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Abstract

Kronecker regression is a highly-structured least squares problem minxkKx�bk22,
where the design matrix K = A(1) ⌦ · · ·⌦A(N) is a Kronecker product of factor
matrices. This regression problem arises in each step of the widely-used alternating
least squares (ALS) algorithm for computing the Tucker decomposition of a tensor.
We present the first subquadratic-time algorithm for solving Kronecker regression
to a (1+ ")-approximation that avoids the exponential term O("�N ) in the running
time. Our techniques combine leverage score sampling and iterative methods. By
extending our approach to block-design matrices where one block is a Kronecker
product, we also achieve subquadratic-time algorithms for (1) Kronecker ridge
regression and (2) updating the factor matrices of a Tucker decomposition in ALS,
which is not a pure Kronecker regression problem, thereby improving the running
time of all steps of Tucker ALS. We demonstrate the speed and accuracy of this
Kronecker regression algorithm on synthetic data and real-world image tensors.

1 Introduction

Tensor decomposition has a rich multidisciplinary history with countless applications in data mining,
machine learning, and signal processing [35, 55, 58, 31]. The most widely-used tensor decom-
positions are the CP decomposition and the Tucker decomposition. Similar to the singular value
decomposition of a matrix, both decompositions have natural analogs of low-rank structure. Unlike
matrix factorization, however, computing the rank of a tensor and the best rank-one tensor are NP-
hard [27]. Therefore, most low-rank tensor decomposition algorithms decide on the rank structure in
advance, and then optimize the variables of the decomposition to fit the data. While conceptually
simple, this approach is extremely effective in practice for many applications.

The alternating least squares (ALS) algorithm is the main workhorse for low-rank tensor decom-
position, e.g., it is the first algorithm mentioned in the MATLAB Tensor Toolbox [7]. For both CP
and Tucker decompositions, ALS cyclically optimizes disjoint blocks of variables while keeping all
others fixed. As the name suggests, each step solves a linear regression problem. The core tensor
update step in ALS for Tucker decompositions is notoriously expensive but highly structured. In fact,
the design matrix of this regression problem is the Kronecker product of the factor matrices of the
Tucker decomposition K = A(1) ⌦ · · ·⌦A(N). Our work builds on a line of Kronecker regression
algorithms [17, 18, 47] to give the first subquadratic-time algorithm for solving Kronecker regression
to a (1 + ")-approximation while avoiding an exponential term of O("�N ) in the running time.

We combine leverage score sampling, iterative methods, and a novel way of multiplying sparsified
Kronecker product matrices to fully exploit the Kronecker structure of the design matrix. We also
extend our approach to block-design matrices where one block is a Kronecker product, achieving

⇤Authors are listed alphabetically. A preliminary version of this work that focuses on efficient sketching for
Tucker decompositions appears in arXiv:2107.10654 [21].
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subquadratic-time algorithms for (1) Kronecker ridge regression and (2) updating the factor matrix of a
Tucker decomposition in ALS, which is not a pure Kronecker regression problem. Putting everything
together, this work improves the running time of all steps of ALS for Tucker decompositions and
runs in time that is sublinear in the size of the input tensor, linear in the error parameter "�1, and
subquadratic in the number of columns of the design matrix in each step. Our algorithms support L2
regularization in the Tucker loss function, so the decompositions can readily be used in downstream
learning tasks, e.g., using the factor matrix rows as embeddings for clustering [67]. Regularization
also plays a critical role in the more general tensor completion problem to prevent overfitting when
data is missing and has applications in differential privacy [10, 8].

The current-fastest Kronecker regression algorithm of Diao et al. [18] uses leverage score sampling
and achieves the following running times for A(n) 2 RIn⇥Rn with In � Rn, for all n 2 [N ], where
R =

QN
n=1 Rn and ! < 2.373 denotes the matrix multiplication exponent [4]:
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PN

n=1(nnz(A(n)) +R
!
n"

�1) +R"
�N ) by sampling Õ(Rn"
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Note that the second approach is linear in R, but the error parameter has an exponential cost in the
number of factor matrices. In this work, we show that the running time of the first approach can be
improved to subquadratic in R without increasing the running time dependence on " in the dominant
term, simultaneously improving on both approaches.

Theorem 1.1. For n 2 [N ], let A(n) 2 RIn⇥Rn , In � Rn, and b 2 RI1···In . There is a (1 + ")-
approximation algorithm for solving argminxk(A(1) ⌦ · · · ⌦ A(N))x � bk22 that runs in time
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where MM(a, b, c) is the running time of multiplying an a⇥ b matrix with a b⇥ c matrix.

