

AN IMPROVED MODEL-FREE DECISION-ESTIMATION COEFFICIENT WITH APPLICATIONS IN ADVERSARIAL MDPs

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 We study decision making with structured observation (DMSO). Previous work
 014 [FKQR21, FGH23] has characterized the complexity of DMSO via the decision-
 015 estimation coefficient (DEC), but left a gap between the regret upper and lower
 016 bounds that scales with the size of the model class. To tighten this gap, [FGQ⁺23]
 017 introduced optimistic DEC, achieving a bound that scales only with the size of the
 018 value-function class. However, their optimism-based exploration is only known
 019 to handle the stochastic setting, and it remains unclear whether it extends to the
 020 adversarial setting.

021 We introduce Dig-DEC, a model-free DEC that removes optimism and drives
 022 exploration purely by information gain. Dig-DEC is always no larger than opti-
 023 mistic DEC and can be much smaller in special cases. Importantly, the removal
 024 of optimism allows it to handle adversarial environments without explicit reward
 025 estimators. By applying Dig-DEC to hybrid MDPs with stochastic transitions and
 026 adversarial rewards, we obtain the first *model-free* regret bounds for *hybrid* MDPs
 027 with *bandit* feedback under linear reward and several *general* transition structures,
 028 resolving the main open problem left by [LWZ25].

029 We also improve the online function-estimation procedure in model-free learning:
 030 For average estimation error minimization, we refine [FGQ⁺23]'s estimator to
 031 achieve sharper concentration, improving their regret bounds from $T^{\frac{3}{4}}$ to $T^{\frac{2}{3}}$ (on-
 032 policy) and from $T^{\frac{5}{6}}$ to $T^{\frac{7}{9}}$ (off-policy). For squared error minimization in Bellman-
 033 complete MDPs, we redesign their two-timescale procedure, improving the regret
 034 bound from $T^{\frac{2}{3}}$ to \sqrt{T} . This is the first time a DEC-based method achieves
 035 performance matching that of optimism-based approaches [JLM21, XFB⁺23] in
 036 Bellman-complete MDPs.

1 INTRODUCTION

040 [FKQR21, FGH23] developed the framework of decision-estimation coefficient (DEC) that character-
 041 izes the complexity of general online decision making problems and provides a general algorithmic
 042 principle called Estimation-to-Decision (E2D). In the state-of-the-art result by [FGH23], regret lower
 043 and upper bounds are established with a gap of $\log |\mathcal{M}|$, where \mathcal{M} is the model class where the
 044 underlying true model lies. This $\log |\mathcal{M}|$ reflects the price of *model estimation*. Essentially, the
 045 lower bound in [FGH23] only captures the complexity of decision-making / exploration, while the
 046 upper bound additionally includes the complexity of model estimation. Since E2D is a model-based
 047 algorithm that learns over models, it necessarily incurs this cost of model estimation.

048 On the other hand, a large class of existing reinforcement learning (RL) algorithms are model-free
 049 value-based algorithms, which only estimate value functions. To better capture the decision-making
 050 complexity in this case, [FGQ⁺23] proposed a variant of E2D, called optimistic E2D, that achieves
 051 a regret upper bound characterized by the complexity measure called optimistic DEC. However,
 052 unlike the model-based DEC/E2D framework [FKQR21, FGH23] which drives exploration only
 053 through information gain, optimistic DEC/E2D leverages the *optimism* principle to drive exploration,
 which may not be fundamental and could lead to sub-optimal performance in certain cases. Overall,

054 the precise tradeoff between model estimation complexity and decision-making complexity, along
 055 with the gap between upper and lower bounds, remain largely unsolved.
 056

057 A parallel line of research seeks to relax the assumption that the environment remains stationary.
 058 [FRSS22] and [XZ23] studied the pure adversarial setting where the environment can choose a
 059 different model in every round. In this case, their algorithms only estimate the optimal policy
 060 and the price of estimation becomes $\log |\Pi|$ where Π is the policy class. In such pure adversarial
 061 environment, however, the decision-making complexity could become prohibitively high and is
 062 often vacuous in Markov decision processes (MDPs). A simpler and more tractable setting is the
 063 that of *hybrid* MDPs where the transition is stochastic but the reward is adversarial. This setting
 064 has been studied in various settings: tabular MDPs [NGSA13, RM19, JLJ⁺20, SERM20], linear
 065 (mixture) MDPs [LWL21, DLWZ23, SKM23, LWZ24, KZWL23, LZZ24], and low-rank MDPs
 066 [ZYW⁺24, LMWZ24]. The work of [LWZ25] first leveraged the DEC framework to obtain results
 067 for *bilinear classes*. However, they only gave a model-based algorithm (incurring large estimation
 068 error) and a model-free algorithm that requires full-information reward feedback, leaving the model-
 069 free bandit case open.

070 We provide a unified framework that advances both directions discussed above:

- 071 In the stochastic setting, we introduce a new model-free DEC notion, Dig-DEC, that improves over
 072 the optimistic DEC of [FGQ⁺23]. Our approach does not rely on the optimism principle, but ad-
 073heres more closely to the general idea of DEC that drives exploration purely with information gain.
 074 For canonical settings such as bilinear classes or Bellman-complete MDPs with bounded Bellman
 075 eluder dimension or coverability, we recover their complexities with improved T -dependence in
 076 the regret, while in some constructed settings, the improvement can be arbitrarily large.
- 077 • We establish the first sublinear regret for *model-free* learning in *hybrid* bilinear classes and Bellman-
 078 complete coverable MDPs with linear reward and bandit feedback, resolving the open question in
 079 [LWZ25].
- 080 • We improve the online function estimation procedure both in the case of average estimation error
 081 and squared estimation error. This allows us to improve the $T^{\frac{3}{4}}/T^{\frac{5}{6}}$ regret of [FGQ⁺23] to
 082 $T^{\frac{2}{3}}/T^{\frac{7}{9}}$ in the former case, and improve the $T^{\frac{2}{3}}$ regret of [FGQ⁺23] to \sqrt{T} in the latter case. The
 083 techniques we use to achieve them could be of independent interest.

084 Tables that compare our results with previous ones are provided in [Appendix A](#). Notably, our
 085 framework generalizes the Algorithmic Information Ratio (AIR) framework of [XZ23] and [LWZ25],
 086 substantially simplifying the analysis while enhancing algorithmic flexibility ([Section 4](#)). This
 087 generalization may facilitate future development in this line of research.

088 We remark that, similar to [FGQ⁺23], the term “model-free” learning in our work does not mean
 089 that the learner has no access to the model class \mathcal{M} or has computational constraints. Instead, it only
 090 means that the regret bound is independent of the size of the model set \mathcal{M} . This implicitly restricts
 091 the learner from making fine-grained estimation over \mathcal{M} .

092 2 PRELIMINARY

093 We consider Decision Making with Structured Observations (DMSO) [FKQR21]. Let \mathcal{M} be a model
 094 space, Π a policy space, \mathcal{O} an observation space, and V a value function. For simplicity, we $|\Pi|$ is
 095 finite. Each model $M \in \mathcal{M}$ is a mapping from policy space Π to a distribution over observations
 096 $\Delta(\mathcal{O})$. Every model $M \in \mathcal{M}$ is associated with a value function $V_M : \Pi \rightarrow [0, 1]$ that specifies the
 097 expected payoff of policy $\pi \in \Pi$ in model M . We denote $\pi_M = \operatorname{argmax}_{\pi \in \Pi} V_M(\pi)$.

098 The learner interacts with the environment for T rounds. In each round $t = 1, \dots, T$, the environment
 099 first chooses a model $M_t \in \mathcal{M}$ without revealing it to the learner. Then the learner selects a policy
 100 $\pi_t \in \Pi$, and observes an observation $o_t \sim M_t(\cdot | \pi_t)$. The regret with respect to policy $\pi^* \in \Pi$ is

$$101 \quad \text{Reg}(\pi^*) = \sum_{t=1}^T (V_{M_t}(\pi^*) - V_{M_t}(\pi_t)).$$

102 **Markov Decision Process** A Markov decision process is defined by a tuple $(\mathcal{S}, \mathcal{A}, P, R, H, s_1)$,
 103 where \mathcal{S} is the state space, \mathcal{A} is the action space, $P : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is the transition kernel,

$R : \mathcal{S} \times \mathcal{A} \rightarrow \Delta([0, 1])$ is the reward distribution (with abuse of notation, we also use $R(s, a)$ to denote the expected reward $R(s, a) \in [0, 1]$), H the horizon, and s_1 the initial state. Assume $\mathcal{S} = \bigcup_{h=1}^H \mathcal{S}_h$ with $\mathcal{S}_i \cap \mathcal{S}_j = \emptyset$ for $i \neq j$, and $\mathcal{S}_1 = \{s_1\}$. In every step $h = 1, 2, \dots, H$ within an episode, the learner observes the state $s_h \in \mathcal{S}_h$ and selects an action $a_h \in \mathcal{A}$. The learner then transitions to the next state via $s_{h+1} \sim P(\cdot | s_h, a_h)$, which is only supported on \mathcal{S}_{h+1} , and receives the reward $r_h \sim R(s_h, a_h)$. We assume that the reward is constrained such that $\sum_{h=1}^H r_h \in [0, 1]$ for any policy almost surely. Given a policy $\pi : \mathcal{S} \rightarrow \mathcal{A}$, the Q -function and V -function for $s \in \mathcal{S}_h$ are defined by $Q^\pi(s, a) = \mathbb{E}^\pi[\sum_{h'=h}^H r_{h'} | s_h = s, a_h = a]$ and $V^\pi(s) = Q^\pi(s, \pi(s))$. The Q -function and V -function of an optimal policy π^* are abbreviated with Q^* and V^* . We use $Q^\pi(s, a; M)$ and $Q^*(s, a; M)$ to denote the Q -functions under model $M = (P, R)$.

Learning in MDPs is a DMSO problem where $\mathcal{M} = \mathcal{P} \times \mathcal{R}$ with \mathcal{P} being the set of transition kernels and \mathcal{R} the set of reward functions. A *round* in DMSO corresponds to an MDP episode, and observation $o = (s_1, a_1, r_1, s_2, a_2, r_2, \dots, r_H)$ is the trajectory. For any function g , we write $\mathbb{E}^{\pi, M}[g(o)] = \mathbb{E}_{o \sim M(\cdot | \pi)}[g(o)]$. If $g(o)$ only depends on $(s_1, a_1, s_2, a_2, \dots, a_H)$, we also write it as $\mathbb{E}^{\pi, P}[g(o)]$. We use $V_M(\pi) = \mathbb{E}^{\pi, M}[\sum_{h=1}^H r_h]$ to denote the expected total reward obtained by policy π in MDP M , and $d_h^{\pi, M}(s, a)$ (or $d_h^{\pi, P}(s, a)$) the occupancy measure on step h under policy π and model M (or transition P).

2.1 Φ -RESTRICTED LEARNING

For DMSO, [FKQR21, FGH23] and [CMB25] studied the *stochastic* setting where $M_t = M^*$ for all t . They showed that the DEC characterizes the regret lower bound and captures the complexity of decision making. They proposed model-based algorithms with near-optimal upper bounds up to the model estimation complexity $\log |\mathcal{M}|$. On the other hand, [FRSS22] and [XZ23] studied the pure *adversarial* setting where M_t arbitrarily changes over time. For this setting, they identified that DEC of the convexified model class characterizes the regret lower bound, which could be significantly larger than DEC of the original model class. Their upper bound replaces $\log |\mathcal{M}|$ by $\log |\Pi|$, reflecting that they perform policy-based learning without finegrained estimation of the model.

Several works go beyond pure model learning or pure policy learning. [FGQ⁺23] considered model-free value learning in the stochastic setting where only the value function is estimated, aiming to only incur $\log |\mathcal{F}|$ estimation complexity, where \mathcal{F} is the value function set. [LWZ25] and [CR25] considered the hybrid setting where part of the environment is stochastic and part adversarial, and the target of estimation is only on the optimal policy and the stochastic part of the environment.

We base our presentation in [LWZ25]’s formulation, which can cover all cases mentioned above.

Definition 1 (Infosets and Φ [LWZ25, CR25]). *Let Φ be a collection of subsets of $\mathcal{M} \times \Pi$ satisfying: 1) The subsets are disjoint, i.e., for any $\phi, \phi' \in \Phi$, if $\phi \neq \phi'$, then $\phi \cap \phi' = \emptyset$. 2) Every ϕ contains a single policy, i.e., if $(M, \pi), (M', \pi') \in \phi$, then $\pi = \pi'$. We call a $\phi \in \Phi$ an information set (infoset). Due to 2) above, each $\phi \in \Phi$ is associated with a unique policy. We denote this policy as π_ϕ . We also define $\Psi \triangleq \bigcup_{\phi \in \Phi} \phi \subseteq \mathcal{M} \times \Pi$.*

With Definition 1, for given $\rho \in \Delta(\Phi)$, $p \in \Delta(\Pi)$, $\nu \in \Delta(\Psi)$, and $\eta > 0$, [LWZ25] defined Φ -AIR:

$$\text{AIR}_\eta^\Phi(p, \nu; \rho) = \mathbb{E}_{\pi \sim p} \mathbb{E}_{(M, \pi^*) \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi)} \left[V_M(\pi^*) - V_M(\pi) - \frac{1}{\eta} \text{KL}(\nu_\phi(\cdot | \pi, o), \rho) \right], \quad (1)$$

where $\nu_\phi(\cdot | \pi, o)$ ¹ is the posterior over ϕ given (π, o) , which satisfies $\nu(\phi | \pi, o) \propto \sum_{(M, \pi^*) \in \phi} \nu(M, \pi^*) M(o | \pi)$. Φ -AIR can characterize the decision-making complexity in the Φ -restricted environment defined below:

Definition 2 (Φ -restricted environment [LWZ25, CR25]). *A Φ -restricted environment is an (adversarial) decision making problem in which the environment commits to $\phi^* \in \Phi$ at the beginning of the game and henceforth selects $(M_t, \pi_{\phi^*}) \in \phi^*$ in every round t arbitrarily based on the history.*

Theorem 3 ([LWZ25]). *For Φ -restricted environment defined in Definition 2, there exists an algorithm ensuring $\mathbb{E}[\text{Reg}(\pi_{\phi^*})] \leq \mathbb{E} \left[\sum_t \min_p \max_\nu \text{AIR}_\eta^\Phi(p, \nu; \rho_t) \right] + \frac{\log |\Phi|}{\eta}$.*

¹We use the notational convention in [LWZ25]: the bold subscript in $\nu_\phi(\cdot | \pi, o)$ specifies the *identity* of the variable represented by ‘ \cdot ’, instead of a *realized value* of that variable. The subscript may be omitted when clear.

162 2.2 RESULTS AND OPEN QUESTIONS IN [LWZ25]
163164 [LWZ25]’s main results are based on Φ -AIR: For *model-free* learning in *stochastic* MDPs, [LWZ25]
165 obtained \sqrt{T} regret for linear Q^*/V^* MDPs (before their result, the best known rate is $T^{\frac{2}{3}}$). Unfor-
166 tunately, their algorithm cannot handle other canonical settings such as bilinear classes, MDPs with
167 bounded Bellman-eluder dimension, or MDPs with bounded coverability. For *model-based* learning
168 in *hybrid* MDPs where the transition is fixed but the reward function changes arbitrarily over time,
169 [LWZ25] obtained near-optimal regret bounds for general cases up to a $\log(|\mathcal{P}||\Pi|)$ factor.170 An attempt was made by [LWZ25] to handle *model-free* learning in *hybrid* MDPs based on an
171 extension of the optimistic DEC approach [FGQ⁺23]. However, their result only handles *full-
172 information* reward feedback. Extension to the bandit setting is challenging under this framework as
173 the optimistic update requires an explicit construction of the reward estimator.174 In this work, we focus on model-free learning in both stochastic and hybrid MDPs. Our results
175 generalize those of [LWZ25] in both directions: Our framework handles all canonical settings for
176 *model-free* learning in *stochastic* MDPs, improving previous results by [FGQ⁺23]. It also handles
177 *model-free* learning in *hybrid* MDPs with *bandit* feedback under the same reward assumption as
178 [LWZ25].
179180 3 SETTINGS AND ASSUMPTIONS
181182 Below, we show how to view model-free learning in stochastic and hybrid MDPs as learning in
183 Φ -restricted environments (Definition 2), and introduce the assumptions used in the paper.
184185 3.1 THE STOCHASTIC SETTING
186187 **Definition 4** (Stochastic setting). *In the stochastic setting, the environment commits to M^* at the
188 beginning of the game and sets $M_t = M^*$ in every round t .*189 For model-free learning in the stochastic setting, we assume the following:
190191 **Assumption 1** (Φ for model-free learning in stochastic MDPs). *In the stochastic setting, in addition
192 to $(\mathcal{M}, \Pi, \mathcal{O}, V)$ in the DMSO framework (Section 2), the learner is provided with a function set \mathcal{F} .
193 Each model $M \in \mathcal{M}$ induces a function $f \in \mathcal{F}$. Assume that models inducing the same f have
194 the same Q^* function and hence the same optimal policy π_M (for example, an \mathcal{F} that contains all
195 possible Q^* functions satisfies this, though \mathcal{F} could also provide additional information). With this,
196 Φ is created by partitioning \mathcal{M} according to the function they induces: Define $\Phi = \{\phi_f : f \in \mathcal{F}\}$
197 where $\phi_f = \{(M, \pi_M) : M \text{ induces } f\}$. With abuse of notation, we write $M \in \phi$ to indicate that
198 $(M, \pi_M) \in \phi$. We denote by π_ϕ the common optimal policy for all $M \in \phi$, and by $f_\phi(s, a)$ the
199 Q^* function induced by $M \in \phi$, i.e., $f_\phi(s, a) = Q^*(s, a; M)$ for all $M \in \phi$. Define $f_\phi(s) =$
200 $\max_a f_\phi(s, a)$. We also use $V_\phi(\pi_\phi) := f_\phi(s_1)$ to denote the value of policy π_ϕ under any model in
201 ϕ .*202 3.2 THE HYBRID SETTING
203204 **Definition 5** (Hybrid setting). *In the hybrid setting, the environment commits to $P^* \in \mathcal{P}$ at the
205 beginning of the game. In every round, the environment selects $R_t \in \mathcal{R}$ arbitrarily based on the
206 history and sets $M_t = (P^*, R_t)$.*207 For model-free learning in the hybrid setting, the definition of Φ becomes more involved as it
208 partitions over three dimensions $(\Pi, \mathcal{P}, \mathcal{R})$ in different ways. Formally, the partition should satisfy
209 the following Assumption 2. We provide an illustration in Figure 1 in Appendix B to help the reader
210 understand this assumption.211 **Assumption 2** (Φ for learning in hybrid MDPs [LWZ25]). *The learner is provided with a function set
212 \mathcal{F}^π for every $\pi \in \Pi$. For any fixed π , each transition $P \in \mathcal{P}$ induces a function $f \in \mathcal{F}^\pi$. Φ is created
213 by partitioning $\mathcal{P} \times \mathcal{R} \times \Pi$ firstly according to π , and then according to the f the transition induces in
214 \mathcal{F}^π : Define $\Phi = \{\phi_{\pi, f} : \pi \in \Pi, f \in \mathcal{F}^\pi\}$, where $\phi_{\pi, f} = \{(P, R, \pi) : P \text{ induces } f \text{ in } \mathcal{F}^\pi, R \in \mathcal{R}\}$.
215 We write $P \in \phi$ if there exists R, π such that $(P, R, \pi) \in \phi$, and write $M = (P, R) \in \phi$ if $P \in \phi$.
We denote by π_ϕ the unique $\pi \in \Pi$ defining $\phi \in \Phi$.*

216 The next assumption describes the requirement for the function set in our work.
 217

218 **Assumption 3** (Unique reward to value mapping given ϕ [LWZ25]). *Let Φ satisfy Assumption 2.*
 219 *Assume that for any fixed ϕ and $P, P' \in \phi$, it holds that $Q^{\pi_\phi}(s, a; (P, R)) = Q^{\pi_\phi}(s, a; (P', R))$*
 220 *for any s, a, R . We denote $f_\phi(s, a; R) = Q^{\pi_\phi}(s, a; (P, R))$ for any $P \in \phi$, and define $f_\phi(s; R) =$*
 221 *$\mathbb{E}_{a \sim \pi_\phi(\cdot|s)}[f_\phi(s, a; R)]$. We also use $V_{\phi, R}(\pi_\phi) = f_\phi(s_1; R)$ to denote the value of policy π_ϕ under*
 222 *(P, R) for any $P \in \phi$.*

223 To understand Assumption 2 and Assumption 3 better, we take adversarial linear MDP [LWZ24]
 224 for example. In adversarial linear MDPs, the learner is given a known feature mapping $\varphi(s, a) \in$
 225 \mathbb{R}^d , such that the reward function can be represented as $R(s, a) = \varphi(s, a)^\top \theta_R$ and the transition
 226 as $P(s'|s, a) = \varphi(s, a)^\top \omega_P(s')$. In this case, one can show that for any π , $Q^\pi(s, a; P_1, R) =$
 227 $Q^\pi(s, a; P_2, R) \forall s, a, R$ if and only if $\mathbb{E}^{\pi, P_1}[\phi(s_h, a_h)] = \mathbb{E}^{\pi, P_2}[\phi(s_h, a_h)]$ for all h . Based on
 228 Assumption 3, we would like to put such P_1 and P_2 in the same partition under π (see Figure 1 for
 229 an illustration). In other words, in Assumption 2, each $f \in \mathcal{F}^\pi$ corresponds to a unique value of
 230 $(\mathbb{E}^{\pi, P}[\phi(s_h, a_h)])_{h \in [H]} \in \mathbb{R}^{dH}$, and as long as two P ’s share this value, they both belong to $\phi_{\pi, f}$.

231 We remark that while Assumption 3 is a reasonable generalization of Assumption 1 to the hybrid
 232 setting, it does not capture all learnable hybrid MDPs we are aware of. For example, if the transition
 233 space is partitioned according to Assumption 3 for hybrid low-rank MDPs with *unknown reward*
 234 *feature*, then $\log |\Phi|$ will scale *polynomially* with the number of possible feature mappings. In
 235 contrast, the work of [LMWZ24] handles this case with the regret scaling only *logarithmically* with
 236 the number of possible feature mappings. There is still technical difficulty in handling this case in
 237 our framework, and we leave it as future work.² We also remark that the previous work by [LWZ25]
 238 has the same limitation even in the full-information case.

239 Therefore, in this work, for the hybrid setting, we consider linear reward with *known* features, formally
 240 stated in the next assumption.

241 **Assumption 4** (Linear reward with known feature). *There exists a feature mapping $\varphi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$*
 242 *known to the learner such that for any $R \in \mathcal{R}$, $R(s_h, a_h) = \varphi(s_h, a_h)^\top \theta_h(R)$ for all $(s_h, a_h) \in$*
 243 *$\mathcal{S}_h \times \mathcal{A}$ for some $\theta_h(R) \in \mathbb{R}^d$.*

245 While the stochastic setting (Definition 4) and the hybrid setting (Definition 5) are special cases of
 246 Φ -restricted environments (Definition 2), the adversary in these special cases has additional restriction:
 247 for example, in the stochastic setting, the adversary is allowed to choose $M^* \in \phi^*$ at the beginning
 248 of the game, but has to stick to M^* throughout interactions. Similarly, P^* has to be fixed in the
 249 hybrid setting. This is different from the general Φ -restricted setting where the adversary is allowed
 250 to choose $M_t \in \phi^*$ arbitrarily in every round. However, using such a “coarser” partition Φ to model
 251 these settings is crucial for obtaining an improved estimation error that only scales with the size of
 252 the value function set.

254 4 GENERAL FRAMEWORK

256 This section introduce a general framework and complexity measure for the Φ -restricted environment,
 257 which covers model-free learning in stochastic and hybrid MDPs as special cases. For given $\rho \in$
 258 $\Delta(\Phi)$, define for $p \in \Delta(\Pi)$ and $\nu \in \Delta(\Psi)$

$$260 \text{AIR}_\eta^{\Phi, D}(p, \nu; \rho) = \mathbb{E}_{\pi \sim p} \mathbb{E}_{(M, \pi^*) \sim \nu} \left[V_M(\pi^*) - V_M(\pi) - \frac{1}{\eta} D^\pi(\nu \| \rho) \right], \quad (2)$$

263 for some divergence measure $D^\pi(\nu \| \rho)$ convex in ν for any π and ρ . Φ -AIR defined in Eq. (1) is a
 264 special case where $D^\pi(\nu \| \rho) = \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \rho)]$. The general algorithm designed
 265 based on Eq. (2) is shown in Algorithm 1.

266
 267 ²The algorithm of [LMWZ24] begins with reward-free exploration to learn a feature mapping, followed by
 268 online learning over that fixed feature mapping. While this two-phase approach could potentially be integrated
 269 into our DEC framework in special cases, our goal is to explore approaches that avoid such design to address
 more general scenarios.

270 **Algorithm 1** General Framework
271 **Input:** Set of partitions Φ and its union Ψ (defined in [Section 2.1](#)).
272 $\rho_1(\phi) = 1/|\Phi|, \forall \phi \in \Phi$.
273 **for** $t = 1, 2, \dots, T$ **do**
274 Set p_t, ν_t as the solution of the following minimax optimization (defined in [Eq. \(2\)](#)):
275
$$\min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\Psi)} \text{AIR}_{\eta}^{\Phi, D}(p, \nu; \rho_t). \quad (3)$$

276 Execute $\pi_t \sim p_t$, and observe $o_t \sim M_t(\cdot | \pi_t)$.
277 Update $\rho_{t+1} = \text{POSTERIORUPDATE}(\nu_t, p_t, \pi_t, o_t)$.
278
279
280

281
282
283 [Algorithm 1](#) has two main steps. First, given the info-set distribution $\rho_t \in \Delta(\Phi)$, solve the policy
284 distribution p_t and the worst-case world distribution ν_t in the saddle-point problem [Eq. \(3\)](#). This
285 is similar to the previous AIR framework in [\[XZ23\]](#) and [\[LWZ25\]](#). After taking policy $\pi_t \sim p_t$
286 and receiving the observation $o_t \sim M_t(\cdot | \pi_t)$, perform a posterior update by incorporating new
287 information from o_t ([Eq. \(4\)](#)) and obtain the new info-set distribution $\rho_{t+1} \in \Delta(\Phi)$. In [\[XZ23\]](#) and
288 [\[LWZ25\]](#), this posterior update step is simply $\rho_{t+1}(\phi) = \nu_t(\phi | \pi_t, o_t)$, but it could take different
289 forms in our case depending on the specific divergence D instantiated later.
290

291 The ability of our algorithm to handle a general divergence D is enabled by our new analysis
292 techniques. The update rule $\rho_{t+1}(\phi) = \nu_t(\phi | \pi_t, o_t)$ in [\[XZ23\]](#) and [\[LWZ25\]](#) and the corresponding
293 regret analysis heavily relies on a “constructive minimax theorem” [\[XZ23\]](#) that is restricted to strictly
294 convex divergence measures and somewhat cumbersome to generalize to divergence other than KL.
295 Our new analysis, on the other hand, is more flexible and nicely connects to the standard analysis of
296 mirror descent.

