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ABSTRACT

We study decision making with structured observation (DMSO). Previous work
[FKQR21, FGH23] has characterized the complexity of DMSO via the decision-
estimation coefficient (DEC), but left a gap between the regret upper and lower
bounds that scales with the size of the model class. To tighten this gap, [FGQ+23]
introduced optimistic DEC, achieving a bound that scales only with the size of the
value-function class. However, their optimism-based exploration is only known
to handle the stochastic setting, and it remains unclear whether it extends to the
adversarial setting.
We introduce Dig-DEC, a model-free DEC that removes optimism and drives
exploration purely by information gain. Dig-DEC is always no larger than opti-
mistic DEC and can be much smaller in special cases. Importantly, the removal
of optimism allows it to handle adversarial environments without explicit reward
estimators. By applying Dig-DEC to hybrid MDPs with stochastic transitions and
adversarial rewards, we obtain the first model-free regret bounds for hybrid MDPs
with bandit feedback under linear reward and several general transition structures,
resolving the main open problem left by [LWZ25].
We also improve the online function-estimation procedure in model-free learning:
For average estimation error minimization, we refine [FGQ+23]’s estimator to
achieve sharper concentration, improving their regret bounds from T

3
4 to T

2
3 (on-

policy) and from T
5
6 to T

7
9 (off-policy). For squared error minimization in Bellman-

complete MDPs, we redesign their two-timescale procedure, improving the regret
bound from T

2
3 to

√
T . This is the first time a DEC-based method achieves

performance matching that of optimism-based approaches [JLM21, XFB+23] in
Bellman-complete MDPs.

1 INTRODUCTION

[FKQR21, FGH23] developed the framework of decision-estimation coefficient (DEC) that character-
izes the complexity of general online decision making problems and provides a general algorithmic
principle called Estimation-to-Decision (E2D). In the state-of-the-art result by [FGH23], regret lower
and upper bounds are established with a gap of log |M|, where M is the model class where the
underlying true model lies. This log |M| reflects the price of model estimation. Essentially, the
lower bound in [FGH23] only captures the complexity of decision-making / exploration, while the
upper bound additionally includes the complexity of model estimation. Since E2D is a model-based
algorithm that learns over models, it necessarily incurs this cost of model estimation.

On the other hand, a large class of existing reinforcement learning (RL) algorithms are model-free
value-based algorithms, which only estimate value functions. To better capture the decision-making
complexity in this case, [FGQ+23] proposed a variant of E2D, called optimistic E2D, that achieves
a regret upper bound characeterized by the complexity measure called optimistic DEC. However,
unlike the model-based DEC/E2D framework [FKQR21, FGH23] which drives exploration only
through information gain, optimistic DEC/E2D leverages the optimism principle to drive exploration,
which may not be fundamental and could lead to sub-optimal performance in certain cases. Overall,
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the precise tradeoff between model estimation complexity and decision-making complexity, along
with the gap between upper and lower bounds, remain largely unsolved.

A parallel line of reserach seeks to relax the assumption that the environment remains stationary.
[FRSS22] and [XZ23] studied the pure adversarial setting where the environment can choose a
different model in every round. In this case, their algorithms only estimate the optimal policy
and the price of estimation becomes log |Π| where Π is the policy class. In such pure adversarial
environment, however, the decision-making complexity could become prohibitively high and is
often vacuous in Markov decision processes (MDPs). A simpler and more tractable setting is the
that of hybrid MDPs where the transition is stochastic but the reward is adversarial. This setting
has been studied in various settings: tabular MDPs [NGSA13, RM19, JJL+20, SERM20], linear
(mixture) MDPs [LWL21, DLWZ23, SKM23, LWZ24, KZWL23, LZZ24], and low-rank MDPs
[ZYW+24, LMWZ24]. The work of [LWZ25] first leveraged the DEC framework to obtain results
for bilinear classes. However, they only gave a model-based algorithm (incurring large estimation
error) and a model-free algorithm that requires full-information reward feedback, leaving the model-
free bandit case open.

We provide a unified framework that advances both directions discussed above:

• In the stochastic setting, we introduce a new model-free DEC notion, Dig-DEC, that improves over
the optimistic DEC of [FGQ+23]. Our approach does not rely on the optimism principle, but ad-
heres more closely to the general idea of DEC that drives exploration purely with information gain.
For canonical settings such as bilinear classes or Bellman-complete MDPs with bounded Bellman
eluder dimension or coverability, we recover their complexities with improved T -dependence in
the regret, while in some constructed settings, the improvement can be arbitrarily large.

• We establish the first sublinear regret for model-free learning in hybrid bilinear classes and Bellman-
complete coverable MDPs with linear reward and bandit feedback, resolving the open question in
[LWZ25].

• We improve the online function estimation procedure both in the case of average estimation error
and squared estimation error. This allows us to improve the T

3
4 /T

5
6 regret of [FGQ+23] to

T
2
3 /T

7
9 in the former case, and improve the T

2
3 regret of [FGQ+23] to

√
T in the latter case. The

techniques we use to achieve them could be of independent interest.

Tables that compare our results with previous ones are provided in Appendix A. Notably, our
framework generalizes the Algorithmic Information Ratio (AIR) framework of [XZ23] and [LWZ25],
substantially simplifying the analysis while enhancing algorithmic flexibility (Section 4). This
generalization may facilitate future development in this line of research.

We remark that, similar to [FGQ+23], the term “model-free” learning in our work does not mean
that the learner has no access to the model class M or has computational constraints. Instead, it only
means that the regret bound is independent of the size of the model set M. This implicitly restricts
the learner from making fine-grained estimation over M.

2 PRELIMINARY

We consider Decision Making with Structured Observations (DMSO) [FKQR21]. Let M be a model
space, Π a policy space, O an observation space, and V a value function. For simplicity, we |Π| is
finite. Each model M ∈ M is a mapping from policy space Π to a distribution over observations
∆(O). Every model M ∈ M is associated with a value function VM : Π → [0, 1] that specifies the
expected payoff of policy π ∈ Π in model M . We denote πM = argmaxπ∈Π VM (π).

The learner interacts with the environment for T rounds. In each round t = 1, . . . , T , the environment
first chooses a model Mt ∈ M without revealing it to the learner. Then the learner selects a policy
πt ∈ Π, and observes an observation ot ∼ Mt(·|πt). The regret with respect to policy π⋆ ∈ Π is

Reg(π⋆) =

T∑
t=1

(VMt
(π⋆)− VMt

(πt)) .

Markov Decision Process A Markov decision process is defined by a tuple (S,A, P,R,H, s1),
where S is the state space, A is the action space, P : S × A → ∆(S) is the transition kernel,
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R : S × A → ∆([0, 1]) is the reward distribution (with abuse of notation, we also use R(s, a)
to denote the expected reward R(s, a) ∈ [0, 1]), H the horizon, and s1 the initial state. Assume
S =

⋃H
h=1 Sh with Si ∩ Sj = ∅ for i ̸= j, and S1 = {s1}. In every step h = 1, 2, . . . ,H within

an episode, the learner observes the state sh ∈ Sh and selects an action ah ∈ A. The learner then
transitions to the next state via sh+1 ∼ P (·|sh, ah), which is only supported on Sh+1, and receives
the reward rh ∼ R(sh, ah). We assume that the reward is constrained such that

∑H
h=1 rh ∈ [0, 1] for

any policy almost surely. Given a policy π : S → A, the Q-function and V -function for s ∈ Sh are
defined by Qπ(s, a) = Eπ[

∑H
h′=h rh | sh = s, ah = a] and V π(s) = Qπ(s, π(s)). The Q-function

and V -function of an optimal policy π⋆ are abbreviated with Q⋆ and V ⋆. We use Qπ(s, a;M) and
Q⋆(s, a;M) to denote the Q-functions under model M = (P,R).

Learning in MDPs is a DMSO problem where M = P × R with P being the set of transition
kernels and R the set of reward functions. A round in DMSO corresponds to an MDP episode,
and observation o = (s1, a1, r1, s2, a2, r2, . . . , rH) is the trajectory. For any function g, we write
Eπ,M [g(o)] = Eo∼M(·|π)[g(o)]. If g(o) only depends on (s1, a1, s2, a2, . . . , aH), we also write it
as Eπ,P [g(o)]. We use VM (π) = Eπ,M [

∑H
h=1 rh] to denote the expected total reward obtained by

policy π in MDP M , and dπ,Mh (s, a) (or dπ,Ph (s, a)) the occupancy measure on step h under policy
π and model M (or transition P ).

2.1 Φ-RESTRICTED LEARNING

For DMSO, [FKQR21, FGH23] and [CMB25] studied the stochastic setting where Mt = M⋆

for all t. They showed that the DEC characterizes the regret lower bound and captures the complexity
of decision making. They proposed model-based algorithms with near-optimal upper bounds up to
the model estimation complexity log |M|. On the other hand, [FRSS22] and [XZ23] studied the pure
adversarial setting where Mt arbitrarily changes over time. For this setting, they identified that DEC
of the convexified model class characterizes the regret lower bound, which could be significantly
larger than DEC of the original model class. Their upper bound replaces log |M| by log |Π|, reflecting
that they perform policy-based learning without finegrained estimation of the model.

Several works go beyond pure model learning or pure policy learning. [FGQ+23] considered model-
free value learning in the stochastic setting where only the value function is estimated, aiming to
only incur log |F| estimation complexity, where F is the value function set. [LWZ25] and [CR25]
considered the hybrid setting where part of the environment is stochastic and part adversarial, and the
target of estimation is only on the optimal policy and the stochastic part of the environment.

We base our presentation in [LWZ25]’s formulation, which can cover all cases mentioned above.
Definition 1 (Infosets and Φ [LWZ25, CR25]). Let Φ be a collection of subsets of M×Π satisfying:
1) The subsets are disjoint, i.e., for any ϕ, ϕ′ ∈ Φ, if ϕ ̸= ϕ′, then ϕ ∩ ϕ′ = ∅. 2) Every ϕ contains a
single policy, i.e., if (M,π), (M ′, π′) ∈ ϕ, then π = π′. We call a ϕ ∈ Φ an information set (infoset).
Due to 2) above, each ϕ ∈ Φ is associated with a unique policy. We denote this policy as πϕ. We also
define Ψ ≜

⋃
ϕ∈Φ ϕ ⊆ M×Π.

With Definition 1, for given ρ ∈ ∆(Φ), p ∈ ∆(Π), ν ∈ ∆(Ψ), and η > 0, [LWZ25] defined Φ-AIR:

AIRΦ
η (p, ν; ρ) = Eπ∼pE(M,π⋆)∼νEo∼M(·|π)

[
VM (π⋆)− VM (π)− 1

η
KL(νϕϕϕ(·|π, o), ρ)

]
, (1)

where νϕϕϕ(·|π, o)1 is the posterior over ϕ given (π, o), which satisfies ν(ϕ|π, o) ∝∑
(M,π⋆)∈ϕ ν(M,π⋆)M(o|π). Φ-AIR can characterize the decision-making complexity in the Φ-

restricted environment defined below:
Definition 2 (Φ-resitricted environment [LWZ25, CR25]). A Φ-restricted environment is an (adver-
sarial) decision making problem in which the environment commits to ϕ⋆ ∈ Φ at the beginning of the
game and henceforth selects (Mt, πϕ⋆) ∈ ϕ⋆ in every round t arbitrarily based on the history.
Theorem 3 ([LWZ25]). For Φ-restricted environment defined in Definition 2, there exists an algo-
rithm ensuring E[Reg(πϕ⋆)] ≤ E

[∑
t minp maxν AIR

Φ
η (p, ν; ρt)

]
+ log |Φ|

η .
1We use the notational convention in [LWZ25]: the bold subscript in νϕϕϕ(·|π, o) specifies the identity of the

variable represented by ‘ · ’, instead of a realized value of that variable. The subscript may be omitted when clear.
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2.2 RESULTS AND OPEN QUESTIONS IN [LWZ25]

[LWZ25]’s main results are based on Φ-AIR: For model-free learning in stochastic MDPs, [LWZ25]
obtained

√
T regret for linear Q⋆/V ⋆ MDPs (before their result, the best known rate is T

2
3 ). Unfor-

tunately, their algorithm cannot handle other canonical settings such as bilinear classes, MDPs with
bounded Bellman-eluder dimension, or MDPs with bounded coverability. For model-based learning
in hybrid MDPs where the transition is fixed but the reward function changes arbitrarily over time,
[LWZ25] obtained near-optimal regret bounds for general cases up to a log(|P||Π|) factor.

An attempt was made by [LWZ25] to handle model-free learning in hybrid MDPs based on an
extension of the optimistic DEC approach [FGQ+23]. However, their result only handles full-
information reward feedback. Extension to the bandit setting is challenging under this framework as
the optimistic update requires an explicit construction of the reward estimator.

In this work, we focus on model-free learning in both stochastic and hybrid MDPs. Our results
generalize those of [LWZ25] in both directions: Our framework handles all canonical settings for
model-free learning in stochastic MDPs, improving previous results by [FGQ+23]. It also handles
model-free learning in hybrid MDPs with bandit feedback under the same reward assumption as
[LWZ25].

3 SETTINGS AND ASSUMPTIONS

Below, we show how to view model-free learning in stochastic and hybrid MDPs as learning in
Φ-restricted environments (Definition 2), and introduce the assumptions used in the paper.

3.1 THE STOCHASTIC SETTING

Definition 4 (Stochastic setting). In the stochastic setting, the environment commits to M⋆ at the
beginning of the game and sets Mt = M⋆ in every round t.

For model-free learning in the stochastic setting, we assume the following:
Assumption 1 (Φ for model-free learning in stochastic MDPs). In the stochastic setting, in addition
to (M,Π,O, V ) in the DMSO framework (Section 2), the learner is provided with a function set F .
Each model M ∈ M induces a function f ∈ F . Assume that models inducing the same f have
the same Q⋆ function and hence the same optimal policy πM (for example, an F that contains all
possible Q⋆ functions satisfies this, though F could also provide additional information). With this,
Φ is created by partitioning M according to the function they induces: Define Φ = {ϕf : f ∈ F}
where ϕf = {(M,πM ) : M induces f}. With abuse of notation, we write M ∈ ϕ to indicate that
(M,πM ) ∈ ϕ. We denote by πϕ the common optimal policy for all M ∈ ϕ, and by fϕ(s, a) the
Q⋆ function induced by M ∈ ϕ, i.e., fϕ(s, a) = Q⋆(s, a;M) for all M ∈ ϕ. Define fϕ(s) =
maxa fϕ(s, a). We also use Vϕ(πϕ) := fϕ(s1) to denote the value of policy πϕ under any model in
ϕ.

3.2 THE HYBRID SETTING

Definition 5 (Hybrid setting). In the hybrid setting, the environment commits to P ⋆ ∈ P at the
beginning of the game. In every round, the environment selects Rt ∈ R arbitrarily based on the
history and sets Mt = (P ⋆, Rt).

For model-free learning in the hybrid setting, the definition of Φ becomes more involved as it
partitions over three dimensions (Π,P,R) in different ways. Formally, the partition should satisfy
the following Assumption 2. We provide an illustration in Figure 1 in Appendix B to help the reader
understand this assumption.
Assumption 2 (Φ for learning in hybrid MDPs [LWZ25]). The learner is provided with a function set
Fπ for every π ∈ Π. For any fixed π, each transition P ∈ P induces a function f ∈ Fπ . Φ is created
by partitioning P×R×Π firstly according to π, and then according to the f the transition induces in
Fπ: Define Φ = {ϕπ,f : π ∈ Π, f ∈ Fπ}, where ϕπ,f = {(P,R, π) : P induces f in Fπ, R ∈ R}.
We write P ∈ ϕ if there exists R, π such that (P,R, π) ∈ ϕ, and write M = (P,R) ∈ ϕ if P ∈ ϕ.
We denote by πϕ the unique π ∈ Π defining ϕ ∈ Φ.
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The next assumption describes the requirement for the function set in our work.

Assumption 3 (Unique reward to value mapping given ϕ [LWZ25]). Let Φ satisfy Assumption 2.
Assume that for any fixed ϕ and P, P ′ ∈ ϕ, it holds that Qπϕ(s, a; (P,R)) = Qπϕ(s, a; (P ′, R))
for any s, a,R. We denote fϕ(s, a;R) = Qπϕ(s, a; (P,R)) for any P ∈ ϕ, and define fϕ(s;R) =
Ea∼πϕ(·|s)[fϕ(s, a;R)]. We also use Vϕ,R(πϕ) = fϕ(s1;R) to denote the value of policy πϕ under
(P,R) for any P ∈ ϕ.

To understand Assumption 2 and Assumption 3 better, we take adversarial linear MDP [LWZ24]
for example. In adversarial linear MDPs, the learner is given a known feature mapping φ(s, a) ∈
Rd, such that the reward function can be represented as R(s, a) = φ(s, a)⊤θR and the transition
as P (s′|s, a) = φ(s, a)⊤ωP (s

′). In this case, one can show that for any π, Qπ(s, a;P1, R) =
Qπ(s, a;P2, R) ∀s, a,R if and only if Eπ,P1 [ϕ(sh, ah)] = Eπ,P2 [ϕ(sh, ah)] for all h. Based on
Assumption 3, we would like to put such P1 and P2 in the same partition under π (see Figure 1 for
an illustration). In other words, in Assumption 2, each f ∈ Fπ corresponds to a unique value of
(Eπ,P [ϕ(sh, ah)])h∈[H] ∈ RdH , and as long as two P ’s share this value, they both belong to ϕπ,f .

We remark that while Assumption 3 is a reasonable generalization of Assumption 1 to the hybrid
setting, it does not capture all learnable hybrid MDPs we are aware of. For example, if the transition
space is partitioned according to Assumption 3 for hybrid low-rank MDPs with unknown reward
feature, then log |Φ| will scale polynomially with the number of possible feature mappings. In
contrast, the work of [LMWZ24] handles this case with the regret scaling only logarithmically with
the number of possible feature mappings. There is still technical difficulty in handling this case in
our framework, and we leave it as future work.2 We also remark that the previous work by [LWZ25]
has the same limitation even in the full-information case.

Therefore, in this work, for the hybrid setting, we consider linear reward with known features, formally
stated in the next assumption.

