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Abstract

Given the accelerating progress of vision and001
language modeling, accurate evaluation of002
machine-generated image captions remains crit-003
ical. In order to evaluate captions more closely004
to human preferences, metrics need to discrim-005
inate between captions of varying quality and006
content. However, conventional metrics fall007
short of comparing beyond superficial matches008
of words or embedding similarities; thus, they009
still need improvement. This paper presents010
VisCE2, a vision language model-based cap-011
tion evaluation method. Our method focuses012
on visual context, which refers to the detailed013
content of images, including objects, attributes,014
and relationships. By extracting and organizing015
them into a structured format, we replace the016
human-written references with visual contexts017
and help VLMs better understand the image,018
enhancing evaluation performance. Through019
meta-evaluation on multiple datasets, we val-020
idated that VisCE2 outperforms the conven-021
tional pre-trained metrics in capturing caption022
quality and demonstrates superior consistency023
with human judgment.024

1 Introduction025

The evaluation of the machine-generated image026

caption is a core research topic to illustrate models’027

ability to describe their visual observation in textual028

forms and shape the branch of vision and language029

modeling studies into meaningful and grounded030

directions. In the early stage of neural image cap-031

tioning research, such as neural image caption gen-032

erator (Vinyals et al., 2015), attention-based (Xu033

et al., 2015), and sentinel and spatial attention (Lu034

et al., 2017), models had enabled more and more035

detailed and accurate descriptions. Hence, they036

had achieved better and better performance on037

reference-based automatic evaluation metrics such038

as BLEU (Papineni et al., 2002) and CIDEr (Vedan-039

tam et al., 2015). SPICE (Anderson et al., 2016)040

was also proposed to assess better correspondences041

Figure 1: Comparison between conventional methods
and our reference-free method, VisCE2. Our method
not only evaluates longer captions more accurately com-
pared to reference-based methods (top) but also detects
and assesses compositional errors in captions more ef-
fectively than CLIP-S (bottom).

of reference and generated captions in grammat- 042

ical aspects. More recently, BERTScore (Zhang 043

et al., 2020) and CLIPScore (Hessel et al., 2021) 044

have been introduced to measure the similarity be- 045

tween the embeddings of generated captions and 046

references. 047

In very recent advances in vision and language 048

models (VLMs), however, model generations be- 049

come so detailed that they often exceed the capa- 050

bility of the automatic evaluation metrics and even 051

the entire coverage of annotated references. Both 052

InstructBLIP (Dai et al., 2023) and LLaVA (Liu 053

et al., 2023b) follow textual instructions and gen- 054

erate tailored descriptions that are not even similar 055

to references but are of high quality. Considering 056
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the great advancements of these recent models, we057