297 Our analysis goes as follows. For any $(M, \pi) \in \mathcal{M} \times \Pi$, denote $\delta_{M, \pi} \in \Delta(\mathcal{M} \times \Pi)$ as the Kronecker
298 delta function centered at (M, π) . That is, $\delta_{M, \pi}(M, \pi) = 1$ and $\delta_{M, \pi}(M', \pi') = 0$ for any other
299 (M', π') . By a simple first-order optimality condition ([Lemma 18](#)) and the fact that ν_t is a best
300 response to p_t ([Eq. \(3\)](#)), we have (recall the definition of π_{ϕ^*} in [Definition 2](#))

$$\begin{aligned} & \mathbb{E}_{\pi \sim p_t} \left[V_{M_t}(\pi_{\phi^*}) - V_{M_t}(\pi) - \frac{1}{\eta} D^\pi(\delta_{M_t, \pi_{\phi^*}} \| \rho_t) \right] \quad (5) \\ & \leq \max_{\nu \in \Delta(\Psi)} \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{(M, \pi^*) \sim \nu} \left[V_M(\pi^*) - V_M(\pi) - \frac{1}{\eta} D^\pi(\nu \| \rho_t) \right] - \mathbb{E}_{\pi \sim p_t} \left[\frac{1}{\eta} \text{Breg}_{D^\pi(\cdot \| \rho_t)}(\delta_{M_t, \pi_{\phi^*}}, \nu_t) \right] \end{aligned}$$

301 where $\text{Breg}_F(x, y) = F(x) - F(y) - \langle \nabla F(y), x - y \rangle \geq 0$ is the Bregman divergence defined with
302 a convex function F . Since p_t is minimax solution in [Eq. \(3\)](#), after rearrangement of [Eq. \(5\)](#) and
303 summation over t , we get
304

$$\begin{aligned} & \sum_{t=1}^T (V_{M_t}(\pi_{\phi^*}) - \mathbb{E}_{\pi \sim p_t} [V_{M_t}(\pi)]) \quad (6) \\ & \leq \sum_{t=1}^T \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\Psi)} \text{AIR}_{\eta}^{\Phi, D}(p, \nu; \rho_t) + \frac{1}{\eta} \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \left[D^\pi(\delta_{M_t, \pi_{\phi^*}} \| \rho_t) - \text{Breg}_{D^\pi(\cdot \| \rho_t)}(\delta_{M_t, \pi_{\phi^*}}, \nu_t) \right], \end{aligned}$$

305 where we use the definition in [Eq. \(2\)](#). From [Eq. \(6\)](#), we have the following theorem.
306

307 **Theorem 6.** [Algorithm 1](#) achieves $\mathbb{E}[\text{Reg}(\pi_{\phi^*})] \leq \mathbb{E} \left[\sum_t \min_p \max_{\nu} \text{AIR}_{\eta}^{\Phi, D}(p, \nu; \rho_t) + \frac{\text{Est}}{\eta} \right]$.
308

309 The POSTERIORUPDATE in [Eq. \(4\)](#) has to be further designed in order to minimize **Est**. In [Appendix C](#), we show how our new analysis recovers previous results of [\[XZ23\]](#) and [\[LWZ25\]](#) easily.
310 We remark that when recovering [\[LWZ25\]](#)’s result for model-based learning in hybrid MDPs with
311 full-information feedback, we choose D such that **Est** does not even scale with $\log |\Phi|$, while they
312 achieve it with a more complex two-level algorithm. This shows the flexibility of our framework. In
313 the next two subsections, we discuss about the two terms in the regret bound of [Theorem 6](#).
314

324 4.1 DIVERGENCE MEASURE IN [ALGORITHM 1](#) AND dig-dec
325326 To handle the MDPs of interest in [Section 3](#), we will instantiate [Algorithm 1](#) with the following
327 divergence D :

328
$$329 D^\pi(\nu\|\rho) = \mathbb{E}_{M\sim\nu}\mathbb{E}_{o\sim M(\cdot|\pi)} \left[\text{KL}(\nu_\phi(\cdot|\pi, o), \rho) + \mathbb{E}_{\phi\sim\rho} \left[\overline{D}^\pi(\phi\|M) \right] \right], \quad (7)$$

330

331 where $\overline{D}^\pi(\phi\|M)$ is another divergence that measures the discrepancy between info-set ϕ and model
332 M . Two choices of \overline{D} will be introduced later in [Section 4.2](#): *averaged estimation error* and *squared*
333 *estimation error*.334 With this definition of $D^\pi(\nu\|\rho)$, the first term in the regret bound in [Theorem 6](#) can be bounded by
335 the following complexity:

336
$$337 \text{dig-dec}_\eta^{\Phi, \overline{D}} \triangleq \max_{\rho \in \Delta(\Phi)} \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\Psi)} \text{AIR}_\eta^{\Phi, D}(p, \nu; \rho) \\ 338 = \max_{\rho \in \Delta(\Phi)} \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\Psi)} \\ 339 \mathbb{E}_{\pi \sim p} \mathbb{E}_{(M, \pi^*) \sim \nu} \left[V_M(\pi^*) - V_M(\pi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot|\pi)} [\text{KL}(\nu_\phi(\cdot|\pi, o), \rho)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho} [\overline{D}^\pi(\phi\|M)] \right]. \quad (8)$$

340
341
342
343

344 As both the KL and the \overline{D} terms in [Eq. \(8\)](#) are measures of information gain, we call this complexity
345 notion *dual information gain decision-estimation coefficient* (Dig-DEC). In [Section 6](#), we compare in
346 more detail how DigDEC is upper bounded by optimistic DEC — the complexity achieved by the
347 prior work [FGQ⁺23] in the stochastic setting, and when the improvement can be arbitrarily large.348 4.2 POSTERIORUPDATE AND BOUNDS FOR **Est**
349350 The \overline{D} we would like to use in [Eq. \(7\)](#) depends on the MDP class we consider. Below, we describe
351 two classes of problems that are associated with different choices of \overline{D} , under which the achievable
352 rates for **Est** are different.354 4.2.1 AVERAGE ESTIMATION ERROR
355356 **Assumption 5** (Average estimation error). *There exists an estimation function $\ell_h : \Phi \times \mathcal{O} \rightarrow$*
357 $[-B, B]^N$ *for every h such that for any $\phi \in \Phi$ and any $M \in \phi$, it holds that for any $\pi \in \Pi$,*

358
$$359 \mathbb{E}^{\pi, M} [\ell_h(\phi; o_h)] = 0.$$

360 *Additionally, assume that the adversary is restricted such that for any π, ϕ and $t, t' \in [T]$, it holds*
361 *that $\mathbb{E}^{\pi, M_t} [\ell_h(\phi; o_h)] = \mathbb{E}^{\pi, M_{t'}} [\ell_h(\phi; o_h)]$.*362 The estimation function ℓ in [Assumption 5](#) will be instantiated as the average Bellman error in
363 Lemma 8 for all concrete examples. In this case, [Assumption 5](#) is essentially the standard realizability
364 assumption. We adopt the more general terminology of “estimation error” following [DKL⁺21].365 **Theorem 7.** *Assume [Assumption 5](#) holds. Then [Algorithm 4](#) with [Algorithm 2](#) as POSTERIORUPDATE
366 with $\overline{D}^\pi(\phi\|M) = \overline{D}_{\text{av}}^\pi(\phi\|M) \triangleq \max_{j \in [N]} \frac{1}{B^2 H} \sum_{h=1}^H (\mathbb{E}^{\pi, M} [\ell_h(\phi; o_h)]_j)^2$ ensures*

367
$$368 \mathbb{E}[\text{Est}] \lesssim N \log(|\Phi|) T^{\frac{1}{3}}.$$

369

370 **Lemma 8.** *In the stochastic setting, [Assumption 1](#) implies [Assumption 5](#) with $N = 1$ estimation
371 function $\ell_h(\phi; o_h) = f_\phi(s_h, a_h) - r_h - f_\phi(s_{h+1})$. In the hybrid setting, [Assumption 2](#), [Assumption 3](#) and [Assumption 4](#) imply [Assumption 5](#) with $N = d$ estimation functions $\ell_h(\phi; o_h)_j =$
372 $f_\phi(s_h, a_h; e_j) - \varphi(s_h, a_h)^\top e_j - f_\phi(s_{h+1}; e_j)$, where e_j as a reward represents the reward function
373 defined as $R(s, a) = \varphi(s, a)_j$.*374 In order to minimize **Est** in [Eq. \(6\)](#), we have to obtain an estimator of $\overline{D}_{\text{av}}^{\pi_t}(\phi\|M^*)$ for all ϕ .
375 This can only be achieved via *batching*, which results in the design of [Algorithm 4](#): In each epoch
376 $k = 1, 2, \dots, T/\tau$, the learner uses the same policy π_k to interact with the MDP for τ episodes. While

similar epoching mechanism has been proposed in [FGQ⁺23], our construction of the estimator improves their rate of **Est** from \sqrt{T} to $T^{\frac{1}{3}}$. To see the difference, consider the case $N = 1$ in the stochastic setting, in which the goal is to approximate $\sum_{h=1}^H (\mathbb{E}^{\pi_k, M^*} [\ell_h(\phi; o_h)])^2$. With observations (o^1, \dots, o^τ) drawn from $M^*(\cdot | \pi_k)$ in epoch k , we construct an *unbiased* estimator as $L_k(\phi) = \sum_{h=1}^H \left(\frac{2}{\tau} \sum_{i=1}^{\tau/2} \ell_h(\phi; o_h^i) \right) \left(\frac{2}{\tau} \sum_{i=\tau/2+1}^{\tau} \ell_h(\phi; o_h^i) \right)$, while [FGQ⁺23] constructs a *biased* estimator as $L_k(\phi) = \sum_{h=1}^H \left(\frac{1}{\tau} \sum_{i=1}^{\tau} \ell_h(\phi; o_h^i) \right)^2$. The detail of this estimation procedure is provided in [Appendix F.1](#).

4.2.2 SQUARED ESTIMATION ERROR

Under stronger assumptions on the estimation function, we can improve the rate further. This is motivated by the class of Bellman-complete MDPs, given as followed.

Definition 9 (Bellman completeness for the stochastic setting). A Φ satisfying [Assumption 1](#) is *Bellman complete under model $M = (P, R)$* if for any $\phi \in \Phi$, there exists an $\phi' \in \Phi$ such that for any s, a ,

$$f_{\phi'}(s, a) = R(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)}[f_\phi(s')].$$

A Φ is *Bellman complete* if it is Bellman complete under all model $M \in \mathcal{M}$ ³.

Definition 10 (Bellman completeness for the hybrid setting). A Φ satisfying [Assumption 3](#) is *Bellman complete under transition P* if for any $\phi \in \Phi$, there exists an $\phi' \in \Phi$ such that $\pi_{\phi'} = \pi_\phi$ and for any s, a, R ,

$$f_{\phi'}(s, a; R) = R(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)}[f_\phi(s'; R)].$$

A Φ is *Bellman complete* if it is Bellman complete under all transition $P \in \mathcal{P}$.

Assumption 6. There exists $\xi_h : \Phi \times \Phi \times \mathcal{O} \rightarrow [0, B^2]$ for every h and $\mathcal{T}_M : \Phi \rightarrow \Phi$ for every M such that for any ϕ and any $M \in \mathcal{M}$, it holds that $\phi = \mathcal{T}_M \phi$. Furthermore, for any $\phi', \phi \in \Phi$, any $M \in \mathcal{M}$, and any $\pi \in \Pi$,

$$4B^2 \cdot \mathbb{E}^{\pi, M} [\xi_h(\phi', \phi; o_h) - \xi_h(\mathcal{T}_M \phi, \phi; o_h)] \geq \mathbb{E}^{\pi, M} \left[(\xi_h(\phi', \phi; o_h) - \xi_h(\mathcal{T}_M \phi, \phi; o_h))^2 \right].$$

Additionally, assume that the adversary is restricted such that $\mathcal{T}_{M_t} \phi = \mathcal{T}_{M_{t'}} \phi$ for all ϕ and all $t, t' \in [T]$.

Similar to [Assumption 5](#), the function ξ in [Assumption 6](#) will be instantiated as the square Bellman error in [Lemma 12](#) for all concrete examples. In this case, [Assumption 6](#) corresponds to the standard realizability plus Bellman-completeness assumption.

Theorem 11. Assume [Assumption 6](#) holds. Then [Algorithm 1](#) with [Algorithm 3](#) as POSTERIORUPDATE with $\overline{D}^\pi(\phi \| M) = \overline{D}_{\text{sq}}^\pi(\phi \| M) \triangleq \frac{1}{B^2 H} \sum_{h=1}^H \mathbb{E}^{\pi, M} [\xi_h(\phi, \phi; o_h) - \xi_h(\mathcal{T}_M \phi, \phi; o_h)]$ ensures $\mathbb{E}[\text{Est}] \lesssim \log^2 |\Phi|$.

Lemma 12. In the stochastic setting, [Assumption 1](#) together with Bellman completeness ([Definition 9](#)) implies [Assumption 6](#) with the estimation function $\xi_h(\phi', \phi; o_h) = (f_{\phi'}(s_h, a_h) - r_h - f_\phi(s_{h+1}))^2$ and $B^2 = 1$. In the hybrid setting, [Assumption 2](#), [Assumption 3](#) and [Assumption 4](#) together with Bellman completeness ([Definition 10](#)) imply [Assumption 6](#) with the estimation function $\xi_h(\phi', \phi; o_h) = \|(f_{\phi'}(s_h, a_h; e_j) - \varphi(s_h, a_h)^\top e_j - f_\phi(s_{h+1}; e_j))_{j \in [d]}\|^2$ and $B^2 = d$, where e_j as a reward represents the reward function defined as $R(s, a) = \varphi(s, a)_j$.

With [Assumption 6](#), POSTERIORUPDATE no longer needs to rely on batching. We leverage a two-timescale POSTERIORUPDATE learning procedure similar to that of [FGQ⁺23], which in turn builds on [AZ22]. We refine their approach so **Est** can be bounded by a constant, improving over [FGQ⁺23]'s $T^{\frac{1}{3}}$ bound. In addition, our approach comes with a simpler regret analysis. Our POSTERIORUPDATE features a two-layer learning structure with a biased loss on the top layer. It is related to model selection algorithms with comparator-dependent second-order bounds (e.g., [CLW21]), but also has its special structure not seen in prior work. Thus, we believe it is of independent interest. The detail of this estimation procedure is provided in [Appendix F.2](#).

³In fact, it suffices to assume Bellman completeness only under the ground-truth model M^* (as in [FGQ⁺23]). However, it is without loss of generality to assume Bellman completeness under all $M \in \mathcal{M}$, as one can preprocess the model set \mathcal{M} by eliminating models under which Bellman completeness does not hold. For simplicity, we assume the latter. Similar for [Definition 10](#).

5 APPLICATIONS

By [Theorem 6](#), the worst-case regret of [Algorithm 1](#) is $\sum_t \min_p \max_{\nu} \text{AIR}_{\eta}^{\Phi, D}(p, \nu; \rho_t) + \text{Est}/\eta \leq T \text{dig-dec}_{\eta}^{\Phi, \bar{D}} + \text{Est}/\eta$. In [Section 4.2](#), we provided bounds on **Est** for two types of \bar{D} , i.e., \bar{D}_{av} and \bar{D}_{sq} . Below, we provide upper bounds for $\text{dig-dec}_{\eta}^{\Phi, \bar{D}}$ in concrete settings associated with each \bar{D} .

5.1 STOCHASTIC SETTINGS

For the stochastic setting, we consider MDP class \mathcal{M} and its associated Φ with bounded bilinear rank [[DKL+21](#)], Bellman-eluder dimension [[JLM21](#)], and coverability [[XFB+23](#)]. The results are summarized in [Table 1](#). The on-policy/off-policy in [Table 1](#) should not be confused with the standard on-policy/off-policy training in standard RL. Instead, they are two subclasses of the bilinear class [[DKL+21](#)] and correspond to the Q -type/ V -type Bellman eluder dimension in [[JLM21](#)]. The on-policy case has smaller regret because the executed policies provides sufficient exploration to notice a model mismatch, while in the off-policy case, the learner needs to execute an additional exploration policy for this purpose.

Table 1: Summary of the applications in the stochastic settings. BE stands for MDPs with bounded Bellman-eluder dimensions. Dig-DEC bounds are provided in [Appendix H.3](#) for bilinear classes, [Appendix H.4](#) for BE, and [Appendix H.5](#) for coverable MDPs. Bilinear classes marked with \star are restricted to estimation function specified in [Lemma 29](#), under which it holds that $\text{dig-dec}_{\eta}^{\Phi, \bar{D}_{\text{sq}}} \leq \text{dig-dec}_{\eta}^{\Phi, \bar{D}_{\text{av}}}$. B and N are parameters specified in [Assumption 5](#) or [Assumption 6](#). The regret bound is given by $T \cdot \text{dig-dec}_{\eta}^{\Phi, \bar{D}} + \text{Est}/\eta$ with **Est** given in [Theorem 7](#) or [Theorem 11](#), with the optimal η .

Setting			$\text{dig-dec}_{\eta}^{\Phi, \bar{D}}$	\bar{D}	B	N	$\mathbb{E}[\text{Reg}(\pi_{M^*})]$
class	sub-class	completeness					
bilinear	on-policy		$H^2 d\eta$	\bar{D}_{av}	1	1	$H\sqrt{d \log \Phi } T^{\frac{2}{3}}$
bilinear	off-policy		$\sqrt{H^3 d \mathcal{A} ^2 \eta}$	\bar{D}_{av}	$ \mathcal{A} $	1	$H(d \mathcal{A} ^2 \log \Phi)^{\frac{1}{3}} T^{\frac{7}{9}}$
BE	Q -type		$H^2 d\eta$	\bar{D}_{av}	1	1	$H\sqrt{d \log \Phi } T^{\frac{2}{3}}$
BE	V -type		$\sqrt{H^3 d \mathcal{A} \eta}$	\bar{D}_{av}	1	1	$H(d \mathcal{A} \log \Phi)^{\frac{1}{3}} T^{\frac{7}{9}}$
bilinear \star	on-policy	✓	$H^2 d\eta$	\bar{D}_{sq}	1	–	$H\sqrt{dT} \log \Phi $
bilinear \star	off-policy	✓	$\sqrt{H^3 d \mathcal{A} ^2 \eta}$	\bar{D}_{sq}	$ \mathcal{A} $	–	$H(d \mathcal{A} ^2 \log^2 \Phi)^{\frac{1}{3}} T^{\frac{2}{3}}$
BE	Q -type	✓	$H^2 d\eta$	\bar{D}_{sq}	1	–	$H\sqrt{dT} \log \Phi $
BE	V -type	✓	$\sqrt{H^3 d \mathcal{A} \eta}$	\bar{D}_{sq}	1	–	$H(d \mathcal{A} \log^2 \Phi)^{\frac{1}{3}} T^{\frac{2}{3}}$
coverable	–	✓	$H^2 d\eta$	\bar{D}_{sq}	1	–	$H\sqrt{dT} \log \Phi $

We remark without giving details that in the stochastic setting, we can achieve same results in [Table 1](#) with high-probability if we replace the $\mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot|\pi)} [\text{KL}(\nu_{\phi}(\cdot|\pi, o), \rho_t)]$ term by $\text{KL}(\nu_{\phi}, \rho_t)$ in the definition of D in [Eq. \(7\)](#). This variant, however, cannot handle the hybrid setting.

5.2 HYBRID SETTINGS

For the hybrid setting, with known linear reward feature, we consider transition structure including hybrid bilinear classes [[LWZ25](#)] and coverability [[XFB+23](#)]. While it is possible to also extend Bellman-eluder dimension to the hybrid setting, we omit it for simplicity.

6 COMPARISON WITH PRIOR COMPLEXITIES IN STOCHASTIC MDPs

Compared with $\text{dig-dec}_{\eta}^{\Phi, \bar{D}}$ in [Eq. \(8\)](#) achieved by our algorithm, the complexity of optimistic E2D [[FGQ+23](#)] defined for the stochastic setting is

$$\text{o-dec}_{\eta}^{\Phi, \bar{D}} = \max_{\phi \in \Delta(\Phi)} \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\Psi)} \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \rho} \left[V_{\phi}(\pi_{\phi}) - V_M(\pi) - \frac{1}{\eta} \bar{D}^{\pi}(\phi \| M) \right] \quad (9)$$

486
487 Table 2: Summary of the applications in the hybrid settings. Dig-DEC bounds are provided in
488 [Appendix I.2](#) for hybrid bilinear classes and [Appendix I.3](#) for coverable MDPs. Bilinear classes
489 marked with \star are restricted to estimation function specified in [Lemma 36](#), under which it holds that
490 $\text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{sq}}} \leq \text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}}$.

Setting			$\text{dig-dec}_{\eta}^{\Phi, \overline{D}}$	\overline{D}	B	N	$\mathbb{E}[\text{Reg}(\pi_{\phi^*})]$
class	sub-class	completeness					
bilinear	on-policy		$(H^5 d^3 \eta)^{\frac{1}{3}}$	\overline{D}_{av}	1	d	$d(H^5 \log \Phi)^{\frac{1}{4}} T^{\frac{5}{6}}$
bilinear	off-policy		$(H^6 d^3 \mathcal{A} ^2 \eta)^{\frac{1}{4}}$	\overline{D}_{av}	$ \mathcal{A} $	d	$(H^6 d^4 \mathcal{A} ^2 \log \Phi)^{\frac{1}{5}} T^{\frac{13}{15}}$
bilinear \star	on-policy	✓	$(H^5 d^4 \eta)^{\frac{1}{3}}$	\overline{D}_{sq}	\sqrt{d}	—	$d(H^5 \log^2 \Phi)^{\frac{1}{4}} T^{\frac{3}{4}}$
bilinear \star	off-policy	✓	$(H^6 d^4 \mathcal{A} ^2 \eta)^{\frac{1}{4}}$	\overline{D}_{sq}	$\sqrt{d} \mathcal{A} $	—	$(H^6 d^4 \mathcal{A} ^2 \log^2 \Phi)^{\frac{1}{5}} T^{\frac{4}{5}}$
coverable	—	✓	$(H^5 d^4 \eta)^{\frac{1}{3}}$	\overline{D}_{sq}	\sqrt{d}	—	$d(H^5 \log^2 \Phi)^{\frac{1}{4}} T^{\frac{3}{4}}$

500
501 for the same choices of \overline{D} . Another model-free DEC in [\[LWZ25\]](#) is

$$502 \text{dec}_{\eta}^{\Phi} = \max_{\rho \in \Delta(\Phi)} \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\Psi)} \mathbb{E}_{\pi \sim p} \mathbb{E}_{(M, \pi^*) \sim \nu} \left[V_M(\pi^*) - V_M(\pi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_{\phi}(\cdot | \pi, o), \rho)] \right].$$

503 It is clear that $\text{dig-dec}_{\eta}^{\Phi, \overline{D}} \leq \text{dec}_{\eta}^{\Phi}$ for any non-negative divergence \overline{D} . Furthermore, we have

504
505 **Theorem 13.** *In the stochastic setting, $\text{dig-dec}_{\eta}^{\Phi, \overline{D}} \leq \text{o-dec}_{\eta}^{\Phi, \overline{D}} + \eta$ for any \overline{D} .*

506 Since DECs with parameter η is usually of order $(\eta d)^{\alpha}$ for some intrinsic dimension d and exponent
507 $\alpha \leq 1$, [Theorem 13](#) implies that for any setting that can be handled by optimistic E2D with a
508 certain \overline{D} , it can also be covered by our algorithm with the same \overline{D} . Compared to optimistic DEC
509 ([Eq. \(9\)](#)), Dig-DEC ([Eq. \(8\)](#)) has an extra KL term $\mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_{\phi}(\cdot | \pi, o), \rho)]$ that can
510 be further decomposed into two terms $\text{KL}(\nu_{\phi}, \rho) + \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_{\phi}(\cdot | \pi, o), \nu_{\phi})]$. They
511 have different purposes: The first term $\text{KL}(\nu_{\phi}, \rho)$ is for *regularization*, which makes the marginal
512 distribution of ν not overly distant from ρ . This is the key that allows us to avoid the optimism
513 mechanism in [\[FGQ⁺23\]](#) (i.e., the $V_{\phi}(\pi_{\phi})$ in [Eq. \(9\)](#)). We remark that by *regularization only*, we
514 can *recover* the bounds achieved by optimistic DEC in the stochastic setting (this can be seen from
515 the proof of [Theorem 13](#)), though it is unclear whether it can give *strict improvement*. However, the
516 removal of optimism turns out to be important in the hybrid setting ([Section 5.2](#)) as it avoids explicit
517 construction of the reward estimator. The second term $\mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_{\phi}(\cdot | \pi, o), \nu_{\phi})]$
518 is an *information gain* that allows Dig-DEC to *strictly improve* over optimistic DEC even in the
519 stochastic setting. This is because all common choices of \overline{D} such as bilinear divergence and squared
520 Bellman error are mean-based and ignore distributional differences, and the KL information gain
521 term can capture them. We give a toy example in the next theorem to show this, with a detailed proof
522 provided in [Appendix J](#).

523
524 **Theorem 14.** *There exists a 3-armed bandit instance where for any $T \geq 1$ and $\eta \leq 1$, the algorithm in
525 [\[FGQ⁺23\]](#) suffers $\max_a \mathbb{E}[\text{Reg}(a)] \geq \Omega(\sqrt{T})$, while our algorithm achieves $\max_a \mathbb{E}[\text{Reg}(a)] \leq 1$.*

526 7 CONCLUSION

527 We introduced a new model-free DEC approach that removes optimism in prior work and incorporates
528 two information-gain terms into the AIR objective for decision making. In addition, we refined the
529 online function estimation procedure. Together, they yield improved regret bounds in the stochastic
530 setting and establish the first regret bounds for model-free learning in hybrid MDPs with bandit
531 feedback. Future directions include relaxing [Assumption 3](#) and [Assumption 4](#), and investigating the
532 fundamental limits of model-free learning.