Assumption 4 (Linear reward with known feature). There exists a feature mapping φ : S ×A → Rd

known to the learner such that for any R ∈ R, R(sh, ah) = φ(sh, ah)
⊤θh(R) for all (sh, ah) ∈

Sh ×A for some θh(R) ∈ Rd.

While the stochastic setting (Definition 4) and the hybrid setting (Definition 5) are special cases of
Φ-restricted environments (Definition 2), the adversary in these special cases has additional restriction:
for example, in the stochastic setting, the adversary is allowed to choose M⋆ ∈ ϕ⋆ at the beginning
of the game, but has to stick to M⋆ throughout interactions. Similarly, P ⋆ has to be fixed in the
hybrid setting. This is different from the general Φ-restricted setting where the adversary is allowed
to choose Mt ∈ ϕ⋆ arbitrarily in every round. However, using such a “coarser” partition Φ to model
these settings is crucial for obtaining an improved estimation error that only scales with the size of
the value function set.

4 GENERAL FRAMEWORK

This section introduce a general framework and complexity measure for the Φ-restricted environment,
which covers model-free learning in stochastic and hybrid MDPs as special cases. For given ρ ∈
∆(Φ), define for p ∈ ∆(Π) and ν ∈ ∆(Ψ)

AIRΦ,D
η (p, ν; ρ) = Eπ∼pE(M,π⋆)∼ν

[
VM (π⋆)− VM (π)− 1

η
Dπ(ν∥ρ)

]
, (2)

for some divergence measure Dπ(ν∥ρ) convex in ν for any π and ρ. Φ-AIR defined in Eq. (1) is a
special case where Dπ(ν∥ρ) = EM∼νEo∼M(·|π)[KL(νϕϕϕ(·|π, o), ρ)]. The general algorithm designed
based on Eq. (2) is shown in Algorithm 1.

2The algorithm of [LMWZ24] begins with reward-free exploration to learn a feature mapping, followed by
online learning over that fixed feature mapping. While this two-phase approach could potentially be integrated
into our DEC framework in special cases, our goal is to explore approaches that avoid such design to address
more general scenarios.
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Algorithm 1 General Framework
Input: Set of partitions Φ and its union Ψ (defined in Section 2.1).
ρ1(ϕ) = 1/|Φ|, ∀ϕ ∈ Φ.
for t = 1, 2, . . . , T do

Set pt, νt as the solution of the following minimax optimization (defined in Eq. (2)):

min
p∈∆(Π)

max
ν∈∆(Ψ)

AIRΦ,D
η (p, ν; ρt). (3)

Execute πt ∼ pt, and observe ot ∼ Mt(·|πt).
Update ρt+1 = POSTERIORUPDATE(νt, ρt, πt, ot). (4)

Algorithm 1 has two main steps. First, given the infoset distribution ρt ∈ ∆(Φ), solve the policy
distribution pt and the worst-case world distribution νt in the saddle-point problem Eq. (3). This
is similar to the previous AIR framework in [XZ23] and [LWZ25]. After taking policy πt ∼ pt
and receiving the observation ot ∼ Mt(·|πt), perform a posterior update by incorporating new
information from ot (Eq. (4)) and obtain the new infoset distribution ρt+1 ∈ ∆(Φ). In [XZ23] and
[LWZ25], this posterior update step is simply ρt+1(ϕ) = νt(ϕ|πt, ot), but it could take different
forms in our case depending on the specific divergence D instantiated later.

The ability of our algorithm to handle a general divergence D is enabled by our new analysis
techniques. The update rule ρt+1(ϕ) = νt(ϕ|πt, ot) in [XZ23] and [LWZ25] and the corresponding
regret analysis heavily relies on a “constructive minimax theorem” [XZ23] that is restricted to strictly
convex divergence measures and somewhat cumbersome to generalize to divergence other than KL.
Our new analysis, on the other hand, is more flexible and nicely connects to the standard analysis of
mirror descent.

Our analysis goes as follows. For any (M,π) ∈ M×Π, denote δM,π ∈ ∆(M×Π) as the Kronecker
delta function centered at (M,π). That is, δM,π(M,π) = 1 and δM,π(M

′, π′) = 0 for any other
(M ′, π′). By a simple first-order optimality condition (Lemma 18) and the fact that νt is a best
response to pt (Eq. (3)), we have (recall the definition of πϕ⋆ in Definition 2)

Eπ∼pt

[
VMt(πϕ⋆)− VMt(π)−

1

η
Dπ(δMt,πϕ⋆ ∥ρt)

]
(5)

≤ max
ν∈∆(Ψ)

Eπ∼pt
E(M,π⋆)∼ν

[
VM (π⋆)− VM (π)− 1

η
Dπ(ν∥ρt)

]
− Eπ∼pt

[
1

η
BregDπ(·∥ρt)

(δMt,πϕ⋆ , νt)

]
where BregF (x, y) = F (x)− F (y)− ⟨∇F (y), x− y⟩ ≥ 0 is the Bregman divergence defined with
a convex function F . Since pt is minimax solution in Eq. (3), after rearrangement of Eq. (5) and
summation over t, we get

T∑
t=1

(VMt
(πϕ⋆)− Eπ∼pt

[VMt
(π)]) (6)

≤
T∑

t=1

min
p∈∆(Π)

max
ν∈∆(Ψ)

AIRΦ,D
η (p, ν; ρt) +

1

η

Est︷ ︸︸ ︷
T∑

t=1

Eπ∼pt

[
Dπ(δMt,πϕ⋆ ∥ρt)− BregDπ(·∥ρt)

(δMt,πϕ⋆ , νt)
]
,

where we use the definition in Eq. (2). From Eq. (6), we have the following theorem.

Theorem 6. Algorithm 1 achieves E[Reg(πϕ⋆)] ≤ E
[∑

t minp maxν AIR
Φ,D
η (p, ν; ρt) +

Est
η

]
.

The POSTERIORUPDATE in Eq. (4) has to be further designed in order to minimize Est. In Ap-
pendix C, we show how our new analysis recovers previous results of [XZ23] and [LWZ25] easily.
We remark that when recovering [LWZ25]’s result for model-based learning in hybrid MDPs with
full-information feedback, we chooses D such that Est does not even scale with log |Φ|, while they
achieve it with a more complex two-level algorithm. This shows the flexibility of our framework. In
the next two subsection, we discuss about the two terms in the regret bound of Theorem 6.

6
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4.1 DIVERGENCE MEASURE IN ALGORITHM 1 AND dig-dec

To handle the MDPs of interest in Section 3, we will instantiate Algorithm 1 with the following
divergence D:

Dπ(ν∥ρ) = EM∼νEo∼M(·|π)

[
KL (νϕϕϕ(·|π, o), ρ) + Eϕ∼ρ

[
D

π
(ϕ∥M)

]]
, (7)

where D
π
(ϕ∥M) is another divergence that measures the discrepancy between infoset ϕ and model

M . Two choices of D will be introduced later in Section 4.2: averaged estimation error and squared
estimation error.

With this definition of Dπ(ν∥ρ), the first term in the regret bound in Theorem 6 can be bounded by
the following complexity:

dig-decΦ,D
η ≜ max

ρ∈∆(Φ)
min

p∈∆(Π)
max

ν∈∆(Ψ)
AIRΦ,D

η (p, ν; ρ)

= max
ρ∈∆(Φ)

min
p∈∆(Π)

max
ν∈∆(Ψ)

Eπ∼pE(M,π⋆)∼ν

[
VM (π⋆)− VM (π)− 1

η
Eo∼M(·|π) [KL(νϕϕϕ(·|π, o), ρ)]−

1

η
Eϕ∼ρ

[
D

π
(ϕ∥M)

]]
.

(8)

As both the KL and the D terms in Eq. (8) are measures of information gain, we call this complexity
notion dual information gain decision-estimation coefficient (Dig-DEC). In Section 6, we compare in
more detail how DigDEC is upper bounded by optimistic DEC — the complexity achieved by the
prior work [FGQ+23] in the stochastic setting, and when the improvement can be arbitrarily large.

4.2 POSTERIORUPDATE AND BOUNDS FOR Est

The D we would like to use in Eq. (7) depends on the MDP class we consider. Below, we describe
two classes of problems that are associated with different choices of D, under which the achievable
rates for Est are different.

4.2.1 AVERAGE ESTIMATION ERROR

Assumption 5 (Average estimation error). There exists an estimation function ℓh : Φ × O →
[−B,B]N for every h such that for any ϕ ∈ Φ and any M ∈ ϕ, it holds that for any π ∈ Π,

Eπ,M [ℓh(ϕ; oh)] = 0.

Additionally, assume that the adversary is restricted such that for any π, ϕ and t, t′ ∈ [T ], it holds
that Eπ,Mt [ℓh(ϕ; oh)] = Eπ,Mt′ [ℓh(ϕ; oh)].

The estimation function ℓ in Assumption 5 will be instantiated as the average Bellman error in
Lemma 8 for all concrete examples. In this case, Assumption 5 is essentially the standard realizability
assumption. We adopt the more general terminology of “estimation error” following [DKL+21].
Theorem 7. Assume Assumption 5 holds. Then Algorithm 4 with Algorithm 2 as POSTERIORUPDATE

with D
π
(ϕ∥M) = D

π

av(ϕ∥M) ≜ maxj∈[N ]
1

B2H

∑H
h=1

(
Eπ,M [ℓh(ϕ; oh)j ]

)2
ensures

E[Est] ≲ N log(|Φ|)T 1
3 .

Lemma 8. In the stochastic setting, Assumption 1 implies Assumption 5 with N = 1 estimation
function ℓh(ϕ; oh) = fϕ(sh, ah) − rh − fϕ(sh+1). In the hybrid setting, Assumption 2, Assump-
tion 3 and Assumption 4 imply Assumption 5 with N = d estimation functions ℓh(ϕ; oh)j =
fϕ(sh, ah; ej)−φ(sh, ah)

⊤ej − fϕ(sh+1; ej), where ej as a reward represents the reward function
defined as R(s, a) = φ(s, a)j .

In order to minimize Est in Eq. (6), we have to obtain an estimator of D
πt

av (ϕ∥M⋆) for all ϕ.
This can only be achieved via batching, which results in the design of Algorithm 4: In each epoch
k = 1, 2, . . . , T/τ , the learner uses the same policy πk to interact with the MDP for τ episodes. While
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similar epoching mechanism has been proposed in [FGQ+23], our construction of the estimator
improves their rate of Est from

√
T to T

1
3 . To see the difference, consider the case N = 1

in the stochastic setting, in which the goal is to approximate
∑H

h=1

(
Eπk,M

⋆

[ℓh(ϕ; oh)]
)2

. With
observations (o1, . . . , oτ ) drawn from M⋆(·|πk) in epoch k, we construct an unbiased estimator as
Lk(ϕ) =

∑H
h=1

(
2
τ

∑τ/2
i=1 ℓh(ϕ; o

i
h)
)(

2
τ

∑τ
i=τ/2+1 ℓh(ϕ; o

i
h)
)
, while [FGQ+23] constructs a biased

estimator as Lk(ϕ) =
∑H

h=1

(
1
τ

∑τ
i=1 ℓh(ϕ; o

i
h)
)2

. The detail of this estimation procedure is
provided in Appendix F.1.

4.2.2 SQUARED ESTIMATION ERROR

Under stronger assumptions on the estimation function, we can improve the rate further. This is
motivated by the class of Bellman-complete MDPs, given as followed.
Definition 9 (Bellman completeness for the stochastic setting). A Φ satisfying Assumption 1 is
Bellman complete under model M = (P,R) if for any ϕ ∈ Φ, there exists an ϕ′ ∈ Φ such that for
any s, a,

fϕ′(s, a) = R(s, a) + Es′∼P (·|s,a)[fϕ(s
′)].

A Φ is Bellman complete if it is Bellman complete under all model M ∈ M3.
Definition 10 (Bellman completeness for the hybrid setting). A Φ satisfying Assumption 3 is Bellman
complete under transition P if for any ϕ ∈ Φ, there exists an ϕ′ ∈ Φ such that πϕ′ = πϕ and for any
s, a,R,

fϕ′(s, a;R) = R(s, a) + Es′∼P (·|s,a)[fϕ(s
′;R)].

A Φ is Bellman complete if it is Bellman complete under all transition P ∈ P .
Assumption 6. There exists ξh : Φ× Φ×O → [0, B2] for every h and TM : Φ → Φ for every M
such that for any ϕ and any M ∈ ϕ, it holds that ϕ = TMϕ. Furthermore, for any ϕ′, ϕ ∈ Φ, any
M ∈ M, and any π ∈ Π,

4B2 · Eπ,M [ξh(ϕ
′, ϕ; oh)− ξh(TMϕ, ϕ; oh)] ≥ Eπ,M

[
(ξh(ϕ

′, ϕ; oh)− ξh(TMϕ, ϕ; oh))
2
]
.

Additionally, assume that the adversary is restricted such that TMt
ϕ = TMt′ϕ for all ϕ and all

t, t′ ∈ [T ].

Similar to Assumption 5, the function ξ in Assumption 6 will be instantiated as the square Bellman
error in Lemma 12 for all concrete examples. In this case, Assumption 6 corresponds to the standard
realizability plus Bellman-completeness assumption.
Theorem 11. Assume Assumption 6 holds. Then Algorithm 1 with Algorithm 3 as POSTERIORUP-
DATE with D

π
(ϕ∥M) = D

π

sq(ϕ∥M) ≜ 1
B2H

∑H
h=1 Eπ,M [ξh(ϕ, ϕ; oh)− ξh(TMϕ, ϕ; oh)] ensures

E[Est] ≲ log2 |Φ|.
Lemma 12. In the stochastic setting, Assumption 1 together with Bellman completeness (Definition 9)
implies Assumption 6 with the estimation function ξh(ϕ

′, ϕ; oh) = (fϕ′(sh, ah)− rh − fϕ(sh+1))
2

and B2 = 1. In the hybrid setting, Assumption 2, Assumption 3 and Assumption 4 together
with Bellman completeness (Definition 10) imply Assumption 6 with the estimation function
ξh(ϕ

′, ϕ; oh) = ∥(fϕ′(sh, ah; ej) − φ(sh, ah)
⊤ej − fϕ(sh+1; ej))j∈[d]∥2 and B2 = d, where

ej as a reward represents the reward function defined as R(s, a) = φ(s, a)j .

With Assumption 6, POSTERIORUPDATE no longer needs to rely on batching. We leverage a
two-timescale POSTERIORUPDATE learning procedure similar to that of [FGQ+23], which in turn
builds on [AZ22]. We refine their approach so Est can be bounded by a constant, improving over
[FGQ+23]’s T

1
3 bound. In addition, our approach comes with a simpler regret analysis. Our

POSTERIORUPDATE features a two-layer learning structure with a biased loss on the top layer.
It is related to model selection algorithms with comparator-dependent second-order bounds (e.g.,
[CLW21]), but also has its special structure not seen in prior work. Thus, we believe it is of
independent interest. The detail of this estimation procedure is provided in Appendix F.2.

3In fact, it suffices to assume Bellman completeness only under the ground-truth model M⋆ (as in [FGQ+23]).
However, it is without loss of generality to assume Bellman completeness under all M ∈ M, as one can
preprocess the model set M by eliminating models under which Bellman completeness does not hold. For
simplicity, we assume the latter. Similar for Definition 10.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 APPLICATIONS

By Theorem 6, the worst-case regret of Algorithm 1 is
∑

t minp maxν AIR
Φ,D
η (p, ν; ρt) + Est/η ≤

Tdig-decΦ,D
η + Est/η. In Section 4.2, we provided bounds on Est for two types of D, i.e., Dav and

Dsq. Below, we provide upper bounds for dig-decΦ,D
η in concrete settings associated with each D.

5.1 STOCHASTIC SETTINGS

For the stochastic setting, we consider MDP class M and its associated Φ with bounded bilinear
rank [DKL+21], Bellman-eluder dimension [JLM21], and coverability [XFB+23]. The results are
summarized in Table 1. The on-policy/off-policy in Table 1 should not be confused with the standard
on-policy/off-policy training in standard RL. Instead, they are two subclasses of the bilinear class
[DKL+21] and correspond to the Q-type/V -type Bellman eluder dimension in [JLM21]. The on-
policy case has smaller regret because the executed policies provides sufficient exploration to notice a
model missmatch, while in the off-policy case, the learner needs to execute an additional exploration
policy for this purpose.

Table 1: Summary of the applications in the stochastic settings. BE stands for MDPs with bounded
Bellman-eluder dimensions. Dig-DEC bounds are provided in Appendix H.3 for bilinear classes,
Appendix H.4 for BE, and Appendix H.5 for coverable MDPs. Bilinear classes marked with ⋆ are
restricted to estimation function specified in Lemma 29, under which it holds that dig-decΦ,Dsq

η ≤
dig-decΦ,Dav

η . B and N are parameters specified in Assumption 5 or Assumption 6. The regret bound

is given by T · dig-decΦ,D
η + Est/η with Est given in Theorem 7 or Theorem 11, with the optimal η.

Setting
dig-decΦ,D

η D B N E[Reg(πM⋆)]
class sub-class completeness

bilinear on-policy H2dη Dav 1 1 H
√

d log |Φ|T 2
3

bilinear off-policy
√
H3d|A|2η Dav |A| 1 H(d|A|2 log |Φ|) 1

3T
7
9

BE Q-type H2dη Dav 1 1 H
√

d log |Φ|T 2
3

BE V -type
√
H3d|A|η Dav 1 1 H(d|A| log |Φ|) 1

3T
7
9

bilinear⋆ on-policy ✓ H2dη Dsq 1 – H
√
dT log |Φ|

bilinear⋆ off-policy ✓
√
H3d|A|2η Dsq |A| – H(d|A|2 log2 |Φ|) 1

3T
2
3

BE Q-type ✓ H2dη Dsq 1 – H
√
dT log |Φ|

BE V -type ✓
√
H3d|A|η Dsq 1 – H(d|A| log2 |Φ|) 1

3T
2
3

coverable – ✓ H2dη Dsq 1 – H
√
dT log |Φ|

We remark without giving details that in the stochastic setting, we can achieve same results in Table 1
with high-probability if we replace the EM∼νEo∼M(·|π)[KL(νϕϕϕ(·|π, o), ρt)] term by KL(νϕϕϕ, ρt) in
the definition of D in Eq. (7). This variant, however, cannot handle the hybrid setting.

