | D (@ 0en); — Y E™Me[0,(¢%50p)]| < By/Tlog(12/6).

e, te;f tez}

Via a union bound over all these events, this holds simultaneously for all j, k,h. Hence with
2
probability 1 — 0, we have |Li(¢*);| < 5zigH (%B\/’/" 1og(12NKH/5)) = log(12NKH/4)

for all j, k simultaneously. Summing over j and k finishes the proof. O

Lemma 23. With probability at least 1 — 0/3, we have
K

ZLk )< 5 30 Lulé") + 4310g(6/0)

k=1

Proof. Define the random variable X}, = min{Ly(¢*), Nlog(12NKH/é)}. By Lemma 16 we
have with probability at least 1 — §/6,

Z X, < 6 Z Li(¢%)* + 4810g(6/5)

where we use that Ej [ X}] g IEk [Lk(¢*)] = 0. Finally note that with probability 1 — §/6 we have
Li(¢*) = Xy, for all k by the proof of Lemma 22. Combining both events finishes the proof.  [J

Lemma 24. With probability at least 1 — 5 Algorithm 2 satisfies

K
1 2 1
B’H >0 ok(9) D max Z (E™=Me [0, (d30)5])” < O (NTs 1og|<I)|>
k=1 & ez I3
K
+> > (Fi(0g+) = Fulprr1) — Bregg, (3p+, prs1))-
k=1teZy

Proof of Lemma 24. By union bound, the events of Lemma 21, Lemma 22, and Lemma 23 hold
simultaneously with probability 1 —§. Observe that the update of pj, (Eq. (16)) is in the form specified
in Lemma 20. Invoking Lemma 20 with by, = %Li, we get

K
1 log |®
3 <pk,Lk + Li> < Lel®) (17)
= B ¥
X 2
+y (Lk(qb*) + (47+ 6) 24 ) (Ful04+) — Fi(prs1) — Bregy, (5¢*,pk+1))> .
k=1 teLy

Chaining Lemma 22 and Lemma 23,

i(Lkw) + (14 3) et

k=1
< 4B1og(6/9) + (47 + 2) KN?log?(12NK H/5).

Using Lemma 21 and substituting 8 = 77N, v = % yields
H

K
ﬁ DD oe(@) D max Y (E™ e[l (¢; on);])” < 357Nu+ 20
1

N
k=1 ¢ tez, 1SN =

KN

Using K = T'/7 and tuning 7 = T'3 yields O(T'3 N¢). O
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F.2 SQUARED ESTIMATION ERROR MINIMIZATION VIA BI-LEVEL LEARNING

Algorithm 3 Bi-level learning algorithm for squared estimation error

Input: An estimation function Sh ® x & x O — [0, B satisfying Assumption 6.
Parameter: . = 64 log ||, v = %—

p1(0) = 1/|@], Yo € ® and 1 (¢']¢) = 1/|], V¢, 6 € ©.

fort=1,2,...,T do

Receive observation o; ~ M, (-|m;).

Define

Ai(¢'9) = BgHzgm 0,00h),

Li(d) = Ai(h,9) = Egrag, (o) [At(8, @)1,
[pt(¢) — INaXs<t ps<¢)]+

bl9) = pe() -
Let F; : A(®) — R be a convex function. Calculate
Pt+1 = argmin {<P7 L +4vL} + b)) + Fi(p) + lKL(/% Pt)} ; (18)
PEA(D) 0
/ ‘ / 1
Gt+1(4'[¢) o< exp <—Oét(¢) ;PS(QS)As@ 7¢)> where a;(¢) = T6maxecs po(d)”

Lemma 25. With probability at least 1 — 6,

T

log |®
E (pe, Ly) < e |®
t=1 v

+ Z ( (ptybe) + bi(¢7) + Fi(dp+) — Fi(pr+1) — Bregp, (5¢*7Pt+1)) + O (log(1/4)) .

Proof of Lemma 25. Observe that the update of p; (Eq. (18)) is in the form specified in Lemma 20.
Invoking Lemma 20, we get

T
log |®

S (pr, L) < 2812 (19)

t=1 "y

" Z (£406%) 4 VLL(6"2 4 0(6%) = 5 (prbi) + Fbi) — Filpran) = Breg, G pea) )

By Assumption 6 we have
0 < BilLu(6")*) = By [(A(9", 8") — Eyrmgy (1o (A&, 6")])]
< Eymancion) [Be (A6, 6%) = A0, 6)%] | Uensen’s inequality)
< Byrmgio) [Ee [(Au(Tan 7, 6%) — 2@, 0%))°]
(M € ¢* and thus Ty, ¢* = ¢*)

*) — Ae(Tar, 0%, ¢%)]] (by Assumption 6)
) — A(¢", ¢7)]]

SABgimg, (o) [Be [Ae(¢,
= AB g, (-g+) Bt [Ae(¢,
= —4E[Li(¢7)].

¢
¢
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This allows us to apply Lemma 17 with X; = —L,(¢*) and Y; = 1 X7, which gives

1( )+ Lt(¢)>

E[L:(¢*)] + 3610g(1/6) < 361og(1/0).

M’i

Z Li(¢*) +4vLi(¢
t=1

~
Il

w\r—*
I\Mﬂ

Combining this with Eq. (19) finishes the proof. O
Lemma 26. With probability at least 1 — 6,
T
D EopByng,(10)[Be(¢',0) = Ar(Tar, 6, 9)] <32 max p(9) log || + 721og(1/0).
t=1 ¢

Proof. By Assumption 6, we have Tz, ¢ = Tas,, ¢ forall g and all ¢, € [T]. We denote T¢ = Tar, ¢
for any ¢. By the exponential weight update, for any ¢,

T
SN a(@[0)pi(¢) (A d) — Au(Tar, 6. 8))

t=1 ¢
T
=2 al@10)pu(¢) (A, 6) = Au(T 9, 6))
t=1 ¢’
1"5‘@' Y @ 60 (A 6) = AT6,6))

t=1 ¢

< 16max py(6) log || + 3o ;%th ¢'0)p1(9) (Aul¢, 8) — Ai(T,9))"
Rearranging and summing over ¢:

T
> B oo | A(6.0) = 8(T6.6) = 5(A0'.0) - 8(T6. 07|

t=1
< '; E nax ﬂt (26 ()g @ . 20

Define
Xt =Epnp Byrng,(10) [Bi(d, 0) — Du(T 0, )],
1 /
b= B[40, 870

By Assumption 6 we have E;[Y;] < E,[X;]. By Jensen’s inequality, E;[X?] < 4B?HE,[Y;] <
4B’HE; [Xt] Invoking Lemma 17 and using Eq. (20) give

*ZXt < Z <Xt - 4Yt> +361log(1/0) < IGZmaxpt @) log |®| + 36log(1/9),

t=1 t=1

proving the desired inequality.

Lemma 27. With probability at least 1 — 6,

T

Z]E¢~m [A(6,0) — Ai(Tar, &, 8)]

N T
Z Fi(0g+) — Fi(pryr) — Bregp, (344, prr1)) + O (log®(|@]/9)) .
t=1
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Proof. By Assumption 6, we have Tas, ¢ = Tz, ¢ forall g and all ¢, € [T]. We denote T¢ = Tar, ¢
for any t.