533 REFERENCES

534
535 [AZ22] Alekh Agarwal and Tong Zhang. Non-linear reinforcement learning in large action
536 spaces: Structural conditions and sample-efficiency of posterior sampling. In *Conference
537 on Learning Theory*, pages 2776–2814. PMLR, 2022.

540 [BLL⁺11] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire.
 541 Contextual bandit algorithms with supervised learning guarantees. In *Proceedings of*
 542 *the Fourteenth International Conference on Artificial Intelligence and Statistics*, pages
 543 19–26. JMLR Workshop and Conference Proceedings, 2011.

544 [CLW21] Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Impossible tuning made possible: A
 545 new expert algorithm and its applications. In *Conference on Learning Theory*, pages
 546 1216–1259. PMLR, 2021.

548 [CMB25] Fan Chen, Song Mei, and Yu Bai. Unified algorithms for rl with decision-estimation
 549 coefficients: Pac, reward-free, preference-based learning and beyond. *The Annals of*
 550 *Statistics*, 53(1):426–456, 2025.

551 [CR25] Fan Chen and Alexander Rakhlin. Decision making in changing environments: Robust-
 552 ness, query-based learning, and differential privacy. *Conference on Learning Theory*,
 553 2025.

555 [DKL⁺21] Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and
 556 Ruosong Wang. Bilinear classes: A structural framework for provable generalization in
 557 rl. In *International Conference on Machine Learning*, pages 2826–2836. PMLR, 2021.

558 [DLWZ23] Yan Dai, Haipeng Luo, Chen-Yu Wei, and Julian Zimmert. Refined regret for adversarial
 559 mdps with linear function approximation. In *International Conference on Machine*
 560 *Learning*, 2023.

562 [FGH23] Dylan J Foster, Noah Golowich, and Yanjun Han. Tight guarantees for interactive
 563 decision making with the decision-estimation coefficient. In *The Thirty Sixth Annual*
 564 *Conference on Learning Theory*, pages 3969–4043. PMLR, 2023.

565 [FGQ⁺23] Dylan J Foster, Noah Golowich, Jian Qian, Alexander Rakhlin, and Ayush Sekhari.
 566 Model-free reinforcement learning with the decision-estimation coefficient. *Advances*
 567 *in Neural Information Processing Systems*, 36, 2023.

569 [FKQR21] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical
 570 complexity of interactive decision making. *arXiv preprint arXiv:2112.13487*, 2021.

571 [FRSLX21] Dylan Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-
 572 dependent complexity of contextual bandits and reinforcement learning: A disagreement-
 573 based perspective. In *Conference on Learning Theory*, pages 2059–2059. PMLR, 2021.

575 [FRSS22] Dylan J Foster, Alexander Rakhlin, Ayush Sekhari, and Karthik Sridharan. On the
 576 complexity of adversarial decision making. *Advances in Neural Information Processing*
 577 *Systems*, 35:35404–35417, 2022.

578 [JJL⁺20] Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adver-
 579 sarial markov decision processes with bandit feedback and unknown transition. In
 580 *International Conference on Machine Learning*, pages 4860–4869. PMLR, 2020.

581 [JLM21] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich
 582 classes of rl problems, and sample-efficient algorithms. *Advances in neural information*
 583 *processing systems*, 34:13406–13418, 2021.

585 [KZWL23] Fang Kong, Xiangcheng Zhang, Baoxiang Wang, and Shuai Li. Improved regret bounds
 586 for linear adversarial mdps via linear optimization. *Transactions on Machine Learning*
 587 *Research*, 2023.

588 [LMWZ24] Haolin Liu, Zakaria Mhammedi, Chen-Yu Wei, and Julian Zimmert. Beating adversarial
 589 low-rank mdps with unknown transition and bandit feedback. In *The Thirty-eighth*
 590 *Annual Conference on Neural Information Processing Systems*, 2024.

592 [LWL21] Haipeng Luo, Chen-Yu Wei, and Chung-Wei Lee. Policy optimization in adversarial
 593 mdps: Improved exploration via dilated bonuses. *Advances in Neural Information*
 594 *Processing Systems*, 34:22931–22942, 2021.

594 [LWZ24] Haolin Liu, Chen-Yu Wei, and Julian Zimmert. Towards optimal regret in adversarial
 595 linear mdps with bandit feedback. In *The Twelfth International Conference on Learning*
 596 *Representations*, 2024.

597 [LWZ25] Haolin Liu, Chen-Yu Wei, and Julian Zimmert. Decision making in hybrid environments:
 598 A model aggregation approach. *Conference on Learning Theory*, 2025.

600 [LZZ24] Long-Fei Li, Peng Zhao, and Zhi-Hua Zhou. Improved algorithm for adversarial linear
 601 mixture mdps with bandit feedback and unknown transition. In *International Conference*
 602 *on Artificial Intelligence and Statistics*, pages 3061–3069. PMLR, 2024.

603 [NGSA13] Gergely Neu, András György, Csaba Szepesvári, and András Antos. Online markov
 604 decision processes under bandit feedback. *IEEE Transactions on Automatic Control*,
 605 59(3):676–691, 2013.

606 [RM19] Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with bandit
 607 feedback and unknown transition function. *Advances in Neural Information Processing*
 608 *Systems*, 32, 2019.

609 [SERM20] Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy
 610 optimization with bandit feedback. In *International Conference on Machine Learning*,
 611 pages 8604–8613. PMLR, 2020.

612 [SKM23] Uri Sherman, Tomer Koren, and Yishay Mansour. Improved regret for efficient online
 613 reinforcement learning with linear function approximation. In *International Conference*
 614 *on Machine Learning*, pages 31117–31150. PMLR, 2023.

615 [XFB⁺23] T Xie, D Foster, Y Bai, N Jiang, and S Kakade. The role of coverage in online
 616 reinforcement learning. In *Proceedings of the Eleventh International Conference on*
 617 *Learning Representations*, 2023.

618 [XZ23] Yunbei Xu and Assaf Zeevi. Bayesian design principles for frequentist sequential
 619 learning. In *International Conference on Machine Learning*, pages 38768–38800.
 620 PMLR, 2023.

621 [ZYW⁺24] Canzhe Zhao, Ruofeng Yang, Baoxiang Wang, Xuezhou Zhang, and Shuai Li. Learning
 622 adversarial low-rank markov decision processes with unknown transition and full-
 623 information feedback. *Advances in Neural Information Processing Systems*, 36, 2024.

624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

Appendices

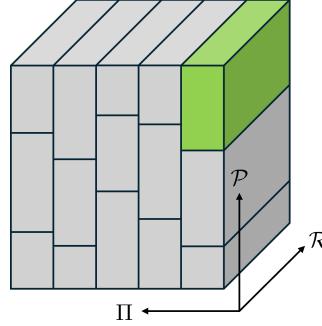
648	A	Regret Bound Comparison with Previous Work	14
649			
650			
651			
652	B	Partitioning over $\mathcal{P} \times \mathcal{R} \times \Pi$ for hybrid MDPs	14
653			
654			
655	C	Omitted Details in Section 2	15
656			
657	C.1	Recovering Theorem 3	15
658			
659	C.2	Recovering results for adversarial MDP with full-information feedback [LWZ25]	15
660			
661	D	Concentration Inequality	16
662			
663	E	Mirror Descent	18
664			
665	F	Estimation Procedures	20
666			
667	F.1	Average estimation error minimization via batching	20
668			
669	F.2	Squared estimation error minimization via bi-level learning	22
670			
671	G	Omitted Details in Section 4	25
672			
673	G.1	Assumption reductions	25
674	G.2	Bounds on Est	26
675			
676	H	Relating dig-dec to Existing Complexities in the Stochastic Setting	28
677			
678	H.1	Supporting lemmas	28
679	H.2	Relating dig-dec to o-dec	28
680	H.3	Relating dig-dec to bilinear rank	29
681	H.4	Relating dig-dec to Bellman-eluder dimension	30
682	H.5	Relating dig-dec to coverability under Bellman completeness	31
683			
684			
685	I	Relating dig-dec to Existing Complexities in the Hybrid Setting	33
686			
687	I.1	Supporting lemmas	33
688	I.2	Relating dig-dec to hybrid bilinear rank	36
689	I.3	Relating dig-dec to coverability under Bellman completeness	39
690			
691			
692	J	Omitted Details in Section 6	42
693			
694	J.1	Proof of Theorem 14	42
695			
696	K	Use of Large Language Models in Preparation	45
697			
698			
699			
700			
701			

702 A REGRET BOUND COMPARISON WITH PREVIOUS WORK
703704 Table 3: Regret for model-free learning in stochastic MDPs (only showing T dependence). “Toy
705 3-arm” is defined in [Theorem 14](#). The two bounds in the same cell correspond to the cases with
706 on-policy and off-policy estimation.
707

708 Algorithm	709 Bilinear or BE	710 {Bilinear or BE or Coverable} 711 + Bellman Complete + On-Policy	712 Toy 3-arm	713 Exploration Mechanism
[DKL+21]	$T^{\frac{2}{3}}/T^{\frac{2}{3}}$	\sqrt{T}	\sqrt{T}	optimism
[JLM21]				
[XFB+23]				
[FGQ+23]	$T^{\frac{3}{4}}/T^{\frac{5}{6}}$	$T^{\frac{3}{4}}$	\sqrt{T}	information gain + optimism
Ours	$T^{\frac{2}{3}}/T^{\frac{7}{9}}$	\sqrt{T}	1	information gain

715
716 Table 4: Regret for learning in hybrid MDPs (stochastic transition and adversarial reward). The
717 model-free learning guarantees in [\[LWZ25\]](#) and our work cannot handle general reward but rely on
718 [Assumption 4](#).
719

720 Algorithm	721 Bilinear	722 {Bilinear or Coverable} 723 + Bellman Complete + On-Policy	724 Model-Free	725 Bandit Feedback	726 General Reward
[LWZ25]	$\sqrt{T}/T^{\frac{2}{3}}$	\sqrt{T}	✗	✓	✓
[LWZ25]	$T^{\frac{3}{4}}/T^{\frac{5}{6}}$	—	✓	✗	✗
Ours	$T^{\frac{5}{6}}/T^{\frac{13}{15}}$	$T^{\frac{3}{4}}$	✓	✓	✗

727 B PARTITIONING OVER $\mathcal{P} \times \mathcal{R} \times \Pi$ FOR HYBRID MDPs
728730 Figure 1: Partitioning for hybrid MDPs
731732
733
734
735
736
737
738
739
740
741
742
743 [Figure 1](#) illustrates the partition scheme over $\mathcal{M} \times \Pi = \mathcal{P} \times \mathcal{R} \times \Pi$ described in [Assumption 2](#).
744 Each info-set ϕ (represented by the green block in [Figure 1](#)) is associated with a single policy π_ϕ , a
745 subset of transitions, and all reward functions. As shown in [Figure 1](#), the partition over the \mathcal{P} space
746 could be different for different π .
747
748
749
750
751
752
753
754
755

756 **C OMITTED DETAILS IN SECTION 2**
 757

758 In this section, we show that the algorithms in [XZ23] and [LWZ25] are special cases of [Algorithm 1](#).
 759

760 **C.1 RECOVERING THEOREM 3**
 761

762 The decision rule of [LWZ25]’s algorithm corresponds to [Eq. \(3\)](#) with $D^\pi(\nu\|\rho) =$
 763 $\mathbb{E}_{M\sim\nu}\mathbb{E}_{o\sim M(\cdot|\pi)}[\text{KL}(\nu_{\phi}(\cdot|\pi, o), \rho)]$. It can be shown that $\text{Breg}_{D^\pi(\cdot\|\rho)}(\nu, \nu') =$
 764 $\mathbb{E}_{M\sim\nu}\mathbb{E}_{o\sim M(\cdot|\pi)}[\text{KL}(\nu_{\phi}(\cdot|\pi, o), \nu'_{\phi}(\cdot|\pi, o))]$ in this case. Furthermore, notice that when
 765 $\nu = \delta_{M_t, \pi_{\phi^*}}$, we have $\nu_{\phi}(\cdot|\pi, o) = \delta_{\phi^*}$ according to [Definition 2](#). Thus, the estimation error term in
 766 [Eq. \(6\)](#) in [LWZ25]’s algorithm is
 767

$$\begin{aligned} \mathbb{E}[\text{Est}] &= \mathbb{E}\left[\sum_{t=1}^T \left(\text{KL}(\delta_{\phi^*}, \rho_t) - \mathbb{E}_{o\sim M_t(\cdot|\pi_t)}\left[\text{KL}(\delta_{\phi^*}, (\nu_t)_{\phi}(\cdot|\pi_t, o))\right]\right)\right] \\ &= \mathbb{E}\left[\sum_{t=1}^T (\text{KL}(\delta_{\phi^*}, \rho_t) - \text{KL}(\delta_{\phi^*}, (\nu_t)_{\phi}(\cdot|\pi_t, o_t)))\right] = \mathbb{E}\left[\sum_{t=1}^T \log \frac{\nu_t(\phi^*|\pi_t, o_t)}{\rho_t(\phi^*)}\right], \end{aligned}$$

774 where in the second equality we use that o_t is drawn from $M_t(\cdot|\pi_t)$. Thus, by letting $\rho_{t+1}(\phi) =$
 775 $\nu_t(\phi|\pi_t, o_t)$, their algorithm achieves $\mathbb{E}[\text{Est}] = \mathbb{E}\left[\sum_{t=1}^T \log \frac{\rho_{t+1}(\phi^*)}{\rho_t(\phi^*)}\right] \leq \log \frac{1}{\rho_1(\phi^*)} = \log |\Phi|$.
 776 Using this in [Eq. \(6\)](#) proves [Theorem 3](#). The results of [XZ23] can also be recovered as they are
 777 special cases of [LWZ25].
 778

779 **C.2 RECOVERING RESULTS FOR ADVERSARIAL MDP WITH FULL-INFORMATION FEEDBACK**
 780 [LWZ25]
 781

782 For learning with full information feedback in the adversarial MDPs, the learner can observe the
 783 full reward function at the end of each episode. In other words, at episode t , the reward function
 784 $R_t : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ is part of the observation o_t . In this setting, the $\log |\Pi|$ dependence in the regret
 785 bound can be improved to $\log |\mathcal{A}|$. To achieve this, [LWZ25] designed a two-level algorithm and
 786 define a new notion called InfoAIR. We can recover this result by instantiating our [Algorithm 1](#) with
 787 $\Phi = \{\phi_{P, (a_s)_{s \in \mathcal{S}}} : P \in \mathcal{P}, a_s \in \mathcal{A}, \forall s \in \mathcal{S}\}$ where $\phi_{P, (a_s)_{s \in \mathcal{S}}} = \{(P, R), \pi^*\} : R \in \mathcal{R}, \pi^* =$
 788 $(a_s)_{s \in \mathcal{S}}$, that is, partitioning $\mathcal{M} \times \Pi$ according to the transition kernel and the actions taken by the
 789 policy on all states. Then define
 790

$$D^\pi(\nu\|\rho) = \mathbb{E}_{(P, R, \pi^*) \sim \nu} \mathbb{E}_{o \sim M_{P, R}(\cdot|\pi)} \mathbb{E}_{s \sim d^{\pi, P}} [\text{KL}(\nu_{a_s, P}(\cdot|\pi, o), \rho_{a_s, P})],$$

791 where $M_{P, R}$ denotes the MDP model with transition kernel P and reward function R , and $\rho_{a_s, P}$
 792 denotes ρ ’s marginal distribution over (a_s, P) following our notational convention. Finally, update
 793 the posterior as $\rho_{t+1} = \text{argmin}_{\rho} \sum_{s \in \mathcal{S}} \text{KL}(\rho_{a_s, P}, \nu_{a_s, P}(\cdot|\pi_t, o_t))$. This recovers the same regret
 794 bound as in [LWZ25] without the need for the two-level design. We also note that the analysis for
 795 this result requires our new proof strategy in [Eq. \(5\)](#), as the $D^\pi(\nu\|\rho)$ here is not strictly convex in ν
 796 and the previous proof [XZ23, LWZ25] cannot be applied.
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 D CONCENTRATION INEQUALITY

812 **Lemma 15** (Freedman's inequality [BLL⁺11]). *Let X_1, X_2, \dots be a martingale difference sequence*
 813 *with respect to a filtration $\mathfrak{F}_1 \subset \mathfrak{F}_2 \subset \dots$ such that $\mathbb{E}[X_t | \mathfrak{F}_t] = 0$ and assume $X_t \leq B$ almost surely.*
 814 *Then for any $\alpha \geq B$, with probability at least $1 - \delta$,*

$$816 \quad \sum_{t=1}^T X_t \leq \frac{1}{\alpha} \sum_{t=1}^T \mathbb{E}[X_t^2 | \mathfrak{F}_t] + \alpha \log(1/\delta). \quad (10)$$

819 **Lemma 16** (Empirical Freedman's inequality). *Let X_1, X_2, \dots be a sequence with respect to a*
 820 *filtration $\mathfrak{F}_1 \subset \mathfrak{F}_2 \subset \dots$ such that $\mathbb{E}[X_t | \mathfrak{F}_t] = \mu_t$ and assume $\max\{X_t - \mu_t, X_t\} \leq B$ almost*
 821 *surely. Then for any $\alpha \geq 4B$, with probability at least $1 - \delta$,*

$$822 \quad \sum_{t=1}^T (\mu_t - X_t) \leq \frac{4}{\alpha} \sum_{t=1}^T X_t^2 + \alpha \log(1/\delta). \quad (11)$$

826 *Proof.* Denote $\mathbb{E}_t[\cdot] = \mathbb{E}[\cdot | \mathfrak{F}_t]$. We have at any time step

$$\begin{aligned} 828 \quad & \mathbb{E}_t \left[\exp \left(\frac{1}{\alpha} (\mu_t - X_t) - \frac{4}{\alpha^2} X_t^2 \right) \right] \\ 829 \quad & \leq \mathbb{E}_t \left[1 + \frac{1}{\alpha} (\mu_t - X_t) - \frac{4}{\alpha^2} X_t^2 + \left(\frac{1}{\alpha} (\mu_t - X_t) - \frac{4}{\alpha^2} X_t^2 \right)^2 \right] \\ 830 \quad & \leq 1 + \mathbb{E}_t \left[-\frac{4}{\alpha^2} X_t^2 + \frac{2}{\alpha^2} ((\mu_t - X_t)^2 + X_t^2) \right] \leq 1. \end{aligned}$$

833 Markov inequality finishes the proof. □

837 **Lemma 17.** *Let $(X_1, Y_1), (X_2, Y_2) \dots$ be a sequence with respect to a filtration $\mathfrak{F}_1 \subset \mathfrak{F}_2 \subset \dots$*
 838 *such that $|X_t| \leq B$ and $0 \leq Y_t \leq B$ almost surely. Furthermore, $\mathbb{E}[X_t | \mathfrak{F}_t] \geq \mathbb{E}[Y_t | \mathfrak{F}_t]$ and*
 839 *$B\mathbb{E}[X_t | \mathfrak{F}_t] \geq \mathbb{E}[X_t^2 | \mathfrak{F}_t]$. Then with probability at least $1 - \delta$,*

$$841 \quad \frac{1}{2} \sum_{t=1}^T \mathbb{E}[X_t | \mathfrak{F}_t] \leq \sum_{t=1}^T \left(X_t - \frac{1}{4} Y_t \right) + 9B \log(1/\delta). \quad (12)$$

844 Also, with probability at least $1 - \delta$,

$$846 \quad \frac{1}{2} \sum_{t=1}^T X_t \leq \sum_{t=1}^T \left(X_t - \frac{1}{4} Y_t \right) + 9B \log(1/\delta). \quad (13)$$

849 *Proof.* Denote $\mathbb{E}_t[\cdot] = \mathbb{E}[\cdot | \mathfrak{F}_t]$. Let $c \in [\frac{1}{2}, 1]$ be a fixed constant, and define $Z_t = cX_t - \frac{1}{4}Y_t$.
 850 Applying Lemma 15 with $\alpha = 9B$ gives

$$\begin{aligned} 852 \quad & \sum_{t=1}^T (\mathbb{E}_t[Z_t] - Z_t) \leq \frac{1}{9B} \sum_{t=1}^T \mathbb{E}_t[(\mathbb{E}_t[Z_t] - Z_t)^2] + 9B \log(1/\delta) \\ 853 \quad & \leq \frac{1}{9B} \sum_{t=1}^T \mathbb{E}_t[Z_t^2] + 9B \log(1/\delta) \\ 854 \quad & \leq \frac{1}{9B} \sum_{t=1}^T \left(2c^2 \mathbb{E}_t[X_t^2] + \frac{2}{16} \mathbb{E}_t[Y_t^2] \right) + 9B \log(1/\delta) \\ 855 \quad & \leq \frac{1}{9} \sum_{t=1}^T \left(2c^2 \mathbb{E}_t[X_t] + \frac{2}{16} \mathbb{E}_t[Y_t] \right) + 9 \log(1/\delta) \\ 856 \quad & (\mathbb{E}_t[Y_t^2] \leq B\mathbb{E}_t[Y_t] \text{ because } Y_t \in [0, B]) \end{aligned}$$

864 Rearranging:

865

$$866 \sum_{t=1}^T \mathbb{E}_t \left[Z_t - \left(\frac{2c^2}{9} + \frac{1}{72} \right) X_t \right] \leq \sum_{t=1}^T Z_t + 9B \log(1/\delta). \quad (14)$$

867

868 To prove [Eq. \(12\)](#), let $c = 1$, which gives $\mathbb{E}_t \left[Z_t - \left(\frac{2c^2}{9} + \frac{1}{72} \right) X_t \right] = \mathbb{E}_t \left[X_t - \frac{1}{4}Y_t - \frac{17}{72}X_t \right] \geq \frac{1}{2}\mathbb{E}_t[X_t]$. Combining this with [Eq. \(14\)](#) proves [Eq. \(12\)](#). To prove [Eq. \(13\)](#), let $c = \frac{1}{2}$. which gives $\mathbb{E}_t \left[Z_t - \left(\frac{2c^2}{9} + \frac{1}{72} \right) X_t \right] = \mathbb{E}_t \left[\frac{1}{2}X_t - \frac{1}{4}Y_t - \frac{5}{72}X_t \right] \geq 0$. Combining this with [Eq. \(14\)](#) and rearranging proves [Eq. \(13\)](#). \square

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 E MIRROR DESCENT
919920 **Lemma 18** (First-order optimality condition). *For any concave and differentiable function F , if*
921 $\nu' \in \operatorname{argmax}_{\nu \in \Omega} F(\nu)$ *for some convex set Ω , then $F(\nu) \leq F(\nu') - \operatorname{Breg}_{(-F)}(\nu, \nu')$ for any $\nu \in \Omega$.*
922923 *Proof.* Define $G = -F$. Then G is convex and $\nu' \in \operatorname{argmin}_{\nu'} G(\nu')$. We have by the definition of
924 Bregman divergence $\operatorname{Breg}_G(\nu, \nu') = G(\nu) - G(\nu') - \langle \nabla G(\nu'), \nu - \nu' \rangle$, and first-order optimality
925 condition $\langle \nabla G(\nu'), \nu - \nu' \rangle \geq 0$. Thus, $G(\nu) \geq G(\nu') + \operatorname{Breg}_G(\nu, \nu')$, which is equivalent to
926 $F(\nu) \leq F(\nu') + \operatorname{Breg}_{(-F)}(\nu, \nu')$. \square
927928 **Lemma 19.** *Let $g : \Phi \rightarrow [-1, 1]$ be any function and let $\nu, \rho \in \Delta(\Phi)$. Then for any $\eta > 0$,*
929

930
$$\mathbb{E}_{\phi \sim \nu}[g(\phi)] - \mathbb{E}_{\phi \sim \rho}[g(\phi)] - \frac{1}{\eta} \operatorname{KL}(\nu, \rho) \leq \eta.$$

931

932 *Proof.*
933

934
$$\mathbb{E}_{\phi \sim \nu}[g(\phi)] - \mathbb{E}_{\phi \sim \rho}[g(\phi)] \leq 2D_{\text{TV}}(\nu, \rho) \leq 2\sqrt{\operatorname{KL}(\nu, \rho)} \leq \frac{1}{\eta} \operatorname{KL}(\nu, \rho) + \eta,$$

935

936 where we use Pinsker's inequality and AM-GM inequality. \square
937938 **Lemma 20** (Mirror descent with auxiliary terms). *Let F_t be a convex function over Δ_N , and let*
939 $\ell_t, b_t \in \mathbb{R}^N$ *with ℓ_t^2 denoting $(\ell_t(1)^2, \dots, \ell_t(N)^2)$. Then the update $p_1 = \frac{1}{N}\mathbf{1}$ and*
940

941
$$p_{t+1} = \operatorname{argmin}_{p \in \Delta_N} \left\{ \langle p, \ell_t + 4\gamma\ell_t^2 + b_t \rangle + F_t(p) + \frac{1}{\gamma} \operatorname{KL}(p, p_t) \right\}$$

942

943 with $\gamma|\ell_t(i)| \leq \frac{1}{16}$ and $0 \leq \gamma b_t(i) \leq \frac{1}{4}$ for all $i \in [N]$ ensures for any $p^* \in \Delta_N$,

944
$$\begin{aligned} & \sum_{t=1}^T \langle p_t, \ell_t \rangle \\ & \leq \frac{\log N}{\gamma} + \sum_{t=1}^T \left(\langle p^*, \ell_t + 4\gamma\ell_t^2 \rangle + \langle p^*, b_t \rangle - \frac{1}{2} \langle p_t, b_t \rangle + F_t(p^*) - F_t(p_{t+1}) - \operatorname{Breg}_{F_t}(p^*, p_{t+1}) \right). \end{aligned}$$

945

950 *Proof.* By Lemma 18,
951

952
$$\begin{aligned} & \langle p_{t+1}, \ell_t + 4\gamma\ell_t^2 + b_t \rangle + F_t(p_{t+1}) + \frac{1}{\gamma} \operatorname{KL}(p_{t+1}, p_t) \\ & \leq \langle p^*, \ell_t + 4\gamma\ell_t^2 + b_t \rangle + F_t(p^*) + \frac{1}{\gamma} \operatorname{KL}(p^*, p_t) - \operatorname{Breg}_{F_t}(p^*, p_{t+1}) - \frac{1}{\gamma} \operatorname{KL}(p^*, p_{t+1}). \end{aligned}$$

953

954 Rearranging gives
955

956
$$\begin{aligned} & \langle p_t, \ell_t + 4\gamma\ell_t^2 \rangle \\ & \leq \langle p^*, \ell_t + 4\gamma\ell_t^2 \rangle + \langle p_t - p_{t+1}, \ell_t + 4\gamma\ell_t^2 + b_t \rangle - \frac{1}{\gamma} \operatorname{KL}(p_{t+1}, p_t) \\ & \quad + \langle p^* - p_t, b_t \rangle + \frac{\operatorname{KL}(p^*, p_t) - \operatorname{KL}(p^*, p_{t+1})}{\gamma} + F_t(p^*) - F_t(p_{t+1}) - \operatorname{Breg}_{F_t}(p^*, p_{t+1}). \quad (15) \end{aligned}$$

957

958 Since $\gamma|\ell_t(i) + 4\gamma\ell_t(i)^2 + b_t(i)| \leq \frac{1}{16} + 4 \times (\frac{1}{16})^2 + \frac{1}{4} \leq 1$, by Lemma 19 we have
959

960
$$\begin{aligned} & \langle p_t - p_{t+1}, \ell_t + 4\gamma\ell_t^2 + b_t \rangle - \frac{1}{\gamma} \operatorname{KL}(p_{t+1}, p_t) \\ & \leq \gamma \langle p_t, (\ell_t + 4\gamma\ell_t^2 + b_t)^2 \rangle \\ & \leq 2\gamma \langle p_t, (\frac{5}{4}\ell_t)^2 \rangle + 2\gamma \langle p_t, b_t^2 \rangle \\ & \leq \langle p_t, 4\gamma\ell_t^2 \rangle + \frac{1}{2} \langle p_t, b_t \rangle. \end{aligned}$$

961

972 Using this in Eq. (15) we get
 973

$$\begin{aligned}
 974 \quad \langle p_t, \ell_t \rangle &\leq \langle p^*, \ell_t + 4\gamma\ell_t^2 \rangle + \langle p^*, b_t \rangle - \frac{1}{2} \langle p_t, b_t \rangle \\
 975 \\
 976 \quad &+ \frac{\text{KL}(p^*, p_t) - \text{KL}(p^*, p_{t+1})}{\gamma} + F_t(p^*) - F_t(p_{t+1}) - \text{Breg}_{F_t}(p^*, p_{t+1}).
 977
 \end{aligned}$$

978 Summing over t gives the desired inequality. \square
 979

980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 **F ESTIMATION PROCEDURES**
 1027

1028 We present the choices of POSTERIORUPDATE as standalone online learning algorithms because they
 1029 might be of independent interest.
 1030

1031 **F.1 AVERAGE ESTIMATION ERROR MINIMIZATION VIA BATCHING**
 1032

1033 **Algorithm 2** Epoch-based learning algorithm for average estimation error
 1034

1035 **Input:** An estimation function $\ell_h : \Phi \times \mathcal{O} \rightarrow [-B, B]^N$ satisfying [Assumption 5](#).