5.2 HYBRID SETTINGS

For the hybrid setting, with known linear reward feature, we consider transition structure including
hybrid bilinear classes [LWZ25] and coverability [XFB+23]. While it is possible to also extend
Bellman-eluder dimension to the hybrid setting, we omit it for simplicity.

6 COMPARISON WITH PRIOR COMPLEXITIES IN STOCHASTIC MDPS

Compared with dig-decΦ,D
η in Eq. (8) achieved by our algorithm, the complexity of optimistic E2D

[FGQ+23] defined for the stochastic setting is

o-decΦ,D
η = max

ρ∈∆(Φ)
min

p∈∆(Π)
max

ν∈∆(Ψ)
Eπ∼pEM∼νEϕ∼ρ

[
Vϕ(πϕ)− VM (π)− 1

η
D

π
(ϕ∥M)

]
(9)

9
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Table 2: Summary of the applications in the hybrid settings. Dig-DEC bounds are provided in
Appendix I.2 for hybrid bilinear classes and Appendix I.3 for coverable MDPs. Bilinear classes
marked with ⋆ are restricted to estimation function specified in Lemma 36, under which it holds that
dig-decΦ,Dsq

η ≤ dig-decΦ,Dav
η .

Setting
dig-decΦ,D

η D B N E[Reg(πϕ⋆)]
class sub-class completeness

bilinear on-policy (H5d3η)
1
3 Dav 1 d d(H5 log |Φ|) 1

4T
5
6

bilinear off-policy (H6d3|A|2η) 1
4 Dav |A| d (H6d4|A|2 log |Φ|) 1

5T
13
15

bilinear⋆ on-policy ✓ (H5d4η)
1
3 Dsq

√
d – d(H5 log2 |Φ|) 1

4T
3
4

bilinear⋆ off-policy ✓ (H6d4|A|2η) 1
4 Dsq

√
d|A| – (H6d4|A|2 log2 |Φ|) 1

5T
4
5

coverable – ✓ (H5d4η)
1
3 Dsq

√
d – d(H5 log2 |Φ|) 1

4T
3
4

for the same choices of D. Another model-free DEC in [LWZ25] is

decΦη = max
ρ∈∆(Φ)

min
p∈∆(Π)

max
ν∈∆(Ψ)

Eπ∼pE(M,π⋆)∼ν

[
VM (π⋆)− VM (π)− 1

η
Eo∼M(·|π) [KL(νϕϕϕ(·|π, o), ρ)]

]
.

It is clear that dig-decΦ,D
η ≤ decΦη for any non-negative divergence D. Furthermore, we have

Theorem 13. In the stochastic setting, dig-decΦ,D
η ≤ o-decΦ,D

η + η for any D.

Since DECs with parameter η is usually of order (ηd)α for some intrinsic dimension d and exponent
α ≤ 1, Theorem 13 implies that for any setting that can be handled by optimistic E2D with a
certain D, it can also be covered by our algorithm with the same D. Compared to optimistic DEC
(Eq. (9)), Dig-DEC (Eq. (8)) has an extra KL term Eπ∼pEM∼νEo∼M(·|π)[KL(νϕϕϕ(·|π, o), ρ)] that can
be further decomposed into two terms KL(νϕϕϕ, ρ)+Eπ∼pEM∼νEo∼M(·|π)[KL(νϕϕϕ(·|π, o), νϕϕϕ)]. They
have different purposes: The first term KL(νϕϕϕ, ρ) is for regularization, which makes the marginal
distribution of ν not overly distant from ρ. This is the key that allows us to avoid the optimism
mechanism in [FGQ+23] (i.e., the Vϕ(πϕ) in Eq. (9)). We remark that by regularization only, we
can recover the bounds achieved by optimistic DEC in the stochastic setting (this can be seen from
the proof of Theorem 13), though it is unclear whether it can give strict improvement. However, the
removal of optimism turns out to be important in the hybrid setting (Section 5.2) as it avoids explicit
construction of the reward estimator. The second term Eπ∼pEM∼νEo∼M(·|π)[KL(νϕϕϕ(·|π, o), νϕϕϕ)]
is an information gain that allows Dig-DEC to strictly improve over optimistic DEC even in the
stochastic setting. This is because all common choices of D such as bilinear divergence and squared
Bellman error are mean-based and ignore distributional differences, and the KL information gain
term can capture them. We give a toy example in the next theorem to show this, with a detailed proof
provided in Appendix J.
Theorem 14. There exists a 3-armed bandit instance where for any T ≥ 1 and η ≤ 1, the algorithm in
[FGQ+23] suffers maxa E[Reg(a)] ≥ Ω(

√
T ), while our algorithm achieves maxa E[Reg(a)] ≤ 1.

7 CONCLUSION

We introduced a new model-free DEC approach that removes optimism in prior work and incorporates
two information-gain terms into the AIR objective for decision making. In addition, we refined the
online function estimation procedure. Together, they yield improved regret bounds in the stochastic
setting and establish the first regret bounds for model-free learning in hybrid MDPs with bandit
feedback. Future directions include relaxing Assumption 3 and Assumption 4, and investigating the
fundamental limits of model-free learning.
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A REGRET BOUND COMPARISON WITH PREVIOUS WORK

Table 3: Regret for model-free learning in stochastic MDPs (only showing T dependence). “Toy
3-arm” is defined in Theorem 14. The two bounds in the same cell correspond to the cases with
on-policy and off-policy estimation.

Algorithm Bilinear or BE {Bilinear or BE or Coverable}
+ Bellman Complete + On-Policy Toy 3-arm Exploration Mechanism

[DKL+21]
[JLM21]

[XFB+23]
T

2
3 /T

2
3

√
T

√
T optimism

[FGQ+23] T
3
4 /T

5
6 T

2
3

√
T information gain + optimism

Ours T
2
3 /T

7
9

√
T 1 information gain

Table 4: Regret for learning in hybrid MDPs (stochastic transition and adversarial reward). The
model-free learning guarantees in [LWZ25] and our work cannot handle general reward but rely on
Assumption 4.

Algorithm Bilinear {Bilinear or Coverable}
+ Bellman Complete + On-Policy Model-Free Bandit Feedback General Reward

[LWZ25]
√
T/T

2
3

√
T ✗ ✓ ✓

[LWZ25] T
3
4 /T

5
6 – ✓ ✗ ✗

Ours T
5
6 /T

13
15 T

3
4 ✓ ✓ ✗

B PARTITIONING OVER P ×R× Π FOR HYBRID MDPS

Figure 1: Partitioning for hybrid MDPs

Figure 1 illustrates the partition scheme over M × Π = P × R × Π described in Assumption 2.
Each infoset ϕ (represented by the green block in Figure 1) is associated with single policy πϕ, a
subset of transitions, and all reward functions. As shown in Figure 1, the partition over the P space
could be different for different π.
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C OMITTED DETAILS IN SECTION 2

In this section, we show that the algorithms in [XZ23] and [LWZ25] are special cases of Algorithm 1.

C.1 RECOVERING THEOREM 3

The decision rule of [LWZ25]’s algorithm corresponds to Eq. (3) with Dπ(ν∥ρ) =
EM∼νEo∼M(·|π)[KL(νϕϕϕ(·|π, o), ρ)]. It can be shown that BregDπ(·∥ρ)(ν, ν

′) =

EM∼νEo∼M(·|π)
[
KL(νϕϕϕ(·|π, o), ν′ϕϕϕ(·|π, o))

]
in this case. Furthermore, notice that when

ν = δMt,πϕ⋆ , we have νϕϕϕ(·|π, o) = δϕ⋆ according to Definition 2. Thus, the estimation error term in
Eq. (6) in [LWZ25]’s algorithm is

E[Est] = E

[
T∑

t=1

(
KL(δϕ⋆ , ρt)− Eo∼Mt(·|πt)

[
KL(δϕ⋆ , (νt)ϕϕϕ(·|πt, o))

])]

= E

[
T∑

t=1

(KL(δϕ⋆ , ρt)− KL(δϕ⋆ , (νt)ϕϕϕ(·|πt, ot)))

]
= E

[
T∑

t=1

log
νt(ϕ

⋆|πt, ot)

ρt(ϕ⋆)

]
,

where in the second equality we use that ot is drawn from Mt(·|πt). Thus, by letting ρt+1(ϕ) =

νt(ϕ|πt, ot), their algorithm achieves E[Est] = E
[∑T

t=1 log
ρt+1(ϕ

⋆)
ρt(ϕ⋆)

]
≤ log 1

ρ1(ϕ⋆) = log |Φ|.
Using this in Eq. (6) proves Theorem 3. The results of [XZ23] can also be recovered as they are
special cases of [LWZ25].

C.2 RECOVERING RESULTS FOR ADVERSARIAL MDP WITH FULL-INFORMATION FEEDBACK
[LWZ25]

For learning with full information feedback in the adversarial MDPs, the learner can observe the
full reward function at the end of each episode. In other words, at episode t, the reward function
Rt : S ×A → [0, 1] is part of the observation ot. In this setting, the log |Π| dependence in the regret
bound can be improved to log |A|. To achieve this, [LWZ25] designed a two-level algorithm and
define a new notion called InfoAIR. We can recover this result by instantiating our Algorithm 1 with
Φ = {ϕP,(as)s∈S : P ∈ P, as ∈ A,∀s ∈ S} where ϕP,(as)s∈S = {((P,R), π⋆) : R ∈ R, π⋆ =
(as)s∈S}, that is, partitioning M×Π according to the transition kernel and the actions taken by the
policy on all states. Then define

Dπ(ν∥ρ) = E(P,R,π⋆)∼νEo∼MP,R(·|π)Es∼dπ,P [KL(νaaas,PPP (·|π, o), ρaaas,PPP )] ,

where MP,R denotes the MDP model with transition kernel P and reward function R, and ρaaas,PPP

denotes ρ’s marginal distribution over (as, P ) following our notational convention. Finally, update
the posterior as ρt+1 = argminρ

∑
s∈S KL (ρaaas,PPP , νaaas,PPP (·|πt, ot)). This recovers the same regret

bound as in [LWZ25] without the need for the two-level design. We also note that the analysis for
this result requires our new proof strategy in Eq. (5), as the Dπ(ν∥ρ) here is not strictly convex in ν
and the previous proof [XZ23, LWZ25] cannot be applied.
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D CONCENTRATION INEQUALITY

Lemma 15 (Freedman’s inequality [BLL+11]). Let X1, X2, . . . be a martingale difference sequence
with respect to a filtration F1 ⊂ F2 ⊂ · · · such that E[Xt|Ft] = 0 and assume Xt ≤ B almost surely.
Then for any α ≥ B, with probability at least 1− δ,

T∑
t=1

Xt ≤
1

α

T∑
t=1

E[X2
t |Ft] + α log(1/δ). (10)

Lemma 16 (Empirical Freedman’s inequality). Let X1, X2, . . . be a sequence with respect to a
filtration F1 ⊂ F2 ⊂ · · · such that E[Xt|Ft] = µt and assume max{Xt − µt, Xt} ≤ B almost
surely. Then for any α ≥ 4B, with probability at least 1− δ,

T∑
t=1

(µt −Xt) ≤
4

α

T∑
t=1

X2
t + α log(1/δ). (11)

Proof. Denote Et[·] = E[· | Ft]. We have at any time step

Et

[
exp

(
1

α
(µt −Xt)−

4

α2
X2

t

)]
≤ Et

[
1 +

1

α
(µt −Xt)−

4

α2
X2

t +

(
1

α
(µt −Xt)−

4

α2
X2

t

)2
]

≤ 1 + Et

[
− 4

α2
X2

t +
2

α2
((µt −Xt)

2 +X2
t )

]
≤ 1.

Markov inequality finishes the proof.

Lemma 17. Let (X1, Y1), (X2, Y2) . . . be a sequence with respect to a filtration F1 ⊂ F2 ⊂ · · ·
such that |Xt| ≤ B and 0 ≤ Yt ≤ B almost surely. Furthermore, E[Xt|Ft] ≥ E[Yt|Ft] and
BE[Xt|Ft] ≥ E[X2

t |Ft]. Then with probability at least 1− δ,

1

2

T∑
t=1

E[Xt|Ft] ≤
T∑

t=1

(
Xt −

1

4
Yt

)
+ 9B log(1/δ). (12)

Also, with probability at least 1− δ,

1

2

T∑
t=1

Xt ≤
T∑

t=1

(
Xt −

1

4
Yt

)
+ 9B log(1/δ). (13)

Proof. Denote Et[·] = E[· | Ft]. Let c ∈ [ 12 , 1] be a fixed constant, and define Zt = cXt − 1
4Yt.

Applying Lemma 15 with α = 9B gives

T∑
t=1

(Et[Zt]− Zt) ≤
1

9B

T∑
t=1

Et[(Et[Zt]− Zt)
2] + 9B log(1/δ)

≤ 1

9B

T∑
t=1

Et[Z
2
t ] + 9B log(1/δ)

≤ 1

9B

T∑
t=1

(
2c2Et[X

2
t ] +

2

16
Et[Y

2
t ]

)
+ 9B log(1/δ)

≤ 1

9

T∑
t=1

(
2c2Et[Xt] +

2

16
Et[Xt]

)
+ 9 log(1/δ)

(Et[Y
2
t ] ≤ BEt[Yt] because Yt ∈ [0, B])
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Rearranging:

T∑
t=1

Et

[
Zt −

(
2c2

9
+

1

72

)
Xt

]
≤

T∑
t=1

Zt + 9B log(1/δ). (14)

To prove Eq. (12), let c = 1, which gives Et

[
Zt −

(
2c2

9 + 1
72

)
Xt

]
= Et

[
Xt − 1

4Yt − 17
72Xt

]
≥

1
2Et[Xt]. Combining this with Eq. (14) proves Eq. (12). To prove Eq. (13), let c = 1

2 . which

gives Et

[
Zt −

(
2c2

9 + 1
72

)
Xt

]
= Et

[
1
2Xt − 1

4Yt − 5
72Xt

]
≥ 0. Combining this with Eq. (14) and

rearranging proves Eq. (13).
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E MIRROR DESCENT

Lemma 18 (First-order optimality condition). For any concave and differentiable function F , if
ν′ ∈ argmaxν∈Ω F (ν) for some convex set Ω, then F (ν) ≤ F (ν′)− Breg(−F )(ν, ν

′) for any ν ∈ Ω.

Proof. Define G = −F . Then G is convex and ν′ ∈ argminν′ G(ν′). We have by the definition of
Bregman divergence BregG(ν, ν

′) = G(ν)−G(ν′)− ⟨∇G(ν′), ν − ν′⟩, and first-order optimality
condition ⟨∇G(ν′), ν − ν′⟩ ≥ 0. Thus, G(ν) ≥ G(ν′) + BregG(ν, ν

′), which is equivalent to
F (ν) ≤ F (ν′) + Breg(−F )(ν, ν

′).

Lemma 19. Let g : Φ → [−1, 1] be any function and let ν, ρ ∈ ∆(Φ). Then for any η > 0,

Eϕ∼ν [g(ϕ)]− Eϕ∼ρ[g(ϕ)]−
1

η
KL(ν, ρ) ≤ η.

Proof.

Eϕ∼ν [g(ϕ)]− Eϕ∼ρ[g(ϕ)] ≤ 2DTV(ν, ρ) ≤ 2
√

KL(ν, ρ) ≤ 1

η
KL(ν, ρ) + η,

where we use Pinsker’s inequality and AM-GM inequality.

Lemma 20 (Mirror descent with auxiliary terms). Let Ft be a convex function over ∆N , and let
ℓt, bt ∈ RN with ℓ2t denoting (ℓt(1)

2, . . . , ℓt(N)2). Then the update p1 = 1
N 1 and

pt+1 = argmin
p∈∆N

{〈
p, ℓt + 4γℓ2t + bt

〉
+ Ft(p) +

1

γ
KL(p, pt)

}
with γ|ℓt(i)| ≤ 1

16 and 0 ≤ γbt(i) ≤ 1
4 for all i ∈ [N ] ensures for any p⋆ ∈ ∆N ,

T∑
t=1

⟨pt, ℓt⟩

≤ logN

γ
+

T∑
t=1

( 〈
p⋆, ℓt + 4γℓ2t

〉
+ ⟨p⋆, bt⟩ −

1

2
⟨pt, bt⟩+ Ft(p

⋆)− Ft(pt+1)− BregFt
(p⋆, pt+1)

)
.

Proof. By Lemma 18,〈
pt+1, ℓt + 4γℓ2t + bt

〉
+ Ft(pt+1) +

1

γ
KL(pt+1, pt)

≤
〈
p⋆, ℓt + 4γℓ2t + bt

〉
+ Ft(p

⋆) +
1

γ
KL(p⋆, pt)− BregFt

(p⋆, pt+1)−
1

γ
KL(p⋆, pt+1).

Rearranging gives〈
pt, ℓt + 4γℓ2t

〉
≤
〈
p⋆, ℓt + 4γℓ2t

〉
+
〈
pt − pt+1, ℓt + 4γℓ2t + bt

〉
− 1

γ
KL(pt+1, pt)

+ ⟨p⋆ − pt, bt⟩+
KL(p⋆, pt)− KL(p⋆, pt+1)

γ
+ Ft(p

⋆)− Ft(pt+1)− BregFt
(p⋆, pt+1). (15)

Since γ|ℓt(i) + 4γℓt(i)
2 + bt(i)| ≤ 1

16 + 4× ( 1
16 )

2 + 1
4 ≤ 1, by Lemma 19 we have〈

pt − pt+1, ℓt + 4γℓ2t + bt
〉
− 1

γ
KL(pt+1, pt)

≤ γ
〈
pt, (ℓt + 4γℓ2t + bt)

2
〉

≤ 2γ
〈
pt, (

5
4ℓt)

2
〉
+ 2γ

〈
pt, b

2
t

〉
≤
〈
pt, 4γℓ

2
t

〉
+

1

2
⟨pt, bt⟩ .
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Using this in Eq. (15) we get

⟨pt, ℓt⟩ ≤
〈
p⋆, ℓt + 4γℓ2t

〉
+ ⟨p⋆, bt⟩ −

1

2
⟨pt, bt⟩

+
KL(p⋆, pt)− KL(p⋆, pt+1)

γ
+ Ft(p

⋆)− Ft(pt+1)− BregFt
(p⋆, pt+1).