Egp: [Li(9)] = Eg~p, [Ai(,0) — E¢,th('|¢) [At(¢l7 o)l
= Epp, [At(0,0) = At(Th,0) — (g, (10)[A(0), 0)] — Ae(T ¢, 9))] -

Combining this with Lemma 25, we get

ZEM [Ad(6,0) — A(T ¢, )]

+ Z ( (e, b0) + bi(9%) + Fi(6g) — Fi(prs1) — BregFt(dqﬁ*th-&-l))

O (log(1/9)) + ZE¢~ptE¢'~qt(-\¢> [A:(¢,6) = AT, 9)]

t=1

HMH

( 5 (e be) + be(@7) + Fi(0p) — Fi(pe1) — Bregp, (%*;Ptﬂ))

+0 (log (|2/9)) +322maxpt ¢) log |®|. (by Lemma 26 and the value of +)
Note that
T
3210g|¢>|%:rtn§a%<pt —3210g|<I>|Z < +;Pt(¢) _fglggiﬂs(ﬁﬁ)h)
T
[pt(¢) — INaXs<y p9(¢)]+
= 32log |® o
| |Z< +3 ) e
1 T
5 Z ptabt
t=1
and
3 o~ max — a1 pa(97)
3 (%) = Olog @) x 3 DKest a0 oSt-1Ps
t=1 =1 maXxs<¢ pb(¢) )
. max.<; ps(¢7)
O(log |®|) p —estPel® ) l-z<Intl
(log |} ( ; maxs<t— 1ps(¢*)> ( sk
< O (log?|®|).

Combining inequalities above proves the lemma.
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G OMITTED DETAILS IN SECTION 4

We define a batched version of Algorithm 1 in Algorithm 4. When the batch size 7 = 1, it is
exactly Algorithm 1. One can also think of Algorithm 4 as a special case of Algorithm 1 where
POSTERIORUPDATE makes a real update only when ¢t = k7 for k = 1,2, ..., and keeps py+1 = p¢
otherwise.

Algorithm 4 General Batched Framework

Input: Partition set ® and its union ¥ (defined in Section 2.1). Batch size 7.

pi(@) = 1|9, V6 € 9.

fork=1,2,..., K do

Set pi, vy as the solution of the following minimax optimization (defined in Eq. (2)):

min  max AIR®? SV Pk)- 21
ptn  2E0S) ARa (B k) 2D
Execute 7y, inrounds t € {(k — 1)7 4+ 1,...,k7} = Z} and receive observations (0t ):cz, -
Update pj+1 = POSTERIORUPDATE(vy,, pk, Tk, (0t)teTy, )- (22)

G.1 ASSUMPTION REDUCTIONS

Proof of Lemma 8. In the stochastic setting, by Assumption 1 we have f4(s,a) = Q*(s,a; M) and
fo(s) = V*(s; M) for any M € ¢. Hence
E™M0n (65 0n)) = B™M [fo(sn,an) = rn = fo(sni)]
="M [Q*(sp, an; M) — rj, — V*(spy1; M)] = 0.
In the hybrid setting, we have by Assumption 2 and Assumption 3 that f4(s,a;R) =
Q™ (s,a; (P, R)) and fy(s; R) = V™ (s; (P, R)) for any P € ¢. Hence, for any j € [d], defining
R’ such that R'(s,a) = ¢(s,a);, we have for (P, R) € ¢,
E™ PR [0, (¢ 0n) ;] = BT [fo(sn, ans R) = R (sn, an) — fo(sni1; )]
=E™P[Q" (sn, an; (P, R')) = R'(s,a) = V™ (sp41: (P, R'))] = 0.

Finally, note that in the stochastic setting M; = M™, and in the hybrid setting P, = P*, so the
additional assumption always holds. O

Proof of Lemma 12. In the stochastic setting, with Assumption 1 and the Bellman completeness
assumption (Definition 9), for any M = (P, R), we define Tp;¢ € ® as the ¢’ such that

for(s;a) = R(s,a) + Egwp(ys,a)[fo(s)]-

By Definition 9, such ¢’ always exists.

In the hybrid setting, with Assumption 2, Assumption 3 and Assumption 4 and the Bellman com-
pleteness assumption (Definition 10), for any M = (P, R), we define Tys¢ € ® to be the ¢’ such

that mys = 74 and for all R,

f¢’(s> a; R) = R(87 a) + IES’~13(<|s.,11) [f¢(8/; R)]

By Definition 10, such ¢’ always exists.

Below, with a slight overload of notation, we denote in the hybrid setting f, (s, an) € R? as the

vector (fg(sn, an; e;)) e and fy(sni1) € R? as the vector Ea~7r¢(-|sh+1)[(f¢(5h+1a a; €;))jeld))-
Furthermore, we use the notation gy, to denote r;, € R in the stochastic setting, and ¢ (sp, ar) € R4
in the hybrid setting.
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Then we have by our choice of &,:

E™M [€n(8', 05 0n) — En(Tard, ¢ 0n)]
= E"M (|| for (snan) — yn — Fo(snr)II” = | Frare (5hyan) — yn — fo(sni1)|1?]
= E™M [||fyr(sny an) = Frivo(sn, an)l]
+2-E™M [(fo (5n,an) = fraee(Snsan), Frae(sn.an) — yn — fo(sn41))]
=B (| fi(oms ) = Fraco(smsan)l’] 23)

where the last line follows from E™M [y, + f4(sn11)] = fris6(Sh, an) by definition of Tpr¢. On
the other hand,

E™M | (6n(@,10n) — &(Tasd, d0n)’|
=E™M [(chb'(sm an) = yn — fo(sna)II> = | frase(sn.an) — yn — f¢(5h+1)H2)2}
= EW’M |:<f¢/(8h7ah) - fTM¢(Sh7ah)7 fTA4¢(Sh, ah,) + f¢/(5h7ah) — 2yh — 2f¢(8h+1)>2i|

< 4B*E™M [||f¢’(5h7ah) - fTM¢'(5haah)||2] ,

where B? = 1 in the stochastic setting and B? = d in the hybrid setting. Combining both finishes
the proof.

O
G.2 BOUNDS ON Est
With the specific form of divergence
D™ (v]|p) = ExtmsEomarcin) [KL (V1. 0), p) + Egmp [ D" (8]100)] ] 24)

the estimation term in Eq. (6) for an epoch algorithm with epoch length 7/ and K epochs is given by

Lemma 28. Est in Eq. (6) can be written as

T . T
Est=> ErpEouns,(|m) [log (W)] + ) ErnpEgep, [ﬁ“(qsth)} .25
=1 pe(9*) =1

Proof of Lemma 28. From the definition of divergence in Eq. (24) and Eq. (25), let 64« € A(®) be
the Kronecker delta function centered at ¢*. Then

Est = ET: <log (pt(lqﬁ*)) + Ernp, Esnp, [EW(QbHMt)}

t=1

- EFNPtEONMt('\W) [KL (5415*’ (Vt)¢('|7r7 0))] )

* T
= ErpEonnt,(m) {log <Vt(¢((|;)o))] + 3 ErpEgrp, [ﬁ”(q&HMt)} (26)
t=1 Pt t=1

where the first equality uses the fact that for any p,

Breng(‘Hp)(V, I//) = EMNVEONM(-\W) [KL (Vd,(-‘ﬂ', O), V&,("T(, O))] .
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Proof of Theorem 7. With abuse of notation, we use py, v, p; to denote the pg, vk, pr, where k is the
epoch where episode ¢ lies. We start from the estimation term in Eq. (25) using the definition of D:

H

T T
vi(¢*|m, 0 1 ” 2
Est = ZEWNPtEONMt('lTF) |:10g( t(t((L*) )>:| + B2H ZE”NPtEGﬁNPt [max (E M [eh(¢7 Oh)j])
t=1 =

t=1

Fn e (2459

teELy

H
g DB | g S )|
k=1

N
tez, ISV

Applying Lemma 24 with F;(p) = KL(p, (x)g(:|mk, 0¢)) for t € I, we get

E[Est] <E kZilEMk t;k Eomt, () {log (W)] +0 (Nlog(|<1>\)T%)
;;g;(ng%¢ﬂm00)—Kuwﬂm%um%w»—ng%:wﬂ)ﬂ

+0 (Nlog(|<1>|)T%)

o[ (2552 e (22%)
@mqlw) (N log(j))T+)
—O(N1og(\q>|)T%

Proof of Theorem 11. We start from the estimation term in Eq. (25), using the definition of D:

Est = ET:EWN Eoorot, () [log (Wﬂ
oo pi(9*)

t=1

H
Z ]Eth [Eh(qsa ¢, Oh) - gh (TMf ¢7 d); Oh)]] .