1036 **Parameter:** $\tau = T^{\frac{1}{3}}$, $\beta = 7\tau N\iota$, $\gamma = \frac{1}{2\beta}$, $\iota = \log(12NKH/\delta)$.

1037 **for** $k = 1, 2, \dots, K$ **do**

1038 Receive observations $o_t \sim M_t(\cdot | \pi_k)$ for all $t \in \mathcal{I}_k = \{(k-1)\tau + 1, \dots, k\tau\}$.

1039 Split \mathcal{I}_k into two sub-intervals of equal size:

1040 $\mathcal{I}_k^- = \{(k-1)\tau + 1, \dots, (k-1)\tau + \frac{\tau}{2}\}$ and $\mathcal{I}_k^+ = \{(k-1)\tau + \frac{\tau}{2} + 1, \dots, k\tau\}$.
 1041

1042 Define for all $j \in [N]$,

1043 $L_k(\phi)_j = \frac{\tau}{B^2 H} \sum_{h=1}^H \left(\frac{1}{|\mathcal{I}_k^-|} \sum_{t \in \mathcal{I}_k^-} \ell_h(\phi; o_{t,h})_j \right) \left(\frac{1}{|\mathcal{I}_k^+|} \sum_{t \in \mathcal{I}_k^+} \ell_h(\phi; o_{t,h})_j \right), \quad L_k(\phi) = \sum_{j=1}^N L_k(\phi)_j.$
 1044

1045 Let $(F_t)_{t \in \mathcal{I}_k} : \Delta(\Phi) \rightarrow \mathbb{R}$ be convex functions. Calculate
 1046

1047 $\rho_{k+1} = \underset{\rho \in \Delta(\Phi)}{\operatorname{argmin}} \left\{ \langle \rho, L_k + (4\gamma + 2\beta^{-1})L_k^2 \rangle + \sum_{t \in \mathcal{I}_k} F_t(\rho) + \frac{1}{\gamma} \operatorname{KL}(\rho, \rho_k) \right\}. \quad (16)$
 1048

1053 **Lemma 21.** *With probability at least $1 - \delta/3$, [Algorithm 2](#) satisfies*

1054 $\frac{1}{B^2 H} \sum_{k=1}^K \sum_{\phi} \rho_k(\phi) \sum_{t \in \mathcal{I}_k} \max_{j \in [N]} \sum_{h=1}^H (\mathbb{E}^{\pi_k, M_t} [\ell_h(\phi; o_h)_j])^2 \leq \sum_{k=1}^K \sum_{\phi} \rho_k(\phi) \left(L_k(\phi) + \frac{1}{\beta} L_k(\phi)^2 \right) + 4\beta \log(3/\delta).$
 1055

1056 *Proof.* By [Assumption 5](#), for any $t, t' \in \mathcal{I}_k$ it holds that
 1057

$$\mathbb{E}^{\pi_k, M_t} [\ell_h(\phi; o_h)] = \mathbb{E}^{\pi_k, M_{t'}} [\ell_h(\phi; o_h)].$$

1058 We denote $\bar{\ell}_{k,h}(\phi) = \mathbb{E}^{\pi_k, M_t} [\ell_h(\phi; o_h)]$ for any $t \in \mathcal{I}_k$.
 1059

1060 Clearly, the left-hand side of the desired inequality is upper bounded by
 1061

1062 $\frac{1}{B^2 H} \sum_{k=1}^K \sum_{\phi} \rho_k(\phi) \sum_{t \in \mathcal{I}_k} \sum_{j=1}^N \sum_{h=1}^H (\mathbb{E}^{\pi_k, M_t} [\ell_h(\phi; o_h)_j])^2 = \frac{\tau}{B^2 H} \sum_{k=1}^K \sum_{\phi} \rho_k(\phi) \sum_{j=1}^N \sum_{h=1}^H \bar{\ell}_{k,h}(\phi)_j^2$
 1063

1064 By construction, $\mathbb{E}_k[L_k(\phi)] = \frac{\tau}{B^2 H} \sum_{j=1}^N \sum_{h=1}^H \bar{\ell}_{k,h}(\phi)_j^2$ due to the conditional independence of
 1065 the observations. Furthermore, we have $L_k(\phi) \in [-\tau N, \tau N]$. Therefore, we can use [Lemma 16](#) on
 1066 the sequence $X_k = -\sum_{\phi} \rho_k(\phi) L_k(\phi)$ with $\beta \geq 7\tau N$:
 1067

1068 $\frac{\tau}{B^2 H} \sum_{k=1}^K \sum_{\phi} \rho_k(\phi) \sum_{j=1}^N \sum_{h=1}^H \bar{\ell}_{k,h}(\phi)_j^2 \leq \sum_{k=1}^K \sum_{\phi} \rho_k(\phi) \left(L_k(\phi) + \frac{1}{\beta} L_k(\phi)^2 \right) + 4\beta \log(3/\delta).$
 1069

1070 \square

1071 **Lemma 22.** *With probability at least $1 - \delta/3$,*

1072 $\sum_{k=1}^K L_k(\phi^*)^2 \leq KN^2 \log^2(12NKH/\delta).$
 1073

1080 *Proof.* By [Assumption 5](#) and [Lemma 15](#), for any j, k, h , we have with probability $1 - \delta$,

$$\begin{aligned} 1082 \quad \left| \sum_{t \in \mathcal{I}_k^-} \ell_h(\phi^*, o_{t,h})_j \right| &= \left| \sum_{t \in \mathcal{I}_k^-} \ell_h(\phi^*, o_{t,h})_j - \sum_{t \in \mathcal{I}_k^-} \mathbb{E}^{\pi_k, M_t} [\ell_h(\phi^*; o_h)] \right| \leq B \sqrt{\tau \log(12/\delta)} \\ 1083 \quad \left| \sum_{t \in \mathcal{I}_k^+} \ell_h(\phi^*, o_{t,h})_j \right| &= \left| \sum_{t \in \mathcal{I}_k^+} \ell_h(\phi^*, o_{t,h})_j - \sum_{t \in \mathcal{I}_k^+} \mathbb{E}^{\pi_k, M_t} [\ell_h(\phi^*; o_h)] \right| \leq B \sqrt{\tau \log(12/\delta)}. \end{aligned}$$

1088 Via a union bound over all these events, this holds simultaneously for all j, k, h . Hence with
1089 probability $1 - \delta$, we have $|L_k(\phi^*)_j| \leq \frac{\tau}{B^2 H} H \left(\frac{1}{\tau} B \sqrt{\tau \log(12NKH/\delta)} \right)^2 = \log(12NKH/\delta)$
1090 for all j, k simultaneously. Summing over j and k finishes the proof. \square

1092 **Lemma 23.** *With probability at least $1 - \delta/3$, we have*

$$1094 \quad \sum_{k=1}^K L_k(\phi^*) \leq \frac{1}{\beta} \sum_{k=1}^K L_k(\phi^*)^2 + 4\beta \log(6/\delta)$$

1097 *Proof.* Define the random variable $X_k = \min\{L_k(\phi^*), N \log(12NKH/\delta)\}$. By [Lemma 16](#) we
1098 have with probability at least $1 - \delta/6$,

$$1100 \quad \sum_{k=1}^K X_k \leq \frac{1}{\beta} \sum_{k=1}^K L_k(\phi^*)^2 + 4\beta \log(6/\delta),$$

1102 where we use that $\mathbb{E}_k[X_k] \leq \mathbb{E}_k[L_k(\phi^*)] = 0$. Finally note that with probability $1 - \delta/6$ we have
1103 $L_k(\phi^*) = X_k$ for all k by the proof of [Lemma 22](#). Combining both events finishes the proof. \square

1104 **Lemma 24.** *With probability at least $1 - \delta$, [Algorithm 2](#) satisfies*

$$\begin{aligned} 1106 \quad \frac{1}{B^2 H} \sum_{k=1}^K \sum_{\phi} \rho_k(\phi) \sum_{t \in \mathcal{I}_k} \max_{j \in [N]} \sum_{h=1}^H (\mathbb{E}^{\pi_k, M_t} [\ell_h(\phi; o_h)_j])^2 &\leq O\left(NT^{\frac{1}{3}} \log |\Phi|\right) \\ 1109 \quad + \sum_{k=1}^K \sum_{t \in \mathcal{I}_k} (F_t(\delta_{\phi^*}) - F_t(\rho_{k+1}) - \text{Breg}_{F_t}(\delta_{\phi^*}, \rho_{k+1})). \end{aligned}$$

1112 *Proof of Lemma 24.* By union bound, the events of [Lemma 21](#), [Lemma 22](#), and [Lemma 23](#) hold
1113 simultaneously with probability $1 - \delta$. Observe that the update of ρ_k ([Eq. \(16\)](#)) is in the form specified
1114 in [Lemma 20](#). Invoking [Lemma 20](#) with $b_k = \frac{2}{\beta} L_k^2$, we get

$$\begin{aligned} 1116 \quad \sum_{k=1}^K \left\langle \rho_k, L_k + \frac{1}{\beta} L_k^2 \right\rangle &\leq \frac{\log |\Phi|}{\gamma} \\ 1117 \quad + \sum_{k=1}^K \left(L_k(\phi^*) + \left(4\gamma + \frac{2}{\beta} \right) L_k(\phi^*)^2 + \sum_{t \in \mathcal{I}_k} (F_t(\delta_{\phi^*}) - F_t(\rho_{k+1}) - \text{Breg}_{F_t}(\delta_{\phi^*}, \rho_{k+1})) \right). \end{aligned} \tag{17}$$

1122 Chaining [Lemma 22](#) and [Lemma 23](#),

$$\begin{aligned} 1124 \quad \sum_{k=1}^K \left(L_k(\phi^*) + \left(4\gamma + \frac{2}{\beta} \right) L_k(\phi^*)^2 \right) \\ 1125 \quad \leq 4\beta \log(6/\delta) + \left(4\gamma + \frac{3}{\beta} \right) KN^2 \log^2(12NKH/\delta). \end{aligned}$$

1129 Using [Lemma 21](#) and substituting $\beta = 7\tau N\iota$, $\gamma = \frac{1}{2\beta}$ yields

$$1131 \quad \frac{1}{B^2 H} \sum_{k=1}^K \sum_{\phi} \rho_k(\phi) \sum_{t \in \mathcal{I}_k} \max_{j \in [N]} \sum_{h=1}^H (\mathbb{E}^{\pi_k, M_t} [\ell_h(\phi; o_h)_j])^2 \leq 35\tau N\iota + 20 \frac{KN\iota}{\tau}$$

1133 Using $K = T/\tau$ and tuning $\tau = T^{\frac{1}{3}}$ yields $O(T^{\frac{1}{3}} N\iota)$. \square

1134 F.2 SQUARED ESTIMATION ERROR MINIMIZATION VIA BI-LEVEL LEARNING
11351136 **Algorithm 3** Bi-level learning algorithm for squared estimation error
11371138 **Input:** An estimation function $\xi_h : \Phi \times \Phi \times \mathcal{O} \rightarrow [0, B^2]$ satisfying [Assumption 6](#).1139 **Parameter:** $\iota = 64 \log |\Phi|$, $\gamma = \frac{1}{4\iota}$.1140 $\rho_1(\phi) = 1/|\Phi|$, $\forall \phi \in \Phi$ and $q_1(\phi'|\phi) = 1/|\Phi|$, $\forall \phi', \phi \in \Phi$.1141 **for** $t = 1, 2, \dots, T$ **do**1142 Receive observation $o_t \sim M_t(\cdot|\pi_t)$.

1143 Define

1144
$$\Delta_t(\phi', \phi) = \frac{1}{B^2 H} \sum_{h=1}^H \xi_h(\phi', \phi, o_{t,h}),$$

1145
$$L_t(\phi) = \Delta_t(\phi, \phi) - \mathbb{E}_{\phi' \sim q_t(\cdot|\phi)} [\Delta_t(\phi', \phi)],$$

1146
$$b_t(\phi) = \frac{[\rho_t(\phi) - \max_{s < t} \rho_s(\phi)]_+}{\rho_t(\phi)} \iota.$$

1147

1148 Let $F_t : \Delta(\Phi) \rightarrow \mathbb{R}$ be a convex function. Calculate
1149

1150
$$\rho_{t+1} = \underset{\rho \in \Delta(\Phi)}{\operatorname{argmin}} \left\{ \langle \rho, L_t + 4\gamma L_t^2 + b_t \rangle + F_t(\rho) + \frac{1}{\gamma} \text{KL}(\rho, \rho_t) \right\}, \quad (18)$$

1151
$$q_{t+1}(\phi'|\phi) \propto \exp \left(-\alpha_t(\phi) \sum_{s=1}^t \rho_s(\phi) \Delta_s(\phi', \phi) \right) \quad \text{where } \alpha_t(\phi) = \frac{1}{16 \max_{s \leq t} \rho_s(\phi)}.$$

1152

1153

1154

1155 **Lemma 25.** *With probability at least $1 - \delta$,*

1156
$$\sum_{t=1}^T \langle \rho_t, L_t \rangle \leq \frac{\log |\Phi|}{\gamma}$$

1157
$$+ \sum_{t=1}^T \left(-\frac{1}{2} \langle \rho_t, b_t \rangle + b_t(\phi^*) + F_t(\delta_{\phi^*}) - F_t(\rho_{t+1}) - \text{Breg}_{F_t}(\delta_{\phi^*}, \rho_{t+1}) \right) + O(\log(1/\delta)).$$

1158

1159

1160 *Proof of Lemma 25.* Observe that the update of ρ_t (Eq. (18)) is in the form specified in [Lemma 20](#).
1161 Invoking [Lemma 20](#), we get

1162
$$\sum_{t=1}^T \langle \rho_t, L_t \rangle \leq \frac{\log |\Phi|}{\gamma} \quad (19)$$

1163
$$+ \sum_{t=1}^T \left(L_t(\phi^*) + 4\gamma L_t(\phi^*)^2 + b_t(\phi^*) - \frac{1}{2} \langle \rho_t, b_t \rangle + F_t(\delta_{\phi^*}) - F_t(\rho_{t+1}) - \text{Breg}_{F_t}(\delta_{\phi^*}, \rho_{t+1}) \right).$$

1164

1165

1166

1167

1168 By [Assumption 6](#) we have
1169

1170
$$0 \leq \mathbb{E}_t[L_t(\phi^*)^2] = \mathbb{E}_t \left[(\Delta_t(\phi^*, \phi^*) - \mathbb{E}_{\phi' \sim q_t(\cdot|\phi^*)} [\Delta_t(\phi', \phi^*)])^2 \right]$$

1171
$$\leq \mathbb{E}_{\phi' \sim q_t(\cdot|\phi^*)} \left[\mathbb{E}_t \left[(\Delta_t(\phi^*, \phi^*) - \Delta_t(\phi', \phi^*))^2 \right] \right] \quad (\text{Jensen's inequality})$$

1172
$$\leq \mathbb{E}_{\phi' \sim q_t(\cdot|\phi^*)} \left[\mathbb{E}_t \left[(\Delta_t(\mathcal{T}_{M_t} \phi^*, \phi^*) - \Delta_t(\phi', \phi^*))^2 \right] \right]$$

1173
$$(\mathcal{T}_{M_t} \phi^* = \phi^*)$$

1174
$$\leq 4\mathbb{E}_{\phi' \sim q_t(\cdot|\phi^*)} [\mathbb{E}_t [\Delta_t(\phi', \phi^*) - \Delta_t(\mathcal{T}_{M_t} \phi^*, \phi^*)]] \quad (\text{by Assumption 6})$$

1175
$$= 4\mathbb{E}_{\phi' \sim q_t(\cdot|\phi^*)} [\mathbb{E}_t [\Delta_t(\phi', \phi^*) - \Delta_t(\phi^*, \phi^*)]]$$

1176
$$= -4\mathbb{E}_t[L_t(\phi^*)].$$

1177

1188 This allows us to apply [Lemma 17](#) with $X_t = -L_t(\phi^*)$ and $Y_t = \frac{1}{4}X_t^2$, which gives
 1189

$$\begin{aligned} 1190 \sum_{t=1}^T (L_t(\phi^*) + 4\gamma L_t(\phi^*)^2) &\leq \sum_{t=1}^T \left(L_t(\phi^*) + \frac{1}{16} L_t(\phi^*)^2 \right) \\ 1191 \\ 1192 &\leq \frac{1}{2} \sum_{t=1}^T \mathbb{E}_t[L_t(\phi^*)] + 36 \log(1/\delta) \leq 36 \log(1/\delta). \\ 1193 \\ 1194 \end{aligned}$$

1195 Combining this with [Eq. \(19\)](#) finishes the proof. \square
 1196

1197 **Lemma 26.** *With probability at least $1 - \delta$,*

$$\begin{aligned} 1198 \sum_{t=1}^T \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{\phi' \sim q_t(\cdot | \phi)} [\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T}_{M_t} \phi, \phi)] &\leq 32 \sum_{t \leq T} \max_{\phi} \rho_t(\phi) \log |\Phi| + 72 \log(1/\delta). \\ 1200 \\ 1201 \end{aligned}$$

1202 *Proof.* By [Assumption 6](#), we have $\mathcal{T}_{M_t} \phi = \mathcal{T}_{M_{t'}} \phi$ for all ϕ and all $t, t' \in [T]$. We denote $\mathcal{T} \phi = \mathcal{T}_{M_t} \phi$
 1203 for any t . By the exponential weight update, for any ϕ ,

$$\begin{aligned} 1204 \sum_{t=1}^T \sum_{\phi'} q_t(\phi' | \phi) \rho_t(\phi) (\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T}_{M_t} \phi, \phi)) \\ 1205 \\ 1206 &= \sum_{t=1}^T \sum_{\phi'} q_t(\phi' | \phi) \rho_t(\phi) (\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T} \phi, \phi)) \\ 1207 \\ 1208 &\leq \frac{\log |\Phi|}{\alpha_T(\phi)} + \sum_{t=1}^T \sum_{\phi'} \alpha_t(\phi) q_t(\phi' | \phi) \rho_t(\phi)^2 (\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T} \phi, \phi))^2 \\ 1209 \\ 1210 &\leq 16 \max_{t \leq T} \rho_t(\phi) \log |\Phi| + \frac{1}{16} \sum_{t=1}^T \sum_{\phi'} q_t(\phi' | \phi) \rho_t(\phi) (\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T} \phi, \phi))^2. \\ 1211 \\ 1212 \\ 1213 \\ 1214 \\ 1215 \\ 1216 \end{aligned}$$

1217 Rearranging and summing over ϕ :

$$\begin{aligned} 1218 \sum_{t=1}^T \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{\phi' \sim q_t(\cdot | \phi)} [\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T} \phi, \phi) - \frac{1}{16} (\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T} \phi, \phi))^2] \\ 1219 \\ 1220 &\leq 16 \sum_{\phi} \max_{t \leq T} \rho_t(\phi) \log |\Phi|. \\ 1221 \\ 1222 \end{aligned} \tag{20}$$

1223 Define

$$\begin{aligned} 1224 X_t &= \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{\phi' \sim q_t(\cdot | \phi)} [\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T} \phi, \phi)], \\ 1225 Y_t &= \frac{1}{4} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{\phi' \sim q_t(\cdot | \phi)} [(\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T} \phi, \phi))^2]. \\ 1226 \\ 1227 \end{aligned}$$

1228 By [Assumption 6](#) we have $\mathbb{E}_t[Y_t] \leq \mathbb{E}_t[X_t]$. By Jensen's inequality, $\mathbb{E}_t[X_t^2] \leq 4B^2 H \mathbb{E}_t[Y_t] \leq 4B^2 H \mathbb{E}_t[X_t]$. Invoking [Lemma 17](#) and using [Eq. \(20\)](#) give
 1229

$$\begin{aligned} 1230 \frac{1}{2} \sum_{t=1}^T X_t &\leq \sum_{t=1}^T \left(X_t - \frac{1}{4} Y_t \right) + 36 \log(1/\delta) \leq 16 \sum_{\phi} \max_{t \leq T} \rho_t(\phi) \log |\Phi| + 36 \log(1/\delta), \\ 1231 \\ 1232 \end{aligned}$$

1233 proving the desired inequality. \square
 1234

1236 **Lemma 27.** *With probability at least $1 - \delta$,*

$$\begin{aligned} 1237 \sum_{t=1}^T \mathbb{E}_{\phi \sim \rho_t} [\Delta_t(\phi, \phi) - \Delta_t(\mathcal{T}_{M_t} \phi, \phi)] \\ 1238 \\ 1239 &\leq \sum_{t=1}^T (F_t(\delta_{\phi^*}) - F_t(\rho_{t+1}) - \text{Breg}_{F_t}(\delta_{\phi^*}, \rho_{t+1})) + O(\log^2(|\Phi|/\delta)). \\ 1240 \\ 1241 \end{aligned}$$

1242 *Proof.* By [Assumption 6](#), we have $\mathcal{T}_{M_t}\phi = \mathcal{T}_{M_{t'}}\phi$ for all ϕ and all $t, t' \in [T]$. We denote $\mathcal{T}\phi = \mathcal{T}_{M_t}\phi$ for any t .

$$\begin{aligned} 1246 \quad \mathbb{E}_{\phi \sim \rho_t}[L_t(\phi)] &= \mathbb{E}_{\phi \sim \rho_t}[\Delta_t(\phi, \phi) - \mathbb{E}_{\phi' \sim q_t(\cdot | \phi)}[\Delta_t(\phi', \phi)]] \\ 1247 &= \mathbb{E}_{\phi \sim \rho_t}[\Delta_t(\phi, \phi) - \Delta_t(\mathcal{T}\phi, \phi) - (\mathbb{E}_{\phi' \sim q_t(\cdot | \phi)}[\Delta_t(\phi', \phi)] - \Delta_t(\mathcal{T}\phi, \phi))]. \end{aligned}$$

1249 Combining this with [Lemma 25](#), we get

$$\begin{aligned} 1250 \quad &\sum_{t=1}^T \mathbb{E}_{\phi \sim \rho_t}[\Delta_t(\phi, \phi) - \Delta_t(\mathcal{T}\phi, \phi)] \\ 1251 &\leq \frac{\log |\Phi|}{\gamma} + \sum_{t=1}^T \left(-\frac{1}{2} \langle \rho_t, b_t \rangle + b_t(\phi^*) + F_t(\delta_{\phi^*}) - F_t(\rho_{t+1}) - \text{Breg}_{F_t}(\delta_{\phi^*}, \rho_{t+1}) \right) \\ 1252 &\quad + O(\log(1/\delta)) + \sum_{t=1}^T \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{\phi' \sim q_t(\cdot | \phi)} [\Delta_t(\phi', \phi) - \Delta_t(\mathcal{T}\phi, \phi)] \\ 1253 &\leq \sum_{t=1}^T \left(-\frac{1}{2} \langle \rho_t, b_t \rangle + b_t(\phi^*) + F_t(\delta_{\phi^*}) - F_t(\rho_{t+1}) - \text{Breg}_{F_t}(\delta_{\phi^*}, \rho_{t+1}) \right) \\ 1254 &\quad + O(\log^2(|\Phi|/\delta)) + 32 \sum_{\phi} \max_{t \leq T} \rho_t(\phi) \log |\Phi|. \quad (\text{by } \text{Lemma 26} \text{ and the value of } \gamma) \\ 1255 & \\ 1256 & \\ 1257 & \\ 1258 & \\ 1259 & \\ 1260 & \\ 1261 & \\ 1262 & \\ 1263 & \\ 1264 & \end{aligned}$$