Summing over t gives the desired inequality.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F ESTIMATION PROCEDURES

We present the choices of POSTERIORUPDATE as standalone online learning algorithms because they
might be of independent interest.

F.1 AVERAGE ESTIMATION ERROR MINIMIZATION VIA BATCHING

Algorithm 2 Epoch-based learning algorithm for average estimation error
Input: An estimation function ℓh : Φ×O → [−B,B]N satisfying Assumption 5.
Parameter: τ = T

1
3 , β = 7τNι, γ = 1

2β , ι = log(12NKH/δ).
for k = 1, 2, . . . ,K do

Receive observations ot ∼ Mt(·|πk) for all t ∈ Ik = {(k − 1)τ + 1, . . . , kτ}.
Split Ik into two sub-intervals of equal size:

I−
k = {(k − 1)τ + 1, . . . , (k − 1)τ + τ

2} and I+
k = {(k − 1)τ + τ

2 + 1, . . . , kτ}.

Define for all j ∈ [N ],

Lk(ϕ)j =
τ

B2H

H∑
h=1

 1

|I−
k |
∑
t∈I−

k

ℓh(ϕ; ot,h)j

 1

|I+
k |
∑
t∈I+

k

ℓh(ϕ; ot,h)j

 , Lk(ϕ) =

N∑
j=1

Lk(ϕ)j .

Let (Ft)t∈Ik
: ∆(Φ) → R be convex functions. Calculate

ρk+1 = argmin
ρ∈∆(Φ)

{〈
ρ, Lk + (4γ + 2β−1)L2

k

〉
+
∑
t∈Ik

Ft(ρ) +
1

γ
KL(ρ, ρk)

}
. (16)

Lemma 21. With probability at least 1− δ/3, Algorithm 2 satisfies

1

B2H

K∑
k=1

∑
ϕ

ρk(ϕ)
∑
t∈Ik

max
j∈[N ]

H∑
h=1

(
Eπk,Mt [ℓh(ϕ; oh)j ]

)2 ≤
K∑

k=1

∑
ϕ

ρk(ϕ)

(
Lk(ϕ) +

1

β
Lk(ϕ)

2

)
+ 4β log(3/δ) .

Proof. By Assumption 5, for any t, t′ ∈ Ik it holds that

Eπk,Mt [ℓh(ϕ; oh)] = Eπk,Mt′ [ℓh(ϕ; oh)] .

We denote ℓ̄k,h(ϕ) = Eπk,Mt [ℓh(ϕ; oh)] for any t ∈ Ik.

Clearly, the left-hand side of the desired inequality is upper bounded by

1

B2H

K∑
k=1

∑
ϕ

ρk(ϕ)
∑
t∈Ik

N∑
j=1

H∑
h=1

(
Eπk,Mt [ℓh(ϕ; oh)j ]

)2
=

τ

B2H

K∑
k=1

∑
ϕ

ρk(ϕ)

N∑
j=1

H∑
h=1

ℓ̄k,h(ϕ)
2
j

By construction, Ek[Lk(ϕ)] =
τ

B2H

∑N
j=1

∑H
h=1 ℓ̄k,h(ϕ)

2
j due to the conditional independence of

the observations. Furthermore, we have Lk(ϕ) ∈ [−τN, τN ]. Therefore, we can use Lemma 16 on
the sequence Xk = −

∑
ϕ ρk(ϕ)Lk(ϕ) with β ≥ 7τN :

τ

B2H

K∑
k=1

∑
ϕ

ρk(ϕ)

N∑
j=1

H∑
h=1

ℓ̄k,h(ϕ)
2
j ≤

K∑
k=1

∑
ϕ

ρk(ϕ)

(
Lk(ϕ) +

1

β
Lk(ϕ)

2

)
+ 4β log(3/δ) .

Lemma 22. With probability at least 1− δ/3,

K∑
k=1

Lk(ϕ
⋆)2 ≤ KN2 log2(12NKH/δ).
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Proof. By Assumption 5 and Lemma 15, for any j, k, h, we have with probability 1− δ,∣∣∣∣∣∣
∑
t∈I−

k

ℓh(ϕ
⋆, ot,h)j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
t∈I−

k

ℓh(ϕ
⋆, ot,h)j −

∑
t∈I−

k

Eπk,Mt [ℓh(ϕ
⋆; oh)]

∣∣∣∣∣∣ ≤ B
√

τ log(12/δ)

∣∣∣∣∣∣
∑
t∈I+

k

ℓh(ϕ
⋆, ot,h)j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
t∈I+

k

ℓh(ϕ
⋆, ot,h)j −

∑
t∈I+

k

Eπk,Mt [ℓh(ϕ
⋆; oh)]

∣∣∣∣∣∣ ≤ B
√

τ log(12/δ) .

Via a union bound over all these events, this holds simultaneously for all j, k, h. Hence with

probability 1 − δ, we have |Lk(ϕ
⋆)j | ≤ τ

B2HH
(

1
τB
√
τ log(12NKH/δ)

)2
= log(12NKH/δ)

for all j, k simultaneously. Summing over j and k finishes the proof.

Lemma 23. With probability at least 1− δ/3, we have
K∑

k=1

Lk(ϕ
⋆) ≤ 1

β

K∑
k=1

Lk(ϕ
⋆)2 + 4β log(6/δ)

Proof. Define the random variable Xk = min{Lk(ϕ
⋆), N log(12NKH/δ)}. By Lemma 16 we

have with probability at least 1− δ/6,
K∑

k=1

Xt ≤
1

β

K∑
k=1

Lk(ϕ
⋆)2 + 4β log(6/δ) ,

where we use that Ek[Xk] ≤ Ek[Lk(ϕ
⋆)] = 0. Finally note that with probability 1− δ/6 we have

Lk(ϕ
⋆) = Xk for all k by the proof of Lemma 22. Combining both events finishes the proof.

Lemma 24. With probability at least 1− δ, Algorithm 2 satisfies

1

B2H

K∑
k=1

∑
ϕ

ρk(ϕ)
∑
t∈Ik

max
j∈[N ]

H∑
h=1

(
Eπk,Mt [ℓh(ϕ; oh)j ]

)2 ≤ O
(
NT

1
3 log |Φ|

)

+

K∑
k=1

∑
t∈Ik

(Ft(δϕ⋆)− Ft(ρk+1)− BregFt
(δϕ⋆ , ρk+1)).

Proof of Lemma 24. By union bound, the events of Lemma 21, Lemma 22, and Lemma 23 hold
simultaneously with probability 1−δ. Observe that the update of ρk (Eq. (16)) is in the form specified
in Lemma 20. Invoking Lemma 20 with bk = 2

βL
2
k, we get

K∑
k=1

〈
ρk, Lk +

1

β
L2
k

〉
≤ log |Φ|

γ
(17)

+

K∑
k=1

(
Lk(ϕ

⋆) +

(
4γ +

2

β

)
Lk(ϕ

⋆)2 +
∑
t∈Ik

(Ft(δϕ⋆)− Ft(ρk+1)− BregFt
(δϕ⋆ , ρk+1))

)
.

Chaining Lemma 22 and Lemma 23,
K∑

k=1

(
Lk(ϕ

⋆) +

(
4γ +

2

β

)
Lk(ϕ

⋆)2
)

≤ 4β log(6/δ) +

(
4γ +

3

β

)
KN2 log2(12NKH/δ).

Using Lemma 21 and substituting β = 7τNι, γ = 1
2β yields

1

B2H

K∑
k=1

∑
ϕ

ρk(ϕ)
∑
t∈Ik

max
j∈[N ]

H∑
h=1

(
Eπk,Mt [ℓh(ϕ; oh)j ]

)2 ≤ 35τNι+ 20
KNι

τ

Using K = T/τ and tuning τ = T
1
3 yields O(T

1
3Nι).
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F.2 SQUARED ESTIMATION ERROR MINIMIZATION VIA BI-LEVEL LEARNING

Algorithm 3 Bi-level learning algorithm for squared estimation error
Input: An estimation function ξh : Φ× Φ×O → [0, B2] satisfying Assumption 6.
Parameter: ι = 64 log |Φ|, γ = 1

4ι .
ρ1(ϕ) = 1/|Φ|, ∀ϕ ∈ Φ and q1(ϕ

′|ϕ) = 1/|Φ|, ∀ϕ′, ϕ ∈ Φ.
for t = 1, 2, . . . , T do

Receive observation ot ∼ Mt(·|πt).
Define

∆t(ϕ
′, ϕ) =

1

B2H

H∑
h=1

ξh(ϕ
′, ϕ, ot,h),

Lt(ϕ) = ∆t(ϕ, ϕ)− Eϕ′∼qt(·|ϕ) [∆t(ϕ
′, ϕ)] ,

bt(ϕ) =
[ρt(ϕ)−maxs<t ρs(ϕ)]+

ρt(ϕ)
ι.

Let Ft : ∆(Φ) → R be a convex function. Calculate

ρt+1 = argmin
ρ∈∆(Φ)

{〈
ρ, Lt + 4γL2

t + bt
〉
+ Ft(ρ) +

1

γ
KL(ρ, ρt)

}
, (18)

qt+1(ϕ
′|ϕ) ∝ exp

(
−αt(ϕ)

t∑
s=1

ρs(ϕ)∆s(ϕ
′, ϕ)

)
where αt(ϕ) =

1

16maxs≤t ρs(ϕ)
.

Lemma 25. With probability at least 1− δ,
T∑

t=1

⟨ρt, Lt⟩ ≤
log |Φ|

γ

+

T∑
t=1

(
−1

2
⟨ρt, bt⟩+ bt(ϕ

⋆) + Ft(δϕ⋆)− Ft(ρt+1)− BregFt
(δϕ⋆ , ρt+1)

)
+O (log(1/δ)) .

Proof of Lemma 25. Observe that the update of ρt (Eq. (18)) is in the form specified in Lemma 20.
Invoking Lemma 20, we get
T∑

t=1

⟨ρt, Lt⟩ ≤
log |Φ|

γ
(19)

+

T∑
t=1

(
Lt(ϕ

⋆) + 4γLt(ϕ
⋆)2 + bt(ϕ

⋆)− 1

2
⟨ρt, bt⟩+ Ft(δϕ⋆)− Ft(ρt+1)− BregFt

(δϕ⋆ , ρt+1)

)
.

By Assumption 6 we have

0 ≤ Et[Lt(ϕ
⋆)2] = Et

[(
∆t(ϕ

⋆, ϕ⋆)− Eϕ′∼qt(·|ϕ⋆) [∆t(ϕ
′, ϕ⋆)]

)2]
≤ Eϕ′∼qt(·|ϕ⋆)

[
Et

[
(∆t(ϕ

⋆, ϕ⋆)−∆t(ϕ
′, ϕ⋆))

2
]]

(Jensen’s inequality)

≤ Eϕ′∼qt(·|ϕ⋆)

[
Et

[
(∆t(TMtϕ

⋆, ϕ⋆)−∆t(ϕ
′, ϕ⋆))

2
]]

(Mt ∈ ϕ⋆ and thus TMt
ϕ⋆ = ϕ⋆)

≤ 4Eϕ′∼qt(·|ϕ⋆) [Et [∆t(ϕ
′, ϕ⋆)−∆t(TMtϕ

⋆, ϕ⋆)]] (by Assumption 6)

= 4Eϕ′∼qt(·|ϕ⋆) [Et [∆t(ϕ
′, ϕ⋆)−∆t(ϕ

⋆, ϕ⋆)]]

= −4Et[Lt(ϕ
⋆)].
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This allows us to apply Lemma 17 with Xt = −Lt(ϕ
⋆) and Yt =

1
4X

2
t , which gives

T∑
t=1

(
Lt(ϕ

⋆) + 4γLt(ϕ
⋆)2
)
≤

T∑
t=1

(
Lt(ϕ

⋆) +
1

16
Lt(ϕ

⋆)2
)

≤ 1

2

T∑
t=1

Et[Lt(ϕ
⋆)] + 36 log(1/δ) ≤ 36 log(1/δ).

Combining this with Eq. (19) finishes the proof.

Lemma 26. With probability at least 1− δ,
T∑

t=1

Eϕ∼ρt
Eϕ′∼qt(·|ϕ)[∆t(ϕ

′, ϕ)−∆t(TMt
ϕ, ϕ)] ≤ 32

∑
ϕ

max
t≤T

ρt(ϕ) log |Φ|+ 72 log(1/δ).

Proof. By Assumption 6, we have TMtϕ = TMt′ϕ for all ϕ and all t, t′ ∈ [T ]. We denote T ϕ = TMtϕ
for any t. By the exponential weight update, for any ϕ,

T∑
t=1

∑
ϕ′

qt(ϕ
′|ϕ)ρt(ϕ) (∆t(ϕ

′, ϕ)−∆t(TMtϕ, ϕ))

=

T∑
t=1

∑
ϕ′

qt(ϕ
′|ϕ)ρt(ϕ) (∆t(ϕ

′, ϕ)−∆t(T ϕ, ϕ))

≤ log |Φ|
αT (ϕ)

+

T∑
t=1

∑
ϕ′

αt(ϕ)qt(ϕ
′|ϕ)ρt(ϕ)2 (∆t(ϕ

′, ϕ)−∆t(T ϕ, ϕ))
2

≤ 16max
t≤T

ρt(ϕ) log |Φ|+
1

16

T∑
t=1

∑
ϕ′

qt(ϕ
′|ϕ)ρt(ϕ) (∆t(ϕ

′, ϕ)−∆t(T ϕ, ϕ))
2
.

Rearranging and summing over ϕ:
T∑

t=1

Eϕ∼ρtEϕ′∼qt(·|ϕ)

[
∆t(ϕ

′, ϕ)−∆t(T ϕ, ϕ)− 1

16
(∆t(ϕ

′, ϕ)−∆t(T ϕ, ϕ))2
]

≤ 16
∑
ϕ

max
t≤T

ρt(ϕ) log |Φ|. (20)

Define

Xt = Eϕ∼ρt
Eϕ′∼qt(·|ϕ) [∆t(ϕ

′, ϕ)−∆t(T ϕ, ϕ)] ,

Yt =
1

4
Eϕ∼ρtEϕ′∼qt(·|ϕ)

[
(∆t(ϕ

′, ϕ)−∆t(T ϕ, ϕ))
2
]
.

By Assumption 6 we have Et[Yt] ≤ Et[Xt]. By Jensen’s inequality, Et[X
2
t ] ≤ 4B2HEt[Yt] ≤

4B2HEt[Xt]. Invoking Lemma 17 and using Eq. (20) give

1

2

T∑
t=1

Xt ≤
T∑

t=1

(
Xt −

1

4
Yt

)
+ 36 log(1/δ) ≤ 16

∑
ϕ

max
t≤T

ρt(ϕ) log |Φ|+ 36 log(1/δ),

proving the desired inequality.

Lemma 27. With probability at least 1− δ,
T∑

t=1

Eϕ∼ρt
[∆t(ϕ, ϕ)−∆t(TMt

ϕ, ϕ)]

≤
T∑

t=1

(
Ft(δϕ⋆)− Ft(ρt+1)− BregFt

(δϕ⋆ , ρt+1)
)
+O

(
log2(|Φ|/δ)

)
.
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Proof. By Assumption 6, we have TMt
ϕ = TMt′ϕ for all ϕ and all t, t′ ∈ [T ]. We denote T ϕ = TMt

ϕ
for any t.

Eϕ∼ρt [Lt(ϕ)] = Eϕ∼ρt [∆t(ϕ, ϕ)− Eϕ′∼qt(·|ϕ)[∆t(ϕ
′, ϕ)]]

= Eϕ∼ρt

[
∆t(ϕ, ϕ)−∆t(T ϕ, ϕ)−

(
Eϕ′∼qt(·|ϕ)[∆t(ϕ

′, ϕ)]−∆t(T ϕ, ϕ)
)]

.

Combining this with Lemma 25, we get

T∑
t=1

Eϕ∼ρt
[∆t(ϕ, ϕ)−∆t(T ϕ, ϕ)]

≤ log |Φ|
γ

+

T∑
t=1

(
−1

2
⟨ρt, bt⟩+ bt(ϕ

⋆) + Ft(δϕ⋆)− Ft(ρt+1)− BregFt
(δϕ⋆ , ρt+1)

)

+O (log(1/δ)) +

T∑
t=1

Eϕ∼ρt
Eϕ′∼qt(·|ϕ) [∆t(ϕ

′, ϕ)−∆t(T ϕ, ϕ)]

≤
T∑

t=1

(
−1

2
⟨ρt, bt⟩+ bt(ϕ

⋆) + Ft(δϕ⋆)− Ft(ρt+1)− BregFt
(δϕ⋆ , ρt+1)

)
+O

(
log2(|Φ|/δ)

)
+ 32

∑
ϕ

max
t≤T

ρt(ϕ) log |Φ|. (by Lemma 26 and the value of γ)

Note that

32 log |Φ|
∑
ϕ

max
t≤T

ρt(ϕ) = 32 log |Φ|
∑
ϕ

(
ρ1(ϕ) +

T∑
t=2

[ρt(ϕ)−max
s<t

ρs(ϕ)]+

)

= 32 log |Φ|
∑
ϕ

(
ρ1(ϕ) +

T∑
t=2

ρt(ϕ)
[ρt(ϕ)−maxs<t ρs(ϕ)]+

ρt(ϕ)

)

=
1

2

T∑
t=1

⟨ρt, bt⟩

and
T∑

t=1

bt(ϕ
⋆) = O(log |Φ|)×

T∑
t=1

maxs≤t ρs(ϕ
⋆)−maxs≤t−1 ρs(ϕ

⋆)

maxs≤t ρs(ϕ⋆)

≤ O(log |Φ|)×

(
1 +

T∑
t=2

ln
maxs≤t ρs(ϕ

⋆)

maxs≤t−1 ρs(ϕ⋆)

)
(1− x ≤ ln 1

x )

≤ O
(
log2 |Φ|

)
.