If we do not use fast matrix multiplication (Gall and Urrutia [24] and Alman and Williams [4]), the
last term in (1) is Õ(R2

"
�1), which is already an improvement over the standard Õ(R3

"
�1) running

time. With fast matrix multiplication, MM(
Q
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,
Q

n2[N ]\S Rn) is subquadratic in R

for any nontrivial subset S 62 {;, [N ]}, which is an improvement over Õ(R!
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�1) ⇡ Õ(R2.373
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If there exists a “balanced” subset S such that
Q

n2S Rn ⇡
p
R, our running time goes as low as

Õ(R1.626
"
�1) using [24]. For ease of notation, we denote the subquadratic improvement by the

constant ✓⇤ > 0, where R
2�✓⇤

= minS✓[N ] MM(
Q

n2S Rn, R,
Q

n2[N ]\S Rn).

Updating the core tensor in the ALS algorithm for Tucker decomposition is a pure Kronecker product
regression as described in Theorem 1.1, but updating the factor matrices is a regression problem of
the form argminxkKMx� bk22, where K is a Kronecker product and M is a matrix without any
particular structure. We show that such problems can be converted to block regression problems
where one of the blocks is K. We then develop sublinear-time leverage score sampling techniques for
these block matrices, which leads to the following theorem that accelerates all of the ALS steps.
Theorem 1.2. There is an ALS algorithm for L2-regularized Tucker decompositions that takes a tensor
X 2 RI1⇥···⇥IN and returns N factor matrices A(n) 2 RIn⇥Rn and a core tensor G 2 RR1⇥···⇥Rn

such that each factor matrix and core update is a (1 + ")-approximation to the optimum with high
probability. The running times of each step are:
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where R =
QN

n=1 Rn, R 6=k = R/Rk, and ✓
⇤
> 0 is a constant derived from fast rectangular matrix

multiplication.
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Table 1: Running times of TuckerALS factor matrix and core tensor updates with different Kronecker
regression methods. The factor matrices are denoted by A(n) 2 RIn⇥Rn . The input tensor has size
I = I1 · · · IN and the core tensor has size R = R1 · · ·RN . Let I 6=k = I/Ik and R 6=k = R/Rk.
We use ! < 2.373 to denote the matrix-multiplication exponent and the constant ✓⇤ > 0 for the
optimally balanced fast rectangular matrix multiplication as stated in Theorem 4.5, i.e., R2�✓⇤

=
minT✓[N ] MM(

Q
n2T Rn, R,

Q
n/2T Rn).
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2�✓⇤

6=k "
�1 + IkR(

PN
n=1 Rn) +R

!
k "
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For tensors of even modest order, the superlinear term in R is the bottleneck in many applications
since R is exponential in the order of the tensor. It follows that our improvements are significant in
both theory and practice as illustrated in our experiments in Section 6.

1.1 Our Contributions and Techniques

We present several new results about approximate Kronecker regression and the ALS algorithm for
Tucker decompositions. Below is a summary of our contributions:

1. Our main technical contribution is the algorithm FastKroneckerRegression in Section 4.
This Kronecker regression algorithm builds on the block-sketching tools introduced in Sec-
tion 3, and combines iterative methods with a fast novel Kronecker-matrix multiplication
for sparse vectors and matrices and fast rectangular matrix multiplication to achieve a
running time that is subquadratic in the number of columns in the Kronecker matrix. A
key insight is to use the original (non-sketched) Kronecker product as the preconditioner in
the Richardson iterations when solving the sketched problem. This, by itself, improves the
running time to quadratic. Then to achieve subqudratic running time, we exploit the singular
value decomposition of Kronecker products and present a novel method for multiplying a
sparsified Kronecker product matrix (Lemma 4.4 and Theorem 4.5).

2. We generalize our Kronecker regression techniques to work for Kronecker ridge regression
and the factor matrix updates in ALS for Tucker decomposition. We show that a factor
matrix update is equivalent to solving an equality-constrained Kronecker regression problem
with a low-rank update to the preconditioner in the Richardson iterations. We can implement
these new matrix-vector products nearly as fast by using the Woodbury matrix identity. Thus,
we provably speed up each step of Tucker ALS, i.e., the core tensor and factor matrices.