go back to the basics of image captioning to tailor058

new evaluation metrics: first capturing the contents059

of the images and then rearranging them to de-060

scribe and composing a phrase. In assessing image061

captioning abilities, they correspond to different062

aspects: coverage of image contents, accuracy in063

describing them, and compositional sophistication.064

In this line of evaluation metrics, InfoMetIC (Hu065

et al., 2023) relies on matching image regions and066

words in the captions. While it is quite sensitive to067

the alignments of objects in images and captions, it068

becomes less sensitive to supportive facts such as069

attributes or interactions of objects. Unfortunately,070

they are also learning-based metrics and depend on071

fine-tuning with multiple captioning datasets.072

This paper concentrates on reference-free image073

caption evaluation and proposes a new Vision Lan-074

guage Model-based Caption Evaluation Method075

leveraging Visual Context Extraction (VisCE2). In076

this context, “visual context” refers to information077

about objects, attributes, and their relationships,078

including those in the background and inconspic-079

uous objects. This visual context is given to the080

model in the evaluation process with an image and081

a candidate caption. Explicitly providing the visual082

context in a structured format, rather than reference083

images or hand-written captions, helps the VLM084

better understand the images’ content and expose085

how accurately the candidate caption describes the086

parts of the image or which parts are missing.087

The comparison in Figure 1 emphasizes the ef-088

fectiveness of VisCE2 over conventional evaluation089

methods. The top panel presents a caption gener-090

ated by GPT-4 using the straightforward prompt,091

“Generate a detailed description for the given im-092

age” and scores of evaluation metrics. This cap-093

tion accurately describes the image’s content in094

quite a detailed manner. Indeed, its detailedness095

overwhelms human-written references, and hence,096

all of the reference-based metrics undervalued the097

caption. The bottom panel highlights that CLIP-S098

fails to detect compositional errors, such as color099

misidentifications (“red shirt and black pants”),100

resulting in high scores for inaccurate description.101

Conversely, VisCE2 effectively identifies these dis-102

crepancies, demonstrating its superior capability in103

evaluating image captions.104

We investigated the quality of the proposed eval-105

uation method on several image caption datasets,106

THumB (Kasai et al., 2022), Flickr8k-Expert (Ho-107

dosh et al., 2013), Composite (Aditya et al., 2015), 108

and Pascal-50S (Vedantam et al., 2015). Our 109

method, VisCE2, outperformed conventional met- 110

rics and correlated highly with human judgments. 111

Furthermore, meta-evaluation experiments uncov- 112

ered that the evaluation scores of VisCE2 strongly 113

correlate with the accuracy of candidate captions. 114

Through a series of exhaustive ablation experi- 115

ments, we verified that the proposed method is 116

effective with state-of-the-art VLMs. Moreover, 117

we have quantitatively shown that using larger LMs 118

in VisCE2 improves the evaluation performance. 119

2 Related Work 120

2.1 Evaluation Method for Image Captioning 121

Text-only (reference-based) methods. Image cap- 122

tioning has been evaluated using a combination of 123

several metrics. While some have been adapted 124

from metrics used in other NLP tasks such as ma- 125

chine translation and summarization (BLEU (Pa- 126

pineni et al., 2002), METEOR (Denkowski and 127

Lavie, 2014), ROUGE (Lin, 2004)) and others 128

proposed for image captioning (CIDEr (Vedantam 129

et al., 2015), SPICE (Anderson et al., 2016)), all 130

of them are mainly based on n-gram matches with 131

the reference caption. Following these classical 132

approaches, an evaluation metric was proposed 133

that exploits the versatility of pre-trained models: 134

BERTScore (Zhang et al., 2020) measures the simi- 135

larity of embeddings output by BERT (Devlin et al., 136

2018) for each reference and candidate caption. In 137

BERTScore++ (Yi et al., 2020), they fine-tuned 138

BERT to the task using the image caption dataset. 139

More recently, CLAIR (Chan et al., 2023) utilized 140

large language models for evaluation. This ensem- 141

bles ChatGPT (OpenAI, 2022), Claude (Bai et al., 142

2022), and PaLM (Chowdhery et al., 2022) and 143

achieves high evaluation performance by provid- 144

ing only reference sentences and instructions for 145

the task. However, these metrics are sensitive to 146

the quality and coverage of the reference captions 147

available. 148

Crossmodal methods. Covering the rich visual 149

information in an image with only pre-defined ref- 150

erence captions is difficult. To alleviate this loss 151

of information, evaluation methods based on vi- 152

sion and language models (VLMs), which lever- 153

age features of the images, have been proposed. 154

TIGEr (Jiang et al., 2019) uses a pre-trained SCAN 155

model (Lee et al., 2018), fine-tuned on the COCO 156

dataset (Chen et al., 2015), and calculates how 157
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Objects:
1. A young boy wearing a helmet.
2. A bicycle with a child riding it.
3. A bench in the background
4. …

Attributes:
1. The young boy is wearing a helmet, which is 
designed to protect his head while riding the 
bicycle.
2. The bicycle has a seat, handlebars, and pedals, 
which are essential components for the child to ride 
and control the bike.
3. …

Relationships:
1. The young boy is riding the bicycle, which is 
positioned in front of the bench and the tree.
2. The tree is positioned behind the bench, adding 
a natural element to the scene.
3. …Visual Context

Visual Context

Candidate

Score: 80 / 100

VisCE2 Visual Context

Visual Context Extraction Vision-LM Caption Evaluation

Candidate

A little boy with a blue helmet 
rides his bike with his feet on 

the handlebars .

Analyze the uploaded image and provide a 
structured output focusing on the objects, their 
features, and the relationships between them.

…
Focus on providing unique and detailed insights into 
the features and relationships of the selected objects 

up to five objects.

Input Image

On a precise scale from 0 to 100, rate whether the 
candidate caption is appropriate for the given image.

Use the image and following visual context to evaluate 
the candidate caption:

VLMExt VLMEval

Figure 2: Overview of automatic caption quality evaluation by VisCE2 and an example of the input/output. First,
VLM extracts the visual context from the image, organized in a bullet list format, presenting objects, object attributes,
and relationships between objects. Then, VLM evaluates the caption using the obtained visual context along with
the image and candidate caption.

much the candidate caption is grounded in the im-158

age. ViLBERTScore (Lee et al., 2020) extracts159

features of the images and calculates the score160

as with BERTScore with a pre-trained ViLBERT161

model (Lu et al., 2019). FAIEr (Wang et al., 2021)162

connects images and texts via scene graphs and163

computes scores according to their overlap.164

Image-only (reference-free) methods. To simul-165

taneously improve evaluation performance and re-166

duce the cost of annotation for references, several167

methods have been proposed for image caption168

evaluation. CLIP-S (Hessel et al., 2021) attaches169

the score by simply calculating the modified cosine170

similarity between embeddings of an image and171

that of a candidate caption using CLIP (Radford172

et al., 2021). PAC-S (Sarto et al., 2023) refined173

the pre-training method of CLIP with data augmen-174

tation using an image captioner (Li et al., 2022)175

and image generator (Rombach et al., 2022), re-176

sulting in improved evaluation performance. Other177

methods employ quality estimators for evaluation.178

UMIC (Lee et al., 2021) fine-tunes UNITER (Chen179

et al., 2020) via contrastive loss for gold and auto-180

matically perturbated caption pair. InfoMetIC (Hu181

et al., 2023) fuses image and language modali-182

ties by stacking CLIP and Transformer (Vaswani183

et al., 2017), fine-tuned with large image-caption184

datasets (Young et al., 2014; Aditya et al., 2015).185

Unlike these methods, our method utilizes visual186

context to detail the structure of the image content187

for caption evaluation. In our evaluation protocol,188

the VLM extracts the visual context to encapsulate189

the comprehensive image content and feeds it to the190

VLM itself. By doing so, it is possible to refer to in- 191

formation from both the vision and language sides, 192

and hence, it is expected to improve the accuracy 193

of quality estimation. 194

2.2 Recent Vision-Language Models 195

The recent vision and language model proposal 196

has progressed the fusion understanding of image 197

and language modalities. One of the most im- 198

portant milestones is CLIP (Radford et al., 2021). 199

Contrastive learning on a large-scale image-text 200

dataset constructed by web crawling has signifi- 201

cantly improved zero-shot performance on various 202

vision and language tasks. Following this, the de- 203

velopment of various models accelerated progress 204

in the V&L domain. BLIP (Li et al., 2022) re- 205

fined pre-trained methods by enhancing the qual- 206

ity of image and text data by the image captioner. 207

OFA (Wang et al., 2022) integrated various V&L 208

tasks by modifying the input-output architecture. 209

Several other studies also presented remarkable 210

performance, which are still being upgraded (Bai 211

et al., 2023; Zhu et al., 2023; Chen et al., 2023; Li 212

et al., 2023). In addition, InstructBLIP (Dai et al., 213

2023) and LLaVA (Liu et al., 2023b) allow us to 214

perform various tailored tasks according to instruc- 215

tions. Furthermore, state-of-the-art VLMs such as 216

GPT-4V (OpenAI et al., 2023) and Gemini (Google, 217

2023) are now available via APIs. 218

We focus on the fidelity to instructions and hence 219

applied our VisCE2 to the LLaVA-v1.5 (Liu et al., 220

2023a) to ensure transparency and reproducibility 221

in our experiments. 222
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3 Proposed Method: VisCE2223