T
1
+ B2H Z EﬂNPtE¢NPt
t=1 h=1

Applying Lemma 27 with Fy(p) = KL(p, (14)g(-|m¢, 04)), we get

E[Est] <E [ET: Erp Bont, () {10% (Wﬂ

+ O (log2 |<I>\)

+E

+ 0 (log?|2|) = O (log® |D]) .

27



Under review as a conference paper at ICLR 2026

H RELATING dig-dec TO EXISTING COMPLEXITIES IN THE STOCHASTIC
SETTING

H.1 SUPPORTING LEMMAS

Lemma 29. Suppose that (M, ®) satisfy Assumption 5 with estimation function L (¢;0p) =
fo(sn,yan) —rn — fo(Sht1). Furthermore, assume that (M, ®@) is Bellman complete (Definition 9).
Then Assumption 6 holds with &,(¢', ¢;0n) = (fer (Sh,an) — rn — fs(snt1))? and

dig—decf’Bsq < dig—decjﬁ“.

Proof. It suffices to show that D, (¢||M) < E;(QSHM) for any 7, ¢, M:

—r 1 &
Do(0lM) = 5257 S ETM (€0, ¢ 0n) — En(Tard, & 0n))]
h=1
1 A
= 52 };Eﬂ’M {(ﬂﬁ(shv an) = frise(sn, ah))ﬂ
(by the same calculation as Eq. (23))
H
=z BQlH }; (E™M [fs(snsan) = Frao(sn, ah)])2 (Jensen’s inequality)
1 & )
= e hgl (Eﬂ',]\/[ [fd)(sh, ah) — Ty — f¢(sh+l)D
= Da(0]|M)

H.2 RELATING dig-dec TO o-dec
Proof of Theorem 13. In the stochastic setting, by definition,

;};’D: max min max
PEA(D) pEA(IT) vEA(M)

dig-dec
1 1 o
ErapErinw |Va(mar) = V() — E]EONMW) [KL(vg(:|,0), p)] — 5E¢NP {D (¢HM)}
and
_ 1
_d @,D = 1 Eﬂ-,\, E NVE ~ V — V - 7D M .
odech = o win e ErsBare oy |Valre) - Vir(r) - 2D (0]0)

For any p, p, v, we have
1 1 —
ETK'N])]EMNZI |:VM(7TM) - VM(W) - ;}EONM('lﬂ') [KL(V¢(‘7T7 O)?p)] - 5E¢NP |:D (¢||M):|:|

1 1
=EnvBonp [Var(mar) — Vo(mg)] — ;KL(V@P) _EEWN;DEMNVEONM(-\W) [KL(vg(:|, 0),vg)]

term1

1—n
t ErpErrnEonp [%(W ~Vaalm) - S0 (6lM)].

To bound term1, observe that

Enew [V (mar)] = Epnn [Vip(0)] -
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Thus,
1
terml = Ey, [V (7g)] — Egop[Va(me)] — EKL(V@,{)) <. (Lemma 19)
This implies
dig—dec:I;’5
j— 1
<n+ BBt B |Vis(ms) — Var(m) — =D (S| M) — ~Eoonre.tm [KL(g (|7, 0),
0 e min e By BarsEomy |Va(e) — Virln) = 2D (6100) = Larcin KL 7,0). )
1=
<n+ i ErpEnvEg~, |V, -V —-D M
Sndmw min e BegBars,Bon Valre) - Vir(m) - 1D (6l101)

=n+ o—dec;'};’B

H.3 RELATING dig-dec TO BILINEAR RANK

Bilinear rank is a complexity measure proposed in [DKL*21]. It is defined as the following.

Assumption 7 (Bilinear class [DKL"21]). A model class M and its associated ® satisfying As-
sumption 1 is a bilinear class with rank d if there exists functions X, : ® x M — R? and
Wi, : ® x M — R? for all h € [H] such that

1. For M € ¢, it holds that Wp,(¢; M) = 0.
2. Forany ¢ € ® and any M € M,

H
Vi (o) = Var(mo)l <> (X0 (¢ M), Wi(; M) .
h=1

3. For every policy m, there exists an estimation policy w**. Also, there exists a discrepancy function

Ly : ® x O — R such that for any ¢', ¢ € ® and any M € M,
(X6 M), Wi M))] = [E7 ° 75 [0 (g5 00)]

where oy, = (S, ap, Th, Spy1) and m oy, T denotes a policy that plays T for the first h — 1 steps
and plays policy m°* at the h-th step.

We call it an on-policy bilinear class if 7% = w for all w € 11, and otherwise an off-policy bilinear

class. As in prior work [DKL'21, FKQRZI 1, for the off-policy case, we assume |A| is finite, and
7wt is always UIllf (A). We denote by m the policy that in every step h = 1,. .., H chooses T with
probablllty 1 — 4 and chooses 7t with probability < I

Lemma 30. Btlmear classes (Assumption 7) satisfy Assumption 5.

Proof of Lemma 30. For any ¢’ € ® and any (M, ¢) such that M € ¢,

7o onmgr M [0h(d;00)]| = [(Xn(¢s M), Wi (¢, M))| (by Assumption 7.3)
=0. (by Assumption 7.1 and that M € ¢)
O

Lemma 31. Let (M, ®) be a bilinear class (Assumption 7). Then

. dig-decf’ﬁ“ < O(B?H?dn) in the on-policy case.
. dig-decj};vDav < O(+/B2H3dn) in the off-policy case.

Proof of Lemma 31. We first use Theorem 13 to bound dig-dec?jav by o-decfjav + 1, and then use

Lemma 32 to relate o-decfﬂ * to bilinear rank. ]
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Lemma 32 (Proposition 2.2 of [FGQ™123]). Let (M, ®) be a bilinear class (Assumption 7). Then
. o-dec:};’Bav < O(B?H?dn) in the on-policy case;

. o—decﬁ’Dav < O(\/B2H3d|Aln) in the off-policy case.*

H.4 RELATING dig-dec TO BELLMAN-ELUDER DIMENSION

Lemma 33. Let {5,(p;0n) = fo(sn,an) — i — fo(sh+1), and let Dy, be defined with respect to
this £,. Then

o Ifthe Q-type Bellman-eluder dimension of (M, ®) is bounded by d, then dig-dec?’ﬁav < O(Hdn).
o Ifthe V-type Bellman-eluder dimension of (M, ®) is bounded by d, then dig—dec:I])’Dav < O(H+/d|Aln).

Proof. We first consider the Q-type setting. Define g3, (¢, ¢; M) = E™¢ "M [¢, (¢; 01,)]. For a fixed
M, we have by the AM-GM inequality

A M 2
Egp [gn(, 3 M)] < 7 Eoms [ gn (9, ¢; M) } N 1

By, on (00207 ) T xR [on(@', 61 M 2]

for any A > 0, implying that

®,Dyy

o-dec77

= maxminmax Er,Eg~ pErrs
PP v

H
Vo(mg) — Var(m) — nB%H > (B™M [en(e; oh)])ﬂ
h=1

< maxmax Eg/npEgpEnsan
p v

H
V() — Var(ms) — nB%H S (ERM 046y oh)])ﬂ
h=1

H H
1
= mf;ameaXqu/NquﬁNp]EMw lz gn(d, ;3 M) — 773721_[ qus((ﬁ/, ¢’M)2]
h=1 h=1
H

nB2H { gn(9, ; M)? ]
< maxmax » Eg. :
- 4 P v hgl o~p ]E¢’~p [gh(¢/7¢; M)Q}

The rest of the proof goes through standard steps. First, bound E4~., {#’W} by the
~plgn (97,03

disagreement coefficient of the function class Fay = {fy — Tarfs : ¢ € ®} where (Tas f)(s,a) £

R(s,a)+Ey p(.|s,a)[f(s")] under the probability measure Ey., [dzd”M] (Lemma E.2 of [FKQR21)).