3. We give a block-sketching toolkit in Section 3 that states we can sketch blocks of a matrix
by their leverage scores, i.e., their leverage scores in isolation, not with respect to the entire
block matrix. This is one of the ways we exploit the Kronecker product structure of the
design matrix. This approach can be useful for constructing spectral approximations and
for approximately solving block regression problems. One corollary is that we can use the
“sketch-and-solve” method for any ridge regression problem (Corollary 3.5).

4. We compare FastKroneckerRegression with Diao et al. [18, Algorithm 1] on a synthetic
Kronecker regression task studied in [17, 18] and as a subroutine in ALS for computing
the Tucker decomposition of various image tensors [44, 50, 51]. Our results demonstrate
the importance of reducing the running time dependence on the number of columns in the
Kronecker product.

1.2 Related Work

Kronecker Regression. Diao et al. [17] recently gave the first Kronecker regression algorithm
based on TensorSketch [53] that is faster than forming the Kronecker product. Diao et al. [18]
improved this by removing the dependence on O(nnz(b)) from the running time, where b 2 RI1···IN

is the response vector. Reddy, Song, and Zhang [56] recently initiated the study of dynamic Kronecker
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regression, where the factor matrices A(n) undergo updates and the solution vector can be efficiently
queried. Marco, Martínez, and Viaña [47] studied the generalized Kronecker regression problem.

Ridge Leverage Scores. Alaoui and Mahoney [3] extended the notion of statistical leverage scores
to account for L2 regularization. Sampling from approximate ridge leverage score distributions has
since played a key role in sparse low-rank matrix approximation [16], the Nyström method [49],
bounding statistical risk in ridge regression [48], and ridge regression [14, 48, 41, 33]. Fast recursive
algorithms for computing approximate leverage scores [15] and for solving overconstrained least
squares [40] are also closely related.

Tensor Decomposition. Cheng et al. [13] and Larsen and Kolda [38] used leverage score sampling
to speed up ALS for CP decomposition.2 Song et al. [59] gave a polynomial-time, relative-error
approximation algorithm for several low-rank tensor decompositions, which include CP and Tucker.
Frandsen and Ge [23] showed that if the tensor has an exact Tucker decomposition, then all local
minima are globally optimal. Randomized low-rank Tucker decompositions based on sketching have
become increasingly popular, especially in streaming applications: [45, 61, 11, 60, 31, 46, 44, 2]. The
more general problem of low-rank tensor completion is also a fundamental approach for estimating
the values of missing data [1, 43, 29, 28, 22]. Fundamental algorithms for tensor completion are based
on ALS [68, 25, 42], Riemannian optimization [37, 34, 52], or projected gradient methods [65].

2 Preliminaries

Algorithm 1 TuckerALS
Input: X 2 RI1⇥···⇥IN , (R1, R2, . . . , RN ), �

1: Initialize core tensor G 2 RR1⇥R2⇥···⇥Rn

2: Initialize factors A(n) 2 RIn⇥Rn for n 2 [N ]
3: repeat
4: for n = 1 to N do
5: K A(1)⌦· · ·⌦A(n�1)⌦A(n+1)⌦· · ·⌦A(N)

6: B X(n)
7: for i = 1 to In do
8: y⇤ argminykKG|

(n)y � b|
i:k

2
2 + �kyk22

9: Update factor row a(n)i:  y⇤|

10: K A(1) ⌦A(2) ⌦ · · ·⌦A(N)

11: g⇤  argmingkKg � vec(X)k22 + �kgk22
12: Update core tensor G  vec�1(g⇤)
13: until convergence
14: return G,A(1)

,A(2)
, . . . ,A(N)

Notation. The order of a tensor is
the number of its dimensions. We de-
note scalars by normal lowercase let-
ters x 2 R, vectors by boldface lower-
case letters x 2 Rn, matrices by bold-
face uppercase letters X 2 Rm⇥n,
and higher-order tensors by boldface
script letters X 2 RI1⇥I2⇥···⇥IN . We
use normal uppercase letters to de-
note the size of an index set (e.g.,
[N ] = {1, 2, . . . , N}). The i-th en-
try of a vector x is denoted by xi,
the (i, j)-th entry of a matrix X by
xij , and the (i, j, k)-th entry of a third-
order tensor X by xijk.