Combining inequalities above proves the lemma.
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G OMITTED DETAILS IN SECTION 4

We define a batched version of Algorithm 1 in Algorithm 4. When the batch size τ = 1, it is
exactly Algorithm 1. One can also think of Algorithm 4 as a special case of Algorithm 1 where
POSTERIORUPDATE makes a real update only when t = kτ for k = 1, 2, . . ., and keeps ρt+1 = ρt
otherwise.

Algorithm 4 General Batched Framework
Input: Partition set Φ and its union Ψ (defined in Section 2.1). Batch size τ .
ρ1(ϕ) = 1/|Φ|, ∀ϕ ∈ Φ.
for k = 1, 2, . . . ,K do

Set pk, νk as the solution of the following minimax optimization (defined in Eq. (2)):

min
p∈∆(Π)

max
ν∈∆(Ψ)

AIRΦ,D
η (p, ν; ρk). (21)

Execute πk in rounds t ∈ {(k − 1)τ + 1, . . . , kτ} = Ik and receive observations (ot)t∈Ik
.

Update ρk+1 = POSTERIORUPDATE(νk, ρk, πk, (ot)t∈Ik
). (22)

G.1 ASSUMPTION REDUCTIONS

Proof of Lemma 8. In the stochastic setting, by Assumption 1 we have fϕ(s, a) = Q⋆(s, a;M) and
fϕ(s) = V ⋆(s;M) for any M ∈ ϕ. Hence

Eπ,M [ℓh(ϕ; oh)] = Eπ,M [fϕ(sh, ah)− rh − fϕ(sh+1)]

= Eπ,M [Q⋆(sh, ah;M)− rh − V ⋆(sh+1;M)] = 0.

In the hybrid setting, we have by Assumption 2 and Assumption 3 that fϕ(s, a;R) =
Qπϕ(s, a; (P,R)) and fϕ(s;R) = V πϕ(s; (P,R)) for any P ∈ ϕ. Hence, for any j ∈ [d], defining
R′ such that R′(s, a) = φ(s, a)j , we have for (P,R) ∈ ϕ,

Eπ,(P,R)[ℓh(ϕ; oh)j ] = Eπ,P [fϕ(sh, ah;R
′)−R′(sh, ah)− fϕ(sh+1;R

′)]

= Eπ,P [Qπϕ(sh, ah; (P,R
′))−R′(s, a)− V πϕ(sh+1; (P,R

′))] = 0.

Finally, note that in the stochastic setting Mt = M⋆, and in the hybrid setting Pt = P ⋆, so the
additional assumption always holds.

Proof of Lemma 12. In the stochastic setting, with Assumption 1 and the Bellman completeness
assumption (Definition 9), for any M = (P,R), we define TMϕ ∈ Φ as the ϕ′ such that

fϕ′(s, a) = R(s, a) + Es′∼P (·|s,a)[fϕ(s
′)].

By Definition 9, such ϕ′ always exists.

In the hybrid setting, with Assumption 2, Assumption 3 and Assumption 4 and the Bellman com-
pleteness assumption (Definition 10), for any M = (P,R), we define TMϕ ∈ Φ to be the ϕ′ such
that πϕ′ = πϕ and for all R̃,

fϕ′(s, a; R̃) = R̃(s, a) + Es′∼P (·|s,a)[fϕ(s
′; R̃)].

By Definition 10, such ϕ′ always exists.

Below, with a slight overload of notation, we denote in the hybrid setting fϕ(sh, ah) ∈ Rd as the
vector (fϕ(sh, ah; ej))j∈[d] and fϕ(sh+1) ∈ Rd as the vector Ea∼πϕ(·|sh+1)[(fϕ(sh+1, a; ej))j∈[d]].
Furthermore, we use the notation yh to denote rh ∈ R in the stochastic setting, and φ(sh, ah) ∈ Rd

in the hybrid setting.
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Then we have by our choice of ξh:

Eπ,M [ξh(ϕ
′, ϕ; oh)− ξh(TMϕ, ϕ; oh)]

= Eπ,M
[
∥fϕ′(sh, ah)− yh − fϕ(sh+1)∥2 − ∥fTMϕ(sh, ah)− yh − fϕ(sh+1)∥2

]
= Eπ,M

[
∥fϕ′(sh, ah)− fTMϕ(sh, ah)∥2

]
+ 2 · Eπ,M [⟨fϕ′(sh, ah)− fTMϕ(sh, ah), fTMϕ(sh, ah)− yh − fϕ(sh+1)⟩]

= Eπ,M
[
∥fϕ′(sh, ah)− fTMϕ(sh, ah)∥2

]
, (23)

where the last line follows from Eπ,M [yh + fϕ(sh+1)] = fTMϕ(sh, ah) by definition of TMϕ. On
the other hand,

Eπ,M
[
(ξh(ϕ

′, ϕ; oh)− ξh(TMϕ, ϕ; oh))
2
]

= Eπ,M
[(
∥fϕ′(sh, ah)− yh − fϕ(sh+1)∥2 − ∥fTMϕ(sh, ah)− yh − fϕ(sh+1)∥2

)2]
= Eπ,M

[
⟨fϕ′(sh, ah)− fTMϕ(sh, ah), fTMϕ(sh, ah) + fϕ′(sh, ah)− 2yh − 2fϕ(sh+1)⟩2

]
≤ 4B2Eπ,M

[
∥fϕ′(sh, ah)− fTMϕ(sh, ah)∥2

]
,

where B2 = 1 in the stochastic setting and B2 = d in the hybrid setting. Combining both finishes
the proof.

G.2 BOUNDS ON Est

With the specific form of divergence

Dπ(ν∥ρ) = EM∼νEo∼M(·|π)

[
KL (νϕϕϕ(·|π, o), ρ) + Eϕ∼ρ

[
D

π
(ϕ∥M)

]]
, (24)

the estimation term in Eq. (6) for an epoch algorithm with epoch length τ ′ and K epochs is given by

Lemma 28. Est in Eq. (6) can be written as

Est =
T∑

t=1

Eπ∼ptEo∼Mt(·|π)

[
log

(
νt(ϕ

⋆|π, o)
ρt(ϕ⋆)

)]
+

T∑
t=1

Eπ∼ptEϕ∼ρt

[
D

π
(ϕ∥Mt)

]
. (25)

Proof of Lemma 28. From the definition of divergence in Eq. (24) and Eq. (25), let δϕ⋆ ∈ ∆(Φ) be
the Kronecker delta function centered at ϕ⋆. Then

Est =
T∑

t=1

(
log

(
1

ρt(ϕ⋆)

)
+ Eπ∼pt

Eϕ∼ρt

[
D

π
(ϕ∥Mt)

]
− Eπ∼ptEo∼Mt(·|π) [KL (δϕ⋆ , (νt)ϕϕϕ(·|π, o))]

)

=

T∑
t=1

Eπ∼pt
Eo∼Mt(·|π)

[
log

(
νt(ϕ

⋆|π, o)
ρt(ϕ⋆)

)]
+

T∑
t=1

Eπ∼pt
Eϕ∼ρt

[
D

π
(ϕ∥Mt)

]
(26)

where the first equality uses the fact that for any ρ,

BregDπ(·∥ρ)(ν, ν
′) = EM∼νEo∼M(·|π)

[
KL
(
νϕϕϕ(·|π, o), ν′ϕϕϕ(·|π, o)

)]
.
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Proof of Theorem 7. With abuse of notation, we use pt, νt, ρt to denote the pk, νk, ρk where k is the
epoch where episode t lies. We start from the estimation term in Eq. (25) using the definition of D:

Est =
T∑

t=1

Eπ∼pt
Eo∼Mt(·|π)

[
log

(
νt(ϕ

⋆|π, o)
ρt(ϕ⋆)

)]
+

1

B2H

T∑
t=1

Eπ∼pt
Eϕ∼ρt

[
max
j∈[N ]

H∑
h=1

(
Eπ,Mt [ℓh(ϕ; oh)j ]

)2]

=

K∑
k=1

Eπ∼pk

∑
t∈Ik

Eo∼Mt(·|π)

[
log

(
νk(ϕ

⋆|π, o)
ρk(ϕ⋆)

)]

+
1

B2H

K∑
k=1

Eπ∼pk
Eϕ∼ρk

[∑
t∈Ik

max
j∈[N ]

H∑
h=1

(
Eπ,Mt [ℓh(ϕ; oh)j ]

)2]
.

Applying Lemma 24 with Ft(ρ) = KL(ρ, (νk)ϕϕϕ(·|πk, ot)) for t ∈ Ik, we get

E[Est] ≤ E

[
K∑

k=1

Eπ∼pk

∑
t∈Ik

Eo∼Mt(·|π)

[
log

(
νk(ϕ

⋆|π, o)
ρk(ϕ⋆)

)]]
+O

(
N log(|Φ|)T 1

3

)

+ E

[
K∑

k=1

∑
t∈Ik

(
log

(
1

νk(ϕ⋆|πk, ot)

)
− KL(ρk+1, (νk)ϕϕϕ(πk, ot))− log

(
1

ρk+1(ϕ⋆)

))]

≤ E

[
K∑

k=1

∑
t∈Ik

(
log

(
νk(ϕ

⋆|πk, ot)

ρk(ϕ⋆)

)
+ log

(
ρk+1(ϕ

⋆)

νk(ϕ⋆|πk, ot)

))]
+O

(
N log(|Φ|)T 1

3

)
≤ τ log

(
1

ρ1(ϕ⋆)

)
+O

(
N log(|Φ|)T 1

3

)
= O

(
N log(|Φ|)T 1

3

)
.

Proof of Theorem 11. We start from the estimation term in Eq. (25), using the definition of D:

Est =
T∑

t=1

Eπ∼pt
Eo∼Mt(·|π)

[
log

(
νt(ϕ

⋆|π, o)
ρt(ϕ⋆)

)]

+
1

B2H

T∑
t=1

Eπ∼pt
Eϕ∼ρt

[
H∑

h=1

Eπ,Mt [ξh(ϕ, ϕ; oh)− ξh(TMt
ϕ, ϕ; oh)]

]
.

Applying Lemma 27 with Ft(ρ) = KL(ρ, (νt)ϕϕϕ(·|πt, ot)), we get

E[Est] ≤ E

[
T∑

t=1

Eπ∼ptEo∼Mt(·|π)

[
log

(
νt(ϕ

⋆|π, o)
ρt(ϕ⋆)

)]]
+O

(
log2 |Φ|

)
+ E

[
T∑

t=1

(
log

(
1

νt(ϕ⋆|πt, ot)

)
− KL(ρt+1, (νt)ϕϕϕ(πt, ot))− log

(
1

ρt+1(ϕ⋆)

))]

≤ E

[
T∑

t=1

log

(
ρt+1(ϕ

⋆)

ρt(ϕ⋆)

)]
+O

(
log2 |Φ|

)
= O

(
log2 |Φ|

)
.
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H RELATING dig-dec TO EXISTING COMPLEXITIES IN THE STOCHASTIC
SETTING

H.1 SUPPORTING LEMMAS

Lemma 29. Suppose that (M,Φ) satisfy Assumption 5 with estimation function ℓh(ϕ; oh) =
fϕ(sh, ah)− rh − fϕ(sh+1). Furthermore, assume that (M,Φ) is Bellman complete (Definition 9).
Then Assumption 6 holds with ξh(ϕ

′, ϕ; oh) = (fϕ′(sh, ah)− rh − fϕ(sh+1))
2 and

dig-decΦ,Dsq
η ≤ dig-decΦ,Dav

η .

Proof. It suffices to show that D
π

av(ϕ∥M) ≤ D
π

sq(ϕ∥M) for any π, ϕ,M :

D
π

sq(ϕ∥M) =
1

B2H

H∑
h=1

Eπ,M [ξh(ϕ, ϕ; oh)− ξh(TMϕ, ϕ; oh)]

=
1

B2H

H∑
h=1

Eπ,M
[
(fϕ(sh, ah)− fTMϕ(sh, ah))

2
]

(by the same calculation as Eq. (23))

≥ 1

B2H

H∑
h=1

(
Eπ,M [fϕ(sh, ah)− fTMϕ(sh, ah)]

)2
(Jensen’s inequality)

=
1

B2H

H∑
h=1

(
Eπ,M [fϕ(sh, ah)− rh − fϕ(sh+1)]

)2
= Dav(ϕ∥M).

H.2 RELATING dig-dec TO o-dec

Proof of Theorem 13. In the stochastic setting, by definition,

dig-decΦ,D
η = max

ρ∈∆(Φ)
min

p∈∆(Π)
max

ν∈∆(M)

Eπ∼pEM∼ν

[
VM (πM )− VM (π)− 1

η
Eo∼M(·|π) [KL(νϕϕϕ(·|π, o), ρ)]−

1

η
Eϕ∼ρ

[
D

π
(ϕ∥M)

]]
and

o-decΦ,D
η = max

ρ∈∆(Φ)
min

p∈∆(Π)
max

ν∈∆(M)
Eπ∼pEM∼νEϕ∼ρ

[
Vϕ(πϕ)− VM (π)− 1

η
D

π
(ϕ∥M)

]
.

For any ρ, p, ν, we have

Eπ∼pEM∼ν

[
VM (πM )− VM (π)− 1

η
Eo∼M(·|π) [KL(νϕϕϕ(·|π, o), ρ)]−

1

η
Eϕ∼ρ

[
D

π
(ϕ∥M)

]]
= EM∼νEϕ∼ρ [VM (πM )− Vϕ(πϕ)]−

1

η
KL(νϕϕϕ, ρ)︸ ︷︷ ︸

term1

−1

η
Eπ∼pEM∼νEo∼M(·|π)[KL(νϕϕϕ(·|π, o), νϕϕϕ)]

+ Eπ∼pEM∼νEϕ∼ρ

[
Vϕ(πϕ)− VM (π)− 1

η
D

π
(ϕ∥M)

]
.

To bound term1, observe that

EM∼ν [VM (πM )] = Eϕ∼ν [Vϕ(πϕ)] .
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Thus,

term1 = Eϕ∼ν [Vϕ(πϕ)]− Eϕ∼ρ[Vϕ(πϕ)]−
1

η
KL(νϕϕϕ, ρ) ≤ η. (Lemma 19)

This implies

dig-decΦ,D
η

≤ η + max
ρ∈∆(Φ)

min
p∈∆(Π)

max
ν∈∆(M)

Eπ∼pEM∼νEϕ∼ρ

[
Vϕ(πϕ)− VM (π)− 1

η
D

π
(ϕ∥M)− 1

η
Eo∼M(·|π)[KL(νϕϕϕ(·|π, o), νϕϕϕ)]

]
≤ η + max

ρ∈∆(Φ)
min

p∈∆(Π)
max

ν∈∆(M)
Eπ∼pEM∼νEϕ∼ρ

[
Vϕ(πϕ)− VM (π)− 1

η
D

π
(ϕ∥M)

]
= η + o-decΦ,D

η .

H.3 RELATING dig-dec TO BILINEAR RANK

Bilinear rank is a complexity measure proposed in [DKL+21]. It is defined as the following.
Assumption 7 (Bilinear class [DKL+21]). A model class M and its associated Φ satisfying As-
sumption 1 is a bilinear class with rank d if there exists functions Xh : Φ × M → Rd and
Wh : Φ×M → Rd for all h ∈ [H] such that

1. For M ∈ ϕ, it holds that Wh(ϕ;M) = 0.
2. For any ϕ ∈ Φ and any M ∈ M,

|Vϕ(πϕ)− VM (πϕ)| ≤
H∑

h=1

|⟨Xh(ϕ;M),Wh(ϕ;M)⟩| .

3. For every policy π, there exists an estimation policy πest. Also, there exists a discrepancy function
ℓh : Φ×O → R such that for any ϕ′, ϕ ∈ Φ and any M ∈ M,

|⟨Xh(ϕ
′;M),Wh(ϕ;M)⟩| =

∣∣∣Eπϕ′ ◦h πest
ϕ′ ,M [ℓh(ϕ; oh)]

∣∣∣
where oh = (sh, ah, rh, sh+1) and π ◦h πest denotes a policy that plays π for the first h− 1 steps
and plays policy πest at the h-th step.

We call it an on-policy bilinear class if πest = π for all π ∈ Π, and otherwise an off-policy bilinear
class. As in prior work [DKL+21, FKQR21], for the off-policy case, we assume |A| is finite, and
πest is always unif(A). We denote by πα the policy that in every step h = 1, . . . ,H chooses π with
probability 1− α

H and chooses πest with probability α
H .

Lemma 30. Bilinear classes (Assumption 7) satisfy Assumption 5.

Proof of Lemma 30. For any ϕ′ ∈ Φ and any (M,ϕ) such that M ∈ ϕ,∣∣∣Eπϕ′◦hπ
est
ϕ′ ,M [ℓh(ϕ; oh)]

∣∣∣ = |⟨Xh(ϕ
′;M),Wh(ϕ,M)⟩| (by Assumption 7.3)

= 0. (by Assumption 7.1 and that M ∈ ϕ)

Lemma 31. Let (M,Φ) be a bilinear class (Assumption 7). Then

• dig-decΦ,Dav
η ≤ O(B2H2dη) in the on-policy case.

• dig-decΦ,Dav
η ≤ O(

√
B2H3dη) in the off-policy case.

Proof of Lemma 31. We first use Theorem 13 to bound dig-decΦ,Dav
η by o-decΦ,Dav

η + η, and then use

Lemma 32 to relate o-decΦ,Dav
η to bilinear rank.
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Lemma 32 (Proposition 2.2 of [FGQ+23]). Let (M,Φ) be a bilinear class (Assumption 7). Then

• o-decΦ,Dav
η ≤ O(B2H2dη) in the on-policy case;

• o-decΦ,Dav
η ≤ O(

√
B2H3d|A|η) in the off-policy case.4

H.4 RELATING dig-dec TO BELLMAN-ELUDER DIMENSION

Lemma 33. Let ℓh(ϕ; oh) = fϕ(sh, ah) − rh − fϕ(sh+1), and let Dav be defined with respect to
this ℓh. Then

• If the Q-type Bellman-eluder dimension of (M,Φ) is bounded by d, then dig-decΦ,Dav
η ≤ O(Hdη).

• If the V -type Bellman-eluder dimension of (M,Φ) is bounded by d, then dig-decΦ,Dav
η ≤ O(H

√
d|A|η).

