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Abstract

We present variational inference with sequential sample-average approximations
(VISA), a method for approximate inference in computationally intensive models,
such as those based on numerical simulations. VISA extends importance-weighted
forward-KL variational inference (IWFVI) by employing a sequence of sample-
average approximations, which are considered valid inside a trust region. This
makes it possible to reuse model evaluations across multiple gradient steps, thereby
reducing computational cost. We perform experiments on high-dimensional Gaus-
sians, Lotka-Volterra dynamics, and a Pickover attractor. We demonstrate that
VISA can achieve comparable approximation accuracy to standard importance-
weighted forward-KL variational inference while requirering significantly fewer
samples for conservatively chosen learning rates.

1 Introduction

Gradient-based methods have become the workhorse for inference in simulation-based models. When
a model defines a fully differentiable density, methods based on Hamiltonian Monte Carlo (Duane
et al., 1987; Neal et al., 2011) and reparameterized variational inference (Kingma & Welling, 2013;
Rezende et al., 2014) are often considered the gold standard for generating high quality samples
from the posterior distribution. However, it is not always practical or possible to use a differentiable
model. The implementation of the simulator may not support differentiation, or the model itself
may not be differentiable, for example because it employs discrete random variables or stochastic
control flow. In such cases, inference falls back on methods based on score-function estimators
(Glynn, 1990; Wingate & Weber, 2013; Ranganath et al., 2014) or IWFVI, which derives from
reweighted wake-sleep methods (Bornschein & Bengio, 2015; Le et al., 2018). These methods are
often less efficient, as a larger number of samples is required to compensate for higher variance
gradient estimates. This can be problematic when a model is expensive to evaluate, for example
because evaluation involves numerical simulations. Nonetheless, these methods remain the most
viable option in a substantial number of use cases.

In this paper, we present VISA, a method that can substantially improve the computational efficiency
of variational inference for models that are non-differentiable and computationally intensive. VISA is
designed for applications where evaluation of the variational approximation is cheap relative to that
of the model. Here we can save computation by reusing model evaluations across multiple updates
of the variational posterior. To this end, we adapt IWFVI to employ a series of sample-average
approximations (SAAs) (Nemirovski et al., 2009; Kim et al., 2015), which use a fixed set of samples
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that defines a deterministic surrogate to the objective, rather than generating a fresh set of samples at
each gradient step.

SAA-based methods were recently studied in the context of reparameterized black-box variational
inference (Giordano et al., 2024; Burroni et al., 2024) which optimizes the reverse KL-divergence.
These methods fix samples from a parameter-free distribution, which are transformed to samples from
the approximate posterior using a differentiable map, whose parameters are optimized to maximize
the variational bound. VISA differs from these methods in that it optimizes a forward-KL divergence
and does not require a differentiable model. Concretely, VISA fixes samples from a parameterized
variational distribution, rather than samples from a parameter-free distribution. Since the variational
distribution will change during optimization, we construct a new SAA whenever the optimization
procedure leaves a trust region, which we define in terms of the effective sample size. The result is a
drop-in replacement for IWFVI that re-uses samples as much as possible, thereby saving computation.

We evaluate VISA in the context of three experiments. We first consider high-dimensional Gaussians,
where the approximation error can be computed exactly. We then consider inference in a Lotka-
Volterra system and a Pickover Attractor, where numerical integration is performed as part of the
forward simulation. Our results show that VISA with a conservative (i.e. smaller than needed) step
size can converge in a smaller number of model evaluations than IWFVI with a more carefully tuned
step size. These results come with the caveat that VISA is more susceptible to bias than IWFVI,
especially when used with a low effective sample size threshold. Our experiments show, that VISA
converges substantially faster than IWFVI for conservartively chosen learning rates, while VISA
performs on par with IWFVI for more carefully tuned step sizes.

2 Background

We first briefly review variational inference (VI) with stochastic gradient descent (SGD) and SAAs,
before we introduce VISA in Section 3. Readers familiar with these topics can safely skip ahead.

2.1 Variational Inference

VI approximates an intractable target density with a tractable variational distribution by solving an
optimization problem. The objective is typically to minimize a divergence measure D between the
variational approximation qϕ with parameters ϕ ∈ Φ and the target density π,

min
ϕ∈Φ
{L(ϕ) := D(qϕ, π)} . (1)

We assume that the target density is the posterior of a probabilistic model π(z) = p(z | y) for which
we are able to point-wise evaluate the joint density p(y, z). The two most common approaches to VI
are to minimize the reverse or forward KL divergence, for which objectives can be defined in terms
of a lower bound −LR and upper bound LF on the log marginal log p(y),

LR(ϕ) = − E
qϕ

[
log

p(y, z)

qϕ(z)

]
≥ − log p(y), LF(ϕ) = E

p(·|y)

[
log

p(y, z)

qϕ(z)

]
≥ log p(y).