Linear Algebra. Let In denote the
n ⇥ n identity matrix and 0m⇥n de-
note the m⇥n zero matrix. The trans-
pose of A 2 Rm⇥n is A|, the Moore–Penrose inverse (also called pseudoinverse) is A+, and
the spectral norm is kAk2. The singular value decomposition (SVD) of A is a factorization of
the form U⌃V|, where U 2 Rm⇥m and V 2 Rn⇥n are orthogonal matrices, and ⌃ 2 Rm⇥n

is a non-negative real diagonal matrix. The entries �i(A) of ⌃ are the singular values of A, and
the number of non-zero singular values is equal to r = rank(A). The compact SVD is a related
decomposition where ⌃ 2 Rr⇥r is a diagonal matrix containing the non-zero singular values. The
Kronecker product of two matrices A 2 Rm⇥n and B 2 Rp⇥q is denoted by A⌦B 2 R(mp)⇥(nq).

Tensor Products. Fibers of a tensor are the vectors we get by fixing all but one index. If X is a
third-order tensor, we denote the column, row, and tube fibers by x:jk, xi:k, and xij:, respectively.
The mode-n unfolding of a tensor X 2 RI1⇥I2⇥···⇥IN is the matrix X(n) 2 RIn⇥(I1···In�1In+1···IN )

that arranges the mode-n fibers of X as columns of X(n) ordered lexicographically by index. The
vectorization of X 2 RI1⇥I2⇥···⇥IN is the vector vec(X) 2 RI1I2···IN formed by vertically stacking

2 The design matrix in each step of ALS for CP decomposition is a Khatri–Rao product, not a Kronecker
product. CP decomposition does not suffer from a bottleneck step like ALS for Tucker decomposition since it is
a sparser decomposition, i.e., CP decomposition does not have a core tensor—just factor matrices.
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the entries of X ordered lexicographically by index. For example, this transforms X 2 Rm⇥n into a
tall vector vec(X) by stacking its columns. We use vec�1(x) to undo this operation when it is clear
from context what the shape of the output tensor should be.

The n-mode product of tensor X 2 RI1⇥I2⇥···⇥IN and matrix A 2 RJ⇥In is denoted by Y = X⇥nA
where Y 2 RI1⇥···⇥In�1⇥J⇥In+1⇥···⇥IN . This operation multiplies each mode-n fiber of X by the
matrix A. This operation is expressed elementwise as

(X⇥n A)i1...in�1jin+1...iN
=
PIn

in=1 xi1i2...iNajin .

The Frobenius norm kXkF of a tensor X is the square root of the sum of the squares of its entries.

Tucker Decomposition. The Tucker decomposition decomposes tensor X 2 RI1⇥I2⇥···⇥IN into
a core tensor G 2 RR1⇥R2⇥···⇥RN and N factor matrices A(n) 2 RIn⇥Rn . Given a regularization
parameter � 2 R�0, we compute a Tucker decomposition by minimizing the nonconvex loss function

L(G,A(1)
, . . . ,A(N);X) = kX� G⇥1 A

(1) · · ·⇥N A(N)k2F + �

 
kGk2F +

NX

n=1

kA(n)k2F

!
.

Entries of the reconstructed tensor bX def
= G⇥1A(1)⇥2 · · ·⇥N A(N) are

bxi1i2...iN =
R1X

r1=1

· · ·
RNX

rN=1

gr1r2...rNa
(1)
i1r1

· · · a(N)
iNrN

. (2)

Equation (2) demonstrates that bX is the sum of R1 · · ·RN rank-1 tensors. The tuple (R1, R2, . . . , RN )
is the multilinear rank of the decomposition. The multilinear rank is typically chosen in advance and
much smaller than the dimensions of X.

Alternating Least Squares. We present TuckerALS in Algorithm 1 and highlight its connections
to Kronecker regression. The core tensor update (Lines 10–12) is a ridge regression problem where
the design matrix Kcore 2 RI1···IN⇥R1···RN is a Kronecker product of the factor matrices. Each factor
matrix update (Lines 5–9) also has Kronecker product structure, but there are additional subspace
constraints we must account for. We describe these constraints in more detail in Section 5.