Proof. We first consider the Q-type setting. Define gh(ϕ
′, ϕ;M) = Eπϕ′ ,M [ℓh(ϕ; oh)]. For a fixed

M , we have by the AM-GM inequality

Eϕ∼ρ [gh(ϕ, ϕ;M)] ≤ λ

4
· Eϕ∼ρ

[
gh(ϕ, ϕ;M)2

Eϕ′∼ρ [gh(ϕ′, ϕ;M)2]

]
+

1

λ
Eϕ∼ρEϕ′∼ρ

[
gh(ϕ

′, ϕ;M)2
]

for any λ > 0, implying that

o-decΦ,Dav
η

= max
ρ

min
p

max
ν

Eπ∼pEϕ∼ρEM∼ν

[
Vϕ(πϕ)− VM (π)− 1

ηB2H

H∑
h=1

(
Eπ,M [ℓh(ϕ; oh)]

)2]

≤ max
ρ

max
ν

Eϕ′∼ρEϕ∼ρEM∼ν

[
Vϕ(πϕ)− VM (πϕ)−

1

ηB2H

H∑
h=1

(
Eπϕ′ ,M [ℓh(ϕ; oh)]

)2]

= max
ρ

max
ν

Eϕ′∼ρEϕ∼ρEM∼ν

[
H∑

h=1

gh(ϕ, ϕ;M)− 1

ηB2H

H∑
h=1

gϕ(ϕ
′, ϕ,M)2

]

≤ ηB2H

4
max

ρ
max

ν

H∑
h=1

Eϕ∼ρ

[
gh(ϕ, ϕ;M)2

Eϕ′∼ρ [gh(ϕ′, ϕ;M)2]

]
.

The rest of the proof goes through standard steps. First, bound Eϕ∼ρ

[
gh(ϕ,ϕ;M)2

Eϕ′∼ρ[gh(ϕ
′,ϕ;M)2]

]
by the

disagreement coefficient of the function class FM = {fϕ − TMfϕ : ϕ ∈ Φ} where (TMf)(s, a) ≜

R(s, a)+Es′∼P (·|s,a)[f(s
′)] under the probability measure Eϕ∼ρ[d

πϕ,M
h ] (Lemma E.2 of [FKQR21]).

Taking a maximum over ρ, this can be further bounded by the distributional eluder dimension of
FM over the probability measure space DΦ,M = {dπϕ,M

h : ϕ ∈ Φ} (Lemma 6.1 of [FKQR21] and
Theorem 2.10 of [FRSLX21]), which is equivalent to the Q-type Bellman-eluder dimension in M

defined in [JLM21]. This then allows us to bound o-decΦ,Dav
η ≤ ηdB2H2, where d is the maximum

Q-type Bellman-eluder dimension over all possible M .

Next, we consider the V -type setting. Define gh(ϕ′, ϕ;M) = Eπϕ′◦hπϕ,M [ℓh(ϕ; oh)]. For a fixed M ,
we have by the AM-GM inequality

Eϕ∼ρ [gh(ϕ, ϕ;M)] ≤ λ

4
· Eϕ∼ρ

[
gh(ϕ, ϕ;M)2

Eϕ′∼ρ [gh(ϕ′, ϕ;M)2]

]
+

1

λ
Eϕ∼ρEϕ′∼ρ

[
gh(ϕ

′, ϕ;M)2
]

4In [FGQ+23], the bounds on o-decΦ,Dav
η have different scaling of B,H than ours. This is because their

average estimation error does not involve the normalization factor 1
B2H

like ours (Theorem 7). We normalize
Dav to keep the two information gain terms in Dig-DEC of the same unit. Equivalently, one can view our η as a
scaled version of theirs.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

for any λ > 0. Below, let πα be the policy that in every step h, with probability 1 − α
H executes

policy π, and with probability α
H executes unif(A). Then we have

o-decΦ,Dav
η

= max
ρ

min
p

max
ν

Eπ∼pEϕ∼ρEM∼ν

[
Vϕ(πϕ)− VM (π)− 1

ηB2H

H∑
h=1

(
Eπ,M [ℓh(ϕ; oh)]

)2]

≤ max
ρ

max
ν

Eϕ′∼ρEϕ∼ρEM∼ν

[
Vϕ(πϕ)− VM (πα

ϕ )−
1

ηB2H

H∑
h=1

(
Eπα

ϕ′ ,M [ℓh(ϕ; oh)]
)2]

≤ α+max
ρ

max
ν

Eϕ′∼ρEϕ∼ρEM∼ν

[
Vϕ(πϕ)− VM (πϕ)−

1

ηB2H
· α

3H|A|

H∑
h=1

(
Eπϕ′◦hπϕ,M [ℓh(ϕ; oh)]

)2]

= α+max
ρ

max
ν

Eϕ′∼ρEϕ∼ρEM∼ν

[
H∑

h=1

gh(ϕ, ϕ;M)− α

3ηB2H2|A|

H∑
h=1

gϕ(ϕ
′, ϕ,M)2

]

≤ α+
3ηB2H2|A|

4α
max

ρ
max

ν

H∑
h=1

Eϕ∼ρ

[
gh(ϕ, ϕ;M)2

Eϕ′∼ρ [gh(ϕ′, ϕ;M)2]

]
.

where the second inequality is because with probability at least
(
1− α

H

)h−1 α
H|A| ≥ α

3H|A| , the
policy πα

ϕ′ chooses the same actions in steps 1, . . . , h as the policy πϕ′ ◦h πϕ. Similar to the Q-type
analysis, the last expression can be related to V -type Bellman-eluder dimension (notice that the
definition of gh is different for Q-type and V -type). This gives o-decΦ,Dav

η ≲ α + B2H3d|A|η
α =

O
(√

B2H3d|A|η
)

by choosing the optimal α.

Finally, using Theorem 13 finishes the proof.

H.5 RELATING dig-dec TO COVERABILITY UNDER BELLMAN COMPLETENESS

Lemma 34. Let (M,Φ) be Bellman complete (Definition 9), and suppose the coverability of every
model in M is bounded by d. Then it holds that o-decΦ,Dsq

η ≤ ηdH where Dsq is defined with

ξh(ϕ
′, ϕ; oh) = (fϕ′(sh, ah)− rh − fϕ(sh+1))

2.

Proof. For M = (P,R), define

gh(s, a, ϕ;M) = fϕ(s, a)−R(s, a)− Es′∼P (·|s,a)[fϕ(s
′)] = fϕ(s, a)− fTMϕ(s, a),

dρ,Mh (s, a) = Eϕ∼ρ

[
d
πϕ,M
h (s, a)

]
.

By the AM-GM inequality, for any λ > 0,

Eϕ∼ρEπϕ,M [gh(sh, ah, ϕ;M)]

= Eϕ∼ρE
(s,a)∼d

πϕ,M

h

[gh(s, a, ϕ;M)]

= Eϕ∼ρE(s,a)∼dρ,M
h

[
d
πϕ,M
h (s, a)

dρ,Mh (s, a)
gh(s, a, ϕ;M)

]

≤ Eϕ∼ρE(s,a)∼dρ,M
h

[
λ

4

d
πϕ,M
h (s, a)2

dρ,Mh (s, a)2
+

1

λ
gh(s, a, ϕ;M)2

]

=
λ

4
Eϕ∼ρ

[∑
s,a

d
πϕ,M
h (s, a)2

dρ,Mh (s, a)

]
+

1

λ
Eϕ∼ρEϕ′∼ρEπϕ′ ,M

[
gh(sh, ah, ϕ,M)2

]
. (27)

Note that
H∑

h=1

Eϕ∼ρEπϕ,M [gh(sh, ah, ϕ;M)] = Eϕ∼ρ [Vϕ(πϕ)− VM (πϕ)] ,
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and by the same calculation as Eq. (23), we have

1

B2H

H∑
h=1

Eπϕ′ ,M
[
gh(sh, ah, ϕ,M)2

]
=

1

B2H

H∑
h=1

Eπϕ′ ,M [ξh(ϕ
′, ϕ; oh)− ξh(TMϕ, ϕ; oh)] = D

πϕ′
sq (ϕ∥M).

By the definition of o-dec and combining the inequalities above,

o-decΦ,Dsq
η

= max
ρ

min
p

max
ν

Eπ∼pEϕ∼ρEM∼ν

[
Vϕ(πϕ)− VM (π)− 1

η
D

π

sq(ϕ∥M)

]
≤ max

ρ
max

ν
Eϕ′∼ρEϕ∼ρEM∼ν

[
Vϕ(πϕ)− VM (πϕ)−

1

η
D

πϕ′
sq (ϕ∥M)

]
= max

ρ
max

ν
Eϕ′∼ρEϕ∼ρEM∼ν

[
H∑

h=1

Eπϕ,M [gh(sh, ah, ϕ;M)]− 1

ηB2H

H∑
h=1

Eπϕ′ ,M
[
gh(sh, ah, ϕ,M)2

]]

≤ ηB2H

4
max

ρ
max

ν
EM∼νEϕ∼ρ

[
H∑

h=1

∑
s,a

d
πϕ,P
h (s, a)2

dρ,Ph (s, a)

]
. (by Eq. (27))

Let µP
h be any occupancy measure over layer h that depends on P . Then

Eϕ∼ρ

[∑
s,a

d
πϕ,P
h (s, a)2

dρ,Ph (s, a)

]
= Eϕ∼ρ

[∑
s,a

d
πϕ,P
h (s, a)µP

h (s, a)

dρ,Ph (s, a)
· d

πϕ,P (s, a)

µP
h (s, a)

]

≤ Eϕ∼ρ

[∑
s,a

d
πϕ,P
h (s, a)µP

h (s, a)

dρ,Ph (s, a)

]
·max
s,a,π

dπ,Ph (s, a)

µP
h (s, a)

=
∑
s,a

µP
h (s, a) ·max

s,a,π

dπ,Ph (s, a)

µP
h (s, a)

= max
s,a,π

dπ,Ph (s, a)

µP
h (s, a)

.

We let µP
h be the minimizer of maxs,a,π

dπ,P
h (s,a)

µP
h (s,a)

. The coverability in MDP M is defined as

minµ maxs,a,π,h
dπ,P
h (s,a)

µP
h (s,a)

[XFB+23]. Combining the inequalities proves o-decΦ,Dsq
η ≤ ηdB2H2.
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I RELATING dig-dec TO EXISTING COMPLEXITIES IN THE HYBRID SETTING

I.1 SUPPORTING LEMMAS

Lemma 35. Let g : Φ → [0, G]. For ν, ρ ∈ ∆(Φ), we have

Eϕ∼ρ[g(ϕ)] ≤ 3Eϕ∼ν [g(ϕ)] + 2G ·D2
H(ν, ρ),

where D2
H is the Hellinger distance.

Proof.

|Eϕ∼ρ[g(ϕ)]− Eϕ∼ν [g(ϕ)]| =

∣∣∣∣∣∣
∑
ϕ

(ρ(ϕ)− ν(ϕ))g(ϕ)

∣∣∣∣∣∣
≤
√∑

ϕ

(ρ(ϕ) + ν(ϕ))g(ϕ)2

√√√√∑
ϕ

(ρ(ϕ)− ν(ϕ))2

ρ(ϕ) + ν(ϕ)

≤ 1

2
Eϕ∼ρ[g(ϕ)] +

1

2
Eϕ∼ν [g(ϕ)] +

G

2
D∆(ν, ρ), (28)

where

D∆(ν, ρ) =
∑
ϕ

(ρ(ϕ)− ν(ϕ))2

ρ(ϕ) + ν(ϕ)

is the triangular discrimination. We can further bound it as

D∆(ν, ρ) =
∑
ϕ

(ρ(ϕ)− ν(ϕ))2

ρ(ϕ) + ν(ϕ)
=
∑
ϕ

(
√

ρ(ϕ)−
√

ν(ϕ))2(
√

ρ(ϕ) +
√

ν(ϕ))2

ρ(ϕ) + ν(ϕ)
≤ 2D2

H(ν, ρ).

Using this in Eq. (28) and rearranging gives the desired inequality.

Lemma 36. Suppose that (M,Φ) satisfy Assumption 5 with estimation function ℓh(ϕ; oh)j =
fϕ(sh, ah; ej)− φ(sh, ah)

⊤ej − fϕ(sh+1; ej). Furthermore, assume that (M,Φ) is Bellman com-
plete (Definition 10). Then Assumption 6 holds with ξh(ϕ

′, ϕ; oh) =
∑d

j=1(fϕ′(sh, ah; ej) −
φ(sh, ah)

⊤ej − fϕ(sh+1; ej))
2 and

dig-decΦ,Dsq
η ≤ dig-decΦ,Dav

η .

Proof. The proof is similar to that in the stochastic setting (Lemma 29).

Lemma 37. Under Assumption 3 and Assumption 4, if P, P ′ ∈ ϕ, then they share the same d×H
dimensional vector: (

Eπϕ,P [φ(sh, ah)]
)
h∈[H]

=
(
Eπϕ,P

′
[φ(sh, ah)]

)
h∈[H]

Proof. Given a linear reward with known feature (Assumption 4), we have R(sh, ah) =
φ(sh, ah)

⊤θh(R) where φ is a known feature. For any P,R, π, we have

VP,R(π) =

H∑
h=1

Eπ,P
[
φ(sh, ah)

⊤θh(R)
]
.

Fix a ϕ and consider P, P ′ ∈ ϕ. By Assumption 4, VP,R(πϕ) = VP ′,R(πϕ) for any R. For
each h, by instantiating θh(R) as all basis vectors in the d dimensional space, we prove that
Eπϕ,P [φ(sh, ah)j ] = Eπϕ,P

′
[φ(sh, ah)j ] for any h ∈ [H] and any j ∈ [d].
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Definition 38. We define several quantities that will be reused in Appendix I.2 for hybrid bilinear
classes and Appendix I.3 for coverable MDPs. We fix α ∈ [0, 1], and define πα as the policy that in
every step h = 1, 2, . . . ,H chooses π with probability 1− α

H and chooses unif(A) with probability
α
H . We also fix D, which will be instantiated as Dav and Dsq in later subsections.

With them, we define (with M = (P,R))

TermAΦ,D
η (ν) = α+ EM∼νEϕ∼νEϕ′∼ν

[
Vϕ,R(πϕ)− VM (πϕ)−

1

9η
D

πα
ϕ′
(ϕ∥M)

]
TermBΦ,D

η (ν) = 6
√
dH

√
3Eϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]
− 2

9η
Eϕ′∼νEM∼νEϕ∼ν

[
D

πα
ϕ′
(ϕ∥M)

]
TermCΦ,D

η (ν) = E(M,π⋆)∼νEϕ∼νEϕ′∼ν[
VM (π⋆)− Vϕ,R(πϕ)−

1

η
Eo∼M(·|πα

ϕ′ )

[
KL(νϕϕϕ(·|πα

ϕ′ , o), νϕϕϕ)
]
− 2

9η
D

πα
ϕ′
(ϕ∥M)

]
Lemma 39.

min
p

max
ν

AIRΦ,D
η (p, ν; ρ) ≤ max

ν
TermAΦ,D

η (ν) + max
ν

TermCΦ,D
η (ν).

Proof.

AIRΦ,D
η (p, ν; ρ)

= Eπ∼pE(M,π⋆)∼ν

[
VM (π⋆)− VM (π)− 1

η
Eo∼M(·|π) [KL(νϕϕϕ(·|π, o), ρ)]−

1

η
Eϕ∼ρ

[
D

π
(ϕ∥M)

]]
= Eπ∼pE(M,π⋆)∼ν

[
VM (π⋆)− VM (π)− 1

η
Eo∼M(·|π) [KL (νϕϕϕ(·|π, o), νϕϕϕ)]−

1

η
Eϕ∼ρ

[
D

π
(ϕ∥M)

]
− 1

η
KL (νϕϕϕ, ρ)

]
≤ Eπ∼pE(M,π⋆)∼ν

[
VM (π⋆)− VM (π)− 1

η
Eo∼M(·|π) [KL (νϕϕϕ(·|π, o), νϕϕϕ)]

− 1

3η
Eϕ∼ν

[
D

π
(ϕ∥M)

]
+

2

3η
D2

H(νϕϕϕ, ρ)−
1

η
KL (νϕϕϕ, ρ)

]
(Lemma 35)

≤ Eπ∼pEM∼νEϕ∼ν

[
Vϕ,R(πϕ)− VM (π)− 1

9η
D

π
(ϕ∥M)

]
+ Eπ∼pE(M,π⋆)∼νEϕ∼ν

[
VM (π⋆)− Vϕ,R(πϕ)−

1

η
Eo∼M(·|π) [KL(νϕϕϕ(·|π, o), νϕϕϕ)]−

2

9η
D

π
(ϕ∥M)

]
.

We have minp maxν AIR
Φ,D
η (p, ν; ρ) = maxν minp AIR

Φ,D
η (p, ν; ρ) because AIR is convex in p and

concave in ν. After the min-max swap, for each ν, we choose p to be such that π ∼ p is equivalent to
first sampling ϕ′ ∼ ν and then setting π = πα

ϕ′ . This gives

min
p

max
ν

AIRΦ,D
η (p, ν; ρ)

≤ max
ν

Eϕ′∼νEM∼νEϕ∼ν

[
Vϕ,R(πϕ)− VM (πα

ϕ′)−
1

9η
D

πα
ϕ′
(ϕ∥M)

]
+ Eϕ′∼νE(M,π⋆)∼νEϕ∼ν

[
VM (π⋆)− Vϕ,R(πϕ)−

1

η
Eo∼M(·|πα

ϕ′ )

[
KL(νϕϕϕ(·|πα

ϕ′ , o), νϕϕϕ)
]
− 2

9η
D

πα
ϕ′
(ϕ∥M)

]
≤ max

ν
TermAΦ,D

η (ν) + max
ν

TermCΦ,D
η (ν).

Lemma 40.

TermCΦ,D
η (ν) ≤ O(ηdH + α) + TermBΦ,D

η (ν).

Proof. By Lemma 37 we can define with any P ∈ ϕ,

Xh(ϕ) = Eπϕ,P [φ(sh, ah)] .
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Furthermore, define

X(ϕ) = (Xh(ϕ))h∈[H] ∈ RdH ,

θ(R) = (θh(R))h∈[H] ∈ RdH .