We introduce a reference-free automatic caption224

evaluation method, VisCE2. Figure 2 shows the225

overview of VisCE2. Our method takes an image226

and a caption as inputs and predicts a rating score227

for how accurately the caption describes the image.228

This assessment is conducted via two key compo-229

nents: visual context extraction and VLM-based230

caption evaluation.231

Visual Context Extraction. VisCE2 initially ex-232

tracts a detailed visual context from an input image233

using VLM, named VLMExt. We define visual con-234

text as the content of an image classified into ob-235

jects, object attributes (including color, shape, and236

size), and relationships between objects, following237

the similar notion of scene graphs (Xu et al., 2017).238

To extract relevant image details, we instruct the239

VLMExt to articulate the visual context in a bul-240

let list format by category rather than employing241

the structured graphical representation due to its242

complexity and the difficulties associated with tex-243

tual representation. We believe that providing the244

successive VLMEval module with detailed visual245

context in a structured format helps bridge the gap246

between the reference image and the candidate text.247

This facilitates the model’s evaluation both consis-248

tently and comprehensively.249

Vision-LM Caption Evaluation. In the next step250

of VisCE2, VLMEval evaluates the candidate cap-251

tion based on the extracted visual context and an252

input image. As with many other LLM-based tasks,253

VisCE2 treats caption evaluation as a multimodal254

text completion task. The VLMEval is given a255

prompt combining a reference image, visual con-256

text, and a candidate caption as input and then257

generates an output sentence that encapsulates the258

overall quality scores ranging from 0 to 100. In259

the preliminary experiments, we found that some260

VLMs occasionally disregard instructions to gener-261

ate only evaluation scores, instead producing sen-262

tences that include these scores (e.g., “The score263

is X out of 100”.) In the postprocessing phase,264

we eliminated these canonical phrases and desig-265

nated the first integer value in the output sentences266

as the evaluation score. In contrast to previous267

embedding-based methods, such as CLIP-S (Hes-268

sel et al., 2021), which cannot determine the quality269

of scores without multiple examples, our approach270

can provide absolute scores close to human intu-271

ition, allowing for determining the caption’s quality272

by just looking at a single caption.273

4 Experiment 274

This section demonstrates the effectiveness of our 275

VisCE2 and conducts a meta-evaluation of the au- 276

tomatic evaluation methods. 277

4.1 Experimental Settings 278

Implementation details. To ensure the trans- 279

parency and reproducibility of experimental results, 280

we use LLaVA-v1.5-13B as the base model, 281

one of the best-performing models among the pub- 282

licly available VLMs with the default hyperparam- 283

eter settings, and report the results of a single run. 284

We set the max token length to 1,024 in extracting 285

visual context. Note that VisCE2 allows for the 286

use of any VLM without restrictions. Hence, we 287

also employed five other models in the ablation 288

studies ( Sec. 5.1) to confirm the model-agnostic 289

effectiveness. 290

Baseline metrics. We compared the evaluation 291

performance against five of the most common met- 292

rics in the automatic evaluation of image caption- 293

ing: BLEU (Papineni et al., 2002), ROUGE (Lin, 294

2004), METEOR (Denkowski and Lavie, 2014), 295

CIDEr (Vedantam et al., 2015), and SPICE (An- 296

derson et al., 2016). These metrics evaluate the 297

overlap of n-grams with reference captions. Specif- 298

ically, SPICE generates semantic scene graphs 299

from the candidate captions using dependency 300

parse trees, assessing matches based on objects, 301

attributes, and their relationships. Furthermore, 302

we employed more recent reference-based mea- 303

sure BERTScore++ (Yi et al., 2020) and mod- 304

ern reference-free metrics, CLIP-S (Hessel et al., 305

2021), and PAC-S (Sarto et al., 2023). Among 306

reference-free metrics, InfoMetIC (Hu et al., 2023) 307

relies on a quality estimator that is fine-tuned with 308

the training splits of Flickr-30k (Young et al., 2014) 309

and MS-COCO (Chen et al., 2015). In contrast, 310

the other metrics, including our VisCE2, do not 311

depend on such data-specific fine-tuning. Further- 312

more, CLAIR (Chan et al., 2023) exploits the zero- 313

shot evaluation results of proprietary LLMs such 314

as ChatGPT, Claude, and PaLM. While we include 315

their results for comparison in the following exper- 316

iments, it should be noted that they are not directly 317

comparable without careful consideration. 318

Evaluation datasets. We conducted a meta- 319

evaluation of automatic evaluation metrics across 320

four image captioning datasets: THumB 1.0 (Ka- 321

sai et al., 2022), Flickr8k-Expert (Hodosh et al., 322

2013), Composite (Aditya et al., 2015), and Pascal- 323
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Table 1: Correlation (Pearson’s ρ) between baseline met-
rics and human judgment on THumB 1.0. “w/o” means
discarding human annotated samples. Bold fonts for
best score among reference-free and tune-free models.
†: The scores reported in previous works.