1265 Note that

$$\begin{aligned} 1266 \quad 32 \log |\Phi| \sum_{\phi} \max_{t \leq T} \rho_t(\phi) &= 32 \log |\Phi| \sum_{\phi} \left(\rho_1(\phi) + \sum_{t=2}^T [\rho_t(\phi) - \max_{s < t} \rho_s(\phi)]_+ \right) \\ 1267 &= 32 \log |\Phi| \sum_{\phi} \left(\rho_1(\phi) + \sum_{t=2}^T \rho_t(\phi) \frac{[\rho_t(\phi) - \max_{s < t} \rho_s(\phi)]_+}{\rho_t(\phi)} \right) \\ 1268 & \\ 1269 & \\ 1270 & \\ 1271 & \\ 1272 & \\ 1273 & \\ 1274 & \\ 1275 & \end{aligned}$$

1276 and

$$\begin{aligned} 1277 \quad \sum_{t=1}^T b_t(\phi^*) &= O(\log |\Phi|) \times \sum_{t=1}^T \frac{\max_{s \leq t} \rho_s(\phi^*) - \max_{s \leq t-1} \rho_s(\phi^*)}{\max_{s \leq t} \rho_s(\phi^*)} \\ 1278 &\leq O(\log |\Phi|) \times \left(1 + \sum_{t=2}^T \ln \frac{\max_{s \leq t} \rho_s(\phi^*)}{\max_{s \leq t-1} \rho_s(\phi^*)} \right) \quad (1 - x \leq \ln \frac{1}{x}) \\ 1279 &\leq O(\log^2 |\Phi|). \\ 1280 & \\ 1281 & \\ 1282 & \\ 1283 & \\ 1284 & \end{aligned}$$

1285 Combining inequalities above proves the lemma. □

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **G OMITTED DETAILS IN SECTION 4**
12971298 We define a batched version of [Algorithm 1](#) in [Algorithm 4](#). When the batch size $\tau = 1$, it is
1299 exactly [Algorithm 1](#). One can also think of [Algorithm 4](#) as a special case of [Algorithm 1](#) where
1300 POSTERIORUPDATE makes a real update only when $t = k\tau$ for $k = 1, 2, \dots$, and keeps $\rho_{t+1} = \rho_t$
1301 otherwise.
13021303 **Algorithm 4** General Batched Framework
13041305 **Input:** Partition set Φ and its union Ψ (defined in [Section 2.1](#)). Batch size τ .
13061307 $\rho_1(\phi) = 1/|\Phi|, \forall \phi \in \Phi$.
13081309 **for** $k = 1, 2, \dots, K$ **do**
1310 Set p_k, ν_k as the solution of the following minimax optimization (defined in [Eq. \(2\)](#)):
1311
$$\min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\Psi)} \text{AIR}_\eta^{\Phi, D}(p, \nu; \rho_k). \quad (21)$$

1312 Execute π_k in rounds $t \in \{(k-1)\tau + 1, \dots, k\tau\} = \mathcal{I}_k$ and receive observations $(o_t)_{t \in \mathcal{I}_k}$.
1313 Update $\rho_{k+1} = \text{POSTERIORUPDATE}(\nu_k, \rho_k, \pi_k, (o_t)_{t \in \mathcal{I}_k})$.
13141315 **G.1 ASSUMPTION REDUCTIONS**
13161317 *Proof of Lemma 8.* In the stochastic setting, by [Assumption 1](#) we have $f_\phi(s, a) = Q^*(s, a; M)$ and
1318 $f_\phi(s) = V^*(s; M)$ for any $M \in \phi$. Hence
1319

1320
$$\begin{aligned} \mathbb{E}^{\pi, M}[\ell_h(\phi; o_h)] &= \mathbb{E}^{\pi, M}[f_\phi(s_h, a_h) - r_h - f_\phi(s_{h+1})] \\ 1321 &= \mathbb{E}^{\pi, M}[Q^*(s_h, a_h; M) - r_h - V^*(s_{h+1}; M)] = 0. \end{aligned}$$

1322

1323 In the hybrid setting, we have by [Assumption 2](#) and [Assumption 3](#) that $f_\phi(s, a; R) = Q^{\pi_\phi}(s, a; (P, R))$ and $f_\phi(s; R) = V^{\pi_\phi}(s; (P, R))$ for any $P \in \phi$. Hence, for any $j \in [d]$, defining
1324 R' such that $R'(s, a) = \varphi(s, a)_j$, we have for $(P, R) \in \phi$,
1325

1326
$$\begin{aligned} \mathbb{E}^{\pi, (P, R)}[\ell_h(\phi; o_h)_j] &= \mathbb{E}^{\pi, P}[f_\phi(s_h, a_h; R') - R'(s_h, a_h) - f_\phi(s_{h+1}; R')] \\ 1327 &= \mathbb{E}^{\pi, P}[Q^{\pi_\phi}(s_h, a_h; (P, R')) - R'(s, a) - V^{\pi_\phi}(s_{h+1}; (P, R'))] = 0. \end{aligned}$$

1328

1329 Finally, note that in the stochastic setting $M_t = M^*$, and in the hybrid setting $P_t = P^*$, so the
1330 additional assumption always holds. \square
13311332 *Proof of Lemma 12.* In the stochastic setting, with [Assumption 1](#) and the Bellman completeness
1333 assumption ([Definition 9](#)), for any $M = (P, R)$, we define $\mathcal{T}_M \phi \in \Phi$ as the ϕ' such that
1334

1335
$$f_{\phi'}(s, a) = R(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)}[f_\phi(s')].$$

1336

1337 By [Definition 9](#), such ϕ' always exists.
13381339 In the hybrid setting, with [Assumption 2](#), [Assumption 3](#) and [Assumption 4](#) and the Bellman completeness
1340 assumption ([Definition 10](#)), for any $M = (P, R)$, we define $\mathcal{T}_M \phi \in \Phi$ to be the ϕ' such
1341 that $\pi_{\phi'} = \pi_\phi$ and for all \tilde{R} ,
1342

1343
$$f_{\phi'}(s, a; \tilde{R}) = \tilde{R}(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)}[f_\phi(s'; \tilde{R})].$$

1344

1345 By [Definition 10](#), such ϕ' always exists.
13461347 Below, with a slight overload of notation, we denote in the hybrid setting $f_\phi(s_h, a_h) \in \mathbb{R}^d$ as the
1348 vector $(f_\phi(s_h, a_h; e_j))_{j \in [d]}$ and $f_\phi(s_{h+1}) \in \mathbb{R}^d$ as the vector $\mathbb{E}_{a \sim \pi_\phi(\cdot | s_{h+1})}[(f_\phi(s_{h+1}, a; e_j))_{j \in [d]}]$.
1349 Furthermore, we use the notation y_h to denote $r_h \in \mathbb{R}$ in the stochastic setting, and $\varphi(s_h, a_h) \in \mathbb{R}^d$
in the hybrid setting.

1350 Then we have by our choice of ξ_h :

$$\begin{aligned}
 1352 & \mathbb{E}^{\pi, M} [\xi_h(\phi', \phi; o_h) - \xi_h(\mathcal{T}_M \phi, \phi; o_h)] \\
 1353 & = \mathbb{E}^{\pi, M} [\|f_{\phi'}(s_h, a_h) - y_h - f_{\phi}(s_{h+1})\|^2 - \|f_{\mathcal{T}_M \phi}(s_h, a_h) - y_h - f_{\phi}(s_{h+1})\|^2] \\
 1354 & = \mathbb{E}^{\pi, M} [\|f_{\phi'}(s_h, a_h) - f_{\mathcal{T}_M \phi}(s_h, a_h)\|^2] \\
 1355 & \quad + 2 \cdot \mathbb{E}^{\pi, M} [\langle f_{\phi'}(s_h, a_h) - f_{\mathcal{T}_M \phi}(s_h, a_h), f_{\mathcal{T}_M \phi}(s_h, a_h) - y_h - f_{\phi}(s_{h+1}) \rangle] \\
 1356 & = \mathbb{E}^{\pi, M} [\|f_{\phi'}(s_h, a_h) - f_{\mathcal{T}_M \phi}(s_h, a_h)\|^2], \tag{23}
 \end{aligned}$$

1360 where the last line follows from $\mathbb{E}^{\pi, M}[y_h + f_{\phi}(s_{h+1})] = f_{\mathcal{T}_M \phi}(s_h, a_h)$ by definition of $\mathcal{T}_M \phi$. On
1361 the other hand,

$$\begin{aligned}
 1362 & \mathbb{E}^{\pi, M} [(\xi_h(\phi', \phi; o_h) - \xi_h(\mathcal{T}_M \phi, \phi; o_h))^2] \\
 1363 & = \mathbb{E}^{\pi, M} [(\|f_{\phi'}(s_h, a_h) - y_h - f_{\phi}(s_{h+1})\|^2 - \|f_{\mathcal{T}_M \phi}(s_h, a_h) - y_h - f_{\phi}(s_{h+1})\|^2)^2] \\
 1364 & = \mathbb{E}^{\pi, M} [\langle f_{\phi'}(s_h, a_h) - f_{\mathcal{T}_M \phi}(s_h, a_h), f_{\mathcal{T}_M \phi}(s_h, a_h) + f_{\phi'}(s_h, a_h) - 2y_h - 2f_{\phi}(s_{h+1}) \rangle^2] \\
 1365 & \leq 4B^2 \mathbb{E}^{\pi, M} [\|f_{\phi'}(s_h, a_h) - f_{\mathcal{T}_M \phi}(s_h, a_h)\|^2],
 \end{aligned}$$

1370 where $B^2 = 1$ in the stochastic setting and $B^2 = d$ in the hybrid setting. Combining both finishes
1371 the proof. □

1373
1374

1375 G.2 BOUNDS ON **Est**

1377 With the specific form of divergence

$$1379 D^\pi(\nu \| \rho) = \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \rho) + \mathbb{E}_{\phi \sim \rho} [\bar{D}^\pi(\phi \| M)]], \tag{24}$$

1381 the estimation term in Eq. (6) for an epoch algorithm with epoch length τ' and K epochs is given by

1382 **Lemma 28.** *Est* in Eq. (6) can be written as

$$\begin{aligned}
 1384 \text{Est} &= \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{o \sim M_t(\cdot | \pi)} \left[\log \left(\frac{\nu_t(\phi^* | \pi, o)}{\rho_t(\phi^*)} \right) \right] + \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{\phi \sim \rho_t} [\bar{D}^\pi(\phi \| M_t)]. \tag{25}
 \end{aligned}$$

1387
1388

1389 *Proof of Lemma 28.* From the definition of divergence in Eq. (24) and Eq. (25), let $\delta_{\phi^*} \in \Delta(\Phi)$ be
1390 the Kronecker delta function centered at ϕ^* . Then

$$\begin{aligned}
 1391 \text{Est} &= \sum_{t=1}^T \left(\log \left(\frac{1}{\rho_t(\phi^*)} \right) + \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{\phi \sim \rho_t} [\bar{D}^\pi(\phi \| M_t)] \right. \\
 1392 & \quad \left. - \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{o \sim M_t(\cdot | \pi)} [\text{KL}(\delta_{\phi^*}, (\nu_t)_\phi(\cdot | \pi, o))] \right) \\
 1393 &= \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{o \sim M_t(\cdot | \pi)} \left[\log \left(\frac{\nu_t(\phi^* | \pi, o)}{\rho_t(\phi^*)} \right) \right] + \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{\phi \sim \rho_t} [\bar{D}^\pi(\phi \| M_t)] \tag{26}
 \end{aligned}$$

1400 where the first equality uses the fact that for any ρ ,

$$1402 \text{Breg}_{D^\pi(\cdot \| \rho)}(\nu, \nu') = \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \nu'_\phi(\cdot | \pi, o))].$$

1403

□

1404
1405 *Proof of Theorem 7.* With abuse of notation, we use p_t, ν_t, ρ_t to denote the p_k, ν_k, ρ_k where k is the
1406 epoch where episode t lies. We start from the estimation term in Eq. (25) using the definition of \bar{D} :

$$\begin{aligned} 1407 \mathbf{Est} &= \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{o \sim M_t(\cdot | \pi)} \left[\log \left(\frac{\nu_t(\phi^* | \pi, o)}{\rho_t(\phi^*)} \right) \right] + \frac{1}{B^2 H} \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{\phi \sim \rho_t} \left[\max_{j \in [N]} \sum_{h=1}^H (\mathbb{E}^{\pi, M_t} [\ell_h(\phi; o_h)_j])^2 \right] \\ 1408 &= \sum_{k=1}^K \mathbb{E}_{\pi \sim p_k} \sum_{t \in \mathcal{I}_k} \mathbb{E}_{o \sim M_t(\cdot | \pi)} \left[\log \left(\frac{\nu_k(\phi^* | \pi, o)}{\rho_k(\phi^*)} \right) \right] \\ 1409 &\quad + \frac{1}{B^2 H} \sum_{k=1}^K \mathbb{E}_{\pi \sim p_k} \mathbb{E}_{\phi \sim \rho_k} \left[\sum_{t \in \mathcal{I}_k} \max_{j \in [N]} \sum_{h=1}^H (\mathbb{E}^{\pi, M_t} [\ell_h(\phi; o_h)_j])^2 \right]. \\ 1410 \\ 1411 \\ 1412 \\ 1413 \\ 1414 \\ 1415 \end{aligned}$$

1416 Applying Lemma 24 with $F_t(\rho) = \text{KL}(\rho, (\nu_k)_\phi(\cdot | \pi_k, o_t))$ for $t \in \mathcal{I}_k$, we get

$$\begin{aligned} 1417 \mathbb{E}[\mathbf{Est}] &\leq \mathbb{E} \left[\sum_{k=1}^K \mathbb{E}_{\pi \sim p_k} \sum_{t \in \mathcal{I}_k} \mathbb{E}_{o \sim M_t(\cdot | \pi)} \left[\log \left(\frac{\nu_k(\phi^* | \pi, o)}{\rho_k(\phi^*)} \right) \right] \right] + O(N \log(|\Phi|) T^{\frac{1}{3}}) \\ 1418 &\quad + \mathbb{E} \left[\sum_{k=1}^K \sum_{t \in \mathcal{I}_k} \left(\log \left(\frac{1}{\nu_k(\phi^* | \pi_k, o_t)} \right) - \text{KL}(\rho_{k+1}, (\nu_k)_\phi(\pi_k, o_t)) - \log \left(\frac{1}{\rho_{k+1}(\phi^*)} \right) \right) \right] \\ 1419 &\leq \mathbb{E} \left[\sum_{k=1}^K \sum_{t \in \mathcal{I}_k} \left(\log \left(\frac{\nu_k(\phi^* | \pi_k, o_t)}{\rho_k(\phi^*)} \right) + \log \left(\frac{\rho_{k+1}(\phi^*)}{\nu_k(\phi^* | \pi_k, o_t)} \right) \right) \right] + O(N \log(|\Phi|) T^{\frac{1}{3}}) \\ 1420 &\leq \tau \log \left(\frac{1}{\rho_1(\phi^*)} \right) + O(N \log(|\Phi|) T^{\frac{1}{3}}) \\ 1421 &= O(N \log(|\Phi|) T^{\frac{1}{3}}). \\ 1422 \\ 1423 \\ 1424 \\ 1425 \\ 1426 \\ 1427 \\ 1428 \\ 1429 \\ 1430 \end{aligned}$$

□

1431
1432 *Proof of Theorem 11.* We start from the estimation term in Eq. (25), using the definition of \bar{D} :

$$\begin{aligned} 1433 \mathbf{Est} &= \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{o \sim M_t(\cdot | \pi)} \left[\log \left(\frac{\nu_t(\phi^* | \pi, o)}{\rho_t(\phi^*)} \right) \right] \\ 1434 &\quad + \frac{1}{B^2 H} \sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{\phi \sim \rho_t} \left[\sum_{h=1}^H \mathbb{E}^{\pi, M_t} [\xi_h(\phi, \phi; o_h) - \xi_h(\mathcal{T}_{M_t} \phi, \phi; o_h)] \right]. \\ 1435 \\ 1436 \\ 1437 \\ 1438 \\ 1439 \\ 1440 \end{aligned}$$

1441 Applying Lemma 27 with $F_t(\rho) = \text{KL}(\rho, (\nu_t)_\phi(\cdot | \pi_t, o_t))$, we get

$$\begin{aligned} 1442 \mathbb{E}[\mathbf{Est}] &\leq \mathbb{E} \left[\sum_{t=1}^T \mathbb{E}_{\pi \sim p_t} \mathbb{E}_{o \sim M_t(\cdot | \pi)} \left[\log \left(\frac{\nu_t(\phi^* | \pi, o)}{\rho_t(\phi^*)} \right) \right] \right] + O(\log^2 |\Phi|) \\ 1443 &\quad + \mathbb{E} \left[\sum_{t=1}^T \left(\log \left(\frac{1}{\nu_t(\phi^* | \pi_t, o_t)} \right) - \text{KL}(\rho_{t+1}, (\nu_t)_\phi(\pi_t, o_t)) - \log \left(\frac{1}{\rho_{t+1}(\phi^*)} \right) \right) \right] \\ 1444 &\leq \mathbb{E} \left[\sum_{t=1}^T \log \left(\frac{\rho_{t+1}(\phi^*)}{\rho_t(\phi^*)} \right) \right] + O(\log^2 |\Phi|) = O(\log^2 |\Phi|). \\ 1445 \\ 1446 \\ 1447 \\ 1448 \\ 1449 \\ 1450 \end{aligned}$$

□

1451
1452
1453
1454
1455
1456
1457

1458 **H RELATING dig-dec TO EXISTING COMPLEXITIES IN THE STOCHASTIC
1459 SETTING**
1460

1461 **H.1 SUPPORTING LEMMAS**
1462

1463 **Lemma 29.** Suppose that (\mathcal{M}, Φ) satisfy [Assumption 5](#) with estimation function $\ell_h(\phi; o_h) =$
1464 $f_\phi(s_h, a_h) - r_h - f_\phi(s_{h+1})$. Furthermore, assume that (\mathcal{M}, Φ) is Bellman complete ([Definition 9](#)).
1465 Then [Assumption 6](#) holds with $\xi_h(\phi', \phi; o_h) = (f_{\phi'}(s_h, a_h) - r_h - f_\phi(s_{h+1}))^2$ and
1466

1467 $\text{dig-dec}_\eta^{\Phi, \overline{D}_{\text{sq}}} \leq \text{dig-dec}_\eta^{\Phi, \overline{D}_{\text{av}}}.$
1468

1469 *Proof.* It suffices to show that $\overline{D}_{\text{av}}^\pi(\phi \| M) \leq \overline{D}_{\text{sq}}^\pi(\phi \| M)$ for any π, ϕ, M :
1470

1471
$$\begin{aligned} \overline{D}_{\text{sq}}^\pi(\phi \| M) &= \frac{1}{B^2 H} \sum_{h=1}^H \mathbb{E}^{\pi, M} [\xi_h(\phi, \phi; o_h) - \xi_h(\mathcal{T}_M \phi, \phi; o_h)] \\ 1472 &= \frac{1}{B^2 H} \sum_{h=1}^H \mathbb{E}^{\pi, M} [(f_\phi(s_h, a_h) - f_{\mathcal{T}_M \phi}(s_h, a_h))^2] \\ 1473 &\quad \text{(by the same calculation as Eq. (23))} \\ 1474 &\geq \frac{1}{B^2 H} \sum_{h=1}^H (\mathbb{E}^{\pi, M} [f_\phi(s_h, a_h) - f_{\mathcal{T}_M \phi}(s_h, a_h)])^2 \quad \text{(Jensen's inequality)} \\ 1475 &= \frac{1}{B^2 H} \sum_{h=1}^H (\mathbb{E}^{\pi, M} [f_\phi(s_h, a_h) - r_h - f_\phi(s_{h+1})])^2 \\ 1476 &= \overline{D}_{\text{av}}(\phi \| M). \end{aligned}$$

1477

□

1478 **H.2 RELATING dig-dec TO o-dec**
1479

1480 *Proof of Theorem 13.* In the stochastic setting, by definition,

1481
$$\begin{aligned} \text{dig-dec}_\eta^{\Phi, \overline{D}} &= \max_{\rho \in \Delta(\Phi)} \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\mathcal{M})} \\ 1482 &\quad \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \left[V_M(\pi_M) - V_M(\pi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \rho)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho} [\overline{D}^\pi(\phi \| M)] \right] \end{aligned}$$

1483

1484 and

1485
$$\text{o-dec}_\eta^{\Phi, \overline{D}} = \max_{\rho \in \Delta(\Phi)} \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\mathcal{M})} \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \rho} \left[V_\phi(\pi_\phi) - V_M(\pi) - \frac{1}{\eta} \overline{D}^\pi(\phi \| M) \right].$$

1486

1487 For any ρ, p, ν , we have

1488
$$\begin{aligned} \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \left[V_M(\pi_M) - V_M(\pi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \rho)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho} [\overline{D}^\pi(\phi \| M)] \right] \\ 1489 &= \underbrace{\mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \rho} [V_M(\pi_M) - V_\phi(\pi_\phi)] - \frac{1}{\eta} \text{KL}(\nu_\phi, \rho)}_{\text{term1}} - \frac{1}{\eta} \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \nu_\phi)] \\ 1490 &\quad + \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \rho} \left[V_\phi(\pi_\phi) - V_M(\pi) - \frac{1}{\eta} \overline{D}^\pi(\phi \| M) \right]. \end{aligned}$$

1491

1492 To bound **term1**, observe that

1493
$$\mathbb{E}_{M \sim \nu} [V_M(\pi_M)] = \mathbb{E}_{\phi \sim \nu} [V_\phi(\pi_\phi)].$$

1494

1512 Thus,
1513

$$\mathbf{term1} = \mathbb{E}_{\phi \sim \nu}[V_\phi(\pi_\phi)] - \mathbb{E}_{\phi \sim \rho}[V_\phi(\pi_\phi)] - \frac{1}{\eta} \text{KL}(\nu_\phi, \rho) \leq \eta. \quad (\text{Lemma 19})$$

1516 This implies
1517

$$\begin{aligned} \text{dig-dec}_\eta^{\Phi, \overline{D}} &\leq \eta + \max_{\rho \in \Delta(\Phi)} \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\mathcal{M})} \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \rho} \left[V_\phi(\pi_\phi) - V_M(\pi) - \frac{1}{\eta} \overline{D}^\pi(\phi \| M) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \nu_\phi)] \right] \\ &\leq \eta + \max_{\rho \in \Delta(\Phi)} \min_{p \in \Delta(\Pi)} \max_{\nu \in \Delta(\mathcal{M})} \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \rho} \left[V_\phi(\pi_\phi) - V_M(\pi) - \frac{1}{\eta} \overline{D}^\pi(\phi \| M) \right] \\ &= \eta + \text{o-dec}_\eta^{\Phi, \overline{D}}. \end{aligned}$$

1525 \square

1526 H.3 RELATING dig-dec TO BILINEAR RANK

1529 Bilinear rank is a complexity measure proposed in [DKL⁺21]. It is defined as the following.

1531 **Assumption 7** (Bilinear class [DKL⁺21]). A model class \mathcal{M} and its associated Φ satisfying [Assumption 1](#) is a bilinear class with rank d if there exists functions $X_h : \Phi \times \mathcal{M} \rightarrow \mathbb{R}^d$ and $W_h : \Phi \times \mathcal{M} \rightarrow \mathbb{R}^d$ for all $h \in [H]$ such that

- 1534 1. For $M \in \phi$, it holds that $W_h(\phi; M) = 0$.
- 1535 2. For any $\phi \in \Phi$ and any $M \in \mathcal{M}$,

$$1537 |V_\phi(\pi_\phi) - V_M(\pi_\phi)| \leq \sum_{h=1}^H |\langle X_h(\phi; M), W_h(\phi; M) \rangle|.$$

- 1540 3. For every policy π , there exists an estimation policy π^{est} . Also, there exists a discrepancy function $\ell_h : \Phi \times \mathcal{O} \rightarrow \mathbb{R}$ such that for any $\phi', \phi \in \Phi$ and any $M \in \mathcal{M}$,

$$1542 |\langle X_h(\phi'; M), W_h(\phi; M) \rangle| = \left| \mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, M} [\ell_h(\phi; o_h)] \right|$$

1544 where $o_h = (s_h, a_h, r_h, s_{h+1})$ and $\pi \circ_h \pi^{\text{est}}$ denotes a policy that plays π for the first $h-1$ steps
1545 and plays policy π^{est} at the h -th step.

1546 We call it an on-policy bilinear class if $\pi^{\text{est}} = \pi$ for all $\pi \in \Pi$, and otherwise an off-policy bilinear
1547 class. As in prior work [DKL⁺21, FKQR21], for the off-policy case, we assume $|\mathcal{A}|$ is finite, and
1548 π^{est} is always $\text{unif}(\mathcal{A})$. We denote by π^α the policy that in every step $h = 1, \dots, H$ chooses π with
1549 probability $1 - \frac{\alpha}{H}$ and chooses π^{est} with probability $\frac{\alpha}{H}$.

1550 **Lemma 30.** Bilinear classes ([Assumption 7](#)) satisfy [Assumption 5](#).

1552 *Proof of Lemma 30.* For any $\phi' \in \Phi$ and any (M, ϕ) such that $M \in \phi$,

$$\begin{aligned} 1554 \left| \mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, M} [\ell_h(\phi; o_h)] \right| &= |\langle X_h(\phi'; M), W_h(\phi; M) \rangle| && (\text{by Assumption 7.3}) \\ 1555 &= 0. && (\text{by Assumption 7.1 and that } M \in \phi) \end{aligned}$$

1557 \square

1559 **Lemma 31.** Let (\mathcal{M}, Φ) be a bilinear class ([Assumption 7](#)). Then

- 1560 • $\text{dig-dec}_\eta^{\Phi, \overline{D}_{\text{av}}} \leq O(B^2 H^2 d \eta)$ in the on-policy case.
- 1561 • $\text{dig-dec}_\eta^{\Phi, \overline{D}_{\text{av}}} \leq O(\sqrt{B^2 H^3 d \eta})$ in the off-policy case.