With this, we have

E(M,π⋆)∼νEϕ∼ν [VM (π⋆)− Vϕ,R(πϕ)]

= Eϕ∼νER∼ν(·|ϕ) [Vϕ,R(πϕ)]− Eϕ∼νER∼ν [Vϕ,R(πϕ)]

= Eϕ∼ν

[
X(ϕ)⊤

(
ER∼ν(·|ϕ) [θ(R)]− ER∼ν [θ(R)]

)]
≤ Eϕ∼ν

[
∥X(ϕ)∥Σ−1

ν

∥∥ER∼ν(·|ϕ) [θ(R)]− ER∼ν [θ(R)]
∥∥
Σν

]
(Σν = Eϕ∼ν

[
X(ϕ)X(ϕ)⊤

]
)

≤
√

Eϕ∼ν

[
∥X(ϕ)∥2Σ−1

ν

]√
Eϕ∼ν

[∥∥ER∼ν(·|ϕ) [θ(R)]− ER∼ν [θ(R)]
∥∥2
Σν

]
=

√
dH

√
Eϕ′∼νEϕ∼ν

[(
X(ϕ′)⊤ER∼ν(·|ϕ) [θ(R)]−X(ϕ′)⊤ER∼ν [θ(R)]

)2]
≤ 3

√
dH

√√√√Eϕ′∼νEϕ∼ν

[(
E(P,R)∼ν(·|ϕ) [VP,R(πϕ′)]− E(P,R)∼ν [VP,R(πϕ′)]

)2]︸ ︷︷ ︸
Div1

+ 3
√
dH

√√√√Eϕ′∼νEϕ∼ν

[(
X(ϕ′)⊤ER∼ν(·|ϕ) [θ(R)]− E(P,R)∼ν(·|ϕ) [VP,R(πϕ′)]

)2]︸ ︷︷ ︸
Div2

+ 3
√
dH

√√√√Eϕ′∼νEϕ∼ν

[(
X(ϕ′)⊤ER∼ν [θ(R)]− E(P,R)∼ν [VP,R(πϕ′)]

)2]︸ ︷︷ ︸
Div3

. (29)

For any observation o = (s1, a1, r1, · · · , sH , aH , rH), let r(o) =
∑H

h=1 rh, we have

Div1 = Eϕ′∼νEϕ∼ν

[(
E(P,R)∼ν(·|ϕ) [VP,R(πϕ′)]− E(P,R)∼ν [VP,R(πϕ′)]

)2]
≤ 2Eϕ′∼νEϕ∼ν

[(
E(P,R)∼ν(·|ϕ)

[
VP,R(π

α
ϕ′)
]
− E(P,R)∼ν

[
VP,R(π

α
ϕ′)
])2]

+ 8α2

= 2Eϕ′∼νEϕ∼ν

[(
E(P,R)∼ν(·|ϕ)

[
Eo∼MP,R(·|πα

ϕ′ )
[r(o)]

]
− E(P,R)∼ν

[
Eo∼MP,R(·|πα

ϕ′ )
[r(o)]

])2]
+ 8α2

= 2Eϕ′∼νEϕ∼ν

[(
Eo∼ν(·|ϕ,πα

ϕ′ )
[r(o)]− Eo∼ν(·|πα

ϕ′ )
[r(o)]

)2]
+ 8α2

≤ 2Eϕ′∼νEϕ∼ν

(∑
o

∣∣ν(o|ϕ, πα
ϕ′)− ν(o|πα

ϕ′)
∣∣)2
+ 8α2

= 8Eϕ′∼νEϕ∼ν

[
D2

TV

(
νooo(·|ϕ, πα

ϕ′), νooo(·|πα
ϕ′)
)]

+ 8α2

≤ 8Eϕ′∼νEϕ∼ν

[
KL
(
νooo(·|ϕ, πα

ϕ′), νooo(·|πα
ϕ′)
)]

+ 8α2

= 8Eϕ′∼νEM∼νEo∼M(·|πα
ϕ′ )

[
KL
(
νϕϕϕ(·|πα

ϕ′ , o), νϕϕϕ
)]

+ 8α2.

On the other hand

Div2 = Eϕ′∼νEϕ∼ν

[(
X(ϕ′)⊤ER∼ν(·|ϕ) [θ(R)]− E(P,R)∼ν(·|ϕ) [VP,R(πϕ′)]

)2]
= Eϕ′∼νEϕ∼ν

[(
ER∼ν(·|ϕ) [Vϕ′,R(πϕ′)]− E(P,R)∼ν(·|ϕ) [VP,R(πϕ′)]

)2]
≤ Eϕ′∼νEϕ∼νE(P,R)∼ν(·|ϕ)

[
(Vϕ′,R(πϕ′)− VP,R(πϕ′))

2
]

= Eϕ′∼νE(P,R)∼ν

[
(Vϕ′,R(πϕ′)− VP,R(πϕ′))

2
]

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Similarly,

Div3 = Eϕ′∼νEϕ∼ν

[(
X(ϕ′)⊤ER∼ν [θ(R)]− E(P,R)∼ν [VP,R(πϕ′)]

)2]
= Eϕ′∼νEϕ∼ν

[(
ER∼ν [Vϕ′,R(πϕ′)]− E(P,R)∼ν [VP,R(πϕ′)]

)2]
≤ Eϕ′∼νE(P,R)∼ν

[
(Vϕ′,R(πϕ′)− VP,R(πϕ′))

2
]

Combining these equations back to Eq. (29) and using the definition of TermCΦ,D
η (ν), we have

TermCΦ,D
η (ν)

≤ 3

√
8dHEϕ′∼νEM∼νEo∼M(·|πα

ϕ′ )

[
KL
(
νϕϕϕ(·|πα

ϕ′ , o), νϕϕϕ

)]
+ 8α2

+ 6
√
dH

√
3Eϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]

− 1

η
Eϕ′∼νEM∼νEo∼M(·|πα

ϕ′ )

[
KL
(
νϕϕϕ(·|πα

ϕ′ , o), νϕϕϕ
)]

− 2

9η
Eϕ′∼νEM∼νEϕ∼ν

[
D

πα
ϕ′
(ϕ∥M)

]
≤ O (ηdH + α) + 6

√
dH

√
3Eϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]
− 2

9η
Eϕ′∼νEM∼νEϕ∼ν

[
D

πα
ϕ′
(ϕ∥M)

]
= O (ηdH + α) + TermBΦ,D

η (ν).

I.2 RELATING dig-dec TO HYBRID BILINEAR RANK

Assumption 8 (Hybrid bilinear class [LWZ25]). A model class M and its associated Φ satisfying
Assumption 3 is a hybrid bilinear class with rank d if there exists functions Xh : Φ×P → Rd and
Wh : Φ×R×P → Rd for all h ∈ [H] such that

1. For any M = (P,R) ∈ ϕ, it holds that Wh(ϕ, R̃;P ) = 0 for any R̃ ∈ R.
2. For any ϕ ∈ Φ and any (P,R) ∈ M,

|Vϕ,R(πϕ)− VP,R(πϕ)| ≤
H∑

h=1

|⟨Xh(ϕ;P ),Wh(ϕ,R;P )⟩| .

3. For every policy π, there exists an estimation policy πest. Also, there exists a discrepancy function
ℓh : Φ×R×O → R such that for any ϕ′, ϕ ∈ Φ and any M = (P,R) ∈ M,

|⟨Xh(ϕ
′;P ),Wh(ϕ,R;P )⟩| =

∣∣∣Eπϕ′ ◦h πest
ϕ′ , P [ℓh(ϕ,R; oh)]

∣∣∣
where oh = (sh, ah, rh, sh+1) and π ◦h πest denotes a policy that plays π for the first h− 1 steps
and plays policy πest at the h-th step.

We call it an on-policy bilinear class if πest = π for all π ∈ Π, and otherwise an off-policy bilinear
class. We denote by πα the policy that in every step h = 1, . . . ,H chooses π with probability 1− α

H

and chooses πest with probability α
H .

Lemma 41. Hybrid bilinear classes (Assumption 8) with known-feature linear reward (Assumption 4)
satisfy Assumption 5 with N = d.

Proof. With the estimation function ℓh(ϕ,R; oh) defined in Assumption 8, we define for j ∈ [d],

ℓh(ϕ; oh)j = ℓh(ϕ, ej ; oh),

where ej as a reward represents the reward function defined as R(s, a) = φ(s, a)⊤ej = φ(s, a)j .
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For any ϕ′ ∈ Φ and any M = (P,R) ∈ ϕ,∣∣∣Eπϕ′◦hπ
est
ϕ′ ,P [ℓh(ϕ; oh)j ]

∣∣∣
=
∣∣∣Eπϕ′◦hπ

est
ϕ′ ,P [ℓh(ϕ, ej ; oh)]

∣∣∣
= |⟨Xh(ϕ

′;P ),Wh(ϕ, ej ;P )⟩| (by Assumption 8.3)
= 0. (by Assumption 8.1)

Lemma 42 (Lemma 20 of [LWZ25]). Let (M,Φ) be a hybrid bilinear class (Assumption 8). Then

• maxν TermAΦ,Dav
η (ν) ≤ O(B2H2dη) in the on-policy case.

• maxν TermAΦ,Dav
η (ν) ≤ O(α+B2H3dη/α) in the off-policy case.5

Lemma 43. Let (M,Φ) be a hybrid bilinear class (Assumption 8). Then

• maxν TermBΦ,Dav
η (ν) ≤ O

((
B2H5d3η

) 1
3

)
in the on-policy case.

• maxν TermBΦ,Dav
η (ν) ≤ O

((
B2H6d3η/α

) 1
3

)
in the off-policy case.

Proof. From the definition of hybrid bilinear class in Assumption 8, we have

Eϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]

≤ Eϕ∼νE(P,R)∼ν

( H∑
h=1

|⟨Xh(ϕ;P ),Wh(ϕ,R;P )⟩|

)2


≤ H

H∑
h=1

Eϕ∼νE(P,R)∼ν

[
|⟨Xh(ϕ;P ),Wh(ϕ,R;P )⟩|2

]
.

Define Σh,P = Eϕ∼ν

[
Xh(ϕ;P )Xh(ϕ;P )⊤

]
. We have

Eϕ∼ν

[
|⟨Xh(ϕ;P ),Wh(ϕ,R;P )⟩|2

]
≤ Eϕ∼ν [|⟨Xh(ϕ;P ),Wh(ϕ,R;P )⟩|]

≤
√
Eϕ∼ν

[
∥Xh(ϕ;P )∥2Σ−1

h,P

]√
Eϕ∼ν

[
∥Wh(ϕ,R;P )∥2Σh,P

]
=

√
dEϕ∼νEϕ′∼ν

[(
Eπϕ′ ◦h πest

ϕ′ , P
[ℓh(ϕ,R; oh)]

)2]
. (Assumption 8)

Thus, √
Eϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]

≤

√√√√H

H∑
h=1

E(P,R)∼ν

[√
dEϕ∼νEϕ′∼ν

[(
Eπϕ′ ◦h πest

ϕ′ , P
[ℓh(ϕ,R; oh)]

)2]]
.

5As in Footnote 4, the bounds are different from [LWZ25]’s as we adopt a different scaling.
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(1) In the on-policy case, we have α = 0 and

6

√
3dHEϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]
− 2

9η
Eϕ′∼νEM∼νEϕ∼ν

[
D

πϕ′
av (ϕ∥M)

]
≤ 6

√√√√3d
3
2H2

H∑
h=1

E(P,R)∼ν

[√
Eϕ∼νEϕ′∼ν

[(
Eπϕ′ ,P [ℓh(ϕ,R; oh)]

)2]]

− 2

9ηB2H

H∑
h=1

Eϕ∼νEϕ′∼νE(P,R)∼ν

 d∑
j=1

(
Eπϕ′ ,P [ℓh(ϕ; oh)j ]

)2
≤ O

(
d

3
2H2β

)
+

1

4β

H∑
h=1

E(P,R)∼ν

[√
Eϕ∼νEϕ′∼ν

[(
Eπϕ′ ,P [ℓh(ϕ,R; oh)]

)2]]

− 2

9ηB2H

H∑
h=1

Eϕ∼νEϕ′∼νE(P,R)∼ν

[(
Eπϕ′ ,P [ℓh(ϕ,R; oh)]

)2]
≤ O

(
d

3
2H2β +

ηB2H

β2

)
= O

((
B2H5d3η

) 1
3

)
. (choosing optimal β)

(2) For the off-policy case, we have

6

√
3dHEϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]
− 2

9η
Eϕ′∼νEM∼νEϕ∼ν

[
D

πα
ϕ′

av (ϕ∥M)
]

≤ 6

√√√√d
3
2H2

H∑
h=1

E(P,R)∼ν

[√
Eϕ∼νEϕ′∼ν

[(
Eπϕ′◦hπest

ϕ′ ,P
[ℓh(ϕ,R; oh)]

)2]]

− 2

9ηB2H

H∑
h=1

Eϕ∼νEϕ′∼νE(P,R)∼ν

 d∑
j=1

(
Eπα

ϕ′ ,P [ℓh(ϕ; oh)j ]
)2

≤ O
(
d

3
2H2β

)
+

1

4β

H∑
h=1

E(P,R)∼ν

[√
Eϕ∼νEϕ′∼ν

[(
Eπϕ′◦hπest

ϕ′ ,P
[ℓh(ϕ,R; oh)]

)2]]

− α

3H
· 2

9ηB2H

H∑
h=1

Eϕ∼νEϕ′∼νE(P,R)∼ν

[(
Eπϕ′◦hπ

est
ϕ′ ,P [ℓh(ϕ,R; oh)]

)2]
≤ O

(
d

3
2H2β +

ηB2H2

αβ2

)
= O

((
B2H6d3η/α

) 1
3

)
, (with the optimal β)

where the second-to-last inequality is because with probability (1 − α
H )h−1 α

H ≥ α
3H , policy πα

ϕ′

chooses the policy πϕ′ ◦h πest
ϕ′ .

Lemma 44. Let (M,Φ) be a hybrid bilinear class (Assumption 8). Then

• dig-decΦ,Dav
η ≤ O

(
B2H2dη +

(
B2H5d3η

) 1
3

)
in the on-policy case;

• dig-decΦ,Dav
η ≤ O

(√
B2H3dη +

(
B2H6d3η

) 1
4

)
in the off-policy case.

Proof. This can be obtained by directly combining Lemma 39, Lemma 40, Lemma 42, Lemma 43.
In the on-policy case,

dig-decΦ,Dav
η = O

(
B2H2dη +

(
B2H5d3η

) 1
3

)
.

In the off-policy case,

dig-decΦ,Dav
η = O

(
α+B2H3dη/α+

(
B2H6d3η/α

) 1
3

)
= O

(√
B2H3dη +

(
B2H6d3η

) 1
4

)
. (with optimal α)

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

I.3 RELATING dig-dec TO COVERABILITY UNDER BELLMAN COMPLETENESS

Lemma 45. For hybrid MDPs with Bellman completeness and coverability bounded by d, it holds
that

max
ν

TermAΦ,Dsq
η (ν) ≤ O

(
ηdB2H2

)
.

Proof. For M = (P,R), define

gh(s, a, ϕ;R,P ) = fϕ(s, a;R)−R(s, a)− Es′∼P (·|s,a)[fϕ(s
′;R)],

dν,Ph (s, a) = Eϕ∼ν

[
d
πϕ,P
h (s, a)

]
.

By the AM-GM inequality, for any λ > 0,

Eϕ∼νEπϕ,P [gh(sh, ah, ϕ;R,P )]

= Eϕ∼νE
(s,a)∼d

πϕ,P

h

[gh(s, a, ϕ;R,P )]

= Eϕ∼νE(s,a)∼dν,P
h

[
d
πϕ,P
h (s, a)

dν,Ph (s, a)
gh(s, a, ϕ;R,P )

]

≤ Eϕ∼νE(s,a)∼dν,P
h

[
λ

4

d
πϕ,P
h (s, a)2

dν,Ph (s, a)2
+

1

λ
gh(s, a, ϕ;R,P )2

]

=
λ

4
Eϕ∼ν

[∑
s,a

d
πϕ,P
h (s, a)2

dν,Ph (s, a)

]
+

1

λ
Eϕ∼νEϕ′∼νEπϕ′ ,M

[
gh(sh, ah, ϕ,R, P )2

]
. (30)

Note that

H∑
h=1

Eϕ∼νEπϕ,P [gh(sh, ah, ϕ;R,P )] = Eϕ∼ν [Vϕ,R(πϕ)− VM (πϕ)] ,

and

H∑
h=1

Eπϕ′ ,P
[
gh(sh, ah, ϕ;R,P )2

]
≤

H∑
h=1

d∑
j=1

Eπϕ′ ,P
[
gh(sh, ah, ϕ; ej , P )2

]
=

H∑
h=1

d∑
j=1

Eπϕ′ ,P
[(
fϕ(sh, ah; ej)− φ(sh, ah)

⊤ej − Es′∼P (·|s,a)[fϕ(s
′; ej)]

)2]
,

=

H∑
h=1

d∑
j=1

Eπϕ′ ,P
[
(fϕ(sh, ah; ej)− fTMϕ(sh, ah; ej))

2
]

=

H∑
h=1

Eπϕ′ ,P
[
∥fϕ(sh, ah)− fTMϕ(sh, ah)∥2

]
=

H∑
h=1

Eπϕ′ ,P [ξh(ϕ, ϕ; oh)− ξh(TMϕ, ϕ; oh)] (by Eq. (23))

= B2HD
πϕ′
sq (ϕ∥M). (31)
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Thus,

TermAΦ,Dsq
η (ν)

= EM∼νEϕ′∼νEϕ∼ν

[
Vϕ,R(πϕ)− VM (πϕ)−

1

η
D

πϕ′
sq (ϕ∥M)

]
≤ Eϕ∼νEϕ′∼νEM∼ν

[
H∑

h=1

Eπϕ,P [gh(sh, ah, ϕ;R,P )]− 1

ηB2H

H∑
h=1

Eπϕ′ ,P
[
gh(sh, ah, ϕ,R, P )2

]]

≤ ηB2H

4
EM∼νEϕ∼ν

[
H∑

h=1

∑
s,a

d
πϕ,P
h (s, a)2

dν,Ph (s, a)

]
. (by Eq. (30))

Let µP
h be any occupancy measure over layer h that depends on P . Then

Eϕ∼ν

[∑
s,a

d
πϕ,P
h (s, a)2

dν,Ph (s, a)

]
= Eϕ∼ν

[∑
s,a

d
πϕ,P
h (s, a)µP

h (s, a)

dν,Ph (s, a)
· d

πϕ,P (s, a)

µP
h (s, a)

]

≤ Eϕ∼ν

[∑
s,a

d
πϕ,P
h (s, a)µP

h (s, a)

dν,Ph (s, a)

]
·max
s,a,π

dπ,Ph (s, a)

µP
h (s, a)

=

(∑
s,a

µP
h (s, a)

)
·max
s,a,π

dπ,Ph (s, a)

µP
h (s, a)

= max
s,a,π

dπ,Ph (s, a)

µP
h (s, a)

. (32)

We let µP
h be the minimizer of maxs,a,π

dπ,P
h (s,a)

µP
h (s,a)

. The coverability in MDP M is defined

as minµ maxs,a,π,h
dπ,P
h (s,a)

µP
h (s,a)

[XFB+23]. Combining the inequalities proves TermAΦ,Dsq
η (ν) ≤

O
(
ηdB2H2

)
.