We will briefly discuss standard reparameterized VI, which maximizes the lower bound −LR, and
IWFVI, which minimizes the upper bound LF.

Reparameterized VI. When maximizing a lower bound with stochastic gradient descent, we can
either employ score-function estimators (Ranganath et al., 2014; Paisley et al., 2012), which tend to
exhibit a high degree of variance, or make use of the reparameterization trick to compute pathwise
gradient estimates (Kingma & Welling, 2013; Titsias & Lázaro-Gredilla, 2014; Rezende et al., 2014).

Reparameterization generates samples from a pushforward density z = Tϕ(ξ) ∼ qϕ by fist sampling
ξ ∼ qξ from a distribution independent of ϕ and then transforming the these samples using a
differentiable function Tϕ. Under conditions that allow to exchange the order of differentiation and
integration we can compute an unbiased estimate of the gradient

− d

dϕ
LR(ϕ) = E

qξ

[
d

dϕ
log

p(y, Tϕ(ξ))

qϕ(Tϕ(ξ))

]
≈ 1

N

N∑
i=1

d

dϕ
log

p(y, Tϕ(ξ
(i)))

qϕ(Tϕ(ξ(i)))
, ξ(i) ∼ qξ.
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Importantly, reparameterized VI requires a model p(y, z) that is differentiable with respect to z in
order to compute the pathwise derivative.

Importance-Weighted Forward-KL VI. Approximating the gradient of the forward KL-
divergence does not require differentiability of the model p(y, z) with respect to z, but does require
approximate inference to generate samples from the posterior p(z | y). IWFVI uses self-normalized
importance sampling to propose samples from the variational distribution and reweights them accord-
ing to the posterior by introducing an importance weights w̄ϕ = p(y, z)/qϕ(z)

− d

dϕ
LF(ϕ) = E

p(·|y)

[
d

dϕ
log qϕ(z)

]
≃

N∑
i=1

ŵ
(i)
ϕ

d

dϕ
log qϕ(z

(i)), ŵ
(i)
ϕ =

w̄
(i)
ϕ∑N

j=1 w̄
(j)
ϕ

,

where z(i) ∼ qϕ. The resulting estimate is biased but consistent, meaning that it converges almost
surely to the true gradient as N →∞.

2.2 VI with Sample-Average Approximations

Sample-average approximations (see Kim et al. (2015) for a review) approximate an expected loss
with a surrogate loss in the form of a Monte Carlo estimate. In contrast to standard VI, the samples
that the SAA is based on remain fixed throughout the optimization process. This means that the
surrogate objective can be treated like any other deterministic function, which can be optimized using
standard optimization tools. Concretely, a sample-average approximation applies to an optimization
problem of the form

min
ϕ∈Φ

{
L(ϕ) := E

ρ
[ℓ(z, ϕ)]

}
, (2)

in which the density ρ(z) does not depend on the parameters ϕ. This means that we can compute a
surrogate loss L̂(ϕ) that is an unbiased estimate of the original loss L(ϕ) by averaging over samples
from ρ,

L̂(ϕ) =
1

N

N∑
i=1

l(z(i), ϕ), z(i) ∼ ρ.

Under mild conditions, as the number of samples N →∞, the minimizer ϕ̂ = argminϕ L̂(ϕ) and
the minimal value L̂(ϕ̂) converge almost surely to the minima ϕ∗ = argminLϕ(ϕ) and minimal
value L(ϕ∗) of the original problem.

In the context of reparameterized VI, a sample-average approximation can be constructed by fixing a
set of samples {ξ(i) ∼ qξ}Ni=1 from a distribution independent of ϕ,

L̂R(ϕ) =
1

N

N∑
i=1

log
p
(
y, Tϕ(ξ

(i))
)

qϕ
(
Tϕ(ξ(i))

) .

In an SAA-based approach to reparameterized VI (Giordano et al., 2024; Burroni et al., 2024),
optimization of the parameters ϕ will move the transformed samples z(i) = Tϕ(ξ

(i)) to match
the posterior density, whilst keeping the noise realizations ξ(i) fixed. Empirical evaluations show
that combining the SAA approximation with an off-the-shelf second-order optimizer can result in
substantial computational gains as well as more reliable convergence to the optimum.

