
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROBUST POLICY GRADIENT OPTIMIZATION THROUGH
ACTION PARAMETER PERTURBATION IN REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy gradient methods have achieved strong performance in reinforcement learn-
ing, yet remain vulnerable to premature convergence and poor generalization,
especially in on-policy settings where exploration is limited. Existing solutions
typically rely on entropy regularization or action noise, but these approaches either
require sensitive hyperparameter tuning or alter the interaction dynamics rather
than the optimization process itself. In this paper, we propose Robust Policy Op-
timization (RPO), a policy gradient method that introduces perturbations to the
policy parameters only during optimization. This approach smooths the loss land-
scape and implicitly regularizes learning, reducing sensitivity to local irregularities
while leaving policy behavior during data collection unchanged. We provide a
theoretical perspective showing that RPO implicitly biases updates toward flatter
and more stable solutions. Empirically, RPO significantly improves upon PPO
and entropy-regularized variants across diverse continuous control benchmarks,
achieving faster convergence, higher returns, and greater robustness.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated impressive capabilities across a wide range of complex
decision-making tasks, including robotic control (Schulman et al., 2017) and game-playing (Mnih
et al., 2015; Silver et al., 2018; 2016). Despite these successes, achieving robust and generalizable
behavior remains a core challenge, particularly for on-policy algorithms such as Proximal Policy
Optimization (PPO) (Schulman et al., 2017). These methods often converge prematurely to overly
deterministic policies, exploiting suboptimal strategies that perform well in the short term but fail to
generalize across varying conditions.

This tendency is partly due to the local nature of gradient-based policy optimization, which can overfit
to short-horizon reward signals and produce policies that generalize poorly under distribution shifts.
Such policies often exhibit low entropy and limited adaptability (Mnih et al., 2016; Ahmed et al.,
2019; Nikishin et al., 2022), making them brittle in practice. Prior work has shown that encouraging
smoother optimization dynamics, for instance through implicit regularization, can improve robustness
and generalization in both supervised learning and reinforcement learning.

A common strategy is to introduce entropy regularization (Mnih et al., 2016; Ahmed et al., 2019),
adding an entropy bonus to the optimization objective to encourage stochasticity. While effective
in some cases, this approach typically requires careful tuning of entropy coefficients and is highly
sensitive to hyperparameter selection (Andrychowicz et al., 2020). Other approaches such as action
noise injection (Fujimoto et al., 2018; Haarnoja et al., 2018) improve exploration by perturbing
actions during environment interaction. However, these methods alter the data collection process
rather than the optimization dynamics, often leading to unstable learning or reduced sample efficiency.

We propose Robust Policy Optimization (RPO), a simple and effective alternative that introduces
perturbations only during the optimization phase while leaving environment interaction unchanged.
By perturbing policy parameters at training time but not during rollouts, RPO smooths the optimization
landscape and implicitly regularizes learning. This design steers policy updates away from brittle
solutions and toward more stable ones, without requiring entropy tuning or injecting randomness into
the interaction process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Comparison to Existing Methods. Our approach differs fundamentally from prior noise-based
methods. Off-policy algorithms such as DDPG and TD3 (Lillicrap et al., 2015; Fujimoto et al., 2018)
inject noise directly into actions during interaction or into target networks during critic updates,
thereby modifying the data distribution. In contrast, RPO leaves environment interaction untouched
and applies perturbations only during optimization. Similarly, NoisyNet (Fortunato et al., 2018)
introduces learnable noise into network weights to drive exploration, while PGPE shifts randomness to
the parameter level before trajectory generation. RPO instead applies explicit and fixed perturbations
only during gradient updates, providing a structured form of optimization-time regularization rather
than an exploration mechanism. This separation makes RPO complementary to existing approaches
while addressing robustness from a fundamentally different angle.

Theoretical Perspective. From a theoretical standpoint, RPO can be interpreted as optimizing a
smoothed version of the policy objective, obtained by averaging over a neighborhood of perturbed
policies. This smoothing effect implicitly biases learning toward flatter regions of the optimization
landscape, which are associated with improved stability and generalization. While the formal
derivation assumes perturbations of the full parameter vector, in practice RPO perturbs only the
action-related parameters, and the same reasoning applies within this subspace (see Appendix C.2 for
details).

We evaluate RPO across continuous control tasks from DeepMind Control (Tunyasuvunakool et al.,
2020), OpenAI Gym (Brockman et al., 2016), PyBullet (Coumans & Bai, 2016–2021), and Nvidia
IsaacGym (Makoviychuk et al., 2021). Across these diverse benchmarks, RPO consistently out-
performs PPO and entropy-regularized PPO, demonstrating faster convergence, higher asymptotic
returns, improved sample efficiency, and greater robustness. RPO outperforms or matches PPO in
93% of environments tested, for a total of 57 out of 61 environments. On the DeepMind Control
Suite in particular, RPO achieves more than twice the improvement over PPO in terms of overall
performance.

Contributions.

• We introduce Robust Policy Optimization (RPO), a novel policy gradient method that
applies optimization-time perturbations to the policy parameters. This perturbation acts as
a form of loss smoothing, encouraging robust and generalizable policy learning without
modifying environment interaction.

• We provide a theoretical perspective showing that optimization-time perturbations implic-
itly regularize policy optimization by biasing updates toward flatter, more stable solutions.

• We conduct extensive experiments on a range of continuous control tasks, demonstrating
that RPO consistently outperforms strong on-policy baselines in terms of sample efficiency,
robustness, and stability.

2 PRELIMINARIES: POLICY GRADIENT

We consider a standard Markov Decision Process (MDP) defined by the tuple (S,A, P, r, γ), where
S is the state space, A is the action space, P (s′ | s, a) is the transition probability function, r(s, a) is
the reward function, and γ ∈ (0, 1) is the discount factor. The agent’s objective is to learn a policy
π(a | s; θ), parameterized by θ ∈ Rd, that maximizes the expected cumulative return:

J(θ) = Eτ∼πθ

[∞∑
t=0

γtr(st, at)

]
, (1)

where τ = (s0, a0, s1, a1, . . .) denotes a trajectory generated by following policy πθ.

Policy gradient methods directly optimize J(θ) by estimating its gradient using the policy gradient
theorem (Sutton et al., 1999):

∇θJ(θ) = Eπθ
[∇θ log πθ(a | s)Aπθ (s, a)] , (2)

where Aπθ (s, a) = Qπθ (s, a)− V πθ (s) is the advantage function, representing how much better an
action is compared to the expected value of the current policy in state s. In practice, the advantage is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

estimated using temporal-difference methods or generalized advantage estimation (GAE) (Schulman
et al., 2016), which balances bias and variance by incorporating multi-step value targets.

This advantage-weighted objective enables actor-critic methods to scale to complex environments
by providing lower-variance gradient estimates. To further stabilize training (Kakade, 2001), Trust
Region Policy Optimization (TRPO) (Schulman et al., 2015) and Proximal Policy Optimization
(PPO) (Schulman et al., 2017) constrain the size of policy updates using trust region constraints or
clipped surrogate objectives. Nonetheless, these methods can still suffer from premature convergence
to low-entropy or brittle policies (Andrychowicz et al., 2020; Nikishin et al., 2022).