Lemma 46. For hybrid MDPs with Bellman completeness and coverability bounded by d, it holds
that

max
ν

TermBΦ,Dsq
η (ν) ≤ O

((
B2H5d3η

) 1
3

)
.

Proof. By definition,

TermBΦ,Dsq
η (ν) = 6

√
dH

√
3Eϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]
− 2

9η
Eϕ′∼νEM∼νEϕ∼ν

[
D

πϕ′
sq (ϕ∥M)

]
Define

gh(s, a, ϕ;R,P ) = fϕ(s, a;R)−R(s, a)− Es′∼P (·|s,a)[fϕ(s
′;R)],

dν,Ph (s, a) = Eϕ∼ν

[
d
πϕ,P
h (s, a)

]
.
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We have

Eϕ∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]

= H

H∑
h=1

Eϕ∼νE
(s,a)∼d

πϕ,P

h

[
gh(s, a, ϕ;R,P )2

]
≤ H

H∑
h=1

Eϕ∼νE
(s,a)∼d

πϕ,P

h

[|gh(s, a, ϕ;R,P )|]

= H

H∑
h=1

Eϕ∼νE(s,a)∼dν,P
h

[
d
πϕ,P
h (s, a)

dν,Ph (s, a)
|gh(s, a, ϕ;R,P )|

]

≤ H

H∑
h=1

√√√√Eϕ∼νE(s,a)∼dν,P
h

[
d
πϕ,P
h (s, a)2

dν,Ph (s, a)2

]√
Eϕ∼νE(s,a)∼dν,P

h

[
(gh(s, a, ϕ;R,P ))

2
]

≤ H

H∑
h=1

√
dEϕ∼νE(s,a)∼dν,P

h
[gh(s, a, ϕ;R,P )2]. (by Eq. (32) and that coverability ≤ d)

Thus,

6
√
dH

√
3Eϕ∼νE(P,R)∼ν

[
(Vϕ,R(πϕ)− VP,R(πϕ))

2
]
− 2

9η
Eϕ′∼νEM∼νEϕ∼ν

[
D

πϕ′
sq (ϕ∥M)

]
≤

√√√√d
3
2H2

H∑
h=1

E(P,R)∼ν

[√
Eϕ∼νE(s,a)∼dν,P

h
[gh(s, a, ϕ;R,P )2]

]
− 2

9η
Eϕ′∼νEM∼νEϕ∼ν

[
D

πϕ′
sq (ϕ∥M)

]

≤ d
3
2H2β +

1

4β

H∑
h=1

E(P,R)∼ν

[√
Eϕ∼νE(s,a)∼dν,P

h
[gh(s, a, ϕ;R,P )2]

]
− 2

9ηB2H

H∑
h=1

Eϕ′∼νEM∼νEϕ∼νE
(s,a)∼d

π
ϕ′ ,P

h

[
gh(s, a, ϕ;R,P )2

]
(Eq. (31))

≤ O

(
d

3
2H2β +

ηB2H

β2

)
= O

((
B2H5d3η

) 1
3

)
.

Lemma 47. For hybrid MDPs with Bellman completeness and coverability bounded by d, it holds
that

dig-decΦ,Dav
η = O

(
B2H2dη +

(
B2H5d3η

) 1
3

)
.

Proof. This can be obtained by directly combining Lemma 39, Lemma 40, Lemma 45, Lemma 46.
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J OMITTED DETAILS IN SECTION 6

J.1 PROOF OF THEOREM 14

In this section, we will use Ber(p) to denote Bernoulli distribution with success probability p. We
consider parameters ϵ and ∆ with ϵ < ∆ = 1

16
√
T
≤ 1

16 . Define p+ = 1
2 +∆ and p− = 1

2 −∆. Let
H(ν) denote the entropy of distribution ν. We assume learning rate η ≤ 1.

Consider a three-arm bandit environment with model class M = {M1,M2} where

• M1 = (Ber (p−) ,Ber (p+) , ϵBer(0.5)). The reward distribution is Ber (p−) for arm a1 and
Ber (p+) for arm a2. Arm a3’s reward is 0 and ϵ with equal probability.

• M2 = (Ber (p+) ,Ber (p−) , 0.5ϵ). The reward distribution is Ber (p+) for arm a1 and
Ber (p−) for arm a2. Arm a3’s reward is 0.5ϵ deterministically.

In this setting, Φ contains two infosets (based on Assumption 1):
ϕ1 = {(M1, πM1)} , ϕ2 = {(M2, πM2)} .

In the rest of this proof, we compare the optimistic E2D algorithm [FGQ+23] and our algorithm in
this environment.

Optimistic DEC algorithm [FGQ+23] Given ρt ∈ ∆(Φ), the algorithm chooses action distribu-
tion via

pt = argmin
p∈∆(Π)

max
ν∈∆(Ψ)

Ea∼pEϕ∼ρtEM∼ν

{
Vϕ(aϕ)− VM (a)− 1

η
Da(ϕ∥M)

}
(33)

where aϕ is the optimal action of infoset ϕ. In this simple bandit setting, the bilinear divergence and
the squared Bellman error coincide with

Da(ϕ∥M) =
(
Ea,M [Vϕ(a)− r]

)2
= (Vϕ(a)− VM (a))2.

We first consider the divergence term, for action a ∈ {a1, a2}, we have
Eϕ∼ρt

EM∼ν [D
a(ϕ∥M)] = ρt(ϕ1)ν(M2)(Vϕ1

(a)− VM2
(a))2 + ρt(ϕ2)ν(M1)(Vϕ2

(a)− VM1
(a))2

= 4 (ρt(ϕ1)ν(M2) + ρt(ϕ2)ν(M1))∆
2 (34)

For action a = a3, we have
Eϕ∼ρtEM∼ν [D

a(ϕ∥M)] = ρt(ϕ1)ν(M2)(Vϕ1(a)− VM2(a))
2 + ρt(ϕ2)ν(M1)(Vϕ2(a)− VM1(a))

2

= 0 (35)
Thus, for any ρt and ν, we have

Ea∼pEϕ∼ρt
EM∼ν

[
−1

η
Da(ϕ∥M)

]
= −4(1− p(a3))∆

2

η
(ρt(ϕ1)ν(M2) + ρt(ϕ2)ν(M1))

which is monotonically increasing in p(a3).

We then consider the regret term. For any p ∈ ∆(Π), define p̃ =
(

p(a1)
1−p(a3)

, p(a2)
1−p(a3)

, 0
)

if p(a3) < 1,

and p̃ = ( 12 ,
1
2 , 0) otherwise. For any M ∈ M, when p(a3) < 1 we have

Ea∼p [VM (a)]− Ea∼p̃ [VM (a)] =
∑

a∈{a1,a2}

(p(a)− p̃(a))VM (a) + p(a3)VM (a3)

=
−p(a3)

1− p(a3)

∑
a∈{a1,a2}

p(a)VM (a) + p(a3)VM (a3)

≤ −p(a3)

1− p(a3)
(p(a1) + p(a2)) p

− + p(a3)VM (a3)

(VM (a) ≥ p− for any M and a ∈ {a1, a2}, and p(a3) < 1)

= p(a3)

(
VM (a3)−

1

2
+ ∆

)
≤ p(a3)

(
0.5ϵ+∆− 1

2

)
≤ 0, (ϵ < ∆ ≤ 1

16 )
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and when p(a3) = 1 we also have Ea∼p [VM (a)]− Ea∼p̃ [VM (a)] ≤ 0. Thus, for any ρt, ν, and p,
Ea∼p̃Eϕ∼ρt

EM∼ν {Vϕ(aϕ)− VM (a)} ≤ Ea∼pEϕ∼ρt
EM∼ν {Vϕ(aϕ)− VM (a)} .

Combining the discussion of the above two terms, for any ρt, ν and p, we have

Ea∼p̃Eϕ∼ρtEM∼ν

{
Vϕ(aϕ)− VM (a)− 1

η
Da(ϕ∥M)

}
≤ Ea∼pEϕ∼ρtEM∼ν

{
Vϕ(aϕ)− VM (a)− 1

η
Da(ϕ∥M)

}
.

(36)

Given Eq. (36), the minimax solution of Eq. (33) must have pt(3) = 0 for any ρt and any t. This
implies that the optimistic DEC algorithm will never choose a3 and the problem degenerate to
standard two-arm bandit, so the policy derived from optimistic DEC objective Eq. (33) must suffer
standard regret lower bound E [Reg(πM⋆)] ≥ Ω(

√
T ) given ∆ = Θ

(
1√
T

)
.

Our algorithm Given ρ1 is a uniform distribution, we consider our first step optimization where

p1 = argmin
p∈∆(Π)

max
ν∈∆(Ψ)

Ea∼pEϕ∼ρ1
EM∼ν

{
VM (aM )− VM (a)− 1

η
Eo∼M(·|a) [KL(νϕϕϕ(·|a, o), ρ1)]−

1

η
Da(ϕ∥M)

}
.

(37)
Below, we discuss the four terms in Eq. (37).

The VM (aM ) term For any ν, we have EM∼ν [VM (aM )] = p+, which is a constant. Therefore, this
term can be ignored in the objective.

The VM (a) term By direct calculation, we have

Ea∼pEM∼ν [VM (a)] =
p(a1) + p(a2)

2
+ (p(a1)− p(a2)) (ν(M2)− ν(M1))∆ + 0.5p(a3)ϵ.

(38)

For any p = (p(a1), p(a2), p(a3)), consider p̂ = (p(a1)+p(a2)
2 , p(a1)+p(a2)

2 , p(a3)). By Eq. (38) we
have

max
ν∈∆(Ψ)

Ea∼p̂EM∼ν [−VM (a)] ≤ max
ν∈∆(Ψ)

Ea∼pEM∼ν [−VM (a)] . (39)

The Da(ϕ∥M) term Given ρ1 is a uniform distribution, for action a ∈ {1, 2}, from Eq. (34), for
any ν we have Eϕ∼ρ1

EM∼ν [D
a(ϕ∥M)] = 2∆2. For action a = 3, from Eq. (35), for any ν, we

have Eϕ∼ρ1EM∼ν [D
a(ϕ∥M)] = 0. Hence, Ea∼pEϕ∼ρ1EM∼ν [D

a(ϕ∥M)] = 2(1 − p(a3))∆
2.

Note that now this is independent of ν, and only related to p(a3) or p(a1) + p(a2) but not p(a1) or
p(a2) individually.

The KL term Notice that
νooo(·|a1, ϕ1) = Ber

(
p−
)
, νooo(·|a2, ϕ1) = Ber

(
p+
)
, νooo(·|a1, ϕ2) = Ber

(
p+
)
, νooo(·|a2, ϕ2) = Ber

(
p−
)
,

νooo(·|a1) = Ber (m1) , νooo(·|a2) = Ber (m2) ,

where m1 = ν(ϕ1)p
− + ν(ϕ2)p

+ and m2 = ν(ϕ1)p
+ + ν(ϕ2)p

− and it holds that m1 +m2 = 1.
Given that KL (Ber (p) ,Ber (q)) = KL (Ber (1− p) ,Ber (1− q)), we have
Ea∼pEM∼ν

[
Eo∼M(a) [KL(νϕϕϕ(·|a, o), ρ1)]

]
= Ea∼pEϕ∼ν [KL(νooo(·|a, ϕ), νooo(·|a))] + KL(νϕϕϕ, ρ1)

= p(a1)ν(ϕ1)KL
(
Ber

(
p−
)
,Ber (m1)

)
+ p(a2)ν(ϕ1)KL

(
Ber

(
p+
)
,Ber (m2)

)
+ KL(νϕϕϕ, ρ1)

+ p(a1)ν(ϕ2)KL
(
Ber

(
p+
)
,Ber (m1)

)
+ p(a2)ν(ϕ2)KL

(
Ber

(
p−
)
,Ber (m2)

)
+ p(a3)Eϕ∼ν [KL(νooo(·|a3, ϕ), νooo(·|a3))]

= (p(a1) + p(a2))
(
ν(ϕ1)KL

(
Ber

(
p−
)
,Ber (m1)

)
+ ν(ϕ2)KL

(
Ber

(
p+
)
,Ber (m1)

))
+ p(a3)H(ν) + KL(νϕϕϕ, ρ1)

= (1− p(a3))
(
H (Ber(m1))−H

(
Ber

(
p+
)))

+ p(a3)H(ν) + KL(νϕϕϕ, ρ1).
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Note that this term is only related to p(a3) or p(a1) + p(a2), but not p(a1) or p(a2) individually.

Combining terms Combining the case discussions above, for any p = (p(a1), p(a2), p(a3)), with

p̂ = (p(a1)+p(a2)
2 , p(a1)+p(a2)

2 , p(a3)), we have

max
ν∈∆(Ψ)

{
Ea∼p̂EM∼ν

[
−VM (a)− 1

η
Eo∼M(a) [KL(νϕϕϕ(·|a, o), ρ1)]−

1

η
Eϕ∼ρ1 [D

a(ϕ∥M)]

]}
≤ max

ν∈∆(Ψ)

{
Ea∼pEM∼ν

[
−VM (a)− 1

η
Eo∼M(a) [KL(νϕϕϕ(·|a, o), ρ1)]−

1

η
Eϕ∼ρ1

[Da(ϕ∥M)]

]}
.

To calculate the max value of the left-hand-side, consider policy distribution ps = ( 1−s
2 , 1−s

2 , s). We
have

Ea∼ps
EM∼ν

[
−VM (a)− 1

η
Eo∼M(a) [KL(νϕϕϕ(·|a, o), ρ1)]−

1

η
Eϕ∼ρ1

[Da(ϕ∥M)]

]
=

s− 1

2
− sϵ

2
− 1

η

(
(1− s)

(
H (Ber(m1))−H

(
Ber(p+)

)
+ 2∆2

)
+ KL (νϕϕϕ, ρ1) + sH(ν)

)
(40)

where m1 = ν(ϕ1)p
− + ν(ϕ2)p

+. Define
G(ν) = (1− s)H(Ber(m1)) + KL (νϕϕϕ, ρ1) + sH(ν).

To calculate maxν of Eq. (40), we only need to consider minν {G(ν)}. By setting ν(ϕ2) = 1−ν(ϕ1),
function G is only related to ν(ϕ1) and we denote it as G(ν(ϕ1)), after taking derivative, we have

G′(ν(ϕ1)) = (1− s) ln

(
1−m1

m1

)(
p− − p+

)
+ log

(
ν(ϕ1)

1− ν(ϕ1)

)
+ s log

(
1− ν(ϕ1)

ν(ϕ1)

)
= −∆(1− s) ln

(
1−m1

m1

)
+ log

(
ν(ϕ1)

1− ν(ϕ1)

)
+ s log

(
1− ν(ϕ1)

ν(ϕ1)

)
where m1 = ν(ϕ1)p

− + (1− ν(ϕ1))p
+ and we use the fact that dH(Ber(p))

dp = ln
(

1−p
p

)
. Note that

when ν(ϕ1) = 1
2 we have m1 = 1

2 and G′( 12 ) = 0. Thus, 1
2 is a stationary point. On the other

hand, we have G′′( 12 ) = 4(1− s− 2(1− s)∆2) ≥ 0 and G(ν(ϕ1)) = G(1− ν(ϕ1)). This implies
ν(ϕ1) =

1
2 is the unique minimizer and the minimal value is G( 12 ) = ln(2).

Thus,

max
ν∈∆(Ψ)

{
Ea∼ps

EM∼ν

[
−VM (a)− 1

η
Eo∼M(a) [KL(νϕϕϕ(·|a, o), ρ1)]−

1

η
Eϕ∼ρ1

[Da(ϕ∥M)]

]}
=

s− 1

2
− sϵ

2
− 1

η
(1− s)

(
−H

(
Ber(p+)

)
+ 2∆2

)
− 1

η
ln(2)

= (1− s)

(
−1− ϵ

2
+

H(Ber(p+))− 2∆2

η

)
− ln 2

η
− ϵ

2
. (41)

Note that
H(Ber(p+))− 2∆2

= −KL(Ber(p+),Ber( 12 )) + ln 2− 2D2
TV(Ber(p+),Ber( 12 ))

≥ ln 2− 5KL(Ber(p+),Ber( 12 )) (Pinsker’s inequality)

≥ ln 2− 15∆2 (KL(Ber( 12 +∆),Ber( 12 )) ≤ 3∆2 for ∆ ≤ 1
2 )

≥ 1

2
. (by the assumption ∆ = 1

16
√
T
≤ 1

16 )

Hence, the minimum value of Eq. (41) is achieved at s = 1 when 1
2η − 1−ϵ

2 ≥ 0. By the condition
η ≤ 1, this indeed holds. This means that our algorithm always picks the third arm in the first round.
After picking arm a3, the belief of ϕ will be deterministic, since ν1(ϕ|a3, o) = 0 for any ϕ ̸= ϕ⋆.
This means the algorithm will always choose the optimal action in the following rounds, ensuring
that E [Reg(πM⋆)] ≤ p+ < 1.
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K USE OF LARGE LANGUAGE MODELS IN PREPARATION

We did not use large language models at all for this project.
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