3 SAA for Forward-KL Variational Inference

The primary motivation behind existing SAA-based methods for reparameterized VI (Giordano et al.,
2024; Burroni et al., 2024) is that fixing the noise realizations defines a completely deterministic
surrogate objective L̂R(ϕ), which is compatible with standard second-order optimization methods.
The main requirement from an implementation point of view is that the model density p(y, z) is
differentiable with respect to z. In this setting, it is also necessary to evaluate the model for every
update, since any change to ϕ also changes the values of the transformed samples z(i) = Tϕ(ξ

(i)).
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Algorithm 1 VISA
Input: Initial param. ϕ0, trust region threshold α, data y

ϕ̃← ϕ0 ▷ Initialize proposal parameter
Z ← {z(i) ∼ qϕ̃}

N
i=1 ▷ Initialize samples

L̂F(ϕ ; ϕ̃) =
∑N

i=1 ŵ
(i)

ϕ̃
log p(y,z(i))

qϕ(z(i))
▷ Initialize SAA

for t = 1, . . . , T do
ϕt = optimizer-step(L̂F, ϕt−1)

if ϕt /∈ SZ,α(ϕ̃) then ▷ Not inside trust region
ϕ̃← ϕt ▷ Update proposal
Z ← {z(i) ∼ qϕ̃}

N
i=1 ▷ Refresh samples

L̂F(ϕ ; ϕ̃) =
∑N

i=1 ŵ
(i)

ϕ̃
log p(y,z(i))

qϕ(z(i))
▷ Refresh SAA

end if
end for

Φ

ϕ0

ϕ3

ϕ6

. . .

Z0 = {z(i)
0

∼qϕ0
}N
i=1

SZ0,α(ϕ0)

Z3 = {z(i)
3

∼qϕ3
}N
i=1

SZ3,α(ϕ3)

Z6 = {z(i)
6

∼qϕ6
}N
i=1

SZ6,α(ϕ6)

Figure 1: Visualization of parameter traces and trust regions corresponding to different SAAs. If after
an update ϕ /∈ SZ,α(ϕ̃), we set ϕ̃← ϕ to construct a new SAA and corresponding trust region.

In developing VISA, both the motivation and implementation requirements are somewhat different.
Our primary interest is in minimizing the total number of model evaluations at convergence. We
also wish to develop a method that is applicable when the model density p(y, z) is not differentiable,
either because the implementation simply does not support (automatic) derivatives, or because the
model incorporates discrete variables or stochastic control flow, which introduce discontinuities in the
density p(y, z). To this end, we propose a method that optimizes a forward KL with an importance
weighted objective that incorporates ideas from SAA-based approaches.

In a setting where we already have access to samples from the posterior, we can trivially define a
SAA for the upper bound LF(ϕ),

L̂F(ϕ) =
1

N

N∑
i=1

log
p(y, z(i))

qϕ(z(i))
, z(i) ∼ p(· | y).

In practice, this naive approach is unlikely to be useful in a setting where evaluation of p(y, z) is
computationally expensive, since we would still need to carry out approximate inference to generate
a set of samples from the posterior. We therefore adopt the approach used in IWFVI, which uses the
variational distribution as a proposal in a self-normalized importance-sampler. To define an SAA for
the objective in this setting, we express the objective at parameters ϕ in terms of an expectation with
respect to a distribution from the same family with fixed parameters ϕ̃. This allows us to approximate
the objective by means of a sample-average appoximation L̂F(ϕ ; ϕ̃) with samples z(i) ∼ qϕ̃,

LF(ϕ) = E
p(·|y)

[
log

p(y, z)

qϕ(z)

]
= E

qϕ̃

[
wϕ̃(z) log

p(y, z)

qϕ(z)

]
≈

N∑
i=1

ŵ
(i)

ϕ̃
log

p(y, z(i))

qϕ(z(i))
=: L̂F(ϕ ; ϕ̃)

The quality of the approximation depends on how closely the proposal with parameters ϕ̃ matches
the posterior. Since our approximation of the posterior will improve during optimization, we will
update ϕ̃ to the current parameter values ϕ at some interval, resulting in an approach that we will
refer to as a sequential SAA.

To determine when we need to generate a fresh SAA, we will introduce a notion of a trust region. This
serves to define an optimization process in which the SAA is refreshed whenever the optimization
trajectory leaves the current trust region. This optimization process is illustrated in Figure 1 and
described schematically in Algorithm 1. We begin by setting the proposal parameters ϕ̃ = ϕ0 to the
initial variational parameters, generating a set of samples Z = {z(i)}Ni=1 and defining an SAA of the
objective L̂F(ϕ; ϕ̃) and a trust region SZ,α(ϕ̃) based on these samples. We then repeatedly update ϕt

using an optimizer until the value ϕt no longer lies in the trust region. At this point, we update the
proposal parameters ϕ̃← ϕt and generate a fresh sample set, which we then use to update the SAA
and the trust region.
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Defining Trust regions. The importance weight in the objective can decomposed into two parts,
(1) the ratio of the variational density and the trust region density, and (2) the ratio between posterior
and variational density,

wϕ̃(z) =vϕ,ϕ̃(z) wϕ(z), vϕ,ϕ̃(z) =
qϕ(z)

qϕ̃(z)
.