3 RELATED WORK

Policy Gradient. Since the inception of practical policy optimization methods like PPO, TRPO,
and Natural Policy Gradient, several studies have investigated different algorithmic components
(Engstrom et al., 2019; Andrychowicz et al., 2020; Ahmed et al., 2019; Ilyas et al., 2019). Entropy
regularization has been widely used to encourage exploration and improve optimization (Williams &
Peng, 1991; Mei et al., 2020; Mnih et al., 2016; Ahmed et al., 2019). However, setting an appropriate
entropy coefficient can be difficult in practice, and empirical results suggest that its benefits are
often environment-dependent (Andrychowicz et al., 2020). Our work instead pursues a different
direction: rather than injecting entropy into the interaction process, we introduce perturbations
directly during optimization, thereby regularizing the policy gradient updates without modifying the
collected trajectories.

Noise-Injected Policies. Adding noise to actions is a standard technique for improving exploration in
reinforcement learning. Deterministic policy methods such as DDPG (Lillicrap et al., 2015) and TD3
(Fujimoto et al., 2018) employ action noise during environment interaction, thereby directly altering
the distribution of collected trajectories. This differs fundamentally from our approach, which applies
perturbations only during the policy update phase and leaves the environment interaction untouched.
While TD3 also employs perturbations during learning by injecting noise into target actions, it is an
off-policy actor–critic method relying on target networks. In contrast, our method is developed in the
context of on-policy policy gradient algorithms such as PPO, where perturbations act on the policy
parameters to smooth the optimization landscape.

Parameter-Space Noise. An alternative to action-level noise is parameter-space noise, where
perturbations are applied to the policy parameters themselves. Plappert et al. (Plappert et al., 2018)
showed that parameter-space noise can lead to more consistent exploration across states. Similarly,
NoisyNet (Fortunato et al., 2018) perturbs network weights with learned noise parameters to drive
exploratory behavior. Our method shares the idea of parameter perturbation but differs in both
mechanism and purpose. First, unlike NoisyNet, which learns noise parameters as part of the model
and affects the policy used for environment interaction, our perturbations are fixed, explicitly applied,
and only affect the optimization dynamics. Second, whereas Plappert et al. (Plappert et al., 2018)
proposed perturbations for exploration during trajectory generation, we apply perturbations only
during gradient estimation, which regularizes optimization rather than exploration. This distinction
allows for a clear theoretical characterization of our method as introducing a curvature-dependent
regularizer.

Policy Gradients with Parameter-Based Exploration (PGPE). Another related direction is
PGPE (Sehnke et al., 2010), which shifts randomness from the action level to the parameter level
by perturbing policy parameters prior to environment interaction. This eliminates per-step action
noise and is often studied with deterministic policies. In contrast, our method does not alter the
trajectory generation process. Instead, perturbations are applied exclusively during the gradient
computation step, separating optimization regularization from exploration. This difference makes
RPO complementary to PGPE and related methods (Montenegro et al., 2024; Zhao et al., 2011;
Metelli et al., 2018; 2020; Xu et al., 2020; Likmeta et al., 2020): whereas PGPE modifies exploration
at the trajectory level, RPO stabilizes optimization dynamics without changing the data-collection
process.

Data Augmentation. Another avenue for increasing policy entropy is through observation-level data
augmentation. Methods such as RAD and DrAC (Laskin et al., 2020; Raileanu et al., 2020) show that
random transformations of input observations can regularize learning and improve generalization

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

in visual RL tasks. However, augmentation often requires environment-specific design choices and
domain knowledge to be effective. In contrast, our method is domain-agnostic: perturbations are
applied in parameter space during optimization, with no assumptions about the environment modality.

Policy Optimization. Numerous implementation refinements have contributed to the empirical
success of modern policy optimization, including Generalized Advantage Estimation (Schulman
et al., 2016), normalization of advantages (Andrychowicz et al., 2020), and clipped policy and
value objectives (Schulman et al., 2017; Engstrom et al., 2019; Andrychowicz et al., 2020). These
improvements are widely adopted in standard implementations (Huang et al., 2022a;b). Our method
is complementary to such techniques: we adopt them in our implementation for a fair comparison and
show that optimization-time perturbations provide additional robustness and performance benefits on
top of these established practices.

4 METHODOLOGY: ROBUST POLICY OPTIMIZATION (RPO)

4.1 ALGORITHMIC DESCRIPTION

Robust Policy Optimization (RPO) is a modified policy gradient method that introduces perturbations
to the policy parameters during the optimization phase, while keeping the data collection policy
unchanged. This separation aims to ensure the exploration behavior remains stable during environment
interaction, while optimization benefits from smoother gradient estimates. Unlike traditional entropy
regularization, which requires manually tuned coefficients and modifies the reward objective, RPO
regularizes implicitly by averaging gradient updates over a neighborhood in parameter space. The
details of the RPO method are presented in Algorithm 1.

Algorithm 1 Robust Policy Optimization (RPO)
1: Initialize: Policy parameters θ, experience buffer D
2: for each iteration do
3: D ← ∅ ▷ Initialize batch storage
4: for each environment step t do
5: (µt, σt)← πθ(st) ▷ Compute action distribution
6: at ∼ N (µt, σt) ▷ Sample action
7: Execute at, observe st+1, rt
8: Store transition (st, at, rt, st+1) in D
9: end for

10: Compute advantages At for each (st, at) ∈ D
11: for each transition (st, at, At) ∈ D do
12: (µt, σt)← πθ(st) ▷ Compute policy mean and std
13: Sample perturbation z ∼ U(−α, α)
14: Set perturbed mean µ′

t = µt + z
15: Compute log-probability log πθ(at | st;µ′

t, σt)
16: g ← g +∇θ log πθ(at | st;µ′

t, σt)At ▷ Accumulate policy gradient
17: end for
18: Update θ using accumulated gradients
19: end for

4.2 THEORETICAL ANALYSIS

The key intuition behind Robust Policy Optimization (RPO) is that perturbing the policy parameters
during the optimization phase introduces a controlled stochasticity. By decoupling perturbation
from data collection, RPO aims to avoid the instability associated with action-space noise, while
still encouraging diversity in gradient updates. Unlike traditional entropy-regularized methods,
which require manual tuning of entropy coefficients and modify the reward function, RPO implicitly
maintains policy stochasticity through optimization-time noise, without altering the objective.

In the continuous control setting, the policy is typically modeled as a Gaussian distribution:

πθ(a | s) = N (µθ(s), σθ(s)), (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where µθ(s) and σθ(s) are the outputs of a neural network parameterized by θ. Gaussian policies
are widely used in continuous control due to their analytical tractability and compatibility with
reparameterization-based gradient estimation.

During optimization, RPO perturbs the mean as:

µ′ = µ+ z, z ∼ U(−α, α), (4)

resulting in a modified policy distribution:

π̃θ(a | s) = Ez [N (a | µ+ z, σ)] . (5)

This formulation ensures that policy gradient updates are influenced by a neighborhood of parameter
values rather than a single deterministic policy. As a result, RPO naturally prevents premature
convergence to deterministic, low-entropy solutions and encourages robust, diverse behavior.

We next provide a formal analysis of how this perturbation affects gradient estimation and induces an
implicit regularization effect that improves generalization and optimization stability.

4.3 UNBIASEDNESS OF THE GRADIENT ESTIMATOR

A desirable property of any modification to the policy gradient method is that it does not introduce
bias in the gradient estimate. In this subsection, we show that RPO preserves unbiasedness despite
applying perturbations to the policy parameters during optimization.