Method Ref-
free

Tune-
free

THumB w/o THumB w/
P R Total P R Total

BLEU-4 ✗ ✓ .21 .13 .25 .15 .04 .13
ROUGE ✗ ✓ .26 .17 .31 .18 .07 .18
CIDEr ✗ ✓ .27 .18 .33 .21 .11 .23
SPICE ✗ ✓ .26 .15 .30 .20 .09 .21
RefCLIP-S ✗ ✓ .34 .27 .44 .31 .26 .41
†InfoMetIC ✓ ✗ .22 .30 .37 .21 .32 .38

CLIP-S ✓ ✓ .18 .27 .32 .17 .28 .32
VisCE2 (Ours) ✓ ✓ .54 .08 .45 .49 .06 .39

50S (Vedantam et al., 2015). We provide detailed324

descriptions of the datasets in Appendix A.325

Meta-evaluation metrics. Following previous326

studies, we utilized three different indicators which327

correspond to each evaluation dataset: Pearson’s328

correlation coefficient ρ for measuring the linear329

correlation between two sets of data, Kendall’s τ330

for measuring the ordinal association between two331

measured quantities, and the accuracy as of the per-332

centage of the correct pairwise ranking between333

two candidate captions.334

4.2 Correlation with Human Judgment335

We analyze the proposed VisCE2 metrics on the336

THumB1.0 (Kasai et al., 2022) dataset by assess-337

ing the correlation between automatic evaluation338

scores and human ratings in three aspects: preci-339

sion, recall, and the total score. Following previous340

studies, we used Pearson’s correlation coefficient341

as the meta-evaluation index.342

The results we presented in Table 1 highlight343

VisCE2’s outstanding performance in terms of cor-344

relation with precision, surpassing all other metrics.345

It exceeded RefCLIP-S, the previous state-of-the-346

art metric, by 0.20 and 0.18 points in settings with347

and without human-written captions, respectively.348

This suggests that VisCE2 accurately evaluated pre-349

cise captions. On the other hand, VisCE2’s per-350

formance in recall presented a contrast, exhibiting351

minimal correlation.352

In the THumB dataset, recall scores reflect the353

extent to which the caption encompasses the salient354

information in the image. Meanwhile, the evalua-355

tion scores of our method were calculated by con-356

sidering all objects, attributes, and their relation-357

ships within the image. The difference between358

Table 2: Correlation between human judgement and
metrics on Flickr8k-Expert and Composite.

Method Ref-
free

Tune-
free

Flickr8k-Exp.
Kendall’s τ

Composite
Kendall’s τ

BLEU-4 ✗ ✓ 30.6 28.3
ROUGE ✗ ✓ 32.1 30.0
METEOR ✗ ✓ 41.5 36.0
CIDEr ✗ ✓ 43.6 34.9
SPICE ✗ ✓ 51.7 38.8
†BERTScore++ ✗ ✗ 48.1 42.3
RefCLIP-S ✗ ✓ 52.6 51.2
†RefPAC-S ✗ ✓ 55.5 51.5
†CLAIRClaude ✗ ✓ 56.2 54.2
†CLAIRE ✗ ✓ 62.7 59.2
†InfoMetIC ✓ ✗ 54.2 59.2

CLIP-S ✓ ✓ 51.1 49.8
†PAC-S ✓ ✓ 53.9 .51.5
VisCE2 (Ours) ✓ ✓ 59.0 55.0

focusing on the salient objects and on all objects 359

may have led to the low correlation with recall 360

scores. Despite its imbalanced nature, our method 361

is highly correlated with the total scores, indicating 362

the overall quality of captions. 363

We also test the caption evaluation capability 364

of VisCE2 using Flickr8k-Expert (Hodosh et al., 365

2013) and Composite (Aditya et al., 2015) dataset. 366

Kendall’s rank correlation coefficient was used as 367

a meta-evaluation index to measure the correlation 368

between automatic and human evaluation. 369

VisCE2 performed at a high level compared to 370

the other automatic evaluation metrics in its corre- 371

lation with human evaluation (Table 2). VisCE2 in 372

the Flickr8k-Expert achieved state-of-the-art per- 373

formance by a significant margin of more than 374

4.8 pts compared to other reference-free metrics, 375

demonstrating that our method is highly capable 376

of estimating the quality of image captions aligned 377

with human judgments. A similar trend was ob- 378

served in the Composite. Compared to CLIP-S and 379

PAC-S, VisCE2 surpassed them by over 3pts. It 380

was found that our method fell short of InfoMetIC’s 381

performance. This degradation is assumed to orig- 382

inate from the training method of InfoMetIC, a 383

fine-tuning quality estimator on the three datasets 384

that comprise the Composite dataset. The result 385

also offers insight into the quality estimation based 386

on large-scale models. While CLAIRE, which uti- 387

lizes an ensemble of non-public LLMs such as 388

ChatGPT, PaLM, and Claude, achieved significant 389

results in the benchmarks, VisCE2 outperformed 390

the outcome of CLAIRClaude, which solely exploits 391

Claude. This distinction highlights the efficacy of 392
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Table 3: The result of ablation studies. Correlations with human ratings are measured by Pearson’s ρ, Kendall’s τ ,
and agreement with human preference by accuracy.

THumB w/o human
Pearson’s ρ

THumB w/ human
Pearson’s ρ Flickr8k-Exp.

Kendall’s τ
Composite
Kendall’s τ

Pascal-50S
Accuracy (%)

P R Tot. P R Tot. Mean

VisCE2 (Ours) .54 .08 .45 .49 .07 .39 59.0 56.0 80.8

I: Visual Context
None (Vanilla) .47 .08 .38 .46 .09 .36 55.9 52.4 80.5
w/ References .41 .06 .32 .38 .07 .30 54.6 54.5 79.2
w/ Description .50 .08 .41 .48 .09 .38 57.4 52.5 77.5

II: Component on Visual Context
VisCE2 w/o Rel. , Attr. .51 .08 .41 .48 .08 .37 55.8 55.2 80.4
VisCE2 w/o Rel. .53 .07 .43 .49 .07 .38 56.2 55.7 80.5

III: VLMExt & VLMEval

LLaVA-v1.5-7B .23 .04 .20 .22 .05 .18 29.0 34.2 73.1
LLaVA-v1.6-vicuna-7B .27 .08 .22 .25 .08 .20 24.7 35.7 70.0
LLaVA-v1.6-vicuna-13B .55 .06 .43 .50 .06 .37 55.8 52.7 75.5
mplug-owl2-llama2-7B .44 .13 .38 .41 .13 .35 43.7 50.8 77.4
GPT-4o .54 .16 .49 .52 .19 .47 54.5 59.0 83.0