The variance of wϕ is independent of the fixed proposal parameters and decreases as qϕ approaches
the posterior p(z | y) during optimization. Similarly, the variance of vϕ,ϕ̃ measures the mismatch
between qϕ̃ is to qϕ, but can be set to zero by updating the proposal parameters to the parameters
of the current variational approximation. The variance of the importance weights contributes to the
variance of the gradient updates, which we generally expect to increase with increased variance of
the weights. Accordingly, we want a trust-region criteria that allows us to reuse samples as long
as the proposal distribution does not differ too much from the variational distribution, to limit the
itroduction of additional variance and bias compared to IWFVI.

We formalize the notion of a trust region SZ,α by defining a set-valued function which, for a given
threshold α and samples Z = {z(i)}Ni=1, maps each parameter to a corresponding trust region based
on a scoring function sZ .

SZ,α(ϕ̃) = {ϕ ∈ Φ | sZ(ϕ̃, ϕ) > α}.

In other words, for a given threshold α we can verify ϕ ∈ SZ,α(ϕ̃) by checking sZ(ϕ̃, ϕ) > α.
Intuitively, the scoring function function should measure how well the proposal- and variational
approximations, qϕ̃ and qϕ, match on a particular set of samples Z . We visualize how new trust
regions, corresponding to different SAAs, are constructed sequentially during optimization in Figure 1.

In this work, we propose to use the effective sample size (ESS) (Kong, 1992) as a trust-region
criteria which can be motivated as a proxy measure of the variance of the importance weight or from
the perspective of minimizing a χ2-divergence. More specifically, let qϕ be the current variational
approximation and qϕ̃ the current proposal, then the following relationships hold,

Dχ2(qϕ | qϕ̃) = Varqϕ̃

[
qϕ(z)

qϕ̃(z)

]
≈ n

neff
− 1, neff =

(∑N
j=1 vϕ,ϕ̃(zi)

)2
∑N

i=1 vϕ,ϕ̃(zi)
2

, vϕ,ϕ̃(z) =
qϕ(z)

qϕ̃(z)
,

where zi ∼ qϕ̃ (see Appendix A for a derivation). We see that a higher ESS indicates a lower
χ2-divergence and lower variance of the importance weights. Consequently, we chose our scoring
function

sZ(ϕ̃, ϕ) =
neff(Z, ϕ, ϕ̃)

n
, neff(Z, ϕ, ϕ̃) =

(∑
z∈Z vϕ,ϕ̃(z)

)2
∑

z∈Z vϕ,ϕ̃(z)
2

,

where we express the ESS as a function of the sample set and distribution parameters, and normalize
such that we can set the threshold parameter α ∈ [0, 1].

Note that, assuming sampling from the proposal distribution is cheap, we could evaluate the ESS
on a fresh set of samples from qϕ̃, instead of using the sample set Z . This would allow us to use a
potentially much larger set of samples and hence obtain a better approximation of the variance of
the importance weight. However, because we do not refresh samples at every iteration, we need to
take into account that the actual sample set Z is not a perfect representation of the current proposal
parameter ϕ̃ (especially in the small-sample domain). As a consequence, we want our scoring function
to not only represent how well qϕ̃ matches qϕ, but how well the distributions match for the particular
set of samples Z .

Effect of the Trust-Region on Convergence. The gradient estimator of VISA is expected to exhibit
higher variance and bias than IWFVI as qϕ is generally closer to the posterior than qϕ̃. As a result,
decreasing α impedes the improvement of the gradient estimates of VISA compared to IWFVI as it
delays updating the proposal distribution. As α→ 1 the frequency of sample acquisition increases
and, for α = 1 VISA reduces to standard IWFVI.
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For a low α, the algorithm might converge to a locally optimal parameter ϕ̂ within the trust region of
the current SAA that does not yet satisfy our global convergence criteria, i.e. minimizing the forward
KL-divergence. In these cases, if the variational approximation is not degenerate, we can recover by
increasing α such that ϕ̂ /∈ Sα(ϕ̃) and continue optimization. In this work we propose to choose α
high enough that the algorithm does not converge prematurely to an optima of an intermediate SAA.
In these cases we find that convergence of the training loss can be used as indicator for convergence
of the forward KL-divergence or corresponding upper bound, which we verify in our experiments.
We also experimented with caching past sample sets to compute a secondary loss based on the last
M SAAs. While we did not find it to add additional value in our experiments, it be a useful tool to
assess convergence in other settings.