1564 *Proof of Lemma 31.* We first use [Theorem 13](#) to bound $\text{dig-dec}_\eta^{\Phi, \overline{D}_{\text{av}}}$ by $\text{o-dec}_\eta^{\Phi, \overline{D}_{\text{av}}} + \eta$, and then use
1565 [Lemma 32](#) to relate $\text{o-dec}_\eta^{\Phi, \overline{D}_{\text{av}}}$ to bilinear rank. \square

1566 **Lemma 32** (Proposition 2.2 of [FGQ⁺23]). *Let (\mathcal{M}, Φ) be a bilinear class (Assumption 7). Then*

1567

- 1568 • $\text{o-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} \leq O(B^2 H^2 d \eta)$ in the on-policy case;
- 1569 • $\text{o-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} \leq O(\sqrt{B^2 H^3 d |\mathcal{A}| \eta})$ in the off-policy case.⁴

1570

1571 H.4 RELATING dig-dec TO BELLMAN-ELUDER DIMENSION

1573 **Lemma 33.** *Let $\ell_h(\phi; o_h) = f_{\phi}(s_h, a_h) - r_h - f_{\phi}(s_{h+1})$, and let \overline{D}_{av} be defined with respect to*

1574 *this ℓ_h . Then*

1576

- 1577 • *If the Q -type Bellman-eluder dimension of (\mathcal{M}, Φ) is bounded by d , then $\text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} \leq O(H d \eta)$.*
- 1578 • *If the V -type Bellman-eluder dimension of (\mathcal{M}, Φ) is bounded by d , then $\text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} \leq O(H \sqrt{d |\mathcal{A}| \eta})$.*

1580 *Proof.* We first consider the Q -type setting. Define $g_h(\phi', \phi; M) = \mathbb{E}^{\pi_{\phi'}, M} [\ell_h(\phi; o_h)]$. For a fixed

1581 M , we have by the AM-GM inequality

1582

$$\mathbb{E}_{\phi \sim \rho} [g_h(\phi, \phi; M)] \leq \frac{\lambda}{4} \cdot \mathbb{E}_{\phi \sim \rho} \left[\frac{g_h(\phi, \phi; M)^2}{\mathbb{E}_{\phi' \sim \rho} [g_h(\phi', \phi; M)^2]} \right] + \frac{1}{\lambda} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{\phi' \sim \rho} [g_h(\phi', \phi; M)^2]$$

1583 for any $\lambda > 0$, implying that

1584

$$\begin{aligned} \text{o-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} \\ &= \max_{\rho} \min_p \max_{\nu} \mathbb{E}_{\pi \sim p} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[V_{\phi}(\pi_{\phi}) - V_M(\pi) - \frac{1}{\eta B^2 H} \sum_{h=1}^H (\mathbb{E}^{\pi, M} [\ell_h(\phi; o_h)])^2 \right] \\ &\leq \max_{\rho} \max_{\nu} \mathbb{E}_{\phi' \sim \rho} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[V_{\phi}(\pi_{\phi}) - V_M(\pi_{\phi}) - \frac{1}{\eta B^2 H} \sum_{h=1}^H (\mathbb{E}^{\pi_{\phi'}, M} [\ell_h(\phi; o_h)])^2 \right] \\ &= \max_{\rho} \max_{\nu} \mathbb{E}_{\phi' \sim \rho} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[\sum_{h=1}^H g_h(\phi, \phi; M) - \frac{1}{\eta B^2 H} \sum_{h=1}^H g_h(\phi', \phi, M)^2 \right] \\ &\leq \frac{\eta B^2 H}{4} \max_{\rho} \max_{\nu} \sum_{h=1}^H \mathbb{E}_{\phi \sim \rho} \left[\frac{g_h(\phi, \phi; M)^2}{\mathbb{E}_{\phi' \sim \rho} [g_h(\phi', \phi; M)^2]} \right]. \end{aligned}$$

1601 The rest of the proof goes through standard steps. First, bound $\mathbb{E}_{\phi \sim \rho} \left[\frac{g_h(\phi, \phi; M)^2}{\mathbb{E}_{\phi' \sim \rho} [g_h(\phi', \phi; M)^2]} \right]$ by the

1602 *disagreement coefficient* of the function class $\mathcal{F}_M = \{f_{\phi} - \mathcal{T}_M f_{\phi} : \phi \in \Phi\}$ where $(\mathcal{T}_M f)(s, a) \triangleq$

1603 $R(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} [f(s')]$ under the probability measure $\mathbb{E}_{\phi \sim \rho} [d_{\phi}^{\pi_{\phi}, M}]$ (Lemma E.2 of [FKQR21]).

1604 Taking a maximum over ρ , this can be further bounded by the *distributional eluder dimension* of

1605 \mathcal{F}_M over the probability measure space $\mathcal{D}_{\Phi, M} = \{d_h^{\pi_{\phi}, M} : \phi \in \Phi\}$ (Lemma 6.1 of [FKQR21] and

1606 Theorem 2.10 of [FRSLX21]), which is equivalent to the *Q -type Bellman-eluder dimension* in M

1607 defined in [JLM21]. This then allows us to bound $\text{o-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} \leq \eta d B^2 H^2$, where d is the maximum

1608 Q -type Bellman-eluder dimension over all possible M .

1609 Next, we consider the V -type setting. Define $g_h(\phi', \phi; M) = \mathbb{E}^{\pi_{\phi'} \circ h \pi_{\phi}, M} [\ell_h(\phi; o_h)]$. For a fixed M ,

1610 we have by the AM-GM inequality

1611

$$\mathbb{E}_{\phi \sim \rho} [g_h(\phi, \phi; M)] \leq \frac{\lambda}{4} \cdot \mathbb{E}_{\phi \sim \rho} \left[\frac{g_h(\phi, \phi; M)^2}{\mathbb{E}_{\phi' \sim \rho} [g_h(\phi', \phi; M)^2]} \right] + \frac{1}{\lambda} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{\phi' \sim \rho} [g_h(\phi', \phi; M)^2]$$

1612

1613 ⁴In [FGQ⁺23], the bounds on $\text{o-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}}$ have different scaling of B, H than ours. This is because their

1614 average estimation error does not involve the normalization factor $\frac{1}{B^2 H}$ like ours (Theorem 7). We normalize

1615 \overline{D}_{av} to keep the two information gain terms in Dig-DEC of the same unit. Equivalently, one can view our η as a

1616 scaled version of theirs.

1620 for any $\lambda > 0$. Below, let π^α be the policy that in every step h , with probability $1 - \frac{\alpha}{H}$ executes
1621 policy π , and with probability $\frac{\alpha}{H}$ executes $\text{unif}(\mathcal{A})$. Then we have
1622

$$\begin{aligned}
1623 \quad & \text{o-dec}_\eta^{\Phi, \overline{D}_{\text{av}}} \\
1624 \quad & = \max_\rho \min_p \max_\nu \mathbb{E}_{\pi \sim p} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[V_\phi(\pi_\phi) - V_M(\pi) - \frac{1}{\eta B^2 H} \sum_{h=1}^H (\mathbb{E}^{\pi, M} [\ell_h(\phi; o_h)])^2 \right] \\
1625 \quad & \leq \max_\rho \max_\nu \mathbb{E}_{\phi' \sim \rho} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[V_\phi(\pi_\phi) - V_M(\pi_\phi^\alpha) - \frac{1}{\eta B^2 H} \sum_{h=1}^H (\mathbb{E}^{\pi_{\phi'}^\alpha, M} [\ell_h(\phi; o_h)])^2 \right] \\
1626 \quad & \leq \alpha + \max_\rho \max_\nu \mathbb{E}_{\phi' \sim \rho} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[V_\phi(\pi_\phi) - V_M(\pi_\phi) - \frac{1}{\eta B^2 H} \cdot \frac{\alpha}{3H|\mathcal{A}|} \sum_{h=1}^H (\mathbb{E}^{\pi_{\phi'} \circ_h \pi_\phi, M} [\ell_h(\phi; o_h)])^2 \right] \\
1627 \quad & = \alpha + \max_\rho \max_\nu \mathbb{E}_{\phi' \sim \rho} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[\sum_{h=1}^H g_h(\phi, \phi; M) - \frac{\alpha}{3\eta B^2 H^2 |\mathcal{A}|} \sum_{h=1}^H g_\phi(\phi', \phi, M)^2 \right] \\
1628 \quad & \leq \alpha + \frac{3\eta B^2 H^2 |\mathcal{A}|}{4\alpha} \max_\rho \max_\nu \sum_{h=1}^H \mathbb{E}_{\phi \sim \rho} \left[\frac{g_h(\phi, \phi; M)^2}{\mathbb{E}_{\phi' \sim \rho} [g_h(\phi', \phi; M)^2]} \right].
\end{aligned}$$

1629 where the second inequality is because with probability at least $(1 - \frac{\alpha}{H})^{h-1} \frac{\alpha}{H|\mathcal{A}|} \geq \frac{\alpha}{3H|\mathcal{A}|}$, the
1630 policy $\pi_{\phi'}^\alpha$ chooses the same actions in steps $1, \dots, h$ as the policy $\pi_{\phi'} \circ_h \pi_\phi$. Similar to the Q -type
1631 analysis, the last expression can be related to V -type Bellman-eluder dimension (notice that the
1632 definition of g_h is different for Q -type and V -type). This gives $\text{o-dec}_\eta^{\Phi, \overline{D}_{\text{av}}} \lesssim \alpha + \frac{B^2 H^3 d |\mathcal{A}| \eta}{\alpha} = O(\sqrt{B^2 H^3 d |\mathcal{A}| \eta})$ by choosing the optimal α .
1633

1634 Finally, using [Theorem 13](#) finishes the proof. \square
1635

1636 H.5 RELATING dig-dec TO COVERABILITY UNDER BELLMAN COMPLETENESS

1637 **Lemma 34.** *Let (\mathcal{M}, Φ) be Bellman complete ([Definition 9](#)), and suppose the coverability of every
1638 model in \mathcal{M} is bounded by d . Then it holds that $\text{o-dec}_\eta^{\Phi, \overline{D}_{\text{sq}}} \leq \eta d H$ where \overline{D}_{sq} is defined with*

$$1639 \quad \xi_h(\phi', \phi; o_h) = (f_{\phi'}(s_h, a_h) - r_h - f_\phi(s_{h+1}))^2.$$

1640 *Proof.* For $M = (P, R)$, define

$$\begin{aligned}
1641 \quad g_h(s, a, \phi; M) &= f_\phi(s, a) - R(s, a) - \mathbb{E}_{s' \sim P(\cdot | s, a)} [f_\phi(s')] = f_\phi(s, a) - f_{\mathcal{T}_M \phi}(s, a), \\
1642 \quad d_h^{\rho, M}(s, a) &= \mathbb{E}_{\phi \sim \rho} [d_h^{\pi_\phi, M}(s, a)].
\end{aligned}$$

1643 By the AM-GM inequality, for any $\lambda > 0$,

$$\begin{aligned}
1644 \quad & \mathbb{E}_{\phi \sim \rho} \mathbb{E}^{\pi_\phi, M} [g_h(s_h, a_h, \phi; M)] \\
1645 \quad & = \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{(s, a) \sim d_h^{\pi_\phi, M}} [g_h(s, a, \phi; M)] \\
1646 \quad & = \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{(s, a) \sim d_h^{\rho, M}} \left[\frac{d_h^{\pi_\phi, M}(s, a)}{d_h^{\rho, M}(s, a)} g_h(s, a, \phi; M) \right] \\
1647 \quad & \leq \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{(s, a) \sim d_h^{\rho, M}} \left[\frac{\lambda}{4} \frac{d_h^{\pi_\phi, M}(s, a)^2}{d_h^{\rho, M}(s, a)^2} + \frac{1}{\lambda} g_h(s, a, \phi; M)^2 \right] \\
1648 \quad & = \frac{\lambda}{4} \mathbb{E}_{\phi \sim \rho} \left[\sum_{s, a} \frac{d_h^{\pi_\phi, M}(s, a)^2}{d_h^{\rho, M}(s, a)} \right] + \frac{1}{\lambda} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{\phi' \sim \rho} \mathbb{E}^{\pi_{\phi'}, M} [g_h(s_h, a_h, \phi, M)^2]. \quad (27)
\end{aligned}$$

1649 Note that

$$\begin{aligned}
1650 \quad & \sum_{h=1}^H \mathbb{E}_{\phi \sim \rho} \mathbb{E}^{\pi_\phi, M} [g_h(s_h, a_h, \phi; M)] = \mathbb{E}_{\phi \sim \rho} [V_\phi(\pi_\phi) - V_M(\pi_\phi)],
\end{aligned}$$

1674
1675

and by the same calculation as Eq. (23), we have

1676
1677
1678

$$\frac{1}{B^2 H} \sum_{h=1}^H \mathbb{E}^{\pi_{\phi'}, M} [g_h(s_h, a_h, \phi, M)^2] = \frac{1}{B^2 H} \sum_{h=1}^H \mathbb{E}^{\pi_{\phi'}, M} [\xi_h(\phi', \phi; o_h) - \xi_h(\mathcal{T}_M \phi, \phi; o_h)] = \overline{D}_{\text{sq}}^{\pi_{\phi'}}(\phi \| M).$$

1679

By the definition of o-dec and combining the inequalities above,

1680

o-dec $_{\eta}^{\Phi, \overline{D}_{\text{sq}}}$

1682

$$= \max_{\rho} \min_p \max_{\nu} \mathbb{E}_{\pi \sim p} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[V_{\phi}(\pi_{\phi}) - V_M(\pi) - \frac{1}{\eta} \overline{D}_{\text{sq}}^{\pi}(\phi \| M) \right]$$

1684

$$\leq \max_{\rho} \max_{\nu} \mathbb{E}_{\phi' \sim \rho} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[V_{\phi}(\pi_{\phi}) - V_M(\pi_{\phi}) - \frac{1}{\eta} \overline{D}_{\text{sq}}^{\pi_{\phi'}}(\phi \| M) \right]$$

1686

$$= \max_{\rho} \max_{\nu} \mathbb{E}_{\phi' \sim \rho} \mathbb{E}_{\phi \sim \rho} \mathbb{E}_{M \sim \nu} \left[\sum_{h=1}^H \mathbb{E}^{\pi_{\phi}, M} [g_h(s_h, a_h, \phi; M)] - \frac{1}{\eta B^2 H} \sum_{h=1}^H \mathbb{E}^{\pi_{\phi'}, M} [g_h(s_h, a_h, \phi, M)^2] \right]$$

1688

$$\leq \frac{\eta B^2 H}{4} \max_{\rho} \max_{\nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \rho} \left[\sum_{h=1}^H \sum_{s,a} \frac{d_h^{\pi_{\phi}, P}(s, a)^2}{d_h^{\rho, P}(s, a)} \right]. \quad (\text{by Eq. (27)})$$

1692

1693
1694Let μ_h^P be any occupancy measure over layer h that depends on P . Then

1695

$$\begin{aligned} \mathbb{E}_{\phi \sim \rho} \left[\sum_{s,a} \frac{d_h^{\pi_{\phi}, P}(s, a)^2}{d_h^{\rho, P}(s, a)} \right] &= \mathbb{E}_{\phi \sim \rho} \left[\sum_{s,a} \frac{d_h^{\pi_{\phi}, P}(s, a) \mu_h^P(s, a)}{d_h^{\rho, P}(s, a)} \cdot \frac{d_h^{\pi_{\phi}, P}(s, a)}{\mu_h^P(s, a)} \right] \\ &\leq \mathbb{E}_{\phi \sim \rho} \left[\sum_{s,a} \frac{d_h^{\pi_{\phi}, P}(s, a) \mu_h^P(s, a)}{d_h^{\rho, P}(s, a)} \right] \cdot \max_{s,a,\pi} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)} \\ &= \sum_{s,a} \mu_h^P(s, a) \cdot \max_{s,a,\pi} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)} \\ &= \max_{s,a,\pi} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)}. \end{aligned}$$

1707

We let μ_h^P be the minimizer of $\max_{s,a,\pi} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)}$. The coverability in MDP M is defined as

1708

min $_{\mu} \max_{s,a,\pi,h} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)}$ [XFB⁺23]. Combining the inequalities proves o-dec $_{\eta}^{\Phi, \overline{D}_{\text{sq}}} \leq \eta dB^2 H^2$.

□

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728 **I RELATING dig-dec TO EXISTING COMPLEXITIES IN THE HYBRID SETTING**
 1729

1730 **I.1 SUPPORTING LEMMAS**
 1731

1732 **Lemma 35.** *Let $g : \Phi \rightarrow [0, G]$. For $\nu, \rho \in \Delta(\Phi)$, we have*

$$1734 \quad \mathbb{E}_{\phi \sim \rho}[g(\phi)] \leq 3\mathbb{E}_{\phi \sim \nu}[g(\phi)] + 2G \cdot D_{\text{H}}^2(\nu, \rho),$$

1735 where D_{H}^2 is the Hellinger distance.
 1736

1737 *Proof.*

$$\begin{aligned} 1740 \quad |\mathbb{E}_{\phi \sim \rho}[g(\phi)] - \mathbb{E}_{\phi \sim \nu}[g(\phi)]| &= \left| \sum_{\phi} (\rho(\phi) - \nu(\phi))g(\phi) \right| \\ 1741 &\leq \sqrt{\sum_{\phi} (\rho(\phi) + \nu(\phi))g(\phi)^2} \sqrt{\sum_{\phi} \frac{(\rho(\phi) - \nu(\phi))^2}{\rho(\phi) + \nu(\phi)}} \\ 1744 &\leq \frac{1}{2}\mathbb{E}_{\phi \sim \rho}[g(\phi)] + \frac{1}{2}\mathbb{E}_{\phi \sim \nu}[g(\phi)] + \frac{G}{2}D_{\Delta}(\nu, \rho), \end{aligned} \quad (28)$$

1748 where

$$1750 \quad D_{\Delta}(\nu, \rho) = \sum_{\phi} \frac{(\rho(\phi) - \nu(\phi))^2}{\rho(\phi) + \nu(\phi)}$$

1753 is the triangular discrimination. We can further bound it as

$$1754 \quad D_{\Delta}(\nu, \rho) = \sum_{\phi} \frac{(\rho(\phi) - \nu(\phi))^2}{\rho(\phi) + \nu(\phi)} = \sum_{\phi} \frac{(\sqrt{\rho(\phi)} - \sqrt{\nu(\phi)})^2(\sqrt{\rho(\phi)} + \sqrt{\nu(\phi)})^2}{\rho(\phi) + \nu(\phi)} \leq 2D_{\text{H}}^2(\nu, \rho).$$

1757 Using this in Eq. (28) and rearranging gives the desired inequality. \square
 1758

1759 **Lemma 36.** *Suppose that (\mathcal{M}, Φ) satisfy Assumption 5 with estimation function $\ell_h(\phi; o_h)_j =$
 1760 $f_{\phi}(s_h, a_h; \mathbf{e}_j) - \varphi(s_h, a_h)^{\top} \mathbf{e}_j - f_{\phi}(s_{h+1}; \mathbf{e}_j)$. Furthermore, assume that (\mathcal{M}, Φ) is Bellman complete (Definition 10). Then Assumption 6 holds with $\xi_h(\phi', \phi; o_h) = \sum_{j=1}^d (f_{\phi'}(s_h, a_h; \mathbf{e}_j) -$
 1762 $\varphi(s_h, a_h)^{\top} \mathbf{e}_j - f_{\phi}(s_{h+1}; \mathbf{e}_j))^2$ and*

$$1764 \quad \text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{sq}}} \leq \text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}}.$$

1766 *Proof.* The proof is similar to that in the stochastic setting (Lemma 29). \square
 1767

1768 **Lemma 37.** *Under Assumption 3 and Assumption 4, if $P, P' \in \phi$, then they share the same $d \times H$
 1769 dimensional vector:*

$$1771 \quad \left(\mathbb{E}^{\pi_{\phi}, P} [\varphi(s_h, a_h)] \right)_{h \in [H]} = \left(\mathbb{E}^{\pi_{\phi}, P'} [\varphi(s_h, a_h)] \right)_{h \in [H]}$$

1773 *Proof.* Given a linear reward with known feature (Assumption 4), we have $R(s_h, a_h) =$
 1775 $\varphi(s_h, a_h)^{\top} \theta_h(R)$ where φ is a known feature. For any P, R, π , we have

$$1777 \quad V_{P, R}(\pi) = \sum_{h=1}^H \mathbb{E}^{\pi, P} [\varphi(s_h, a_h)^{\top} \theta_h(R)].$$

1779 Fix a ϕ and consider $P, P' \in \phi$. By Assumption 4, $V_{P, R}(\pi_{\phi}) = V_{P', R}(\pi_{\phi})$ for any R . For
 1780 each h , by instantiating $\theta_h(R)$ as all basis vectors in the d dimensional space, we prove that
 1781 $\mathbb{E}^{\pi_{\phi}, P} [\varphi(s_h, a_h)_j] = \mathbb{E}^{\pi_{\phi}, P'} [\varphi(s_h, a_h)_j]$ for any $h \in [H]$ and any $j \in [d]$. \square

1782
1783 **Definition 38.** We define several quantities that will be reused in [Appendix I.2](#) for hybrid bilinear
1784 classes and [Appendix I.3](#) for coverable MDPs. We fix $\alpha \in [0, 1]$, and define π^α as the policy that in
1785 every step $h = 1, 2, \dots, H$ chooses π with probability $1 - \frac{\alpha}{H}$ and chooses $\text{unif}(\mathcal{A})$ with probability
1786 $\frac{\alpha}{H}$. We also fix \bar{D} , which will be instantiated as \bar{D}_{av} and \bar{D}_{sq} in later subsections.
1787

With them, we define (with $M = (P, R)$)

$$\begin{aligned} \mathbf{TermA}_\eta^{\Phi, \bar{D}}(\nu) &= \alpha + \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \left[V_{\phi, R}(\pi_\phi) - V_M(\pi_\phi) - \frac{1}{9\eta} \bar{D}^{\pi_{\phi'}^\alpha}(\phi \| M) \right] \\ \mathbf{TermB}_\eta^{\Phi, \bar{D}}(\nu) &= 6\sqrt{dH} \sqrt{3\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[(V_{\phi, R}(\pi_\phi) - V_{P, R}(\pi_\phi))^2 \right]} - \frac{2}{9\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[\bar{D}^{\pi_{\phi'}^\alpha}(\phi \| M) \right] \\ \mathbf{TermC}_\eta^{\Phi, \bar{D}}(\nu) &= \mathbb{E}_{(M, \pi^*) \sim \nu} \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \\ &\quad \left[V_M(\pi^*) - V_{\phi, R}(\pi_\phi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi_{\phi'}^\alpha)} [\text{KL}(\nu_\phi(\cdot | \pi_{\phi'}^\alpha, o), \nu_\phi)] - \frac{2}{9\eta} \bar{D}^{\pi_{\phi'}^\alpha}(\phi \| M) \right] \end{aligned}$$

Lemma 39.

$$\min_p \max_\nu \text{AIR}_\eta^{\Phi, D}(p, \nu; \rho) \leq \max_\nu \mathbf{TermA}_\eta^{\Phi, \bar{D}}(\nu) + \max_\nu \mathbf{TermC}_\eta^{\Phi, \bar{D}}(\nu).$$

Proof.

$$\begin{aligned} \text{AIR}_\eta^{\Phi, D}(p, \nu; \rho) &= \mathbb{E}_{\pi \sim p} \mathbb{E}_{(M, \pi^*) \sim \nu} \left[V_M(\pi^*) - V_M(\pi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \rho)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho} [\bar{D}^\pi(\phi \| M)] \right] \\ &= \mathbb{E}_{\pi \sim p} \mathbb{E}_{(M, \pi^*) \sim \nu} \left[V_M(\pi^*) - V_M(\pi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \nu_\phi)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho} [\bar{D}^\pi(\phi \| M)] - \frac{1}{\eta} \text{KL}(\nu_\phi, \rho) \right] \\ &\leq \mathbb{E}_{\pi \sim p} \mathbb{E}_{(M, \pi^*) \sim \nu} \left[V_M(\pi^*) - V_M(\pi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \nu_\phi)] \right. \\ &\quad \left. - \frac{1}{3\eta} \mathbb{E}_{\phi \sim \nu} [\bar{D}^\pi(\phi \| M)] + \frac{2}{3\eta} D_H^2(\nu_\phi, \rho) - \frac{1}{\eta} \text{KL}(\nu_\phi, \rho) \right] \quad (\text{Lemma 35}) \\ &\leq \mathbb{E}_{\pi \sim p} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[V_{\phi, R}(\pi_\phi) - V_M(\pi) - \frac{1}{9\eta} \bar{D}^\pi(\phi \| M) \right] \\ &\quad + \mathbb{E}_{\pi \sim p} \mathbb{E}_{(M, \pi^*) \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[V_M(\pi^*) - V_{\phi, R}(\pi_\phi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi)} [\text{KL}(\nu_\phi(\cdot | \pi, o), \nu_\phi)] - \frac{2}{9\eta} \bar{D}^\pi(\phi \| M) \right]. \end{aligned}$$

We have $\min_p \max_\nu \text{AIR}_\eta^{\Phi, D}(p, \nu; \rho) = \max_\nu \min_p \text{AIR}_\eta^{\Phi, D}(p, \nu; \rho)$ because AIR is convex in p and concave in ν . After the min-max swap, for each ν , we choose p to be such that $\pi \sim p$ is equivalent to first sampling $\phi' \sim \nu$ and then setting $\pi = \pi_{\phi'}^\alpha$. This gives

$$\begin{aligned} \min_p \max_\nu \text{AIR}_\eta^{\Phi, D}(p, \nu; \rho) &\leq \max_\nu \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[V_{\phi, R}(\pi_\phi) - V_M(\pi_{\phi'}^\alpha) - \frac{1}{9\eta} \bar{D}^{\pi_{\phi'}^\alpha}(\phi \| M) \right] \\ &\quad + \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{(M, \pi^*) \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[V_M(\pi^*) - V_{\phi, R}(\pi_\phi) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot | \pi_{\phi'}^\alpha)} [\text{KL}(\nu_\phi(\cdot | \pi_{\phi'}^\alpha, o), \nu_\phi)] - \frac{2}{9\eta} \bar{D}^{\pi_{\phi'}^\alpha}(\phi \| M) \right] \\ &\leq \max_\nu \mathbf{TermA}_\eta^{\Phi, \bar{D}}(\nu) + \max_\nu \mathbf{TermC}_\eta^{\Phi, \bar{D}}(\nu). \end{aligned}$$

□

Lemma 40.

$$\mathbf{TermC}_\eta^{\Phi, \bar{D}}(\nu) \leq O(\eta dH + \alpha) + \mathbf{TermB}_\eta^{\Phi, \bar{D}}(\nu).$$