IV: VLMExt

Smaller (LLaVA-v1.5-7B) .46 .11 .40 .43 .12 .36 55.2 53.9 76.6
Larger (GPT-4o) .43 .13 .40 .40 .12 .35 55.1 54.3 76.6

our method, considering its reliance on publicly393

available and comparatively smaller models. Such394

performance showcases the potential of more acces-395

sible models to achieve high-quality benchmarks.396

5 Analysis397

5.1 Ablation Studies398

We conducted ablation studies to explore which399

parts of VisCE2 improve evaluation performance.400

The results of ablation studies are listed in Table 3.401

I: Effectiveness of Visual Context. We initially402

investigated the impact of incorporating visual con-403

text into the auto-evaluation method. In addition to404

the candidate captions and images as VLM input,405

we compared the following four types of text: (i)406

Vanilla uses only the task instruction, (ii) w/ Refer-407

ence attaches references provided within datasets,408

(iii) w/ Description detailed captions generated by409

LLaVA-1.5-13B, and (iv) VisCE2 (Ours) leverages410

visual contexts extracted during the initial step of411

VisCE2. See Appendix B for the prompts.412

The top of Table 3 presents the results for dif-413

ferent visual contexts for VLMEval. Our VisCE2414

demonstrated superior evaluation performance415

across all datasets, suggesting that incorporating416

visual context enhances overall evaluation perfor-417

mance, except recall. In contrast, other methods,418

such as w/ Reference and w/ Description, showed419

no improvement or even degradation from the420

Vanilla on some datasets. This suggests that the vi- 421

sual context’s structured and comprehensive nature 422

enables consistent caption evaluations. 423

To further analyze VisCE2, we compared the dis- 424

tribution of scores assigned to captions on three 425

different datasets in the Vanilla and VisCE2 set- 426

tings. The heatmap presented in Figure 3 plots 427

the distribution of human and automatic evaluation 428

scores in THumB, Flickr8k-Expert, and Compos- 429

ite, which comprise Likert scale human evaluations. 430

Heatmaps are normalized by human rating points 431

to remove sample size bias in the data set. Thus, 432

each row sums to 1, and the heatmap rows represent 433

the ratio of the automatic rating score to a caption 434

of a specific human rating. We observed that the 435

score distribution in the Vanilla setting has two 436

prominent peaks, with captions classified as good 437

(70+) and bad (0-10), whereas VisCE2 exhibits 438

three distant peaks: good (70-80), bad (0-10), and 439

fair (40-50). Furthermore, in THumB and Com- 440

posite, the VisCE2 heatmap shows a decrease in 441

the value of the upper right corner when compared 442

to the Vanilla heatmap, indicating a reduction in 443

the percentage of overrated captions. These dis- 444

tribution changes suggest that introducing visual 445

context contributes to a closer evaluation of the 446

human impression. 447

II: Effect of Each Component on Visual Con- 448

text. After validating the effectiveness of visual 449

context, we subsequently compared the settings 450
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Method THumB Flickr8k-Expert Composite

Vanilla

VisCE2

Figure 3: Heatmaps of human rating and automatic evaluation scores on THumB (left), Flickr8k-Expert (mid) and
Composite (right). Normalized for each human evaluation score (i.e., rows). The human evaluation of THumB is
referenced to the total score.

that feed VLMEval a partially clipped visual con-451

text with VisCE2 to investigate which parts of the452

visual context contribute to superior performance.453

We compared the performance of VisCE2 with454

the following settings: (i) w/o Relation, Attribute455

uses only object information, and (ii) w/o Rela-456

tion employs object and attribute information. As457

demonstrated in the middle of Table 3, the per-458

formance of VisCE2 improves with the addition459

of more visual context components. Experimen-460

tal results validated that providing a detailed and461

well-organized visual context enables consistent462

caption evaluations by offering richer information463

for the VLMEval. This supports the hypothesis that464

a more detailed visual context improves evaluation465

performance.466

III: Effect of Backbone VLM. We compared sev-467

eral backbone models to examine whether perfor-468

mance differences depend on the variant or model469

size. We employed five models from current strong470

VLMs (LLaVA-v1.5-7/13B (Liu et al., 2023a),471

LLaVA-v1.6-7/13B (Liu et al., 2024), mPLUG-472

Owl2 (Ye et al., 2023)) as for open-source mod-473

els (see Appendix C for model details.) We474

used the same backbone model for both VLMExt475

and VLMEval. The results showed that models476

with larger language model sizes consistently ex-477

hibited higher scores than their smaller counter-478

parts, regardless of the dataset. Furthermore, there479

was no significant difference in performance be-480

tween LLaVA-v1.5-13B (our standard model) and481

LLaVA-v1.6-vicuna-13B. Our analysis reveals that482

the evaluation performance is dependent on the LM 483

size. However, model updates do not always yield 484

positive impacts. 485

We also explored the current upper bounds of 486

VisCE2 and the effectiveness of proprietary models 487

using GPT-4o. Our preliminary experiment (see 488

Appendix E.1) revealed that GPT-4 with VisCE2 489

has a higher evaluation performance than LLaVA- 490

v1.5. We used the gpt-4o model through the 491

Azure OpenAI API. The experimental result shows 492

that GPT-4o surpassed those of open models on 493

almost all datasets. On THumB, Pearson’s ρ with 494

human ratings increased by 8 points, and Kendall’s 495

τ on Composite by 3 points. This result suggests 496

that the proposed method is effective even with 497

more advanced VLMs. While VisCE2 with GPT- 498

4o is a reference-free and tuning-free evaluation 499

method, its performance is comparable to the state- 500

of-the-art reference-based or fine-tuned metrics. 501

IV: Effect of VLMExt. To examine whether the 502

performance of VisCE2 is affected by the inference 503

model, we meta-evaluated VisCE2 with different 504

VLMExt. We fixed the VLMEval to LLaVA-v1.5- 505

13B and changed VLMExt into a smaller model 506

(LLaVA-v1.5-7B) and a larger model (GPT-4o). In 507

the bottom of Table 3, we observed that the perfor- 508

mance decreased in both cases when the VLMExt 509

was changed. This finding implies that the perfor- 510

mance of VisCE2 is improved by effectively exe- 511

cuting in-context learning using the same model. 512
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Image Candidate Caption Human VisCE2 CLIP-S