The standard policy gradient is:

∇θJ(θ) = Es∼ρπ,a∼πθ
[∇θ log πθ(a | s)A(s, a)] . (6)

In RPO, the policy distribution is perturbed during optimization:

πpert
θ (a | s; z) = N (µθ(s) + z, σθ(s)), z ∼ U(−α, α), (7)

but the data used for gradient estimation (states and actions) is collected using the unperturbed policy
πθ.

The RPO update computes:

g̃(θ) = Ez [∇θ log πθ(a | s;µ+ z, σ)A(s, a)] . (8)

Because the perturbation z is sampled independently from a symmetric zero-mean distribution and
does not affect the data distribution, we can apply linearity of expectation:

Ez [∇θ log πθ(a | s;µ+ z, σ)] = ∇θEz [log πθ(a | s;µ+ z, σ)] . (9)

Since the policy is Gaussian and smooth, this expectation can be viewed as convolution with a
uniform kernel, which preserves the mean gradient direction. Hence:

Ez [∇θ log πθ(a | s;µ+ z, σ)] = ∇θ log πθ(a | s), (10)

and the full RPO estimator becomes:

Ez[g̃(θ)] = ∇θ log πθ(a | s)A(s, a). (11)

Thus, RPO does not introduce any bias into the policy gradient estimator (Sutton et al., 1999). It
only modifies the way the gradient is computed during the optimization step, without affecting the
trajectory distribution or introducing systematic drift. This unbiasedness is crucial for ensuring that
RPO retains the convergence guarantees of standard policy gradient methods (Sutton et al., 1999;
Schulman et al., 2015; Kakade, 2001), while benefiting from the regularization and smoothing effects
of the perturbation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.4 INDUCED REGULARIZATION EFFECT

Beyond preserving the unbiasedness of the policy gradient, RPO also induces an implicit regu-
larization effect. By introducing perturbations to the policy parameters during optimization, the
loss landscape becomes smoothed, discouraging convergence to narrow optima and improving
generalization.

To illustrate this effect, consider the expected log-likelihood under perturbation:
Ez [− log πθ(a | s;µ+ z, σ)] . (12)

Due to the convexity of the negative log-likelihood in the perturbed mean and the symmetry of the
perturbation distribution, this expectation introduces a regularization term. Specifically, using a
second-order Taylor expansion, it can be shown (details in Appendix) that:

Ez [− log πθ(a | s;µ+ z, σ)] ≈ − log πθ(a | s) +
α2

6σ2
. (13)

This extra term penalizes low variance in the action distribution by discouraging overly sharp
likelihood peaks. As a result, RPO acts similarly to entropy regularization, but without requiring
explicit entropy bonuses or tuning of exploration coefficients. Instead, it maintains stochasticity
through parameter-space smoothing, providing a self-regularizing mechanism that encourages more
robust, generalizable policies. We provide a full derivation of this regularization effect in Appendix.

4.5 LOSS LANDSCAPE SMOOTHING IN RPO

To better understand the effect of optimization-time perturbations, we analyze how RPO modifies the
policy gradient objective. Our analysis shows that perturbing parameters during training is equivalent
to optimizing a smoothed version of the loss, which can be interpreted as convolving the original
objective with a uniform kernel. A second-order expansion reveals that this smoothing introduces an
implicit regularization term proportional to the trace of the Hessian, biasing updates toward flatter
regions of the landscape that are associated with improved stability and generalization. While the
derivation is presented for the full parameter vector, in practice RPO perturbs only the action-related
parameters (e.g., the mean of the Gaussian policy), and the same reasoning applies within this
restricted subspace. We provide the full derivation and further discussion in Appendix C.2.

5 EXPERIMENTS

5.1 SETUP

Environments We conducted experiments on continuous control task from four reinforcement
learning benchmarks: DeepMind Control (Tunyasuvunakool et al., 2020), OpenAI Gym Mujoco
control tasks (Brockman et al., 2016), PyBullet (Coumans & Bai, 2016–2021), and Nvidia IsaacGym
(Makoviychuk et al., 2021). These benchmarks contain diverse environments with many different
tasks, from low to high-dimensional environments (observations and actions space). Thus our
evaluation contains a diverse set of tasks with various difficulties.

Baselines We compare our method RPO with the standard PPO (Schulman et al., 2017) algorithm.
Here our method RPO uses the perturbed Gaussian distribution to represent the action output from the
policy network. In contrast, the PPO uses standard Gaussian distribution to represent its action output.
Unless otherwise mentioned, we tested on Gaussian distribution. However, we provide separate
experiments for different parameterized distributions, including Laplace and Gumbel.

Another common approach to increase entropy is to use the Entropy Regularization (Mnih et al.,
2016) in the RL objective. A coefficient determines how much weight the policy would give to the
entropy. We observe that various weighting might result in different levels of entropy increment.
We use the entropy coefficient 0.0, 0.01, 0.05, 0.5, 1.0, and 10.0 and compare their performance
in entropy and, in return, with our RPO algorithm. Note that our method does not use the entropy
coefficient hyper-parameters.

To account for the stochasticity in the environment and policy, we run each experiment several times
and report the mean and standard deviation. Unless otherwise specified, we run each experiment with
10 random seeds. Further implementation details are in the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Results on DeepMind Control Environments. PPO agent fails to learn any useful behavior
and thus results in low episodic return in some environments (humanoid: stand, walk, and run
and hopper: stand, and hop). Overall, our method RPO performs better in episodic return. In
many settings, PPO agents stop improving their performance after around 2M timestep while RPO
consistently improves over the entire training time.

5.2 COMPARISON WITH PPO

Figure 2: Comparison with Entropy Regularization.
While entropy regularization can help with careful
tuning (e.g., walker stand), poor coefficient choices
often degrade performance. In contrast, RPO consis-
tently outperforms PPO and all entropy-tuned base-
lines.

We notice a consistent improvement in the
performance of our method in many contin-
uous control environments compared to stan-
dard PPO. This evaluation is the direct form
of comparison where no method uses any aid
(such as data augmentation or entropy regular-
ization) in the entropy value. Figure 1 shows
results comparison on DeepMind Control En-
vironments. Results on more environments
and entropy comparisons are in the Appendix.

In most scenarios, our method RPO shows
consistent performance improvement in these
environments compared to the PPO. In some
environments, such as humanoid stand, hu-
manoid run, and hopper hop, the PPO agent
fails to learn any useful behavior and thus re-
sults in low episodic return. In contrast, our
method RPO shows better performance and
achieves a much higher episodic return. The
RPO also shows a better mean return than
the PPO in other environments. In particu-
lar, RPO achieves equal or better performance
than PPO in 93% of the environments tested, covering all 48 tasks from the DeepMind Control Suite,
one task from OpenAI Gym, one task from Nvidia IsaacGym and 7 out of 11 MuJoCo v4 tasks, for a
total of 57 out of 61 environments. On the DeepMind Control Suite in particular, RPO delivers more
than a twofold improvement over PPO in overall performance. Together, these findings establish

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

RPO as a practical and reliable drop-in replacement for PPO, offering enhanced stability, sample
efficiency, and generalization without additional tuning.