Proof. By [Lemma 37](#) we can define with any $P \in \phi$,

$$X_h(\phi) = \mathbb{E}^{\pi_\phi, P} [\varphi(s_h, a_h)].$$

1836 Furthermore, define

1837

$$1838 \quad X(\phi) = (X_h(\phi))_{h \in [H]} \in \mathbb{R}^{dH},$$

$$1839 \quad \theta(R) = (\theta_h(R))_{h \in [H]} \in \mathbb{R}^{dH}.$$

1840

1841 With this, we have

$$1842 \quad \mathbb{E}_{(M, \pi^*) \sim \nu} \mathbb{E}_{\phi \sim \nu} [V_M(\pi^*) - V_{\phi, R}(\pi_\phi)]$$

$$1843 \quad = \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{R \sim \nu(\cdot | \phi)} [V_{\phi, R}(\pi_\phi)] - \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{R \sim \nu} [V_{\phi, R}(\pi_\phi)]$$

$$1844 \quad = \mathbb{E}_{\phi \sim \nu} [X(\phi)^\top (\mathbb{E}_{R \sim \nu(\cdot | \phi)} [\theta(R)] - \mathbb{E}_{R \sim \nu} [\theta(R)])]$$

$$1845 \quad \leq \mathbb{E}_{\phi \sim \nu} \left[\|X(\phi)\|_{\Sigma_\nu^{-1}} \|\mathbb{E}_{R \sim \nu(\cdot | \phi)} [\theta(R)] - \mathbb{E}_{R \sim \nu} [\theta(R)]\|_{\Sigma_\nu} \right] \quad (\Sigma_\nu = \mathbb{E}_{\phi \sim \nu} [X(\phi) X(\phi)^\top])$$

$$1846 \quad \leq \sqrt{\mathbb{E}_{\phi \sim \nu} \left[\|X(\phi)\|_{\Sigma_\nu^{-1}}^2 \right]} \sqrt{\mathbb{E}_{\phi \sim \nu} \left[\|\mathbb{E}_{R \sim \nu(\cdot | \phi)} [\theta(R)] - \mathbb{E}_{R \sim \nu} [\theta(R)]\|_{\Sigma_\nu}^2 \right]}$$

$$1847 \quad = \sqrt{dH} \sqrt{\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(X(\phi')^\top \mathbb{E}_{R \sim \nu(\cdot | \phi)} [\theta(R)] - X(\phi')^\top \mathbb{E}_{R \sim \nu} [\theta(R)])^2 \right]}$$

$$1848 \quad \leq 3\sqrt{dH} \underbrace{\sqrt{\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(\mathbb{E}_{(P, R) \sim \nu(\cdot | \phi)} [V_{P, R}(\pi_{\phi'})] - \mathbb{E}_{(P, R) \sim \nu} [V_{P, R}(\pi_{\phi'})])^2 \right]}}}_{\text{Div1}}$$

$$1849 \quad + 3\sqrt{dH} \underbrace{\sqrt{\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(X(\phi')^\top \mathbb{E}_{R \sim \nu(\cdot | \phi)} [\theta(R)] - \mathbb{E}_{(P, R) \sim \nu(\cdot | \phi)} [V_{P, R}(\pi_{\phi'})])^2 \right]}}}_{\text{Div2}}$$

$$1850 \quad + 3\sqrt{dH} \underbrace{\sqrt{\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(X(\phi')^\top \mathbb{E}_{R \sim \nu} [\theta(R)] - \mathbb{E}_{(P, R) \sim \nu} [V_{P, R}(\pi_{\phi'})])^2 \right]}}}_{\text{Div3}}. \quad (29)$$

1853

1856 For any observation $o = (s_1, a_1, r_1, \dots, s_H, a_H, r_H)$, let $r(o) = \sum_{h=1}^H r_h$, we have

1857

$$1858 \quad \mathbf{Div1} = \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(\mathbb{E}_{(P, R) \sim \nu(\cdot | \phi)} [V_{P, R}(\pi_{\phi'})] - \mathbb{E}_{(P, R) \sim \nu} [V_{P, R}(\pi_{\phi'})])^2 \right]$$

$$1859 \quad \leq 2\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(\mathbb{E}_{(P, R) \sim \nu(\cdot | \phi)} [V_{P, R}(\pi_{\phi'}^\alpha)] - \mathbb{E}_{(P, R) \sim \nu} [V_{P, R}(\pi_{\phi'}^\alpha)])^2 \right] + 8\alpha^2$$

$$1860 \quad = 2\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[\left(\mathbb{E}_{(P, R) \sim \nu(\cdot | \phi)} \left[\mathbb{E}_{o \sim M_{P, R}(\cdot | \pi_{\phi'}^\alpha)} [r(o)] \right] - \mathbb{E}_{(P, R) \sim \nu} \left[\mathbb{E}_{o \sim M_{P, R}(\cdot | \pi_{\phi'}^\alpha)} [r(o)] \right] \right)^2 \right] + 8\alpha^2$$

$$1861 \quad = 2\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[\left(\mathbb{E}_{o \sim \nu(\cdot | \phi, \pi_{\phi'}^\alpha)} [r(o)] - \mathbb{E}_{o \sim \nu(\cdot | \pi_{\phi'}^\alpha)} [r(o)] \right)^2 \right] + 8\alpha^2$$

$$1862 \quad \leq 2\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[\left(\sum_o |\nu(o | \phi, \pi_{\phi'}^\alpha) - \nu(o | \pi_{\phi'}^\alpha)| \right)^2 \right] + 8\alpha^2$$

$$1863 \quad = 8\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} [D_{\text{TV}}^2(\nu_{\phi}(\cdot | \phi, \pi_{\phi'}^\alpha), \nu_{\phi}(\cdot | \pi_{\phi'}^\alpha))] + 8\alpha^2$$

$$1864 \quad \leq 8\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} [\text{KL}(\nu_{\phi}(\cdot | \phi, \pi_{\phi'}^\alpha), \nu_{\phi}(\cdot | \pi_{\phi'}^\alpha))] + 8\alpha^2$$

$$1865 \quad = 8\mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi_{\phi'}^\alpha)} [\text{KL}(\nu_{\phi}(\cdot | \pi_{\phi'}^\alpha, o), \nu_{\phi})] + 8\alpha^2.$$

1866

On the other hand

1867

$$1868 \quad \mathbf{Div2} = \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(X(\phi')^\top \mathbb{E}_{R \sim \nu(\cdot | \phi)} [\theta(R)] - \mathbb{E}_{(P, R) \sim \nu(\cdot | \phi)} [V_{P, R}(\pi_{\phi'})])^2 \right]$$

$$1869 \quad = \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(\mathbb{E}_{R \sim \nu(\cdot | \phi)} [V_{\phi', R}(\pi_{\phi'})] - \mathbb{E}_{(P, R) \sim \nu(\cdot | \phi)} [V_{P, R}(\pi_{\phi'})])^2 \right]$$

$$1870 \quad \leq \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu(\cdot | \phi)} [(V_{\phi', R}(\pi_{\phi'})) - V_{P, R}(\pi_{\phi'})]^2$$

$$1871 \quad = \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{(P, R) \sim \nu} [(V_{\phi', R}(\pi_{\phi'})) - V_{P, R}(\pi_{\phi'})]^2$$

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1890 Similarly,

$$\begin{aligned}
 \mathbf{Div3} &= \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(X(\phi')^\top \mathbb{E}_{R \sim \nu} [\theta(R)] - \mathbb{E}_{(P, R) \sim \nu} [V_{P, R}(\pi_{\phi'})])^2 \right] \\
 &= \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[(\mathbb{E}_{R \sim \nu} [V_{\phi', R}(\pi_{\phi'})] - \mathbb{E}_{(P, R) \sim \nu} [V_{P, R}(\pi_{\phi'})])^2 \right] \\
 &\leq \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[(V_{\phi', R}(\pi_{\phi'}) - V_{P, R}(\pi_{\phi'}))^2 \right]
 \end{aligned}$$

1898 Combining these equations back to Eq. (29) and using the definition of $\mathbf{TermC}_\eta^{\Phi, \bar{D}}(\nu)$, we have

$$\begin{aligned}
 \mathbf{TermC}_\eta^{\Phi, \bar{D}}(\nu) &\leq 3 \sqrt{8dH \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi_{\phi'}^\alpha)} [\mathbf{KL}(\nu_{\phi'}(\cdot | \pi_{\phi'}^\alpha, o), \nu_{\phi})]} + 8\alpha^2 \\
 &\quad + 6\sqrt{dH} \sqrt{3 \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} [(V_{\phi, R}(\pi_{\phi}) - V_{P, R}(\pi_{\phi}))^2]} \\
 &\quad - \frac{1}{\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{o \sim M(\cdot | \pi_{\phi'}^\alpha)} [\mathbf{KL}(\nu_{\phi'}(\cdot | \pi_{\phi'}^\alpha, o), \nu_{\phi})] - \frac{2}{9\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} [\bar{D}^{\pi_{\phi'}^\alpha}(\phi \| M)] \\
 &\leq O(\eta dH + \alpha) + 6\sqrt{dH} \sqrt{3 \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} [(V_{\phi, R}(\pi_{\phi}) - V_{P, R}(\pi_{\phi}))^2]} - \frac{2}{9\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} [\bar{D}^{\pi_{\phi'}^\alpha}(\phi \| M)] \\
 &= O(\eta dH + \alpha) + \mathbf{TermB}_\eta^{\Phi, \bar{D}}(\nu).
 \end{aligned}$$

1913 \square

1915 I.2 RELATING dig-dec TO HYBRID BILINEAR RANK

1917 **Assumption 8** (Hybrid bilinear class [LWZ25]). A model class \mathcal{M} and its associated Φ satisfying
 1918 **Assumption 3** is a hybrid bilinear class with rank d if there exists functions $X_h : \Phi \times \mathcal{P} \rightarrow \mathbb{R}^d$ and
 1919 $W_h : \Phi \times \mathcal{R} \times \mathcal{P} \rightarrow \mathbb{R}^d$ for all $h \in [H]$ such that

- 1920 1. For any $M = (P, R) \in \mathcal{M}$, it holds that $W_h(\phi, \tilde{R}; P) = 0$ for any $\tilde{R} \in \mathcal{R}$.
- 1921 2. For any $\phi \in \Phi$ and any $(P, R) \in \mathcal{M}$,

$$1923 |V_{\phi, R}(\pi_{\phi}) - V_{P, R}(\pi_{\phi})| \leq \sum_{h=1}^H |\langle X_h(\phi; P), W_h(\phi, R; P) \rangle|.$$

- 1926 3. For every policy π , there exists an estimation policy π^{est} . Also, there exists a discrepancy function
 $\ell_h : \Phi \times \mathcal{R} \times \mathcal{O} \rightarrow \mathbb{R}$ such that for any $\phi', \phi \in \Phi$ and any $M = (P, R) \in \mathcal{M}$,

$$1929 |\langle X_h(\phi'; P), W_h(\phi, R; P) \rangle| = \left| \mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, P} [\ell_h(\phi, R; o_h)] \right|$$

1931 where $o_h = (s_h, a_h, r_h, s_{h+1})$ and $\pi \circ_h \pi^{\text{est}}$ denotes a policy that plays π for the first $h-1$ steps
 1932 and plays policy π^{est} at the h -th step.

1933 We call it an on-policy bilinear class if $\pi^{\text{est}} = \pi$ for all $\pi \in \Pi$, and otherwise an off-policy bilinear
 1935 class. We denote by π^α the policy that in every step $h = 1, \dots, H$ chooses π with probability $1 - \frac{\alpha}{H}$
 1936 and chooses π^{est} with probability $\frac{\alpha}{H}$.

1937 **Lemma 41.** Hybrid bilinear classes (Assumption 8) with known-feature linear reward (Assumption 4)
 1938 satisfy Assumption 5 with $N = d$.

1940 *Proof.* With the estimation function $\ell_h(\phi, R; o_h)$ defined in Assumption 8, we define for $j \in [d]$,

$$1942 \ell_h(\phi; o_h)_j = \ell_h(\phi, \mathbf{e}_j; o_h),$$

1943 where \mathbf{e}_j as a reward represents the reward function defined as $R(s, a) = \varphi(s, a)^\top \mathbf{e}_j = \varphi(s, a)_j$.

1944 For any $\phi' \in \Phi$ and any $M = (P, R) \in \phi$,

1945

$$\begin{aligned}
 & \left| \mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, P} [\ell_h(\phi; o_h)_j] \right| \\
 &= \left| \mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, P} [\ell_h(\phi, e_j; o_h)] \right| \\
 &= |\langle X_h(\phi'; P), W_h(\phi, e_j; P) \rangle| \\
 &= 0. \tag{by Assumption 8.3}
 \end{aligned}$$

1950 (by Assumption 8.1)

1951

□

1954 **Lemma 42** (Lemma 20 of [LWZ25]). *Let (\mathcal{M}, Φ) be a hybrid bilinear class (Assumption 8). Then*

1956

- $\max_{\nu} \mathbf{TermA}_{\eta}^{\Phi, \bar{D}_{\text{av}}}(\nu) \leq O(B^2 H^2 d\eta)$ in the on-policy case.

1957

- $\max_{\nu} \mathbf{TermA}_{\eta}^{\Phi, \bar{D}_{\text{av}}}(\nu) \leq O(\alpha + B^2 H^3 d\eta/\alpha)$ in the off-policy case.⁵

1958

1960 **Lemma 43.** *Let (\mathcal{M}, Φ) be a hybrid bilinear class (Assumption 8). Then*

1961

1962

- $\max_{\nu} \mathbf{TermB}_{\eta}^{\Phi, \bar{D}_{\text{av}}}(\nu) \leq O((B^2 H^5 d^3 \eta)^{\frac{1}{3}})$ in the on-policy case.

1963

- $\max_{\nu} \mathbf{TermB}_{\eta}^{\Phi, \bar{D}_{\text{av}}}(\nu) \leq O((B^2 H^6 d^3 \eta/\alpha)^{\frac{1}{3}})$ in the off-policy case.

1964

1965

1966 *Proof.* From the definition of hybrid bilinear class in Assumption 8, we have

1967

$$\begin{aligned}
 & \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[(V_{\phi, R}(\pi_{\phi}) - V_{P, R}(\pi_{\phi}))^2 \right] \\
 & \leq \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[\left(\sum_{h=1}^H |\langle X_h(\phi; P), W_h(\phi, R; P) \rangle| \right)^2 \right] \\
 & \leq H \sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[|\langle X_h(\phi; P), W_h(\phi, R; P) \rangle|^2 \right].
 \end{aligned}$$

1978

1979 Define $\Sigma_{h, P} = \mathbb{E}_{\phi \sim \nu} [X_h(\phi; P) X_h(\phi; P)^\top]$. We have

1980

$$\begin{aligned}
 & \mathbb{E}_{\phi \sim \nu} \left[|\langle X_h(\phi; P), W_h(\phi, R; P) \rangle|^2 \right] \\
 & \leq \mathbb{E}_{\phi \sim \nu} [|\langle X_h(\phi; P), W_h(\phi, R; P) \rangle|] \\
 & \leq \sqrt{\mathbb{E}_{\phi \sim \nu} \left[\|X_h(\phi; P)\|_{\Sigma_{h, P}^{-1}}^2 \right]} \sqrt{\mathbb{E}_{\phi \sim \nu} \left[\|W_h(\phi, R; P)\|_{\Sigma_{h, P}}^2 \right]} \\
 & = \sqrt{d \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \left[\left(\mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, P} [\ell_h(\phi, R; o_h)] \right)^2 \right]}. \tag{Assumption 8}
 \end{aligned}$$

1989

1990 Thus,

$$\begin{aligned}
 & \sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[(V_{\phi, R}(\pi_{\phi}) - V_{P, R}(\pi_{\phi}))^2 \right]} \\
 & \leq \sqrt{H \sum_{h=1}^H \mathbb{E}_{(P, R) \sim \nu} \left[\sqrt{d \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \left[\left(\mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, P} [\ell_h(\phi, R; o_h)] \right)^2 \right]} \right]}.
 \end{aligned}$$

⁵As in Footnote 4, the bounds are different from [LWZ25]'s as we adopt a different scaling.

1998 (1) In the on-policy case, we have $\alpha = 0$ and
 1999
 2000
$$6\sqrt{3dH\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} [(V_{\phi, R}(\pi_{\phi}) - V_{P, R}(\pi_{\phi}))^2]} - \frac{2}{9\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} [D_{\text{av}}^{\pi_{\phi'}}(\phi \| M)]$$

 2001
 2002
 2003
$$\leq 6\sqrt{3d^{\frac{3}{2}}H^2 \sum_{h=1}^H \mathbb{E}_{(P, R) \sim \nu} \left[\sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} [(\mathbb{E}^{\pi_{\phi'}, P} [\ell_h(\phi, R; o_h)])^2]} \right]}$$

 2004
 2005
 2006
$$- \frac{2}{9\eta B^2 H} \sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[\sum_{j=1}^d (\mathbb{E}^{\pi_{\phi'}, P} [\ell_h(\phi; o_h)_j])^2 \right]$$

 2007
 2008
 2009
$$\leq O\left(d^{\frac{3}{2}}H^2\beta\right) + \frac{1}{4\beta} \sum_{h=1}^H \mathbb{E}_{(P, R) \sim \nu} \left[\sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} [(\mathbb{E}^{\pi_{\phi'}, P} [\ell_h(\phi, R; o_h)])^2]} \right]$$

 2010
 2011
 2012
$$- \frac{2}{9\eta B^2 H} \sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{(P, R) \sim \nu} [(\mathbb{E}^{\pi_{\phi'}, P} [\ell_h(\phi, R; o_h)])^2]$$

 2013
 2014
 2015
$$\leq O\left(d^{\frac{3}{2}}H^2\beta + \frac{\eta B^2 H}{\beta^2}\right) = O\left((B^2 H^5 d^3 \eta)^{\frac{1}{3}}\right). \quad (\text{choosing optimal } \beta)$$

 2016

2017 (2) For the off-policy case, we have

2018
$$6\sqrt{3dH\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} [(V_{\phi, R}(\pi_{\phi}) - V_{P, R}(\pi_{\phi}))^2]} - \frac{2}{9\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} [D_{\text{av}}^{\pi_{\phi'}^{\alpha}}(\phi \| M)]$$

 2019
 2020
 2021
 2022
$$\leq 6\sqrt{d^{\frac{3}{2}}H^2 \sum_{h=1}^H \mathbb{E}_{(P, R) \sim \nu} \left[\sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} [(\mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, P} [\ell_h(\phi, R; o_h)])^2]} \right]}$$

 2023
 2024
 2025
$$- \frac{2}{9\eta B^2 H} \sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[\sum_{j=1}^d (\mathbb{E}^{\pi_{\phi'}^{\alpha}, P} [\ell_h(\phi; o_h)_j])^2 \right]$$

 2026
 2027
 2028
$$\leq O\left(d^{\frac{3}{2}}H^2\beta\right) + \frac{1}{4\beta} \sum_{h=1}^H \mathbb{E}_{(P, R) \sim \nu} \left[\sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} [(\mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, P} [\ell_h(\phi, R; o_h)])^2]} \right]$$

 2029
 2030
 2031
$$- \frac{\alpha}{3H} \cdot \frac{2}{9\eta B^2 H} \sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{(P, R) \sim \nu} [(\mathbb{E}^{\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}, P} [\ell_h(\phi, R; o_h)])^2]$$

 2032
 2033
 2034
$$\leq O\left(d^{\frac{3}{2}}H^2\beta + \frac{\eta B^2 H^2}{\alpha\beta^2}\right) = O\left((B^2 H^6 d^3 \eta / \alpha)^{\frac{1}{3}}\right), \quad (\text{with the optimal } \beta)$$

 2035

2036 where the second-to-last inequality is because with probability $(1 - \frac{\alpha}{H})^{h-1} \frac{\alpha}{H} \geq \frac{\alpha}{3H}$, policy $\pi_{\phi'}^{\alpha}$
 2037 chooses the policy $\pi_{\phi'} \circ_h \pi_{\phi'}^{\text{est}}$. \square

2038 **Lemma 44.** Let (\mathcal{M}, Φ) be a hybrid bilinear class (Assumption 8). Then

2039
 2040 • $\text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} \leq O\left(B^2 H^2 d\eta + (B^2 H^5 d^3 \eta)^{\frac{1}{3}}\right)$ in the on-policy case;
 2041
 2042 • $\text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} \leq O\left(\sqrt{B^2 H^3 d\eta} + (B^2 H^6 d^3 \eta)^{\frac{1}{4}}\right)$ in the off-policy case.

2043 *Proof.* This can be obtained by directly combining Lemma 39, Lemma 40, Lemma 42, Lemma 43.
 2044 In the on-policy case,

2045
$$\text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} = O\left(B^2 H^2 d\eta + (B^2 H^5 d^3 \eta)^{\frac{1}{3}}\right).$$

2046 In the off-policy case,

2047
$$\begin{aligned} \text{dig-dec}_{\eta}^{\Phi, \overline{D}_{\text{av}}} &= O\left(\alpha + B^2 H^3 d\eta / \alpha + (B^2 H^6 d^3 \eta / \alpha)^{\frac{1}{3}}\right) \\ &= O\left(\sqrt{B^2 H^3 d\eta} + (B^2 H^6 d^3 \eta)^{\frac{1}{4}}\right). \quad (\text{with optimal } \alpha) \end{aligned}$$

2052

2053

2054

I.3 RELATING dig-dec TO COVERABILITY UNDER BELLMAN COMPLETENESS

2055

2056

Lemma 45. *For hybrid MDPs with Bellman completeness and coverability bounded by d , it holds that*

2057

2058

$$\max_{\nu} \mathbf{TermA}_{\eta}^{\Phi, \overline{D}_{\text{sq}}}(\nu) \leq O(\eta dB^2 H^2).$$

2059

2060

2061

Proof. For $M = (P, R)$, define

2062

2063

$$\begin{aligned} g_h(s, a, \phi; R, P) &= f_{\phi}(s, a; R) - R(s, a) - \mathbb{E}_{s' \sim P(\cdot | s, a)}[f_{\phi}(s'; R)], \\ d_h^{\nu, P}(s, a) &= \mathbb{E}_{\phi \sim \nu} [d_h^{\pi_{\phi}, P}(s, a)]. \end{aligned}$$

2064

2065

2066

By the AM-GM inequality, for any $\lambda > 0$,

2067

2068

$$\begin{aligned} &\mathbb{E}_{\phi \sim \nu} \mathbb{E}^{\pi_{\phi}, P} [g_h(s_h, a_h, \phi; R, P)] \\ &= \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\pi_{\phi}, P}} [g_h(s, a, \phi; R, P)] \\ &= \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\nu, P}} \left[\frac{d_h^{\pi_{\phi}, P}(s, a)}{d_h^{\nu, P}(s, a)} g_h(s, a, \phi; R, P) \right] \\ &\leq \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\nu, P}} \left[\frac{\lambda}{4} \frac{d_h^{\pi_{\phi}, P}(s, a)^2}{d_h^{\nu, P}(s, a)^2} + \frac{1}{\lambda} g_h(s, a, \phi; R, P)^2 \right] \\ &= \frac{\lambda}{4} \mathbb{E}_{\phi \sim \nu} \left[\sum_{s, a} \frac{d_h^{\pi_{\phi}, P}(s, a)^2}{d_h^{\nu, P}(s, a)} \right] + \frac{1}{\lambda} \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}^{\pi_{\phi'}, M} [g_h(s_h, a_h, \phi, R, P)^2]. \end{aligned} \quad (30)$$

2069

2070

2071

Note that

2072

2073

2074

$$\sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}^{\pi_{\phi}, P} [g_h(s_h, a_h, \phi; R, P)] = \mathbb{E}_{\phi \sim \nu} [V_{\phi, R}(\pi_{\phi}) - V_M(\pi_{\phi})],$$

2075

2076

2077

and

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

$$\begin{aligned} &\sum_{h=1}^H \mathbb{E}^{\pi_{\phi'}, P} [g_h(s_h, a_h, \phi; R, P)^2] \\ &\leq \sum_{h=1}^H \sum_{j=1}^d \mathbb{E}^{\pi_{\phi'}, P} [g_h(s_h, a_h, \phi; \mathbf{e}_j, P)^2] \\ &= \sum_{h=1}^H \sum_{j=1}^d \mathbb{E}^{\pi_{\phi'}, P} \left[(f_{\phi}(s_h, a_h; \mathbf{e}_j) - \varphi(s_h, a_h)^{\top} \mathbf{e}_j - \mathbb{E}_{s' \sim P(\cdot | s, a)}[f_{\phi}(s'; \mathbf{e}_j)])^2 \right], \\ &= \sum_{h=1}^H \sum_{j=1}^d \mathbb{E}^{\pi_{\phi'}, P} \left[(f_{\phi}(s_h, a_h; \mathbf{e}_j) - f_{\mathcal{T}_M \phi}(s_h, a_h; \mathbf{e}_j))^2 \right] \\ &= \sum_{h=1}^H \mathbb{E}^{\pi_{\phi'}, P} \left[\|f_{\phi}(s_h, a_h) - f_{\mathcal{T}_M \phi}(s_h, a_h)\|^2 \right] \\ &= \sum_{h=1}^H \mathbb{E}^{\pi_{\phi'}, P} [\xi_h(\phi, \phi; o_h) - \xi_h(\mathcal{T}_M \phi, \phi; o_h)] \quad (\text{by Eq. (23)}) \\ &= B^2 H \overline{D}_{\text{sq}}^{\pi_{\phi'}}(\phi \| M). \end{aligned} \quad (31)$$

2106 Thus,
2107

$$\begin{aligned}
 \mathbf{TermA}_\eta^{\Phi, \overline{D}_{\text{sq}}}(\nu) &= \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[V_{\phi, R}(\pi_\phi) - V_M(\pi_\phi) - \frac{1}{\eta} \overline{D}_{\text{sq}}^{\pi_{\phi'}}(\phi \| M) \right] \\
 &\leq \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \left[\sum_{h=1}^H \mathbb{E}^{\pi_\phi, P} [g_h(s_h, a_h, \phi; R, P)] - \frac{1}{\eta B^2 H} \sum_{h=1}^H \mathbb{E}^{\pi_{\phi'}, P} [g_h(s_h, a_h, \phi, R, P)^2] \right] \\
 &\leq \frac{\eta B^2 H}{4} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[\sum_{h=1}^H \sum_{s, a} \frac{d_h^{\pi_\phi, P}(s, a)^2}{d_h^{\nu, P}(s, a)} \right]. \tag{by Eq. (30)}
 \end{aligned}$$