Efficient Implementation. To avoid recomputing density values for old sample locations, we
cache both sample location z(i) and the corresponding log-joint density of the model log p(z(i), y).
If sampling from the proposal is cheap and memory is of concern, e.g. for large samples set or if
past sample sets are stored to compute a validation loss, we can store the random seed instead of the
sample and rematerialize the sample when needed.

4 Related Work

VI with SAAs. While there exist several works that incorporate SAAs in VI (Gianniotis et al.,
2016; Giordano et al., 2018; Wycoff et al., 2022), only recent work (Giordano et al., 2024; Burroni
et al., 2024) has been focused on theoretically and empirically evaluating SAAs in the context
of reparameterized black-box VI. These methods optimize a reverse KL-divergence and rely on
reparameterization to move samples to areas of high posterior density while keeping a fixed set of
noise realizations from the base distribution, which does not depend of the variational parameters.
Optimizing the resulting deterministic objective allows the use of second-order optimization and
linear response methods (Giordano et al., 2015) to fit covariances. This allows for substantial gains in
terms of inference quality and efficiency but requires differentiability of the model.

Stochastic second-order optimization. There is also work outside of the context of SAAs that
aims to incorporate second order information to improve stochastic optimization and variational
inference. Byrd et al. (2016) propose batched-L-BFGS, which computes stable curvature estimates
by sub-sampled Hessian-vector products instead of computing gradient differences at every iteration.
This work has been further adopted to the variational inference setting by Liu & Owen (2021).
Pathfinder (Zhang et al., 2022) uses a quasi-Newton method to find the mode of the a target density
and construct normal approximations to the density along the optimization path. The intermediate
normal approximations are consequently used to define a variational approximation that minimizes
an evidence lower bound. Similar to SAA-based methods, pathfinder can significantly reduce the
number of model evaluations, but requires a differentiable model.

VI and trust-region optimization. There are various works that combine VI with trust region
optimization, e.g. with natural gradient descent (Theis & Hoffman, 2015), policy search (Arenz
et al., 2018), or automatic differentiation VI to leverage second-order information within trust regions
(Regier et al., 2017). However, in contrast to VISA, these methods do not optimize a forward
KL-divergence and impose additional constraints on the variational distribution.

VI with forward KL-divergence. VISA is also related to other methods that aim to optimize a
forward KL-divergence or its stochastic upper bound. This includes reweighted-wake sleep (and
wake-wake) methods (Bornschein & Bengio, 2015; Le et al., 2018) to which we compare VISA
in the experiment section, as well as their doubly-reparameterized variants (Tucker et al., 2018;
Finke & Thiery, 2019; Bauer & Mnih, 2021), which are not directly comparable as they require
a differentiable model. While the methods above use a single importance sampling step using the
variational approximation as a proposal, other methods use more complex proposal including MCMC
proposals (Naesseth et al., 2020; Zhang et al., 2023), approximate Gibbs kernels (Wu et al., 2020),
or proposal defined by probabilitic programs (Stites et al., 2021; Zimmermann et al., 2021). While
these methods do not necessarily require a differentiable proposal they are not designed to be sample
efficient but to approximate complex target densities.
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Figure 2: Symmetric KL-divergence as a function of the number of model evaluations for a Gaussian
target with diagonal covariance matrix (top row) and dense covariance matrix (bottom row). For small
learning rates (0.001, 0.005, 0.01) IWFVI and BBVI-SF, need a larger number of model evaluations
to converge. VISA converges much faster as it compensates for the small step size by reusing samples.
For a learning rate of 0.05 VISA becomes unstable and fails to reliably converge, while IWFVI still
converges. For an even higher learning rate all methods but BBVI-RP fail to converge.

5 Experiments

We numerically evaluate VISA on three tasks, targeting a medium- to high- dimensional Gaussians,
Lotka-Volterra dynamics, and a Pickover Attractor model. For all experiments we use Adam (Kingma
& Ba, 2015) as an optimizer with the learning rates as indicated in the experiments. For the Gaussian
experiment we report additional results with alternative optimizers in Appendix B.

5.1 Gaussians

To study the effect of different learning rates and ESS threshold parameters, we first evaluate VISA on
approximating medium- to high- dimensional Gaussians and compare the inference performance over
the number of model evaluations to IWFVI, standard reparameterized variational inference (BBVI-RP)
and variational inference using a score-function gradient estimator (BBVI-SF). Notably, we include
BBVI-RP as a reference only, showcasing that faster convergence can be achieved by leveraging
the differentiability of the model. To allow for a fair comparison between methods that optimize a
forward KL-divergence (VISA, IWFVI) and methods that optimize a reverse KL-divergence (BBVI),
we evaluate the inference qualify in terms of the symmetric KL-divergence.