In many settings, such as in quadruped (walk, run, and escape), walker (stand, walk, run), fish swim,
acrobot swingup, the PPO agents stop improving their performance after around 2M timesteps. In
contrast, our agent RPO shows consistent improvement over the course of training. This performance
gain might be due to the proper management of policy entropy, as in our setup, the agent is encouraged
to keep exploring as the training progresses. On the other hand, the PPO agent might settle in sub-
optimal performance as the policy entropy, in this case, decreases as the agent trains for more
timesteps. These results show the effectiveness of our method in diverse control tasks with varying
complexity. Experimental results for other continuous benchmarks, such as those in IsaacGym,
Gym(nasium) Mujoco control, and PyBullet environments, are provided in the Appendix.

5.3 COMPARISON WITH ENTROPY REGULARIZATION

Figure 3: Ablation on alpha values of the uniform distribu-
tion for RPO. An α value between 0.1 to 3 often results in
better performance, while a large value often results in worse
performance. The suggested default value is α = 0.5.

A way to control entropy is to use
an entropy regularizer (Mnih et al.,
2016; Ahmed et al., 2019), which of-
ten shows beneficial effects. How-
ever, it has been observed that in-
creasing entropy in such a way
has little effect in specific environ-
ments (Andrychowicz et al., 2020).
These results show difficulty in set-
ting proper entropy throughout the
agent’s training.

Due to the variety in the envi-
ronments, the entropy requirement
might be different. Thus, improper
setting of the entropy coefficient
might result in bad training perfor-
mance. In the tested environments,
we observe that sometimes the perfor-
mance improves with a proper setup
of tuned coefficient value and often
worsens the performance (in Figure
2). However, our method RPO con-
sistently performs better than PPO
and the different entropy coefficient
baselines. Importantly, our method
does not use these coefficient hyper-parameters and still consistently performs better in various
environments, which shows our method’s robustness in various environment variability.

We observe that in some environments, the coefficient 0.01 improves the performance of standard
PPO with coefficient 0.0 while increasing the entropy. However, an increase in entropy to 0.05 and
above results in an unbounded entropy increase. Thus, the performance worsens in most scenarios
where the agent fails to achieve a reasonable return. Results with all the coefficient variants in the
Appendix. Overall, our method RPO achieves better performance in the evaluated environments in
our setup. Moreover, our method does not use the entropy coefficient hyperparameter and controls
the entropy level automatically in each environment.

6 ABLATION STUDY

6.1 EFFECT OF α ON RPO

We conducted experiments on the α value ranges in the Uniform distribution. Figure 3 shows
the return and policy comparison. We observe that the value of α affects the policy entropy and,
thus, return performance. A smaller value of α (e.g., 0.001) seems to behave similarly to PPO,
where policy entropy decreases over time, thus hampered performance. Higher entropy values,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

such as 1000.0, make the policy somewhat random as the uniform distribution dominates over the
Gaussian distribution. This scenario keeps the entropy somewhat at a constant level; thus, the
performance is hampered. Overall, a value between 0.1 to 3 often results in better performance.

Figure 4: RPO-Annealing on Mujoco-v4.
In two challenging cases where the de-
fault RPO (α = 0.5) fails, the annealed
version recovers and eventually matches
PPO’s performance.

Due to overall performance advantage, in this paper, we
report results with α = 0.5 for all environments. We
implement a version of our RPO algorithm that varies
the α parameter, which controls the amount of uniform
perturbation applied to the policy. Specifically, we anneal
α from its default value (0.5 in our main experiments)
down to zero over the course of training.

6.2 RESULTS ON RPO-α ANNEALING

The value decreases uniformly at each policy update, en-
suring that the injected randomness is gradually reduced
and ultimately removed by the end of training.

We evaluate RPO-Annealing on challenging Mujoco-v4
environments, where the default RPO setting (α = 0.5) fails to learn. In these cases, the annealed
version recovers and eventually matches the performance of the base PPO. Notably, RPO can also
succeed in these environments by fine-tuning the α value, as shown in Figure 4. Overall, annealing α
is a promising strategy that can improve performance and enhance stability. Moreover, proper tuning
of α can lead to even better outcomes compared to the default, as evidenced in Figure 4. Further
results are in the Appendix.

6.3 EFFECT OF ACTION DISTRIBUTION

Figure 5: Results on different action distributions. Our method
RPO shows improvement compared to base distributions.

Figure 5 shows the performance of
RPO across different action distribu-
tions (Gaussian, Laplace, and Gum-
bel) on Mujoco and Bullet environ-
ments. Empirically, RPO improves
performance over PPO even when
PPO uses alternative action distribu-
tions, demonstrating RPO’s robust-
ness. While RPO consistently en-
hances learning across all tested dis-
tributions, we observe that the Gaus-
sian distribution tends to perform
best for continuous control tasks.
Additional results are provided in
the Appendix.

7 CONCLUSION

We introduced Robust Policy Optimization (RPO), an effective enhancement to policy gradient
methods that improves robustness by applying parameter perturbations during optimization. Unlike
approaches that rely on entropy regularization or action noise, RPO preserves policy behavior during
environment interaction and removes the need for tuning entropy coefficients. Our theoretical
perspective shows that RPO implicitly smooths the optimization landscape by discouraging sharp
curvature, thereby guiding updates toward flatter and more stable solutions. Empirically, RPO
achieves equal or better performance than PPO in 93% of tested environments. These results highlight
RPO as a practical and theoretically grounded framework that delivers faster convergence, higher
returns, and improved robustness across diverse continuous control benchmarks. Overall, RPO
provides a simple yet powerful drop-in replacement for PPO, enabling more consistent and adaptable
on-policy learning in reinforcement learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. In International conference on machine learning, pp.
151–160. PMLR, 2019.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What matters for
on-policy deep actor-critic methods? a large-scale study. In International conference on learning
representations, 2020.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. Crossq: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=PczQtTsTIX.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning, 2016–2021.

Gintare Karolina Dziugaite and Daniel Roy. Entropy-sgd optimizes the prior of a pac-bayes bound:
Generalization properties of entropy-sgd and data-dependent priors. In International Conference
on Machine Learning, pp. 1377–1386. PMLR, 2018.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and trpo. In
International conference on learning representations, 2019.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,
Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rywHCPkAW.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In
ICLR Blog Track, 2022a. URL https://iclr-blog-track.github.io/2022/03/
25/ppo-implementation-details/. https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep reinforce-
ment learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022b. URL
http://jmlr.org/papers/v23/21-1342.html.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. A closer look at deep policy gradients. In International Conference on
Learning Representations, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

10

https://openreview.net/forum?id=PczQtTsTIX
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=rywHCPkAW
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
http://jmlr.org/papers/v23/21-1342.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14,
2001.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in Neural Information Processing Systems, 33,
2020.

Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello Restelli, and
Danilo Romano. Combining reinforcement learning with rule-based controllers for transparent and
general decision-making in autonomous driving. Robotics and Autonomous Systems, 131:103568,
2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance gpu-based physics simulation for robot learning, 2021.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
rates of softmax policy gradient methods. In International Conference on Machine Learning, pp.
6820–6829. PMLR, 2020.

Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello Restelli. Policy optimization
via importance sampling. Advances in Neural Information Processing Systems, 31, 2018.

Alberto Maria Metelli, Matteo Papini, Nico Montali, and Marcello Restelli. Importance sampling
techniques for policy optimization. Journal of Machine Learning Research, 21(141):1–75, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Alessandro Montenegro, Marco Mussi, Alberto Maria Metelli, and Matteo Papini. Learning optimal
deterministic policies with stochastic policy gradients. In International Conference on Machine
Learning, pp. 36160–36211. PMLR, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International Conference on Machine Learning,
pp. 16828–16847. PMLR, 2022.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018.

Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic data
augmentation for generalization in deep reinforcement learning. arXiv preprint arXiv:2006.12862,
2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen Schmid-
huber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. nature, 529:484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362:1140–1144, 2018. doi: 10.1126/science.aar6404.
URL https://www.science.org/doi/abs/10.1126/science.aar6404.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.
org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/science/
article/pii/S2665963820300099.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.

Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with recursive
variance reduction. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HJlxIJBFDr.

Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis and improvement of
policy gradient estimation. Advances in Neural Information Processing Systems, 24, 2011.

A DERIVATION OF GRADIENT UNBIASEDNESS UNDER PARAMETER
PERTURBATION

We now provide a more detailed justification for the identity used in the unbiasedness proof:
Ez [∇θ log πθ(a | s;µ+ z, σ)] = ∇θ log πθ(a | s). (14)

Let πθ(a | s) = N (µθ(s), σθ(s)) be a Gaussian policy. During RPO optimization, the mean is
perturbed as µ′ = µ+ z, where z ∼ U(−α, α) is independent of the policy parameters θ.

Define the perturbed log-likelihood:
ℓz(θ) := log πθ(a | s;µ+ z, σ). (15)

We want to show:
Ez[∇θℓz(θ)] = ∇θ log πθ(a | s). (16)

This is justified using the following steps:

12

https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://openreview.net/forum?id=HJlxIJBFDr

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Step 1: Expand the log-likelihood of the Gaussian. Let us write:

πθ(a | s;µ+ z, σ) =
1√
2πσ2

exp

(
− (a− µ− z)2

2σ2

)
. (17)

Taking the log:

log πθ(a | s;µ+ z, σ) = − (a− µ− z)2

2σ2
− log(

√
2πσ2). (18)

Step 2: Compute the gradient w.r.t. θ. We compute ∇θ log πθ(a | s;µ + z, σ). Since z is
independent of θ, and µ = µθ(s), the derivative only applies to µ (and possibly σ):

∇θ log πθ(a | s;µ+ z, σ) =
(a− µ− z)

σ2
∇θµθ(s). (19)

Step 3: Take expectation over z. Now take expectation:

Ez [∇θ log πθ(a | s;µ+ z, σ)] = ∇θµθ(s) ·
1

σ2
Ez [(a− µ− z)] . (20)

Because z is zero-mean and independent of a and µ:

Ez [a− µ− z] = a− µ. (21)

So:

Ez [∇θ log πθ(a | s;µ+ z, σ)] =
(a− µ)

σ2
∇θµθ(s) = ∇θ log πθ(a | s). (22)

Thus, the expectation of the perturbed gradient matches the original unperturbed policy gradient:

Ez [∇θ log πθ(a | s;µ+ z, σ)] = ∇θ log πθ(a | s), (23)

which proves that the RPO gradient estimator is unbiased.

B DERIVATION OF THE REGULARIZATION EFFECT

We derive how Robust Policy Optimization (RPO) induces an implicit regularization effect by
applying noise to the policy mean during the optimization phase. Specifically, we show that the
expected log-likelihood under perturbation introduces a curvature-dependent penalty term, which
prevents variance collapse and promotes higher-entropy, more robust policies.

B.1 SETUP

Let the policy be Gaussian:
πθ(a | s) = N (µθ(s), σθ(s)), (24)

with fixed standard deviation σ = σθ(s), and µ = µθ(s) denoting the mean.

In RPO, we perturb the mean by adding a noise vector z ∼ U(−α, α), leading to:

µ′ = µ+ z. (25)

We analyze the effect of computing the expected negative log-likelihood over this perturbation:

Ez [− log πθ(a | s;µ+ z, σ)] . (26)

B.2 NEGATIVE LOG-LIKELIHOOD

Recall the negative log-likelihood for a Gaussian:

− log πθ(a | s;µ+ z, σ) =
(a− µ− z)2

2σ2
+

1

2
log(2πσ2). (27)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We expand the squared term:

(a− µ− z)2 = (a− µ)2 − 2z(a− µ) + z2. (28)

Taking expectation over the uniform distribution z ∼ U(−α, α): - E[z] = 0, - E[z2] = α2

3 .

Thus:

Ez

[
(a− µ− z)2

]
= (a− µ)2 +

α2

3
. (29)

Substituting into the expectation of the log-likelihood:

Ez [− log πθ(a | s;µ+ z, σ)] =
(a− µ)2

2σ2
+

α2

6σ2
+

1

2
log(2πσ2). (30)

The first and third terms correspond to the unperturbed negative log-likelihood. The second term is
the added regularization:

α2

6σ2
. (31)

B.3 INTERPRETATION

We conclude that:

Ez [− log πθ(a | s;µ+ z, σ)] ≈ − log πθ(a | s) +
α2

6σ2
. (32)

This extra term penalizes small standard deviation σ, thereby preventing entropy collapse and
implicitly encouraging broader, smoother action distributions. Importantly, this effect arises without
requiring an explicit entropy bonus in the objective function.

Hence, RPO behaves like an entropy-regularized policy gradient method, but achieves this through
optimization-time parameter perturbation, without modifying the reward or introducing additional
hyperparameters.

C LOSS LANDSCAPE ANALYSIS

For clarity of exposition, the following analysis is written assuming perturbations are applied to
the entire parameter vector θ. In practice, RPO perturbs only the action-related parameters (e.g.,
the mean of the Gaussian policy). The same reasoning still applies in this restricted setting: the
smoothing effect operates on the subspace of perturbed parameters, and the resulting regularization
term involves the corresponding block of the Hessian.

We denote the policy optimization objective as J(θ) = Eπθ

[∑
t γ

trt
]
, where πθ is the policy

parameterized by θ. In the derivation below, we write L(θ) = −J(θ) to emphasize the minimiza-
tion perspective: smoothing L(θ) is equivalent to regularizing the maximization of J(θ). Thus,
the curvature-penalization effect derived for L(θ) directly characterizes how RPO biases policy
optimization toward flatter, more robust solutions in terms of J(θ).

C.1 IMPLICIT REGULARIZATION THROUGH OPTIMIZATION-TIME PERTURBATION

Recent work in deep learning has shown that flatter regions of the loss landscape are associated with
improved generalization (Keskar et al., 2017). This insight has motivated the use of implicit regular-
ization techniques such as dropout (Srivastava et al., 2014), data augmentation, batch normalization in
supervised (Ioffe & Szegedy, 2015) and off-policy reinforcement learning (Bhatt et al., 2024). These
methods introduce stochasticity during training, which helps models converge to broader optima that
generalize better to unseen data.

In reinforcement learning setting issues of generalization and stability arise due to the non-stationary,
high-variance nature of policy updates. We are particularly interested in the effect of introducing
noise into the policy parameters during optimization—not during data collection or interaction with

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the environment. This idea can be understood through the lens of optimization-time smoothing, a
general technique that modifies the training loss by averaging it over a neighborhood in parameter
space.

Specifically, we define a smoothed training objective of the form:

L̃(θ) = Ez∼U(−α,α) [L(θ + z)] , (33)

where z ∈ Rd is a uniformly sampled perturbation vector and α > 0 controls the magnitude of the
perturbation. This formulation corresponds to a convolution of the original loss with a uniform kernel,
resulting in a smoothed version of the loss landscape.