Taking a maximum over p, this can be further bounded by the distributional eluder dimension of
Fr over the probability measure space Dg ps = {d;?”M : ¢ € &} (Lemma 6.1 of [FKQR21] and
Theorem 2.10 of [FRSLX21]), which is equivalent to the Q-type Bellman-eluder dimension in M
defined in [JLM21]. This then allows us to bound o-dec? Dav < ndB?H?, where d is the maximum
Q-type Bellman-eluder dimension over all possible M.

Next, we consider the V-type setting. Define g, (¢, ¢; M) = E™¢' oM [0, (: 04,)]. For a fixed M,
we have by the AM-GM inequality

s 03 M 2 1 ’
£y o6 )+ X [ 6507

A
Eﬁi)NP [gh(¢7 (b; M)] < Z . E¢~p

“In [FGQ™23], the bounds on o—decfEav have different scaling of B, H than ours. This is because their
average estimation error does not involve the normalization factor ﬁ like ours (Theorem 7). We normalize

D, to keep the two information gain terms in Dig-DEC of the same unit. Equivalently, one can view our 7 as a
scaled version of theirs.
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for any A > 0. Below, let 7 be the policy that in every step h, with probability 1 — 7 executes
policy 7, and with probability £ executes unif(A). Then we have
o- decq’ Dav

= maxminmax E,,Es,Enrey
p P v

H
Vo(ms) = Var(m) - WBZH > (BT (e ohnf]
h=1

<maxmaxEy ., Es,Epr~
= P ¢/ ~p L pB M~y

H
Vo(my) — Vi (mg) — nB%H > (Eﬂg”M [Cn (o Oh)])zl
h=1

1
nB2H 3H\A|

< a+ maxmax Eg pyEppErrn
v

2 Vi(mp) — Var(mg) —

H
Z E7¢/ 0nTe, M fh(¢,0h)])2

p

H
o
= o+ maxmaxEy  EgpErrn gn(9y s M) = smm ¥ go(¢s &, M)?
et 2 s

3nB2H?| A - gn (¢, d; M)?
Sat T ) Bony 2]

E¢'~P [gh<¢/7 ¢7 M)?

. . . o h—1
where the second inequality is because with probability at least (1 — %) H(\X vy >3 H‘ ik the

policy 7, chooses the same actions in steps 1,. .., h as the policy mg o5 my. Similar to the Q-type

analysis, the last expression can be related to V-type Bellman-eluder dimension (notice that the
®Da < B?H’d|Aln _
o+ =2 =

~

definition of gy, is different for ()-type and V-type). This gives o-dec,’

O(v/B2H3d|Aln) by choosing the optimal cv.

Finally, using Theorem 13 finishes the proof. O

H.5 RELATING dig-dec TO COVERABILITY UNDER BELLMAN COMPLETENESS

Lemma 34. Let (M, ®) be Bellman complete (Definition 9), and suppose the coverability of every
model in M is bounded by d. Then it holds that o-dec;};’DScl < ndH where Dy is defined with

En(¢s b 0n) = (for (sn,an) = rn — fo(sni1))*.
Proof. For M = (P, R), define
gh(sa a, (15; M) = fti)(sa a) - R(S, a) - Es’wPHs,a) [fqb(s/)] = f¢(sv a) - fTA4¢(sv a)>
T, M
de’M(s,a) =Eg, [dh“’ (s,a)} .
By the AM-GM inequality, for any A > 0,

Egp B M (g1, (51, an, ¢; M)
= E¢NP]E(S7Q)~dZ¢’M [gh(57 a, ¢7 M)]

E,. E ﬂﬂ&ﬂl( o3 M)
= ~ M S, a, @
prop (s,a)~d} dZ,M( ,a) 9n

M (s,0)2 1
< Eppll | SR+ —an(s, a, ¢; M)?
¢~p (s,a)~d} M [ dZ JVI( 7a)2 )\gh( (b )
A dre™M (s, a)? 1 .
= ZE¢~p li W + XEanpIE(z,/NpE o M [gh(sh,ah,qb, M)ﬂ . (27)

Note that

Z]E¢ PET M (g1 (s, an, ¢ M)] = Egyp Vi (9) — Var ()],

31



Under review as a conference paper at ICLR 2026

and by the same calculation as Eq. (23), we have

H H
S TEmM [gy(sn, an, b, M)?] = le 7 O BT M6, 650n) — En(Tard, d0n)] = D' (1|M).
h=1 h=1

1
B?H

By the definition of o-dec and combining the inequalities above,

o—dec:I]’ﬁsq
j —
= max minmax E.,Es~pEnry [V¢(7r¢) — V() — Dsq(¢||M)]
PPV n

1—n,,
< m/z)ix mVaXEd,/NP]Ed)NPEMNV |:V¢(7T¢) — Vm(my) — ;Dsq(b (¢|M)}

= maxmax Ey ,Eg,Enrms
P v

H H
1
T, M . Tyt s M 2
h§=1E ¢ [gh(shaa/h7¢7 M)] - 'I]B2H h§=1E @ [gh(shaah7¢)M> ]]

r H T, P
nB*H dy """ (s,a)?
S 1 max max ]EMNI/]E¢NP E E W . (by Eq (27))

v
L Lh=1 s,a ,CL

Let 417, be any occupancy measure over layer h that depends on P. Then

> 47" (s,0)?]

o B, [ B 00 (s
P~ = L~ .
' T dZ’P(s,a) | P " dZ’P(s,a) wh (s, a)
T, P 7, P
< E¢ Z dhd) (Sva)/’ég(‘g?a) . max dh (Saa)
B g s,a de,P(sva) 5,87 ui(&a)
dp" (s,a)
= 2 (s a)
s,a A
de
= max hP (5,0)
x5 )
7, P
We let ,uf be the minimizer of max; 4 dﬁp(is(’;;). The coverability in MDP M is defined as
5 (s,
7, P
hY (

min, maxg q . p dup (SS(’;;) [XFB*23]. Combining the inequalities proves o—decfjsq < ndB?*H?.
h ’
O
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I RELATING dig-dec TO EXISTING COMPLEXITIES IN THE HYBRID SETTING
I.1 SUPPORTING LEMMAS

Lemma 35. Let g : ® — [0,G]. Forv,p € A(®), we have

E¢plg(0)] < 3Epnn[g(0)] + 2G - Dii(v, p),

where D is the Hellinger distance.

Proof.
Eomplg()] = Eomulg(@)]] = |D_(0(0) — v(8))9(6)
@
) (p(¢) — v(9))?
< \/§<p<¢>> ONor, | LT
< SBaglo@)] + SEolo(@)] + SDAp)  @9)
where

_ - (o)~ v(0)?
Dal ) =2 T )

is the triangular discrimination. We can further bound it as

Loy = 5 (@) = v(9)) 5~ (Vo) = VV(9)(Ve(9) + Vr(9)? 20
D)= 2 o T e T o(6) + v(9) = 2Dule)
Using this in Eq. (28) and rearranging gives the desired inequality. O

Lemma 36. Suppose that (M, ®) satisfy Assumption 5 with estimation function {y(¢;0p); =
fo(snyan;e;) — @(sn,an) " €; — f4(shi1; ;). Furthermore, assume that (M, ®) is Bellman com-
plete (Definition 10). Then Assumption 6 holds with &,(¢', ¢;0r) = Z?Zl(fqy (sh,an;e;) —
¢(snyan)"ej — fo(sni1; ;) and

dig-dec?jsq < dig-decs’ﬁav.