2119 Let μ_h^P be any occupancy measure over layer h that depends on P . Then
2120

$$\begin{aligned}
 \mathbb{E}_{\phi \sim \nu} \left[\sum_{s, a} \frac{d_h^{\pi_\phi, P}(s, a)^2}{d_h^{\nu, P}(s, a)} \right] &= \mathbb{E}_{\phi \sim \nu} \left[\sum_{s, a} \frac{d_h^{\pi_\phi, P}(s, a) \mu_h^P(s, a)}{d_h^{\nu, P}(s, a)} \cdot \frac{d^{\pi_\phi, P}(s, a)}{\mu_h^P(s, a)} \right] \\
 &\leq \mathbb{E}_{\phi \sim \nu} \left[\sum_{s, a} \frac{d_h^{\pi_\phi, P}(s, a) \mu_h^P(s, a)}{d_h^{\nu, P}(s, a)} \right] \cdot \max_{s, a, \pi} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)} \\
 &= \left(\sum_{s, a} \mu_h^P(s, a) \right) \cdot \max_{s, a, \pi} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)} \\
 &= \max_{s, a, \pi} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)}. \tag{32}
 \end{aligned}$$

2134 We let μ_h^P be the minimizer of $\max_{s, a, \pi} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)}$. The coverability in MDP M is defined
2135 as $\min_\mu \max_{s, a, \pi, h} \frac{d_h^{\pi, P}(s, a)}{\mu_h^P(s, a)}$ [XFB⁺23]. Combining the inequalities proves $\mathbf{TermA}_\eta^{\Phi, \overline{D}_{\text{sq}}}(\nu) \leq$
2136 $O(\eta dB^2 H^2)$. \square
2137

2141 **Lemma 46.** *For hybrid MDPs with Bellman completeness and coverability bounded by d , it holds
2142 that*

$$\max_\nu \mathbf{TermB}_\eta^{\Phi, \overline{D}_{\text{sq}}}(\nu) \leq O\left((B^2 H^5 d^3 \eta)^{\frac{1}{3}}\right).$$

2149 *Proof.* By definition,
2150

$$\mathbf{TermB}_\eta^{\Phi, \overline{D}_{\text{sq}}}(\nu) = 6\sqrt{dH} \sqrt{3\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[(V_{\phi, R}(\pi_\phi) - V_{P, R}(\pi_\phi))^2 \right]} - \frac{2}{9\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[\overline{D}_{\text{sq}}^{\pi_{\phi'}}(\phi \| M) \right]$$

2155 Define
2156

$$\begin{aligned}
 g_h(s, a, \phi; R, P) &= f_\phi(s, a; R) - R(s, a) - \mathbb{E}_{s' \sim P(\cdot | s, a)} [f_\phi(s'; R)], \\
 d_h^{\nu, P}(s, a) &= \mathbb{E}_{\phi \sim \nu} \left[d_h^{\pi_\phi, P}(s, a) \right].
 \end{aligned}$$

2160

We have

2161

$$\begin{aligned}
 & \mathbb{E}_{\phi \sim \nu} \left[(V_{\phi, R}(\pi_\phi) - V_{P, R}(\pi_\phi))^2 \right] \\
 &= H \sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\pi_\phi, P}} [g_h(s, a, \phi; R, P)^2] \\
 &\leq H \sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\pi_\phi, P}} [|g_h(s, a, \phi; R, P)|] \\
 &= H \sum_{h=1}^H \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\nu, P}} \left[\frac{d_h^{\pi_\phi, P}(s, a)}{d_h^{\nu, P}(s, a)} |g_h(s, a, \phi; R, P)| \right] \\
 &\leq H \sum_{h=1}^H \sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\nu, P}} \left[\frac{d_h^{\pi_\phi, P}(s, a)^2}{d_h^{\nu, P}(s, a)^2} \right]} \sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\nu, P}} [(g_h(s, a, \phi; R, P))^2]} \\
 &\leq H \sum_{h=1}^H \sqrt{d \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\nu, P}} [g_h(s, a, \phi; R, P)^2]}.
 \end{aligned}
 \quad (\text{by Eq. (32) and that coverability} \leq d)$$

2178

Thus,

$$\begin{aligned}
 & 6\sqrt{dH} \sqrt{3 \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(P, R) \sim \nu} \left[(V_{\phi, R}(\pi_\phi) - V_{P, R}(\pi_\phi))^2 \right]} - \frac{2}{9\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[\overline{D}_{\text{sq}}^{\pi_{\phi'}}(\phi \| M) \right] \\
 &\leq \sqrt{d^{\frac{3}{2}} H^2 \sum_{h=1}^H \mathbb{E}_{(P, R) \sim \nu} \left[\sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\nu, P}} [g_h(s, a, \phi; R, P)^2]} \right]} - \frac{2}{9\eta} \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \left[\overline{D}_{\text{sq}}^{\pi_{\phi'}}(\phi \| M) \right] \\
 &\leq d^{\frac{3}{2}} H^2 \beta + \frac{1}{4\beta} \sum_{h=1}^H \mathbb{E}_{(P, R) \sim \nu} \left[\sqrt{\mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\nu, P}} [g_h(s, a, \phi; R, P)^2]} \right] \\
 &\quad - \frac{2}{9\eta B^2 H} \sum_{h=1}^H \mathbb{E}_{\phi' \sim \nu} \mathbb{E}_{M \sim \nu} \mathbb{E}_{\phi \sim \nu} \mathbb{E}_{(s, a) \sim d_h^{\pi_{\phi'}, P}} [g_h(s, a, \phi; R, P)^2] \quad (\text{Eq. (31)}) \\
 &\leq O \left(d^{\frac{3}{2}} H^2 \beta + \frac{\eta B^2 H}{\beta^2} \right) = O \left((B^2 H^5 d^3 \eta)^{\frac{1}{3}} \right).
 \end{aligned}$$

2194

□

2195

Lemma 47. For hybrid MDPs with Bellman completeness and coverability bounded by d , it holds that

2196

$$\text{dig-dec}_\eta^{\Phi, \overline{D}_{\text{av}}} = O \left(B^2 H^2 d \eta + (B^2 H^5 d^3 \eta)^{\frac{1}{3}} \right).$$

2200

Proof. This can be obtained by directly combining Lemma 39, Lemma 40, Lemma 45, Lemma 46.

2202

□

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214 **J OMITTED DETAILS IN SECTION 6**

2215 **J.1 PROOF OF THEOREM 14**

2216 In this section, we will use $\text{Ber}(p)$ to denote Bernoulli distribution with success probability p . We
 2217 consider parameters ϵ and Δ with $\epsilon < \Delta = \frac{1}{16\sqrt{T}} \leq \frac{1}{16}$. Define $p^+ = \frac{1}{2} + \Delta$ and $p^- = \frac{1}{2} - \Delta$. Let
 2218 $\mathbb{H}(\nu)$ denote the entropy of distribution ν . We assume learning rate $\eta \leq 1$.

2219 Consider a three-arm bandit environment with model class $\mathcal{M} = \{M_1, M_2\}$ where

2220

- 2221 • $M_1 = (\text{Ber}(p^-), \text{Ber}(p^+), \epsilon\text{Ber}(0.5))$. The reward distribution is $\text{Ber}(p^-)$ for arm a_1 and
 2222 $\text{Ber}(p^+)$ for arm a_2 . Arm a_3 's reward is 0 and ϵ with equal probability.
- 2223 • $M_2 = (\text{Ber}(p^+), \text{Ber}(p^-), 0.5\epsilon)$. The reward distribution is $\text{Ber}(p^+)$ for arm a_1 and
 2224 $\text{Ber}(p^-)$ for arm a_2 . Arm a_3 's reward is 0.5ϵ deterministically.

2225 In this setting, Φ contains two infosets (based on [Assumption 1](#)):

$$\phi_1 = \{(M_1, \pi_{M_1})\}, \quad \phi_2 = \{(M_2, \pi_{M_2})\}.$$

2226 In the rest of this proof, we compare the optimistic E2D algorithm [\[FGQ⁺23\]](#) and our algorithm in
 2227 this environment.

2228 **Optimistic DEC algorithm [FGQ⁺23]** Given $\rho_t \in \Delta(\Phi)$, the algorithm chooses action distribution
 2229 via

$$p_t = \underset{p \in \Delta(\Pi)}{\operatorname{argmin}} \max_{\nu \in \Delta(\Psi)} \mathbb{E}_{a \sim p} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{M \sim \nu} \left\{ V_\phi(a_\phi) - V_M(a) - \frac{1}{\eta} D^a(\phi \| M) \right\} \quad (33)$$

2230 where a_ϕ is the optimal action of infoset ϕ . In this simple bandit setting, the bilinear divergence and
 2231 the squared Bellman error coincide with

$$D^a(\phi \| M) = (\mathbb{E}^{a,M}[V_\phi(a) - r])^2 = (V_\phi(a) - V_M(a))^2.$$

2232 We first consider the divergence term, for action $a \in \{a_1, a_2\}$, we have

$$\begin{aligned} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{M \sim \nu} [D^a(\phi \| M)] &= \rho_t(\phi_1) \nu(M_2) (V_{\phi_1}(a) - V_{M_2}(a))^2 + \rho_t(\phi_2) \nu(M_1) (V_{\phi_2}(a) - V_{M_1}(a))^2 \\ &= 4(\rho_t(\phi_1) \nu(M_2) + \rho_t(\phi_2) \nu(M_1)) \Delta^2 \end{aligned} \quad (34)$$

2233 For action $a = a_3$, we have

$$\begin{aligned} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{M \sim \nu} [D^a(\phi \| M)] &= \rho_t(\phi_1) \nu(M_2) (V_{\phi_1}(a) - V_{M_2}(a))^2 + \rho_t(\phi_2) \nu(M_1) (V_{\phi_2}(a) - V_{M_1}(a))^2 \\ &= 0 \end{aligned} \quad (35)$$

2234 Thus, for any ρ_t and ν , we have

$$\mathbb{E}_{a \sim p} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{M \sim \nu} \left[-\frac{1}{\eta} D^a(\phi \| M) \right] = -\frac{4(1 - p(a_3)) \Delta^2}{\eta} (\rho_t(\phi_1) \nu(M_2) + \rho_t(\phi_2) \nu(M_1))$$

2235 which is monotonically increasing in $p(a_3)$.

2236 We then consider the regret term. For any $p \in \Delta(\Pi)$, define $\tilde{p} = \left(\frac{p(a_1)}{1-p(a_3)}, \frac{p(a_2)}{1-p(a_3)}, 0 \right)$ if $p(a_3) < 1$,
 2237 and $\tilde{p} = (\frac{1}{2}, \frac{1}{2}, 0)$ otherwise. For any $M \in \mathcal{M}$, when $p(a_3) < 1$ we have

$$\begin{aligned} \mathbb{E}_{a \sim p} [V_M(a)] - \mathbb{E}_{a \sim \tilde{p}} [V_M(a)] &= \sum_{a \in \{a_1, a_2\}} (p(a) - \tilde{p}(a)) V_M(a) + p(a_3) V_M(a_3) \\ &= \frac{-p(a_3)}{1 - p(a_3)} \sum_{a \in \{a_1, a_2\}} p(a) V_M(a) + p(a_3) V_M(a_3) \\ &\leq \frac{-p(a_3)}{1 - p(a_3)} (p(a_1) + p(a_2)) p^- + p(a_3) V_M(a_3) \\ &\quad (V_M(a) \geq p^- \text{ for any } M \text{ and } a \in \{a_1, a_2\}, \text{ and } p(a_3) < 1) \\ &= p(a_3) \left(V_M(a_3) - \frac{1}{2} + \Delta \right) \\ &\leq p(a_3) \left(0.5\epsilon + \Delta - \frac{1}{2} \right) \leq 0, \quad (\epsilon < \Delta \leq \frac{1}{16}) \end{aligned}$$

2268 and when $p(a_3) = 1$ we also have $\mathbb{E}_{a \sim p} [V_M(a)] - \mathbb{E}_{a \sim \tilde{p}} [V_M(a)] \leq 0$. Thus, for any ρ_t, ν , and p ,
 2269 $\mathbb{E}_{a \sim \tilde{p}} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{M \sim \nu} \{V_\phi(a_\phi) - V_M(a)\} \leq \mathbb{E}_{a \sim p} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{M \sim \nu} \{V_\phi(a_\phi) - V_M(a)\}$.
 2270

2271 Combining the discussion of the above two terms, for any ρ_t, ν and p , we have

$$2272 \mathbb{E}_{a \sim \tilde{p}} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{M \sim \nu} \left\{ V_\phi(a_\phi) - V_M(a) - \frac{1}{\eta} D^a(\phi \| M) \right\} \leq \mathbb{E}_{a \sim p} \mathbb{E}_{\phi \sim \rho_t} \mathbb{E}_{M \sim \nu} \left\{ V_\phi(a_\phi) - V_M(a) - \frac{1}{\eta} D^a(\phi \| M) \right\}. \\ 2273 \quad \quad \quad (36) \\ 2274$$

2275 Given Eq. (36), the minimax solution of Eq. (33) must have $p_t(3) = 0$ for any ρ_t and any t . This
 2276 implies that the optimistic DEC algorithm will never choose a_3 and the problem degenerate to
 2277 standard two-arm bandit, so the policy derived from optimistic DEC objective Eq. (33) must suffer
 2278 standard regret lower bound $\mathbb{E}[\text{Reg}(\pi_{M^*})] \geq \Omega(\sqrt{T})$ given $\Delta = \Theta\left(\frac{1}{\sqrt{T}}\right)$.
 2279

2280 **Our algorithm** Given ρ_1 is a uniform distribution, we consider our first step optimization where

$$2282 p_1 = \underset{p \in \Delta(\Pi)}{\operatorname{argmin}} \max_{\nu \in \Delta(\Psi)} \mathbb{E}_{a \sim p} \mathbb{E}_{\phi \sim \rho_1} \mathbb{E}_{M \sim \nu} \left\{ V_M(a_M) - V_M(a) - \frac{1}{\eta} \mathbb{E}_{o \sim M(\cdot|a)} [\text{KL}(\nu_\phi(\cdot|a, o), \rho_1)] - \frac{1}{\eta} D^a(\phi \| M) \right\}. \\ 2283 \quad \quad \quad (37) \\ 2284$$

2285 Below, we discuss the four terms in Eq. (37).

2286 The $V_M(a_M)$ term For any ν , we have $\mathbb{E}_{M \sim \nu} [V_M(a_M)] = p^+$, which is a constant. Therefore, this
 2287 term can be ignored in the objective.

2288 The $V_M(a)$ term By direct calculation, we have

$$2289 \mathbb{E}_{a \sim p} \mathbb{E}_{M \sim \nu} [V_M(a)] = \frac{p(a_1) + p(a_2)}{2} + (p(a_1) - p(a_2)) (\nu(M_2) - \nu(M_1)) \Delta + 0.5p(a_3)\epsilon. \\ 2290 \quad \quad \quad (38) \\ 2291$$

2292 For any $p = (p(a_1), p(a_2), p(a_3))$, consider $\hat{p} = (\frac{p(a_1)+p(a_2)}{2}, \frac{p(a_1)+p(a_2)}{2}, p(a_3))$. By Eq. (38) we
 2293 have

$$2294 \max_{\nu \in \Delta(\Psi)} \mathbb{E}_{a \sim \hat{p}} \mathbb{E}_{M \sim \nu} [-V_M(a)] \leq \max_{\nu \in \Delta(\Psi)} \mathbb{E}_{a \sim p} \mathbb{E}_{M \sim \nu} [-V_M(a)]. \quad (39) \\ 2295$$

2296 The $D^a(\phi \| M)$ term Given ρ_1 is a uniform distribution, for action $a \in \{1, 2\}$, from Eq. (34), for
 2297 any ν we have $\mathbb{E}_{\phi \sim \rho_1} \mathbb{E}_{M \sim \nu} [D^a(\phi \| M)] = 2\Delta^2$. For action $a = 3$, from Eq. (35), for any ν , we
 2298 have $\mathbb{E}_{\phi \sim \rho_1} \mathbb{E}_{M \sim \nu} [D^a(\phi \| M)] = 0$. Hence, $\mathbb{E}_{a \sim p} \mathbb{E}_{\phi \sim \rho_1} \mathbb{E}_{M \sim \nu} [D^a(\phi \| M)] = 2(1 - p(a_3))\Delta^2$.
 2299 Note that now this is independent of ν , and only related to $p(a_3)$ or $p(a_1) + p(a_2)$ but not $p(a_1)$ or
 2300 $p(a_2)$ individually.

2301 The KL term Notice that

$$2302 \nu_\phi(\cdot|a_1, \phi_1) = \text{Ber}(p^-), \quad \nu_\phi(\cdot|a_2, \phi_1) = \text{Ber}(p^+), \quad \nu_\phi(\cdot|a_1, \phi_2) = \text{Ber}(p^+), \quad \nu_\phi(\cdot|a_2, \phi_2) = \text{Ber}(p^-), \\ 2303$$

$$2304 \nu_\phi(\cdot|a_1) = \text{Ber}(m_1), \quad \nu_\phi(\cdot|a_2) = \text{Ber}(m_2), \\ 2305$$

2306 where $m_1 = \nu(\phi_1)p^- + \nu(\phi_2)p^+$ and $m_2 = \nu(\phi_1)p^+ + \nu(\phi_2)p^-$ and it holds that $m_1 + m_2 = 1$.
 2307 Given that $\text{KL}(\text{Ber}(p), \text{Ber}(q)) = \text{KL}(\text{Ber}(1-p), \text{Ber}(1-q))$, we have

$$2308 \begin{aligned} \mathbb{E}_{a \sim p} \mathbb{E}_{M \sim \nu} [\mathbb{E}_{o \sim M(a)} [\text{KL}(\nu_\phi(\cdot|a, o), \rho_1)]] \\ 2309 = \mathbb{E}_{a \sim p} \mathbb{E}_{\phi \sim \nu} [\text{KL}(\nu_\phi(\cdot|a, \phi), \nu_\phi(\cdot|a))] + \text{KL}(\nu_\phi, \rho_1) \\ 2310 = p(a_1)\nu(\phi_1)\text{KL}(\text{Ber}(p^-), \text{Ber}(m_1)) + p(a_2)\nu(\phi_1)\text{KL}(\text{Ber}(p^+), \text{Ber}(m_2)) + \text{KL}(\nu_\phi, \rho_1) \\ 2311 + p(a_1)\nu(\phi_2)\text{KL}(\text{Ber}(p^+), \text{Ber}(m_1)) + p(a_2)\nu(\phi_2)\text{KL}(\text{Ber}(p^-), \text{Ber}(m_2)) \\ 2312 + p(a_3)\mathbb{E}_{\phi \sim \nu} [\text{KL}(\nu_\phi(\cdot|a_3, \phi), \nu_\phi(\cdot|a_3))] \\ 2313 = (p(a_1) + p(a_2))(\nu(\phi_1)\text{KL}(\text{Ber}(p^-), \text{Ber}(m_1)) + \nu(\phi_2)\text{KL}(\text{Ber}(p^+), \text{Ber}(m_1))) \\ 2314 + p(a_3)\mathbb{H}(\nu) + \text{KL}(\nu_\phi, \rho_1) \\ 2315 = (1 - p(a_3))(\mathbb{H}(\text{Ber}(m_1)) - \mathbb{H}(\text{Ber}(p^+))) + p(a_3)\mathbb{H}(\nu) + \text{KL}(\nu_\phi, \rho_1). \end{aligned} \\ 2316 \\ 2317 \\ 2318 \\ 2319 \\ 2320 \\ 2321$$

2322 Note that this term is only related to $p(a_3)$ or $p(a_1) + p(a_2)$, but not $p(a_1)$ or $p(a_2)$ individually.
2323

2324 **Combining terms** Combining the case discussions above, for any $p = (p(a_1), p(a_2), p(a_3))$, with
2325 $\hat{p} = (\frac{p(a_1) + p(a_2)}{2}, \frac{p(a_1) + p(a_2)}{2}, p(a_3))$, we have
2326

$$\begin{aligned} & \max_{\nu \in \Delta(\Psi)} \left\{ \mathbb{E}_{a \sim \hat{p}} \mathbb{E}_{M \sim \nu} \left[-V_M(a) - \frac{1}{\eta} \mathbb{E}_{o \sim M(a)} [\text{KL}(\nu_{\phi}(\cdot|a, o), \rho_1)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho_1} [D^a(\phi\|M)] \right] \right\} \\ & \leq \max_{\nu \in \Delta(\Psi)} \left\{ \mathbb{E}_{a \sim p} \mathbb{E}_{M \sim \nu} \left[-V_M(a) - \frac{1}{\eta} \mathbb{E}_{o \sim M(a)} [\text{KL}(\nu_{\phi}(\cdot|a, o), \rho_1)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho_1} [D^a(\phi\|M)] \right] \right\}. \end{aligned}$$

2327 To calculate the max value of the left-hand-side, consider policy distribution $p_s = (\frac{1-s}{2}, \frac{1-s}{2}, s)$. We
2328 have
2329

$$\begin{aligned} & \mathbb{E}_{a \sim p_s} \mathbb{E}_{M \sim \nu} \left[-V_M(a) - \frac{1}{\eta} \mathbb{E}_{o \sim M(a)} [\text{KL}(\nu_{\phi}(\cdot|a, o), \rho_1)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho_1} [D^a(\phi\|M)] \right] \\ & = \frac{s-1}{2} - \frac{s\epsilon}{2} - \frac{1}{\eta} ((1-s)(\mathbb{H}(\text{Ber}(m_1)) - \mathbb{H}(\text{Ber}(p^+)) + 2\Delta^2) + \text{KL}(\nu_{\phi}, \rho_1) + s\mathbb{H}(\nu)) \end{aligned} \quad (40)$$

2330 where $m_1 = \nu(\phi_1)p^- + \nu(\phi_2)p^+$. Define
2331

$$G(\nu) = (1-s)\mathbb{H}(\text{Ber}(m_1)) + \text{KL}(\nu_{\phi}, \rho_1) + s\mathbb{H}(\nu).$$

2332 To calculate \max_{ν} of Eq. (40), we only need to consider $\min_{\nu} \{G(\nu)\}$. By setting $\nu(\phi_2) = 1 - \nu(\phi_1)$,
2333 function G is only related to $\nu(\phi_1)$ and we denote it as $G(\nu(\phi_1))$, after taking derivative, we have
2334

$$\begin{aligned} G'(\nu(\phi_1)) &= (1-s) \ln \left(\frac{1-m_1}{m_1} \right) (p^- - p^+) + \log \left(\frac{\nu(\phi_1)}{1-\nu(\phi_1)} \right) + s \log \left(\frac{1-\nu(\phi_1)}{\nu(\phi_1)} \right) \\ &= -\Delta(1-s) \ln \left(\frac{1-m_1}{m_1} \right) + \log \left(\frac{\nu(\phi_1)}{1-\nu(\phi_1)} \right) + s \log \left(\frac{1-\nu(\phi_1)}{\nu(\phi_1)} \right) \end{aligned}$$

2335 where $m_1 = \nu(\phi_1)p^- + (1-\nu(\phi_1))p^+$ and we use the fact that $\frac{d\mathbb{H}(\text{Ber}(p))}{dp} = \ln \left(\frac{1-p}{p} \right)$. Note that
2336 when $\nu(\phi_1) = \frac{1}{2}$ we have $m_1 = \frac{1}{2}$ and $G'(\frac{1}{2}) = 0$. Thus, $\frac{1}{2}$ is a stationary point. On the other
2337 hand, we have $G''(\frac{1}{2}) = 4(1-s-2(1-s)\Delta^2) \geq 0$ and $G(\nu(\phi_1)) = G(1-\nu(\phi_1))$. This implies
2338 $\nu(\phi_1) = \frac{1}{2}$ is the unique minimizer and the minimal value is $G(\frac{1}{2}) = \ln(2)$.
2339

2340 Thus,

$$\begin{aligned} & \max_{\nu \in \Delta(\Psi)} \left\{ \mathbb{E}_{a \sim p_s} \mathbb{E}_{M \sim \nu} \left[-V_M(a) - \frac{1}{\eta} \mathbb{E}_{o \sim M(a)} [\text{KL}(\nu_{\phi}(\cdot|a, o), \rho_1)] - \frac{1}{\eta} \mathbb{E}_{\phi \sim \rho_1} [D^a(\phi\|M)] \right] \right\} \\ & = \frac{s-1}{2} - \frac{s\epsilon}{2} - \frac{1}{\eta} (1-s)(-\mathbb{H}(\text{Ber}(p^+)) + 2\Delta^2) - \frac{1}{\eta} \ln(2) \\ & = (1-s) \left(-\frac{1-\epsilon}{2} + \frac{\mathbb{H}(\text{Ber}(p^+)) - 2\Delta^2}{\eta} \right) - \frac{\ln 2}{\eta} - \frac{\epsilon}{2}. \end{aligned} \quad (41)$$

2341 Note that

$$\begin{aligned} & \mathbb{H}(\text{Ber}(p^+)) - 2\Delta^2 \\ & = -\text{KL}(\text{Ber}(p^+), \text{Ber}(\frac{1}{2})) + \ln 2 - 2D_{\text{TV}}^2(\text{Ber}(p^+), \text{Ber}(\frac{1}{2})) \\ & \geq \ln 2 - 5\text{KL}(\text{Ber}(p^+), \text{Ber}(\frac{1}{2})) \quad (\text{Pinsker's inequality}) \\ & \geq \ln 2 - 15\Delta^2 \quad (\text{KL}(\text{Ber}(\frac{1}{2} + \Delta), \text{Ber}(\frac{1}{2})) \leq 3\Delta^2 \text{ for } \Delta \leq \frac{1}{2}) \\ & \geq \frac{1}{2}. \quad (\text{by the assumption } \Delta = \frac{1}{16\sqrt{T}} \leq \frac{1}{16}) \end{aligned}$$

2342 Hence, the minimum value of Eq. (41) is achieved at $s = 1$ when $\frac{1}{2\eta} - \frac{1-\epsilon}{2} \geq 0$. By the condition
2343 $\eta \leq 1$, this indeed holds. This means that our algorithm always picks the third arm in the first round.
2344 After picking arm a_3 , the belief of ϕ will be deterministic, since $\nu_1(\phi|a_3, o) = 0$ for any $\phi \neq \phi^*$.
2345 This means the algorithm will always choose the optimal action in the following rounds, ensuring
2346 that $\mathbb{E}[\text{Reg}(\pi_{M^*})] \leq p^+ < 1$.
2347

2376 **K USE OF LARGE LANGUAGE MODELS IN PREPARATION**
2377

2378 We did not use large language models at all for this project.
2379

2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429