We study two target densities, a (1) D = 128 dimensional Gaussian with a diagonal covariance
matrix Cdiag and (2) D = 32 dimensional Gaussian with a dense covariance matrix Cdense.

Cdiag = diag

([
σmin + (i− 1) ∗ σmax − σmin

D − 1

]D
i=1

)
, Cdense =

(
AAT

||AAT ||F
+ 0.1I

)
,

with σmin = 0.1, σmax = 1, and Aij ∼ U(0, 1). Figure 2 shows the results for different learning
rates lr ∈ {0.001, 0.005, 0.01, 0.05} and ESS thresholds α ∈ {0.3, 0.6, 0.9, 0.99}. We compute
gradient estimates for VISA, IWFVI and BBVI-SF with N = 10 samples, and gradient estimates for
BBVI-RP using a single sample. Each setting is evaluated based on 10 independent runs.

We observe that VISA converges substantially faster than IWFVI and BBVI-SF at lower learning
rates (0.001, 0.005, 0.01), both for the diagonal- and dense covariance matrix. The difference in the
convergence rate becomes less pronounced as the learning rate increases. For large learning rates
(0.05) VISA fail to converge reliably, while IWFVI still converges. For even higher learning rates all
methods but BBVI-RP fail to converge. Moreover, we observe that VISA with small α converges
faster in the early stages of training but can fail to converge fully in the later stages of training if
the thresholds is too low (see α = 0.3 in Figure 2). This is a result of underestimating posterior
variance as samples are not refreshed frequently enough to prevent overfitting to high weight samples.
Comparing convergence across learning rates and ESS thresholds, we observe that VISA with α >
0.3 converges faster or at the same rate as IWFVI with the same or higher learning rate.

Python code for the experiments is available on https://github.com/zmheiko/visa
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Figure 3: Results for Lotka-Volterra model with different learning rates. (Top row) Training objective
over number of model evaluations. (Middle row) Approximate forward KL-divergence computed
on reference samples obtained by MCMC. For smaller step sizes (0.001, 0.005) VISA achieves
comparable forward KL-divergence to IWFVI while requiring significantly less model evaluations
to converge (see vertical lines). For larger step sizes (0.01) VISA only converges with a high ess
threshold (0.99) and requires more evaluations than IWFVI and VISA with a smaller step size (0.005).

5.2 Lotka-Volterra

The Lotka-Vorterra predator-prey population dynamics (Lotka, 1925; Volterra, 1927) are modeled by
a pair of first-order ordinary differential equations (ODEs),

du

dt
= (α− βv)u,

dv

dt
= (−γ + δu)v,

where v denotes the predator- and u denotes the prey population. We will in the following denote the
pair of predator-prey populations at time t with zt = (ut, vt). The dynamics of the ODE are governed
by its population growth and shrinkage parameters θ = (α, β, γ, δ), which we want to infer together
with the initial conditions of the system given noisy observations y1:T = (y1, . . . , yT ). Following
Carpenter (2018), we place priors over the initial population sizes z0 and system parameters,

zprey0 , zpred0 ∼ LogNormal(log(10), 1), α, γ ∼ Normal(1, 0.5), β, δ ∼ Normal(0.05, 0.05),

and assume a fractional observation error,

ypreyt , ypredt ∼ LogNormal(log zt, σt), σt ∼ LogNormal(−1, 1).
Given an initial population z0, system parameters θ, and observations y1:T we can solve the ODE
numerically to obtain approximate population sizes z1:T for time steps 1, . . . , T which we use to
compute the likelihood of the observed predator-prey populations, p(y1:T | z0, θ) =

∏T
t=0p(yt | zt).

Our goal is to learn an approximation to the posterior p(θ, z0 | y) by minimizing the upper bound

LF(ϕ) := E(z0,θ)∼p(·,·|y)

[
log

p(z0, y, θ)

qϕ(z0, θ)

]
. (3)

We model the variational approximation qϕ for the interaction parameters θ and initial population
sizes z0 as jointly log-normal and initialize ϕ such that the the marginal over z0 matches the prior
and the marginal over θ has similar coverage to the prior. We approximate the objective and its
gradient using N = 100 samples. To specify a common convergence criteria, we compute the highest
common test loss value for VISA with α = 0.99 and IWFVI that is not exceeded by more than 1 nat
by all consecutive test loss values. The convergence threshold computed this way is −712.7 nats.