Proof. The proof is similar to that in the stochastic setting (Lemma 29). O

Lemma 37. Under Assumption 3 and Assumption 4, if P, P' € ¢, then they share the same d x H
dimensional vector:

(E”’P [o(sh, ah)]) = (EM’P, e Csn, ah)])

he[H) he[H]

Proof. Given a linear reward with known feature (Assumption 4), we have R(sp,ap) =
©(sn,an) "0 (R) where ¢ is a known feature. For any P, R, w, we have

H
Vpr(m) =Y E™ [p(sn,an) 00 (R)] .
h=1

Fix a ¢ and consider P, P’ € ¢. By Assumption 4, Vp p(m4) = Vp/ r(my) for any R. For
each h, by instantiating 6, (R) as all basis vectors in the d dimensional space, we prove that
E™F [o(sn, an)j] = E™F [p(sn,an);] for any h € [H] and any j € [d]. O
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Definition 38. We define several quantities that will be reused in Appendix 1.2 for hybrid bilinear
classes and Appendix 1.3 for coverable MDPs. We fix o € [0, 1], and define © as the policy that in
every step h = 1,2,..., H chooses T with probability 1 — 3 and chooses unif (A) with probability

- We also fix D, which will be instantiated as D, and 5sq in later subsections.

With them, we define (with M = (P, R))

B 1 —r9,
TermAf’D(z/) = o+ IEMN,,IquNVEqb/NV |:V¢7R(7T¢) — VJVI(ﬂ'd)) — %D ¢ (¢||M):|

_ 2 —7%
TermB? (1) = 6\/dH\/ 3E B p R)on [(V¢,R(7r¢) - VP,R(%))?} = g BB [D s (gf)HM)}
TermCy? (1) = E(ar ey B Egrn

* 1 a 2 —<,
|:‘/M(7r ) - V¢,R(7T¢) - HEONMHWS;,) [KL(Vtﬁ("ﬂ—qS’?O)a V¢)] - 97,'7D ¢ (¢||M):|
Lemma 39.

min max AIR?? (p,v;p) < max TermA(b’ﬁ(V) + max TermC{)j(V).
p v n v n P n

Proof.
®,D )
Aan (pa v p)

X 1 1 —
= BBty | Vi (1) = Vit (7) = 2 Boar i) KL 700, 9)] = 2By [D7 (010D

X 1 1 - 1
= ErmpEr,moymn | Var (%) = Vg () — E]EONM(-‘TF) [KL (vg(:|m,0),v4)] — E]E@vp {D (¢HM)} - nKL(WnP)]

1
< EWNpE(]VI,ﬂ"‘)NV VM(T(*) - VM(T{-) - ?}EON]V[(-‘W) [KL (y¢('|ﬂ-a 0)7 Vtﬁ)]

1 . 2 1
=3B [D (¢||M)} + 5, Dkl p) — KL (1/¢,p)} (Lemma 35)
-
< ErnsBarns oy | Vonl(re) = Var(r) = oD (6l101)|

. 1 2 —
+ Erp Bt my v Bgar [VM(7T ) = Vo,r(mg) — %]EONM(-I‘IT) [KL(vg (|, 0),v4)] — %D (@IM)| .
We have min, max, AIR;{;"D(p, v; p) = max, miny, AIR;{;’D (p, v; p) because AIR is convex in p and

concave in v. After the min-max swap, for each v, we choose p to be such that 7 ~ p is equivalent to
first sampling ¢’ ~ v and then setting ™ = g, . This gives

mpin max /—\IR?’D(p, v; p)

1 —z2,
< mBXE(b/NVEMNVEqﬁNV [V¢7R(7T¢) - VM(ﬂ'g/) — %D *(o|| M)
* 1 2 —n<,
+ Eg s B, m0) v Egr |:VM(7T ) = Vs r(Tg) — 5E0~1VI(-|71';/) [KL(vg (|73, 0),v4)] — %D ? (ol M)

< max TermA®P () + max TermCSP (v).
v v

Lemma 40.

Termeﬁ(y) <O(ndH + o) + TermB?’B(y).

Proof. By Lemma 37 we can define with any P € ¢,
Xn(¢) =E™" [p(sn, an)].-
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Furthermore, define

X(¢) = (Xn(8))neim € R,
0(R) = (6n(R))nerm) € R

With this, we have

E(at m0ymr Bpmn [Var (%) = Vi r(70)]

=EsvErnu(10) [Vo,r(Tg)] — Egn Erow [V, r(T0)]

=Epr [X(8) " (Ermw(ie) [0(R)] — Erms [0(R)])]

< Epms [IX(@)l5; 1 [Ermsiio) B0R)] B 0(R)][5, | (B0 = Bonw [X(9)X(®)T])

< B (IO ] B [[Brci 00 — B R,

= VdH\[Eg ~rBpr [(X(¢’)T]ER~V(-|¢) [0(R)] — X(¢') "Er~w [9(3)})2}

2
< 3VdHJ EgnrEgmn [(E<p,R>~V<.|¢> [Ver(7e)] = Epry~w [Ve.R(T40)]) ]

Divl

+ 3\/ﬁ\l EgnvEgny [(X(¢/)TER~V('I¢) [0(R)] — E(p,r)~v(-|9) [VP,R(WW)])z}

Div2
2
+3VdH |Ey By [(X(QS’)TERNV 0(R)] — E(p.ryms [V k(7)) } (29)
Div3
For any observation o = (s1,a1,71, -+ ,SH,am,ry), letr(o) = Zthl r1,, we have

. 2
DlVl = E¢/N,,E¢NV {(E(P’R)NV(-W) [VP7R(7T¢/)] — E(pyR)Nl, [VP)R(7T¢I)]) }

< 2BysBons | (Eipmiio) [Ver()] = By [Ver(s)])’] + 807

= 2By Egnn -(E(P,R>~u<<|¢> [E0~MP,R<~|wg,) [T(O)ﬂ ~Erry~ [Epr,R(-\wg,) [T(O)]DQ] +8a”

2
= 2E¢/NVE¢NV (Eo~u(~\¢,ng,) [7’(0)] — EOND(,‘W:;/) [7"(0)]) :| + 8a?

2
< 2By Epmr <Z [v(olp, ) — 1/(0|7rg/)}> ] + 8a?

=8By v Bow [DFy (Vo(|0, 75, vo(|7))] + 80
< 8By Egmr [KL (v6(-|, 78), vo([75))] + 8a”
= 8E¢’~V]EM~VE0~]VI(~|W$,) [KL (V¢(-|7Tg/,0), V¢)] + 8a2.

On the other hand
Div2 = Egr By {(XW)TERW(-W) [0(R)] — E(p,my~w16) (VPR (7)) }
=EgiBpr {(]ER~V(<|¢) [Vor,m(m)] — Epmyw 1) [V, R(w)]ﬂ
S Eg v Eonn B(p R)~u(|0) [(qu/,R(%/) — Vpr(my)) }

=By~ E(pr)~v {(Vw,R(%') - VP,R(%'))Q}
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Similarly,
Div3 = By By, [ (X(¢) Enmy [0(R)] = E(p pyms [Ve.n(mo)]) ]
=Ey B [(ERNV [W’,R(%’)] - E(P,R)Nu [VP,R(T%’)])Q}
< EpmiB(pmyn |(Ver (7o) = Ver(mo))’]
Combining these equations back to Eq. (29) and using the definition of TermC?; ’E(z/), we have

TermC?’E(u)

< 3\/ SAHE Bt Borni( prs,) [KL (vg(173,0), 14 ) | + 802

+ 6\/ dH\/?)]E(j)NVE(P’R)NV {(V¢’R(7T¢) — VP,R(W¢))2:|
2

1
_ E]E(b/NVEAINVEONM(‘Mg/) [KL (V¢("ﬂ—g" 0), V¢)] 91}

EgmsBatnaBony [D7 (6]1M)]

2 —r,
<O (ndH + a) + 6v dH\/3E¢~uE(P,R)~u [(V@R(%) - VP,R(Wtb))Q} - %EﬁsINVEMNV]E(ZﬁNV [D ¢ (¢||M)}

=0 (ndH + o) + TermB?ﬁ(z/).