a group of people on a field playing baseball. 5 85 0.31
a baseball player swinging a bat at a ball . 1 0 0.26
The scene contains people wear hats and greenery and
people wear helmets and people wear sports dresses and crowd. 3 50 0.20

a man in orange garb carrying a umbrella and cell phone. 5 80 0.41

a woman holding an umbrella in the rain . 1 0 0.31
The scene contains street and people walk
and booths and cars arranged in some fashion and cars. 2 50 0.23

A woman sitting at a table with a vase of food. 3 50 0.32

A woman sitting at a table in a restaurant. 4.5 80 0.32

A woman sits beside a brick wall at a small table in a restaurant. 4.4 70 0.32

a dog leaps out of the water. 3.0 70 0.34

a dog is running through the water . 5.0 85 0.33

Figure 4: Comparison between evaluation scores of VisCE2, that of CLIP-S, and human ratings for candidate caption
for images from Composite and THumB dataset. 1 to 5 are the human ratings, where 5 is the best. Additional
examples are provided in the Appendix E.2.

5.2 Qualitative Analysis513

To clarify the differences in trends among other514

reference-free metrics, we compared the evaluation515

scores assigned to the images by VisCE2 with those516

of CLIP-S, a typical reference-free metric. Figure517

4 presents examples of human ratings and scores518

of the auto-eval methods for image-caption pairs.519

These qualitative examples indicate the discrimina-520

tive ability of VisCE2 to the accuracy of captions.521

CLIP-S tends to overestimate captions describing522

the presence of objects in the image. For exam-523

ple, CLIP-S assigns a relatively high score to the524

incorrect caption “a baseball player swinging a525

bat at a ball.” to the image in the first row. How-526

ever, although “the baseball player” is present in527

the image, the event of “swinging the bat at the528

ball” has not occurred. Humans can detect such529

contradictions accurately, whereas CLIP-S often530

ignores them. In the second example, CLIP-S also531

overestimated incorrect image descriptions contain-532

ing the salient object, an umbrella, in the image. A533

previous study (Ahmadi and Agrawal, 2023) has534

also pointed out that CLIP-S tends to be affected by535

the presence or absence of descriptions of salient536

objects in the image, confirmed in these examples.537

The third and fourth examples are typical cases538

where VisCE2 correctly distinguishes appropriate539

image descriptions. These examples demonstrate540

that VisCE2 can accurately evaluate captions based541

on the image content, even when the differences542

between captions are subtle. In particular, in the 543

fourth example, VisCE2 correctly evaluates the im- 544

age by understanding the captions “leaps out” and 545

“run through” and provides a human-like evaluation. 546

In contrast, CLIP-S cannot provide significantly 547

different evaluations for similar captions due to its 548

nature of calculating the similarity between em- 549

beddings. These differences in scores are a signifi- 550

cant feature of VisCE2, which provides evaluations 551

closer to human ratings. 552

6 Conclusion 553

We have proposed VisCE2, a prompting method 554

for automatic VLM-based evaluation of image cap- 555

tions. VisCE2 deviates from the traditional method 556

of evaluating similarity using only reference text 557

and images, weaving visual context into the evalu- 558

ation framework with a compositional form. This 559

technique allows the VLMs to understand the de- 560

tailed visual dependencies of images better and val- 561

idate them based on more exhaustive content than 562

the reference captions provide. Meta-evaluation 563

experiments revealed that scores output by VisCE2 564

have excellent consistency with human judgments, 565

especially in caption accuracy, which outperforms 566

existing evaluation metrics. Future work includes 567

providing VLM-based automatic evaluation along 568

various perspectives, which would provide even 569

more fine-grained information for humans. 570
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Limitations571

Evaluation cost. Our proposed method, which uti-572

lizes VLMs for evaluation, requires a higher com-573

putational cost than previous approaches. In our ex-574

periments, we employed an NVIDIA A100 40GB575

GPU, and extracting visual context took about 10576

seconds per sample and caption evaluation 100 mil-577

liseconds, respectively. This limitation significantly578

depends on the inference speed of VLMs, suggest-579

ing that future improvements in VLMs could miti-580

gate this issue.581

Sensitivity to the prompt. Salinas and Morstat-582

ter (2024) points out that Large Language Models583

(LLMs) performance varies based on the provided584

prompts. Although this is an issue for LLMs, it is585

natural to consider it for VLMs, even if the impact586

is not quantified yet. Understanding how VLMs587

respond to different prompts is key to making them588

more reliable, which remains for future work.589

Ethics Statement590

As our proposed method VisCE2 is utilized for591

providing scores to captions, we do not anticipate592

the negative impacts of this work. However, as with593

other machine learning methods, we recommend594

exercising caution.595
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A Dataset Details839