To evaluate the inference performance, we first generate N = 100 000 approximate posterior samples
using a No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014) with 100 000 burn-in steps and
window-adaption, which generally provides good performance out of the box. We use the approximate
posterior samples to approximate an “oracle” for the upper bound in Equation (3),

L̂NUTS
F (ϕ) =

1

N

N∑
i=1

log
p(z

(i)
0 , y, θ(i))

qϕ(z
(i)
0 , θ(i))

,

NUTS is an adaptive Hamiltonian Monte Carlo sampler and uses the gradient information of the model to
guide the generation of proposals. As such it requires the log-joint density model to be differentiable which is
not required by VISA or IWFVI.
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which we evaluate along with the training objective during optimization to assess convergence.

We find that VISA is able to obtain variational distribution of similar quality to IWFVI while requiring
significantly fewer model evaluations for smaller learning rates (see Figure 3). Interestingly, IWFVI
requires significantly fewer model evaluations per gradient step during the early stages of training,
while requiring slightly more evaluations per gradient step thereafter. We hypothesise that this is again
a result of under approximating posterior variance in the later stages of training. As a result, even
small changes in the variational distribution can lead to big changes in the ESS, which triggers the
drawing of fresh samples. For IWFVI, we also find a more pronounced difference between different
ESS thresholds and their influence on convergence. Runs with a higher ESS thresholds converge
more stably and are able to achieve lower test loss in the final stages of training. The reported means
and standard are computed based on 10 independent runs.

5.3 Pickover Attractor

Following Rainforth et al. (2016), we model a 3D Pickover attractor (Pickover, 1995) with system
parameters θ = (β, η) (where xt ∈ R3 is a vector and the superscript denotes the component),

x1
t+1 = sin(βx2

t )− cos(2.5x1
t )x

3
t , x2

t+1 = sin(1.5x1
t )x

3
t − cos(ηx2

t ), x3
t+1 = sin(x1

t ).

Due to its chaotic nature the system is sensitive to small perturbations in its initial state, i.e. even
small variations in the initial state lead to exponentially fast diverging trajectories. Therefore, to track
the evolution of the system, we employ a bootstrap particle filter (Gordon et al., 1993) which assumes
noisy observations y := y1:T and introduces auxiliary variables z := z1:T to model the latent state of
the system. We define the prior over system parameters

p(θ) =

{
1/18 −3 ≤ θ1 ≤ 3, 0 ≤ η ≤ 3

0 otherwise
,

and model the transition and observation as,

z0 ∼ N (· | 03, I3), zt ∼ N (· | h(zt−1, θ), σz), yt ∼ N (· | zt, σy),

where σz = 0.01, σy = 0.2, and h evolves the system by one time step using the equations of the
Pickover attractor described above. The particle filter is used to simulate T = 100 time steps with
M = 500 particles, which renders evaluating the model expensive. To restrict the proposal to the
same domain as the prior by first sampling from a Normal, which we denote q̄ϕ and parameterize by
a mean and lower Cholesky factor, and then transform the sample by

f(θ) = (tanh(3 · θ1), tanh(1.5 · θ2 + 1.5)).

The density of the transformed samples is qϕ(θ) = q̄ϕ(θ)|detdf(θ)dθ |
−1, which is appropriately

restricted to the domain of the prior.

Figure 4: Results for Pickover attractor. (a) Approximate log-joint density over number of batch-
evaluations of model. (b) Log-joint approximation plotted over domain of prior. The variational
approximation capture the high density area containing the data. (c) Visualization of pickover
attractor with ground truth parameters θ = [−2.3, 1.25]. (d) Visualization of attractor with average
system parameters computed over 10.000 samples from the learned variational approximation. Each
evaluation in the plot corresponds to evaluating a batch of N = 10 samples.
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We are interested in approximating the marginal posterior p(θ | y) over system parameters by
optimizing the evidence upper bound

E
pθ(θ|y)

[
log

pθ(y, θ)

qϕ(θ)

]
= E

pθ(θ|y)

[
log

Ep
pf
[p̂(y | θ)]
qϕ(θ)

]
≤ E

pθ(θ|y)

[
Ep

pf

[
log

p̂(y | θ)
qϕ(θ)

]]
.

To obtain a tractable objective we replace the intractable marginal likelihood p(y | θ) ≈ p̂θ(y | θ)
with the marginal likelihood estimate obtained by running the particle filter (Naesseth et al., 2019),
similar to pseudo-marginal methods (Andrieu et al., 2010) and approximate the gradient with N = 10
samples. As the likelihood estimate is non-differentiable due to the discrete ancestor choices made
inside the particle filter, we cannot run NUTS to obtain approximate posterior sample as before, but
instead report the log-joint density of the variational distribution.