1.2 RELATING dig-dec TO HYBRID BILINEAR RANK

Assumption 8 (Hybrid bilinear class [LWZ25]). A model class M and its associated ® satisfying
Assumption 3 is a hybrid bilinear class with rank d if there exists functions X, : ® x P — R% and
Wy, : ® x R x P — R?forall h € [H] such that

1. Forany M = (P, R) € ¢, it holds that W}, (¢, R; P) = 0 for any R € R.
2. Forany ¢ € ® and any (P,R) € M,

H
Vi,r(ms) = Ver(ms)| < Y (Xn(6; P), Wi(e, R; P))|.
h=1

3. For every policy T, there exists an estimation policy w¢. Also, there exists a discrepancy function
Ly : ® x R x O — R such that for any ¢', ¢ € ® and any M = (P, R) € M,

[(Xn(¢'; P), Wa(e, R; P))| = [E™ "5 P [£,(6, R; 0p)]

where o, = (S, an, Th, Sha1) and T oy, T denotes a policy that plays  for the first h — 1 steps
and plays policy w°¢ at the h-th step.

We call it an on-policy bilinear class if 7 = w for all © € 11, and otherwise an off-policy bilinear
class. We denote by m* the policy that in every step h = 1,. .., H chooses w with probability 1 — %
and chooses w* with probability -

Lemma 41. Hybrid bilinear classes (Assumption 8) with known-feature linear reward (Assumption 4)
satisfy Assumption 5 with N = d.

Proof. With the estimation function ¢5,(¢, R; op,) defined in Assumption 8, we define for j € [d],
(g5 0n)j = L(d, €55 0n),

where e; as a reward represents the reward function defined as R(s, a) = (s, a) " e; = (s, a);.
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For any ¢’ € ® and any M = (P, R) € ¢,

Eﬂ¢/oh7ris, P [Eh(¢7 Oh)j]

Eme e P n(0,ej;0n)] ‘

= [(Xn(¢'; P), Whi(9, e;; P))| (by Assumption 8.3)
=0. (by Assumption 8.1)
O]

Lemma 42 (Lemma 20 of [LWZ25]). Let (M, ®) be a hybrid bilinear class (Assumption 8). Then
* max, TermAg)’Ev (v) < O(B?H?dn) in the on-policy case.

* max, TermAf])’ﬁ“ (v) < O(a+ B2H3dn/«) in the off-policy case.’
Lemma 43. Let (M, ®) be a hybrid bilinear class (Assumption 8). Then

= 1
* max, Terme’Dav v) <O ((B2H5d377) 3) in the on-policy case.

* max, Terme;’Bav v) <O ((B2H6d377/a) 3) in the off-policy case.

Proof. From the definition of hybrid bilinear class in Assumption 8, we have

E¢rE(p,R)~v {(V@R(%) - VP,R(%))Q}

H 2
< E(Z)NVE(P,R)NU (Z |<Xh (¢7 P)a Wh(gba R; P)>|>
h=1

H
< H Y EpsEipmyes [[(X0(6: P), Walo, B P)I?]

h=1

Define Sy p = Egy [Xn(¢; P)Xu(¢; P)T]. We have

Egms [[(Xu(6: P), Wi, B P) |
< Egpnw [[(Xn (@5 P), Wh(, R; P))|]

< JEW [RACISIE. JEW W6, B P)IE, |

est 2
= \/dIE¢NVE¢/ND [(E”W on Ty P [lh (9, R; Oh)D } . (Assumption 8)

Thus,

\/]E¢~D]E(P,R)~u {(V@R(%) - VP,R(%))Q}

\/dE¢~uE¢’~V |:(E7T¢/ o ﬂ—:;}t’ r [eh((b? R; Oh)])2:|‘| .

H
<\|H Z Ep,r)~v
h=1

3As in Footnote 4, the bounds are different from [LWZ25]’s as we adopt a different scaling.
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(1) In the on-policy case, we have o = 0 and

2 Ty
6\/3dHE¢wE<RR>~V (Vo) = Vin(m0))* | = 5By Earos B | D3 (6110M)]

H
<6 3d%H2 Z IIE(P,R)NV l\/E¢NVE¢'~V {(EWW’P [Eh(¢7 R; Oh)])Z}
h=1

H d

2
T B?H Y EoiBomn B mymn | Y (BT [0 (5 on)il)”
h=1 j=1

\/E¢NVE¢,ND [(E%"P [6(¢, R; oh)})ﬂ

H
<0 (d%H25> + i };E(P,R)Nu

H
2 2
_ m Z E¢NVE¢/~VE(RR)NV {(EWW,P [ﬁh(¢7 R; Oh)]) }
h=1
2 1
<0 <d2H2/B + nBﬁzH) =0 ((B2H5d377)§> : (choosing optimal 3)

(2) For the off-policy case, we have

2 T,
6\/3dHE¢~VE(P,R)~V {(V¢,R(7T¢) - VP,R(T%))z} — —Egr i EprnvEgar [Daf (¢HM)}

9n

H " 2
<6 d%HQ Z IE(P,R)NV l\/E¢~uE¢’~u |:(Eﬂ-¢/0hﬂ¢’ o [gh((,ﬁ, R; 0h)]> ]]

h=1

9 H

- oB7H > EsrnEo B rymn
h

=1 g

\/E¢~VE¢’~V |:(E7T<f>’oh77:>s/t’P [fh(¢7 R; 0h)])2:| ‘|

(Eﬂi/’P [Cn (5 Oh)j])2

-

1

1 H
<0 (d%HQB) + @;E(P’R)NU

H
(67 2 est p 2
e IE NVIE /N’/E — (Eﬂ'¢/0h,ﬂ'¢/ 3 g 7R; )
SH 0yB°H }; p~vEg (P,R) [ [n(®, R; o)) }
. B2H2 1
<0 <d5H25 + 0 7 ) ) ((B2H6d3n/a) ) : (with the optimal )
o

where the second-to-last inequality is because with probability (1 — %)hil% > 33, policy g,
chooses the policy mg op, 7" O

Lemma 44. Let (M, ®) be a hybrid bilinear class (Assumption 8). Then
ol 1

. dig-dec?’Dav <0 (BzHan + (B2H5d37]) 3) in the on-policy case;
ol 1

. dig‘decf’Dav <0 ( B2H3dn + (B*HSdn) 4) in the off-policy case.

Proof. This can be obtained by directly combining Lemma 39, Lemma 40, Lemma 42, Lemma 43.
In the on-policy case,

- 1
dig-deciy ™ = O (B2H2dy + (B*H %) * )
In the off-policy case,
_ 1
dig-dec? P> = 0 (a + B2H3dn/a + (B2H d%n/) )

=0 (VB H dy + (B*HCd%n) ") . (with optimal )
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[.3 RELATING dig-dec TO COVERABILITY UNDER BELLMAN COMPLETENESS

Lemma 45. For hybrid MDPs with Bellman completeness and coverability bounded by d, it holds
that

maXTermA?Eq(y) <O (ndB*H?).

v

Proof. For M = (P, R), define
gh(S, a, ¢>; R, P) = f¢(87 a; R) - R(Sv a) - Es/NP('\s,a) [f¢(3/; R)L
Ay (s,a) = By {d;?’P(s,a)} .
By the AM-GM inequality, for any A > 0,
Eqﬁqu’w’P [Q}L(Sha ap, ¢7 Ra P)]
- E¢~VE o P [gh(87 a, ¢7 Ra P)}
(s,a)~d,
di*" (s, a)
d" (s,a)

Ad2¢’P(s,a)2 1 5
=+ —gn(s,a,; R, P
T a0 :

= Ed’NV]E(s,a)Nd;’L'P [ gh(S, a, ¢; Rv P)

< E¢7NV]E(s,a)~dZ’P [

_ g ZM +11E Eg o B™' ™M (g (sn, an, ¢, R, P)?] (30)
4 P~ - dZ’P(S,a,) ) p~v il ~v h\Sh, Qh, @, 11, .
Note that
H
> BB (gn(sn, an, &3 R, P)] = Egey [Vip.r(m5) — Var ()] |
h=1
and

H
Z E™" " [gn(sn, an, ¢; R, P)?]
h=1

M=
Mg

E™+"F [gn(sh, an, ¢; €, P)?]