Although no explicit regularization term is added to the objective, this smoothing induces an implicit
bias toward flatter solutions. Prior work (Dziugaite & Roy, 2018; Foret et al., 2021) has shown that
this effect can be understood through a second-order Taylor expansion:

L̃(θ) ≈ L(θ) +
α2

6
Tr(HL(θ)), (34)

where HL(θ) denotes the Hessian of the loss with respect to θ. The trace term penalizes curvature,
discouraging convergence to sharp local minima and instead favoring broader, more stable regions of
the loss surface.

This theoretical connection between curvature and generalization has been extensively validated
in supervised learning (Dziugaite & Roy, 2018; Foret et al., 2021). Sharp minima lead to high
sensitivity to small changes in model parameters and poor robustness under distribution shifts.
Implicit regularization via loss smoothing helps avoid such solutions, yielding models that are more
robust and generalizable.

In the following section, we apply this principle to policy gradient methods by introducing
optimization-time parameter perturbations. Our approach leverages this implicit regularization
effect to stabilize training and improve generalization in reinforcement learning.

C.2 LOSS LANDSCAPE SMOOTHING VIA TAYLOR EXPANSION

We show how Robust Policy Optimization (RPO) smooths the policy gradient loss landscape by
averaging over perturbed parameters. This leads to a regularization effect that penalizes sharp
curvature and encourages more stable, generalizable solutions.

C.3 INTERPRETATION AS A CONVOLUTION WITH A UNIFORM KERNEL

The RPO objective can be interpreted as a convolution between the loss function and a uniform
smoothing kernel. Specifically, the smoothed loss is defined as:

L̃(θ) = Ez∼U(−α,α) [L(θ + z)] =

∫
Rd

L(θ + z)p(z) dz. (35)

Here, p(z) is the probability density function of a uniform distribution over a hypercube [−α, α]d. It
is defined as:

p(z) =
1

(2α)d
· I[z ∈ [−α, α]d], (36)

where I[z ∈ [−α, α]d] is the indicator function, equal to 1 when all components of z lie within the
interval [−α, α], and 0 otherwise. This ensures that the density is constant over the support and
integrates to 1: ∫

Rd

p(z) dz = 1. (37)

This convolutional smoothing can be understood as a low-pass filter on the loss surface: it averages
the value of the loss over a local neighborhood, reducing sensitivity to high-frequency variations. As
we will show in the next subsection, this results in an explicit curvature-penalizing regularization
term.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.4 SECOND-ORDER EXPANSION

To analyze the regularization effect, we apply a second-order Taylor expansion of L(θ + z) around θ:

L(θ + z) ≈ L(θ) +∇L(θ)⊤z + 1

2
z⊤HL(θ)z, (38)

where HL(θ) = ∇2L(θ) is the Hessian of the loss.

Taking the expectation over z ∼ U(−α, α)d, we use the facts: - E[zi] = 0, - E[zizj] = 0 for i ̸= j, -
E[z2i] = α2

3 .

Then:

Ez

[
z⊤HL(θ)z

]
=

d∑
i=1

HiiE[z2i] =
α2

3
Tr(HL(θ)). (39)

So the smoothed loss becomes:

L̃(θ) = L(θ) +
α2

6
Tr(HL(θ)). (40)

C.5 INTERPRETATION

This shows that the perturbation introduces a curvature-dependent regularization term:

L̃(θ) = L(θ) +
α2

6

d∑
i=1

λi, (41)

where λi are the eigenvalues of the Hessian. The trace term penalizes high curvature, effectively
encouraging convergence to flatter regions of the loss landscape.

This regularization: (i) Damps sensitivity to small parameter shifts, (ii) Reduces susceptibility to
sharp minima, (iii) Promotes better generalization.

Thus, RPO performs a convolutional smoothing of the policy gradient loss, without modifying the
reward or requiring additional loss terms.

C.6 SMOOTHING OF THE LOSS LANDSCAPE

A key effect of Robust Policy Optimization (RPO) is that it smooths the loss landscape by averaging
the policy gradient objective over a local neighborhood in parameter space. This reduces the
optimizer’s sensitivity to sharp local variations and encourages convergence to flatter, more stable
regions.

Formally, instead of minimizing the standard loss L(θ), RPO optimizes the smoothed objective:

L̃(θ) = Ez∼U(−α,α) [L(θ + z)] , (42)

which corresponds to convolving the original loss function with a uniform kernel. This operation
averages the loss over a region around θ, effectively dampening high-curvature fluctuations in the
landscape.

Using a second-order Taylor expansion, we show (details in Appendix) that this smoothing introduces
a regularization term proportional to the trace of the Hessian:

L̃(θ) ≈ L(θ) +
α2

6
Tr(∇2L(θ)). (43)

This additional term penalizes sharp curvature in the loss function, encouraging updates that lead to
flatter minima. As flatter solutions are known to generalize better in deep learning and reinforcement
learning, this implicit smoothing mechanism contributes to RPO’s improved robustness and stability
without requiring any explicit regularization term or change to the reward structure.

While the loss landscape analysis above is derived under the assumption that perturbations are applied
to all parameters, in practice RPO perturbs only the action-related parameters; we clarify this
distinction below.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.7 ACTION-PARAMETER PERTURBATION IN PRACTICE

Although the above analysis is presented in terms of perturbing the full parameter vector θ, in practice
RPO applies perturbations only to the action-related parameters (e.g., the mean of the Gaussian policy)
rather than the entire parameter set. The theoretical reasoning still holds in this restricted setting:
the smoothing effect simply operates on a lower-dimensional subspace of θ, and the corresponding
Hessian-trace term reflects curvature only along those perturbed directions. In other words, RPO
regularizes the optimization landscape with respect to the action parameters, which are most critical
for policy improvement, while leaving other components unaffected. This preserves the intuition of
implicit curvature penalization, but with the scope of smoothing constrained to the subspace of action
parameters.

D CHOICE OF NOISE DISTRIBUTION IN RPO

The choice of perturbation distribution plays a critical role in the effectiveness and stability of Robust
Policy Optimization (RPO). In this section, we examine the theoretical properties and practical
implications of using different noise distributions for parameter perturbation. Our focus is on three
representative choices: uniform, Laplace, and Gumbel noise (Table 1).

Table 1: Properties of noise distributions considered for RPO perturbations
Distribution E[z] Var(z) Effect in RPO

Uniform U(−α, α) 0 α2

3 Bounded, unbiased, analytically stable
Laplace Lap(0, b) 0 2b2 Heavy-tailed, promotes exploration but less stable
Gumbel Gumbel(µ, β) µ+ βγ π2β2

6 Asymmetric, introduces gradient bias

Laplace noise has a sharp peak and heavier tails than Gaussian, which can encourage exploration
through larger and more frequent jumps in parameter space. However, this increased variance often
leads to less stable learning and can hinder convergence in high-variance environments typical of
reinforcement learning.

Gumbel noise, which is commonly used in sampling-based techniques, is asymmetric and has
a nonzero mean µ + βγ, where γ ≈ 0.577 is the Euler–Mascheroni constant. This asymmetry
introduces a directional bias in gradient updates, violating the zero-mean requirement needed for
unbiased learning in RPO.

In contrast, uniform noise is symmetric, zero-mean, and bounded. These properties make it analyti-
cally tractable and ensure that perturbations remain within a well-controlled region of the parameter
space. It enables closed-form derivations of the smoothing effect and regularization strength, while
maintaining unbiasedness in gradient estimation.