We observe that VISA converges more stably with fewer samples compared to IWFVI and find that
attractors corresponding to samples from the variational approximation look qualitatively similar to
those based on the true parameters. We summarize the result in Figure 4.

6 Discussion and Limitations

In this paper we developed VISA, a method for approximate inference for expensive to evaluate
models that optimizes the forward KL-divergence through a sequence of sample-average approxima-
tions. Each SAA is optimized deterministically and fixes a single set of samples, hereby requiring
new model evaluations only when the SAA is refreshed. To track the approximation quality of the
current SAA, VISA computes the ESS of the ratio between the current variational distribution and the
proposal distribution that was used to construct the SAA. If the ESS falls below a predefined thresh-
old, a new SAA approximation is constructed based on fresh samples from the current variational
distribution. We observe a significant reduction of required model evaluations for conservatively
chosen step sizes, while achieving similar posterior approximation accuracy as IWFVI, the equivalent
method that does not employ the sequential sample-average approximation. In the following we are
discussing the limitations of our method.

Underapproximation of posterior variance. Both reparameterized VI, which optimizes the reverse
KL-divergence, and IWFVI, which optimizes the forward KL-divergence via importance sampling,
are prone to under approximating posterior variance. In the case of reparameterized VI, this can often
be attributed to the mode seeking behaviour of the reverse KL-divergence, while in IWFVI the low
effective samples sizes can lead to over fitting to a small number of high-weight samples. We found
that keeping the samples fixed for too long, i.e. using an ESS threshold that is too low, can exacerbate
this problem, as the optimizer can take multiple steps towards the same high-weight samples.

Giordano et al. (2024) and Burroni et al. (2024) showed that when applying SAA to reparameterized
VI, it is possible to make use of second-order methods. We experimented with optimizing SAAs
with L-BGFS, which is a quasi-Newton method with line search. However, we found that in the
setting of optimizing a forward KL with relatively few samples, L-BGFS can amplify the problem of
overfitting, often leading to instabilities and collapsed variational distributions.

Number of latent variables and parameters. Because VISA employs a relatively small number of
samples and does not refresh samples at every iteration, we found that it is not well-suited to models
with a large number of latent variables or large number of parameters. This agrees with theoretical
findings by Giordano et al. (2024), who show that SAAs for a full covariance Gaussian fail if the
number of samples is not at least in the same regime as the number of latent dimensions. Burroni
et al. (2024) manage to train full covariance normal approximation by using a sequence of SAAs
using increasingly large sample sizes, however, this is directly opposed to our goal of reducing the
number of model evaluations in expensive to evaluate models.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. While we recognize
that the advancement of machine learning methods can have broad societal impact, we do not foresee
specific consequences of this particular research.
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A Motivation of trust region.

Using the ESS as a trust-region criteria can be motivated from a perspective of minimizing a χ2-
divergence or the variance of the corresponding importance weight. Let q be the current variational
approximation and q̃ the current proposal, then the following relationship holds,

Dχ2(q | q̃) = Varq̃

[
q(z)

q̃(z)

]
=

n

neff
− 1, neff =

(∑n
j=1 wj

)2
∑n

i=1 w
2
i

.

Note that the ESS criteria defined in section 3 uses the normalized ESS and hence differs from neff

by a factor n,

n

neff
− 1 =

1

sZ(q̃, q)
− 1. (4)

Proof.

Dχ2(q | q̃) =
∫
Z
dz

(q(z)− q̃(z))
2

q̃(z)
=

∫
Z
dz

q(z)2

q̃(z)
− 2

∫
Z
dz

q(z)��q̃(z)

��q̃(z)
−
∫
Z
dz

q̃(z)�2

��q̃(z)︸ ︷︷ ︸
=1

= Eq
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q(z)

q̃(z)

]
− 1 = Eq̃
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q(z)

q̃(z)

)2
]
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[
q(z)

q̃(z)

]
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− Eq̃
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q̃(z)
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2
i(∑n
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)2
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Kish design effect

−1 =
n

neff
− 1.

B Additional results for Gaussians

We evaluate the performance of VISA with two additional optimizers, RMSProp and SGD. We use
the implementation and standard parameters provided by Optax. We find that VISA converges faster
with Adam and RMSProp compared to SGD. We also observe that, for a small learning rate, SGD
can get stuck in local optima, while RMSProp gets unstable more quickly with higher learning rates.
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Justification: Information to reproduce results is provided in Section 5.
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• The answer NA means that the paper does not include experiments.
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to make their results reproducible or verifiable.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and test details are provided in Section 5.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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run with given experimental conditions).
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing assets are used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We will release documented code upon publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review. ;
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