=
Il
—_

<
Il
—

I
M=
M=~

T 3! 2
Eme P {(fqb(sh,&h;ej) - <P(8mah)Tej —ESINP(.‘S’Q)[f¢(S/;6j)]) } ,
=1

>
Il
—

<
Il

I
M=
M=

E7s {(ﬁp(sh, anse;) = [Tae(Shs an; ej))Q]

>
Il
—

<
Il
—

I
M=

Eme P [Hf¢(8h7ah) - fTw(Shv“h)”Q}

h=1
H
=Y E™ T [6n(6, 85 0n) — En(Tard, ;0n)] (by Eq. (23))
h=1
= B2HD (¢||M). (31)
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Thus,

TermA$jsq (v)

lfﬂ' 7
=Epnen By o Egan [V¢,R(7T¢) = Vi (mg) — EDsqu (¢||M)]

H H
1
S E¢NVE¢/NVEMNV ZEﬂ¢’P[gh(Sha ap, (b, R, P)] - 77B72H ZE”W,P [gh(sh, an, ¢)7 R, P)Q]
h=1 h=1
B?H a 47" (s,a)?
< T En o DY Zmpi() : (by Eq. (30))
h=1 s,a h (570‘)

Let u}lf be any occupancy measure over layer h that depends on P. Then

Egrr

d;:d”P(s,a)2 B d2¢’P(s,a)uf(s,a) . d™+P(s,a)
D | =B | D

s,a diy{P(S?a) s,a d}VL’P(S’a’) Mi(s’a)

Z dZmP(s,a),uf(s,a)} a dZvP(s,a)

< Egp~
- V[ d;’L’P(S’a) S am Mﬁ(saa)

P (s,a
= (Z“f(s’a)> .maxdhi(’)

s,a

M Wl s.a)

de
— max T_(5:0), (32)
s,a,m Mh (87 a,)
7, P
We let uﬁ be the minimizer of max; q dl’lp (SS). The coverability in MDP M is defined
h ’
7, P —_—
as min, Maxs q . h dﬁp ((SSS) [XFB*23]. Combining the inequalities proves TermAg”Dsq(V) <
h )

O (ndB*H?). 0

Lemma 46. For hybrid MDPs with Bellman completeness and coverability bounded by d, it holds
that

3,D. 3
max TermB, "= (v) < O ((BZH5d317) 3) .

v

Proof. By definition,

2

Y
917]E¢ NV]EJVINVE¢~V |:Dsq (¢||M>:|

Terme»ﬁsq (y) =6V dH\/?)E(lgNVE(p’R)N,, |:(V¢’R(7T¢) — VP’R(W¢))2:|

Define

gh,(57 a, ¢; R, P) = f¢(57 a; R) - R(57 a’) - ES'NP("S,G) [f¢(5/a R)L
Ay (s,0) = By, {dzd”P(s,a)} .
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‘We have
Eg¢~ [(V¢,R(7T¢) - VP,R(ﬂ'qb))Q}
H
= ) 2
= H;E¢NVE(s,a)~d:¢’P [gh(s, a, 9; R, P) ]

H
S HZE¢NV]E(S7[1)NL1:¢’P th(57aa¢; R7 P)H
h=1 )

|gh(s,a, ¢7 Ra P)|

—HS Ey B, .
Z [ (s,a) th dZ’P(s,a)

ul [dZ‘P’P(s, a)
h=1

H
SHY [ BoiBg0yir
h=1

[d;?”P(s,a)2

. 2
d}VL’P(S, a)g \/]E‘bNVE(s,a)NdZ'P {(gh(& a, ¢7 R, P))

H
<HY \/dE¢W]E(S w190 (8,0,6; R, P)2]. (by Eq. (32) and that coverability < d)
h=1

Thus,
2 —_—T ./
6v dH\/3]E¢~uE<P,R>~u {(V@R(%) - VP,R(W¢))2] - %E¢’~VEM~VE¢~V [Dscf (¢||M)}
u P
3 T/
< dzHQZE(P,R)ND [\/E¢NVE(s}a)~d;‘P [gh(s,a,qS;R,P)zﬂ - %EWNVEI\/INVE(@VV [Dsqd) (QS”M)}
h=1
1 H
2172 = . 2
< dzH 54— 45 ZE(P,R)NV |:\/E¢NVE(S,G)~deP [gh(57aa¢7 R7 P) }:|
9 H
———— N EyErinEo B ,a,$; R, P)? Eq. (31
9nB*H ,; s Brtns BB e [on(5 0,63 R, P)Y] (Eq. 31)
3 nB*H 1
<o (d2H2,8+ 7 ) =0 ((B*H%d*n)").

O

Lemma 47. For hybrid MDPs with Bellman completeness and coverability bounded by d, it holds
that

dig-decy P = O (B*H?dn + (B*H°d*y) ).

Proof. This can be obtained by directly combining Lemma 39, Lemma 40, Lemma 45, Lemma 46.
O
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J OMITTED DETAILS IN SECTION 6

J.1 PROOF OF THEOREM 14

In this section, we will use Ber(p) to denote Bernoulli distribution with success probability p. We

consider parameters ¢ and A withe < A = 161/? < %. Define p™ = % +Aandp = % — A. Let

H(v) denote the entropy of distribution v. We assume learning rate n < 1.

Consider a three-arm bandit environment with model class M = {7, M>} where
e My = (Ber (p~),Ber(p™), eBer(0.5)). The reward distribution is Ber (p~) for arm a; and
Ber (p) for arm az. Arm a3’s reward is 0 and e with equal probability.
e My = (Ber(p"),Ber(p~),0.5¢). The reward distribution is Ber (p*) for arm a; and
Ber (p~) for arm ap. Arm a3’s reward is 0.5¢ deterministically.

In this setting, ® contains two infosets (based on Assumption 1):
o1 ={(Mi, 7))}, g2 ={(M2,mas,)} -

In the rest of this proof, we compare the optimistic E2D algorithm [FGQ™23] and our algorithm in
this environment.

Optimistic DEC algorithm [FGQ™23] Given p; € A(®), the algorithm chooses action distribu-
tion via
. 1.
pr = argmin max E,pEgep, Erren {V¢(a¢) —Vym(a)— =D (¢||M)} (33)
peA(IT) YEA(P) n
where a is the optimal action of infoset ¢. In this simple bandit setting, the bilinear divergence and
the squared Bellman error coincide with

D] M) = (E=M[Vy(a) = r))” = (Vo(a) — Var(a))*.
We first consider the divergence term, for action a € {a1, as}, we have
Egnp Entms [D(B]|M)] = pe(d1)v(Ma)(Ve, (a) = Vary (@) + pe(d2)v(M1)(Vi, (a) = Var, (a))?

= 4 (pe(d1)v(Ma) + pe($2)v(My)) A (34)
For action a = a3, we have
Egmp Ertm [D(B||M)] = pi(¢1)v(Ma2)(Vy, (@) = Var, (a))? + pi(d2)v (M) (Ve, (a) — Vi, ())?
=0 (35)
Thus, for any p; and v, we have

1
Ea~pE¢NPtE1W~V |:_77Da(¢||M>:| ==

which is monotonically increasing in p(as).