We also provide an empirical comparison of these noise types in our ablation studies. While Laplace
and Gumbel noise may encourage short-term exploration, they often result in higher performance
variance and instability during training. In contrast, uniform noise consistently produces smoother
learning curves and better generalization, confirming its suitability as the default perturbation model
for RPO.

E ADDITIONAL EXPERIMENTS DETAILS

Implementation Details: Our algorithm and the baselines are based on the PPO (Schulman et al.,
2017) implementation available in (Huang et al., 2022a;b). This implementation incorporated many
important advancements from existing literature in recent years on policy gradient (e.g., Orthogonal
Initialization, GAE, Entropy Regularization). We refer reader to (Huang et al., 2022a) for further
references. The experiments were conducted on a CPU-enabled machine, where each run of the
algorithms generally took between 4 and 10 hours.

The pure data augmentation baseline RAD (Laskin et al., 2020) uses data processing before passing
it to the agent, and the DRAC (Raileanu et al., 2020) uses data augmentation to regularize the loss of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameters for the experiments.

Description Value
Number of rollout steps 2048

Learning rate 3e− 4
Discount factor gamma 0.99
Lambda for the GAE 0.95

Number of mini-batches 32
Epochs to update the policy 10
Advantages normalization True

Surrogate clipping coefficient 0.2
Clip value loss Yes

Value loss coefficient 0.5

value and policy network. We experimented with vector-based states and used random amplitude
scaling proposed in RAD (Laskin et al., 2020) as a data augmentation method for RAD and DRAC. In
the random amplitude scaling, the state values are multiplied with random values generated uniformly
between a range α to β. We used the suggested (Laskin et al., 2020) and better performing range
α = 0.6 to β = 1.2 for all the experiments. Moreover, both RAD and DRAC use PPO as their base
algorithm. However, our RPO method does not use any form of data augmentation.

We use the hyperparameters reported in the PPO implementation of continuous action spaces (Huang
et al., 2022a;b), which incorporate best practices in the continuous control task. Furthermore, to
mitigate the effect of hyperparameters choice, we keep them the same for all the environments.
Further, we keep the same hyperparameters for all agents for a fair comparison. The common
hyperparameters can be found in Table 2.

F ADDITIONAL RESULTS COMPARISON WITH PPO

Results on All 48 tasks DeepMind Control is in Figure 6. We observe that the performance
improved in many of those environments and remain similar in others.

Results of OpenAI Gym environments: Pendulum and BipedalWalker are in Figure 7. Overall, our
method, RPO, performs better compared to the PPO. In Pendulum environments, the PPO agent fails
to learn any useful behavior in this setup. In contrast, RPO consistently learns with the increase
in timestep and eventually learns the task. We see the policy entropy of RPO increases initially
and eventually remains at a certain threshold, which might help the policy to stay exploratory and
collect more data. In contrast, the PPO policy entropy decreases over time, and thus eventually, the
performance remains the same, and the policy stops learning. This scenario might contribute to the
bad performance of the PPO.

In the BipedalWalker environment, we see that both PPO and RPO learn up to a certain reward
quickly. However, as we keep training both policies, we observe that after a certain period, the PPO’s
performance drops and even starts to become worse. In contrast, the RPO stays robust as we train
for more and eventually keep improving the performance. These results show the robustness of
our method when ample train time is available. The entropy plot shows a similar pattern, as PPO
decreases entropy over time, and RPO keeps the entropy at a certain threshold.

Figure 8 shows results comparison on IsaacGym environments: Cartpole, and BallBalance. In this
setup, we run the simulation up to 100M timesteps which take around 30 minutes for each run in each
environment in a Quadro RTX 4000 GPU. We see that for Cartpole, both PPO and RPO learn the
reward quickly, around 450. However, as we kept training for a long, the performance of PPO started
to degrade over time, and the policy entropy kept decreasing. On the other hand, our RPO agent
keeps improving the performance; notably, the performance never degrades over time. The policy
entropy shows that the entropy remains at a threshold. This exploratory nature of RPO’s policy might
help keep learning and get better rewards. These results show the robustness of our method RPO
over PPO even when an abundance of simulation is available. Interestingly, more simulation data
might not always be good for RL agents. In our setup, the PPO even suffers from further training in

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: Our method RPO performs better or similarly in 48 DeepMind control environments.

Figure 7: Results on OpenAI Gym Environments, BipedalWalker environment. Our RPO agent
consistently improves its performance throughout training.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Results on IsaacGym Environments. In the Cartpole environment, the performance of
PPO started to degrade over time, and the policy entropy kept decreasing. In contrast, our RPO agent
keeps improving the performance over the entire training time. These results show the robustness of
our method RPO over PPO even when an abundance of simulation is available. In the BallBalance
environment, our method RPO achieves a slight performance improvement compared to PPO.

Figure 9: Results on PyBullet Environments. Our method RPO consistently performs better than the
PPO in the Ant environment. On the other hand, in the Minitaur environment, PPO quickly learns up
to a particular reward and remains on the same performance as time progresses while RPO surpasses
the PPO’s performance.

Figure 10: Results comparison of RPO with default α = 0.5 on Gym Mujoco-v4 environments.

the Cartpole environment. In the BallBalance environment (results are averaged over 3 random seed
runs), our method RPO achieves a slight performance improvement over PPO. Overall, our method
RPO performs better than the PPO in the two IsaacGym environments.

Figure 9 shows results comparison on PyBullet environments: Ant, and Minituar. We observe that
our method RPO performs better than the PPO in the Ant environment. In the Minitaur environment,
PPO quickly (at around 2M) learns up to a certain reward and remains on the same performance as
time progresses. In contrast, RPO starts from a lower performance, eventually surpassing the PPO’s
performance as time progresses. These results show the robustness of consistently improving the
policy of the RPO method. The entropy pattern remains the same in both cases; PPO reduces entropy
while RPO keeps the entropy at a certain threshold which it learns automatically in an environment.

Figure 10 shows the results comparison of RPO in OpenAI Mujoco-v4 environments (with defaults
α = 0.5) values.

Additionally Figure 11 shows the result comparison with a tuned α = 0.01 value. Overall, our
method RPO improves of mathces the performance of PPO in these control tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: Results comparison of RPO with tuned α = 0.01 on Gym Mujoco-v4 environments.

Figure 12: Results Comparison with Entropy Regularization on DeepMind Control.

G ADDITIONAL RESULTS COMPARISON WITH ENTROPY REGULARIZATION

The results comparison of RPO with entropy coefficient are in Figure 12. More entropy coefficient
results are in Figure 13.

Figure 14 shows data augmentation return curve and entropy comparison with RPO.

H ABLATION STUDY - EFFECT OF α

We conducted experiments on the α value ranges in the Uniform distribution. Figure 15 shows the
return and policy comparison. We observe that the value of α affects the policy entropy and, thus,
return performance. A smaller value of α (e.g., 0.001) seems to behave similarly to PPO, where
policy entropy decreases over time, thus hampered performance. Higher entropy values, such as
1000.0, make the policy somewhat random as the uniform distribution dominates over the Gaussian
distribution. This scenario keeps the entropy somewhat at a constant level; thus, the performance
is hampered. Overall, a value between 0.1 to 3 often results in better performance. Due to overall
performance advantage, in this paper, we report results with α = 0.5 for all environments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 13: Comparison of return and policy entropy with Entropy Regularization on different
(more) coefficient values in DeepMind Control Environments.