Here we provide the detail information of the840

dataset used in the experiments (Sec. 4).841

THumB 1.0 (Kasai et al., 2022). consists of 500842

images sourced from MSCOCO, each assigned843

one human-written caption and four automatic-844

generated captions. The evaluation of candidate845

captions involves manual assessment based on846

three criteria: precision (how precisely the caption847

describes the image), recall (how well the caption848

covers the salient information in the image), and849

total (the overall quality of the caption, including850

fluency, inclusive language, and conciseness).851

Flickr8k-Expert (Hodosh et al., 2013). contains852

5,644 pairs of images collected from Flickr and853

automatically generated captions, each evaluated854

by three experts. A score of 1 indicates that the855

caption is unrelated to the image, and a score of 4856

indicates that it accurately describes the image.857

Composite (Aditya et al., 2015). includes 2,007858

images sourced from MSCOCO (Chen et al., 2015),859

997 images from Flickr8k (Hodosh et al., 2013),860

and 991 images from Flickr30K (Young et al.,861

2014). Each image is assigned two automatically862

generated captions and one human-written caption.863

Candidate captions are evaluated on a scale from 1864

(irrelevant) to 5 (ideally related).865

Pascal-50S (Vedantam et al., 2015). comprises866

4,000 images from the UIUC Pascal sentence867

dataset (Rashtchian et al., 2010), each paired with868

candidate captions: one written by a human and869

the others automatically generated using five differ-870

ent methods. Annotators were asked to determine871

which caption was more similar to the reference.872

B Prompts873

We provide the prompts used in our experiments in874

Table 4.875

C Model Details876

We present models used in the experiments. All877

models are publicly available in the huggingface,878

liuhaotian/llava-v1.5-7b, liuhaotian/llava-v1.5-13b,879

liuhaotian/llava-v1.6-vicuna-7b, liuhaotian/llava-880

v1.6-vicuna-13b, and MAGAer13/mplug-owl2-881

llama2-7b.882

LLaVA-v1.5 (Liu et al., 2023a). is an advanced883

large vision and language model designed to inte-884

grate visual and textual data through visual instruc-885

tion tuning. Building on its predecessor, LLaVA,886

this model features a fully-connected vision- 887

language connector using CLIP-ViT-L-336px 888

as the vision encoder and an MLP projection layer, 889

which significantly enhances data efficiency and 890

performance. It outperforms other open models on 891

visual reasoning and instruction-following capabil- 892

ities. 893

LLaVA-v1.6 (LLaVA-Next) (Liu et al., 2024). 894

Compared with LLaVA-1.5, LLaVA-NeXT has in- 895

creased the input image resolution to 4x more pix- 896

els. 897

mPLUG-Owl (Ye et al., 2023). is a novel multi- 898

modal language model designed to integrate visual 899

and textual data through a modularized training 900

paradigm. This model leverages a foundation LLM, 901

a visual knowledge module, and a visual abstractor 902

module to enable robust alignment between images 903

and text. Utilizing a two-stage training approach, 904

mPLUG-Owl aligns visual and textual information 905

effectively. 906

D Caption Pairwise Ranking 907

To further verify how accurately our VisCE2 de- 908

termines the relative preference of captions, we 909

conducted a meta-evaluation with the Pascal-50S 910

dataset (Vedantam et al., 2015) that comprises hu- 911

man preference judgments indicating which of the 912

two captions for an image is more appropriate. The 913

preference judgments for pairs of candidate cap- 914

tions are classified into the following four cate- 915

gories; 916

1. HC: pairs of human-written captions, both of 917

which correctly represent the image’s content; 918

2. HI: pairs of human-written captions where 919

one caption is correct and the other is incor- 920

rect; 921

3. HM: pairs of correct captions, one of which 922

is human-written and the other machine- 923

generated; 924

4. MM: pairs of machine-generated captions, 925

both of which correctly represent the image’s 926

content. 927

For each category, we measured accuracy, the judg- 928

ment agreement between the human preferences, 929

and the results of the automatic evaluation method. 930

The pairwise ranking agreement result shown 931

in Table 5 depicts that our method outperformed 932

CLIP-S and PAC-S in the HC and HI categories. 933

On the other hand, relatively low performance 934

was observed in HM and MM compared to other 935
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Table 4: The prompts used in the experiment. {caption}, {references}, and {context} indicate the place to insert.
The image is given at the beginning of each prompt.

Method Prompt

Vanilla On a precise scale from 0 to 100, rate whether the candidate caption is appropriate for the
given image.
Candidate caption: {caption}
Your rating must be a single digit between 0 and 100.

w/ Reference On a precise scale from 0 to 100, rate whether the candidate caption is appropriate for the
given image.
Candidate caption: {caption}
Use the image and the following reference to evaluate the candidate caption:
Reference: {references}
Your final rating must be a single digit between 0 and 100.

w/ Description
Step 1. Context Extraction

Generate a detailed description for the given image.

VisCE2

Step 1. Context Extraction
Analyze the uploaded image and provide a structured output focusing on the objects, their
features, and the relationships between them. Select up to five of the most important
elements. The output should be organized as follows:
List of Important Objects (up to five):
- Object 1: [Brief description]
- Object 2: [Brief description]
- (Continue as necessary, up to five objects)
Features (Specific characteristics and attributes of each object, such as color, shape, size,
and texture):
- Features of Object 1: [Detailed description of features]
- Features of Object 2: [Detailed description of features]
- (Continue as necessary for each selected object)
Relationships (The way objects interact or are positioned relative to each other, without
using specific object names or symbols):
- Description of a relationship: [General description]
- Another relationship: [General description]
- (Continue as necessary for each relevant relationship)
Focus on providing unique and detailed insights into the features and relationships of the
selected objects up to five objects.

w/ Description
Step 2. Evaluation

VisCE2

Step 2. Evaluation

On a precise scale from 0 to 100, rate whether the candidate caption is appropriate for the
given image.
Candidate caption: {caption}
Use the image and following visual context to evaluate the candidate caption:
Visual context: {context}
Your final rating must be a single digit between 0 and 100.