AP DA o gu)0(0) + pu(da(00)

We then consider the regret term. For any p € A (II), define p = (15(1)‘1(2)3) , 13(;(3)3) , 0) if pas) < 1,

and p = (%, 1,0) otherwise. For any M € M, when p(a3) < 1 we have
Earp [Var(a)] = Eany Vie(a)] = D (pl(a) = Bla)) Vas(a) + plas)Var (as)
a€{ai,as}
— AL ST paVar(a) + pla)Visaa)
plas a€{ai,az}
—p(as)

ST pla) (p(ar) +p(az))p~ + plaz) Vi (as)

(Var(a) > p~ forany M and a € {a1,az}, and p(az) < 1)
1
= p(as) (VM(CLS) 5t A)

1
< p(as) <0.56+A—2> <0, (6<A§1—16)
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and when p(a3) = 1 we also have E,,, [Vas(a)] — Eq~p [Var(a)] < 0. Thus, for any py, v, and p,
EanpBonp Erinw {Vi(ag) = Var(a)} < BanpBonp, Enrnw {Vi(ag) — Var(a)} .
Combining the discussion of the above two terms, for any p;, v and p, we have
1 1
Ea~ﬁ]E¢~ptEM~u {V¢(a¢) - VM(a) - nDa(¢||M)} S anpE¢~ptE]W~V {V¢(a¢,) - VM(G) - nDa((bHM)} .
(36)

Given Eq. (36), the minimax solution of Eq. (33) must have p;(3) = 0 for any p; and any ¢. This
implies that the optimistic DEC algorithm will never choose a3 and the problem degenerate to
standard two-arm bandit, so the policy derived from optimistic DEC objective Eq. (33) must suffer

standard regret lower bound E [Reg(mas+)] > Q(VT) given A = © (%)

Qur algorithm Given p; is a uniform distribution, we consider our first step optimization where

. 1 I .
p1 = argmin max Ky pEge, Eprew {VM(GM) —Vu(a) = =Eouns()a) [KL(vg(+|a,0), p1)] — =D (¢||M)} :
peA(I) VEA(Y) n n
(37

Below, we discuss the four terms in Eq. (37).

The Vis(aps) term  For any v, we have Eps, [Vas(aprs)] = p™, which is a constant. Therefore, this
term can be ignored in the objective.

The Vs (a) term By direct calculation, we have

p(a) +plaz)

EompEarns [Var (@) = 2225

+ (p(a1) — plaz)) (v(Ma) — v(M1)) A + 0.5p(az)e.
(38)
Eor any p = (p(a1), p(az), p(as)), consider p = (Plfple) ples)bp(az) 4 q,)) By Eq. (38) we
ave

EopErimn [V < EompEnrrmw [V . 39

3 EoniBarns [Var(@)] € max BanyBarvs [Vie (@) (9)
The D®(4||M) term  Given p; is a uniform distribution, for action a € {1, 2}, from Eq. (34), for
any v we have Eg,, Enry [D (0| M)] = 2A2. For action a = 3, from Eq. (35), for any v, we
have Ey,, Epron [D*(¢||M)] = 0. Hence, EqpEpmp, Enrn [D(¢|M)] = 2(1 — plas))AZ.
Note that now this is independent of v, and only related to p(as) or p(a1) + p(az) but not p(a;) or
p(az) individually.

The KL term Notice that
Vo("alvqbl) = Ber (p_)7 Vo('|a27¢1) = Ber (p+) y Vo("a17¢2) = Ber (p+) ) Vo('|a27¢2) = Ber (p_) )
Vo(+|a1) = Ber (m1), Vo(+laz) = Ber (m2)

where my = v(d1)p~ + v(p2)p™ and ma = v(¢1)pT + v(é2)p~ and it holds that my + mg = 1.
Given that KL (Ber (p) , Ber (¢)) = KL (Ber (1 — p) ,Ber (1 — ¢)), we have

EanpErinw [Eonnr(a) [KL(v( ]a, 0), p1)]]

= EopBomn [KL(o( |a, @), vo(:|a))] + KL(vg, p1)

= p(a1)v(¢1)KL (Ber (p~) , Ber (m1)) + p(az)v(¢1)KL (Ber (pT) , Ber (my2)) + KL(vg, p1)
+ p(a1)v(¢2)KL (Ber (p*) ,Ber (m1)) + p(az)v(¢2)KL (Ber (p~) , Ber (m3))
+ plas)Egm [KL(v6( |a3, ), vo(-Ja5))]

= (p(a1) + p(az)) (v(¢1)KL (Ber (p~) , Ber (m1)) + v(¢2)KL (Ber (p*) , Ber (m1)))
+ p(as)H(v) + KL(vg, p1)

= (1—p(az)) (H (Ber(m1)) — H (Ber (p*))) + p(az)H(v) + KL(vg, p1).
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Note that this term is only related to p(as) or p(a1) + p(az), but not p(ai) or p(az) individually.

Combining terms Combining the case discussions above, for any p = (p(a1), p(az2), p(as)), with

b= (1?((11)42-17(02)7 p(ﬂl);‘P((IQ) ,p(as)), we have

1 1
s {Eu g | <Via(o) = L Eovssi) KL(1a0) )] = LB D010}

1 1 .
< g {BunBares | ~Vir(0) = TEomssi) KLO(0,0), )] = LB D010 |

(l—s 1—s S)WG

To calculate the max value of the left-hand-side, consider policy distribution ps =
have

Eanp,Enfon [—vM<a> - %EONM@ KL(v (-1, 0), p1)] — %E¢~m [D“(¢||M>]}

-1 s 1 (1 — s) (H (Ber(mq)) — H (Ber(p™)) + 2A%) + KL (vg, p1) + sH(v))

2 2 7
(40)

where m1 = v(¢1)p~ + v(¢2)p™. Define
G(v) = (1 — s)H(Ber(m,)) + KL (vg, p1) + sH(v).

To calculate max, of Eq. (40), we only need to consider min, {G(v)}. By setting v(¢2) = 1—v(¢1),
function G is only related to (¢;) and we denote it as G(v(¢1)), after taking derivative, we have

— —A(l-$)In (1 ;f“) +log (1_1/(%1)) +slog (W)

where my = v(¢1)p~ + (1 — v(41))p™ and we use the fact that %;r(p)) =1In (%). Note that

when v(¢1) = & we have my = % and G'(3) = 0. Thus, % is a stationary point. On the other

hand, we have G”(3) = 4(1 — s — 2(1 — s)A?%) > 0 and G(v(¢1)) = G(1 — v(¢1)). This implies
v(¢1) = 4 is the unique minimizer and the minimal value is G(3) = In(2).

Thus,

1 1
B, Ear |— — By ntta) [KL(vs (|2, 0), p1)] = ~E [D* (]| M
s {Bay Bares | ~Var(0) = TEpmaro) KLOGCles0),p0)] = T (D000

_sobose Lo o + 2y _ 1

= 2 (1—s) (—H (Ber(p™)) + 2A%) ., In(2)

B 1—e¢ H(Ber(ph)) — 2A2 In2 e
Note that

H(Ber(ph)) — 2A2
= —KL(Ber(p™), Ber(%)) +1n2— QD%V(Ber(]ﬁ), Ber(%))

> In2 — 5KL(Ber(p"), Ber(1)) (Pinsker’s inequality)
>1n2 — 15A2 (KL(Ber(3 + A),Ber(3)) < 3A? for A < 1)
> % (by the assumption A = 16% <)
Hence, the minimum value of Eq. (41) is achieved at s = 1 when % — 156 > 0. By the condition

1 < 1, this indeed holds. This means that our algorithm always picks the third arm in the first round.
After picking arm ag, the belief of ¢ will be deterministic, since v1(¢|as, 0) = 0 for any ¢ # ¢*.
This means the algorithm will always choose the optimal action in the following rounds, ensuring
that E [Reg(mp+)] < pt < 1.
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K USE OF LARGE LANGUAGE MODELS IN PREPARATION

We did not use large language models at all for this project.
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