Figure 14: Comparison with PPO and data augmentation RAD, and DRAC on DeepMind Control.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 15: Ablation on alpha values of the uniform distribution for RPO. An α value between 0.1 to
3 often results in better performance, while a large value often results in worse performance. The
suggested default value is α = 0.5.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 16: Results on different action distributions. Our method RPO shows improvement compared
to base distributions. In these cases, the perturbed version of the distribution methods performs the
best.

Figure 17: Gym: Results on different action distributions. Our method RPO shows improvement
compared to base distributions.

I COMPARISON WITH OTHER (LAPLACE AND GUMBEL) DISTRIBUTIONS

In this section, we compare the results of the other two distributions: Laplace and Gumbel. We
show empirical evidence that the choice of action distribution is important in solving a reinforcement
learning task.

Furthermore, we combine our method of adding uniform distribution with the distributions (Gaussian,
Laplace, and Gumbel). The results in Figure 16 show that our method overall improved the perfor-
mance compared to the base distributions. These show the implication of our method in varieties
of distributions. Our method also results in higher policy entropy throughout training, potentially
improving exploration (see Figure 21, 22).

All Gym Environments results on different action distributions are in Figure 17.

Results on different action distribution on PyBullet environments are in Figure 18.

Results on different action distribution on DeepMind Control environments are in Figure 19.

J POLICY ENTROPY COMPARISON

Entropy Plot for DeepMind Control is in Figure 20.

Entropy Plot of Gym and Pybullet Environments for different action distributions is in Figure 21.

Entropy Plot of DeepMind Control for different action distributions is in Figure 22.

K ADDITIONAL RESULTS ON RPO-ALPHA ANNEALING

Return: Figure 23 shows a comparison of more results in other environments.

Policy Entropy: The policy entropy is impacted by the annealing of the α value, as depicted in
Figure 24. The entropy initially increases and then begins to decline again as the training progresses

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 18: PyBullet: Results on different action distributions. Our method RPO shows improvement
compared to base distributions.

towards its end. This indicates that the annealing approach provides more control over how the policy
entropy changes during training.

L COMPARISON WITH DATA AUGMENTATION

We observe that the data augmentation method can help increase the policy’s entropy by often
randomly perturbing observations. This process might improve the performance where higher entropy
is preferred. Thus, we compare our method with two data augmentation-based methods: RAD
(Laskin et al., 2020), and DRAC (Raileanu et al., 2020). Here, The pure data augmentation baseline
RAD uses data processing before passing it to the agent, and the DRAC uses data augmentation to
regularize the value and policy network. Both of these data augmentation methods use PPO as their
base RL policy.

Seeing the data augmentation through the lens of entropy, we observe that empirically, it can help the
policy achieve a higher entropy than without data augmentation. However, this process often requires
prior knowledge about the environments and a preprocessing step of the agent experience. Moreover,
such methods might result in an uncontrolled increase in action entropy, eventually hampering the
return performance (Raileanu et al., 2020). The results on DeepMind Control environments are
shown in Table 3. Our method performs better in mean episodic return in most environments than
PPO and other data augmentation baselines RAD and DRAC.

We observe that the data augmentation slightly improved the base PPO algorithms, and the policy
entropy shows higher than the base PPO. However, our method RPO still maintains a better mean
return than all the baselines. The entropy of our method shows an increase at the initial timestep
of the training. However, it eventually becomes stable at a particular value. The data augmentation
method, especially RAD, shows an increase in entropy throughout the training process. However,
this increase does not translate to the return performance. Moreover, improper handling of the data
augmentation may result in worsen performance.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 19: DeepMind Control: Results on different action distributions. Our method RPO shows
improvement compared to base distributions in many environments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 20: Entropy Results on DeepMind Control Environments.

Figure 21: Gym and Pybullet: Entropy comparison on different action distribution. In all cases, our
method of perturbing distribution with Uniform distribution (RPO) results in higher policy entropy
and potentially improved exploration.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 22: DeepMind Control: Policy Entropy Results on different action distribution.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 23: RPO vs RPO-Annealing Return Comparison.

Figure 24: RPO vs RPO-Annealing Entropy Comparison. The entropy initially rises and then
falls as training progresses, suggesting that the annealing approach offers greater control over policy
entropy changes during training.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 3: Result comparison with data augmentation on DeepMind control environments. Our
method RPO performs better in mean episodic return in most environments than PPO and other data
augmentation baselines RAD and DRAC. Moreover, in some environments, the data augmentation
baselines worsen the performance compared to the base PPO. The results are after training the agent
for 8M timesteps. The mean and standard deviations are over 10 seed runs.

Env PPO RAD-PPO DRAC-PPO RPO (ours)
acrobot swingup 23.93 ±6.0 13.41 ±9.84 21.32 ±13.17 40.46 ±4.01

fish swim 87.39 ±8.0 81.53 ±6.53 87.5 ±7.74 119.42 ±38.46
humanoid stand 6.06 ±0.17 6.14 ±0.37 37.58 ±66.09 55.22 ±35.34
humanoid run 1.55 ±1.59 1.1 ±0.04 13.13 ±16.6 13.26 ±9.45

pendulum swingup 518.65 ±279.73 23.04 ±17.08 320.51 ±319.76 699.79 ±32.97
quadruped walk 216.67 ±66.56 395.07 ±124.91 374.78 ±197.98 437.66 ±191.93
quadruped run 183.14 ±38.48 158.01 ±26.84 247.02 ±83.23 258.75 ±96.18

quadruped escape 22.51 ±7.0 54.0 ±22.13 52.62 ±21.89 53.37 ±25.73
walker stand 346.55 ±104.87 558.92 ±131.09 361.99 ±93.44 652.7 ±202.47
walker walk 329.61 ±67.92 333.22 ±84.38 425.51 ±150.52 611.88 ±170.46
walker run 123.63 ±53.5 141.43 ±34.77 132.28 ±37.18 291.83 ±108.8

30

	Introduction
	Preliminaries: Policy Gradient
	Related Work
	Methodology: Robust Policy Optimization (RPO)
	Algorithmic Description
	Theoretical Analysis
	Unbiasedness of the Gradient Estimator
	Induced Regularization Effect
	Loss Landscape Smoothing in RPO

	Experiments
	Setup
	Comparison with PPO
	Comparison with Entropy Regularization

	Ablation Study
	Effect of on RPO
	Results on RPO- Annealing
	Effect of Action Distribution

	Conclusion
	Derivation of Gradient Unbiasedness under Parameter Perturbation
	Derivation of the Regularization Effect
	Setup
	Negative Log-Likelihood
	Interpretation

	Loss Landscape Analysis
	Implicit Regularization through Optimization-Time Perturbation
	Loss Landscape Smoothing via Taylor Expansion
	Interpretation as a Convolution with a Uniform Kernel
	Second-Order Expansion
	Interpretation
	Smoothing of the Loss Landscape
	Action-Parameter Perturbation in Practice

	Choice of Noise Distribution in RPO
	Additional Experiments Details
	Additional Results Comparison with PPO
	Additional Results Comparison with Entropy Regularization
	Ablation Study - Effect of
	Comparison with Other (Laplace and Gumbel) Distributions
	Policy Entropy Comparison
	Additional Results on RPO-alpha Annealing
	Comparison with Data Augmentation