metrics. This degraded performance, especially936

noticeable for MM, can be attributed to the na-937

ture of the candidate captions. The automatically938

generated captions in the Pascal-50S dataset are939

made with classical captioning methods, such as940

Midge (Mitchell et al., 2012) and Babytalk (Kulka-941

rni et al., 2011), often containing errors. Therefore,942

both are judged as poor-quality captions, causing943

the model’s performance to deteriorate. Another944

contributing factor might be the disagreement in ob-945

jectives between human annotation and automatic946

quality estimation. In the annotation process for947

the Pascal-50S dataset, the worker selected cap-948

tions that are more similar to randomly selected949

references, which does not necessarily equate to950

superiority or adequacy as a caption.951

E Additional Analysis 952

E.1 Performance of GPT-4V 953

Before the meta-evaluation of GPT-4o, we ex- 954

perimentally investigated the evaluation perfor- 955

mance using GPT-4V. GPT-4 family exhibits su- 956

perior performance on many vision and language 957

tasks (Yang et al., 2023), and it has also been 958

quantitatively validated to outperform LLaVA-v1.5 959

in several evaluation tasks (Li et al., 2024; Cui 960

et al., 2023). Due to budgetary constraints, we 961

selected the relatively small yet finely-annotated 962

dataset, THumB to compare LLaVA-v1.5-13B with 963

gpt-4-vision-preview via the Azure Ope- 964

nAI API, using the different visual context re- 965

sources (Vanilla and VisCE2 setting.) 966

As shown in Table 6, GPT-4V outperformed 967

LLaVA-v1.5 for precision and total score at both 968
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Table 5: Accuracy on the Pascal-50S dataset. Bold fonts
for best score among reference- and tune- free models.
†: The scores reported in previous works.

Method Ref-
free

Tune-
free

PASCAL-50S
HC HI HM MM Mean

BLEU-4 ✗ ✓ 53.0 92.4 86.7 59.4 72.8
ROUGE ✗ ✓ 51.5 94.5 92.5 57.7 74.0
METEOR ✗ ✓ 56.7 97.6 94.2 63.4 77.9
CIDEr ✗ ✓ 53.0 98.0 91.5 64.5 76.7
SPICE ✗ ✓ 52.6 93.9 83.6 48.1 69.5
†BERTScore++ ✗ ✗ 65.4 98.1 96.4 60.3 80.1
RefCLIP-S ✗ ✓ 64.9 99.5 95.5 73.3 83.3
†RefPAC-S ✗ ✓ 67.7 99.6 96.0 75.6 84.7
†CLAIRClaude ✗ ✓ 57.9 98.5 91.3 62.9 77.6
†CLAIRE ✗ ✓ 57.7 99.8 94.6 75.6 81.9
†InfoMetIC ✓ ✗ 69.0 99.8 94.0 78.3 85.3

CLIP-S ✓ ✓ 55.9 99.3 96.5 72.0 80.9
†PAC-S ✓ ✓ 60.6 99.3 96.9 72.9 82.4
VisCE2 (Ours) ✓ ✓ 60.7 99.6 93.6 69.3 80.8

Table 6: Comparison VLM-based caption evaluation
methods on correlation (Pearson’s ρ) with human judge-
ment on THumB 1.0.

VLM Method
THumB w/o
Pearson’s ρ

THumB w/
Pearson’s ρ

P R Total P R Total

LLaVA-v1.5 Vanilla .44 .08 .38 .41 .08 .34

LLaVA-v1.5 VisCE2 .54
(+.10)

.08
(±0)

.45
(+.07)

.49
(+.08)

.07
(-.01)

.39
(+.05)

GPT-4V Vanilla .53 .03 .41 .50 .05 .38

GPT-4V VisCE2 .58
(+.05)

.06
(+.03)

.46
(+.05)

.55
(+.05)

.08
(+.03)

.44
(+.06)

prompt settings. Similar to the LLaVA-v1.5 model,969

applying VisCE2 to GPT-4 enhances the evaluation970

performance, indicating that the proposed method971

is effective even with more advanced VLMs. In972

addition, GPT-4V with VisCE2 achieved state-of-973

the-art performance in terms of correlations with974

precision and total score. Furthermore, the evalua-975

tion performance of the LLaVA-v1.5 model with976

VisCE2 applied was improved to the same extent as977

the performance of GPT-4V in the Vanilla setting.978

The effectiveness of our auto-evaluation method979

using this open-source980

E.2 Additional Qualitative Examples981

We list several additional qualitative examples in982

Table 7 to further clarify the effectiveness of our983

VisCE2. The examples are drawn from the THumB,984

Flickr8k-Expert, Composite, and THumB. Each985

example includes an image, two candidate cap-986

tions and scores by human annotation, CLIP-S, and987

VisCE2. CLIP-S fails to fine-grainly compare the 988

longer sentence with short and concise sentence, 989

and it tends to overestimate captions including the 990

salient objects in the image. In contrast, VisCE2 991

can accurately evaluate the quality of the captions 992

by considering the detailed visual context of the 993

image. The third one is another typical example 994

where CLIP-S overestimates the caption contain- 995

ing errors despite the correct color combination. In 996

contrast, VisCE2 provides a certain score for the 997

presence of a brown dog in the image, which is still 998

consistent with human relative preference. 999
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Table 7: Additional qualitative examples of comparison between evaluation scores of VisCE2, that of CLIP-S, and
human ratings for candidate caption for images.

Image Candidate Caption Human VisCE2 CLIP-S

a street sign on a pole in front of a building . 5.0 75 0.26

person is casting light in the scene. location is showing
group in the scene. group is walking. The scene contains
street and people walk and booths and pavement.

1.0 20 0.27

a man is rock climbing . 5.0 80 0.31

person is climbing set in the up.The scene contains
old architecture structure and unfinished structures and
buildings and palatial building and exterior.

1.0 10 0.31

a dog with its mouth opened. 5.0 80 0.31

a brown dog with a white collar is licking its nose . 1.0 50 0.31

A white toilet sitting on the side of a street. 3.5 50 0.38
A white toilet sitting on the side of a building. 4.0 75 0.36
A toilet sitting outside a building in an alley. 4.5 80 0.34

A woman riding a paddle board in the water. 3.5 50 0.34

A young boy riding a paddle board in a river. 4.0 60 0.34

A man paddling a kayak down a river. 5.0 80 0.33
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