3 Row Sampling and Approximate Regression

Here we establish our sketching toolkit. The �-ridge leverage score of the i-th row of A 2 Rn⇥d is

`
�
i (A)

def
= ai:(A

|A+ �I)+a|i:. (3)

The matrix of cross �-ridge leverage scores is A(A|A+ �I)+A|. We denote its diagonal by `�(A)
because it contains the �-ridge leverage scores of A. Ridge leverage scores generalize statistical
leverage scores in that setting � = 0 gives the leverage scores of A. We denote the vector of statistical
leverage scores by `(A). If A = U⌃V| is the compact SVD of A, then for all i 2 [n], we have

`
�
i (A) =

Pr
k=1

�2
k(A)

�2
k(A)+�

u
2
ik, (4)

where r = rank(A). It follows that every `
�
i (A)  1 since U is an orthogonal matrix. We direct the

reader to Alaoui and Mahoney [3] or Cohen et al. [15] for further details.

The main results in this paper build on approximate leverage score sampling for block matrices. The
�-ridge leverage scores of A 2 Rn⇥d can be computed by appending

p
�Id to the bottom of A to

get A 2 R(n+d)⇥d and considering the leverage scores of A, so we state the following results in
terms of statistical leverage scores without loss of generality.

Definition 3.1. For any A 2 Rn⇥d, the vector ˆ̀(A) 2 Rn is a �-overestimate for the leverage score
distribution of A if, for all i 2 [n], it satisfies

ˆ̀
i(A)

k ˆ̀(A)k1
� �

`i(A)

k`(A)k1
= �

`i(A)

rank(A)
.
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Next we describe the approximate leverage score sampling algorithm in Woodruff [64, Section 2.4].
The core idea here is that if we sample Õ(d/�) rows and reweight them appropriately, this smaller
sketched matrix can be used instead of A to give provable guarantees for many problems.
Definition 3.2 (Leverage score sampling). Let A 2 Rn⇥d and p 2 [0, 1]n be a �-overestimate
for the leverage score distribution of A such that kpk1 = 1. SampleRows(A, s,p) denotes the
following procedure. Initialize sketch matrix S = 0s⇥n. For each row i of S, independently and with
replacement, select an index j 2 [n] with probability pj and set sij = 1/

p
pjs. Return sketch S.

The main result in this section is that we can choose to sketch a single block of a matrix by the
leverage scores of that block in isolation. This sketched submatrix can then be used with the other
(non-sketched) block to give a spectral approximation to the original matrix or for approximate linear
regression. The notation A 4 B is the Loewner order and means B�A is positive semidefinite.
Lemma 3.3. Let A = [A1;A2] be vertically stacked with A1 2 Rn1⇥d and A2 2 Rn2⇥d. Let p 2
[0, 1]n1 be a �-overestimate for the leverage score distribution of A1. If s > 144d ln(2d/�)/(�"2),
the sketch S returned by SampleRows(A1, s,p) guarantees, with probability at least 1� �, that

(1� ")A|A 4 (SA1)
|SA1 +A|

2A2 4 (1 + ")A|A.

Lemma 3.4 (Approximate block regression). Consider the problem argminx2RdkAx� bk22 where
A = [A1;A2] and b = [b1;b2] are vertically stacked and A1 2 Rn1⇥d, A2 2 Rn2⇥d, b1 2
Rn1 , b2 2 Rn2 . Let p 2 [0, 1]n1 be a �-overestimate for the leverage score distribution of A1. Let
s � 1680d ln(40d)/(�") and let S be the output of SampleRows(A1, s,p). If

x̃⇤ = argminx2Rd

⇣
kS(A1x� b1)k22 + kA2x� b2k22

⌘
,

then, with probability at least 9/10, we have

kAx̃⇤ � bk22  (1 + ") min
x2Rd
kAx� bk22.

We defer the proofs of these results to Appendix A. The key idea behind Lemma 3.4 is that leverage
scores do not increase if rows are appended to the matrix. This then allows us to prove a sketched
submatrix version of Drineas et al. [19, Lemma 8] for approximate matrix multiplication and satisfy
the structural conditions for approximate least squares in Drineas et al. [20]. One consequence is that
we can “sketch and solve” ridge regression, which was shown in [63, Theorem 1] and [6, Theorem 2].
Corollary 3.5. For any A 2 Rn⇥d, b 2 Rd, � � 0, consider

argmin
x2Rd

(kAx� bk22 + �kxk22).

Let p 2 [0, 1]n1 be a �-overestimate for the leverage scores of A and s � 1680d ln(40d)/(�"). If S
is the output of SampleRows(A, s,p), then, with probability at least 9/10, the sketched solution

x̃⇤ = argmin
x2Rd

(kS(Ax� b)k22 + �kxk22)

gives a (1 + ")-approximation to the original problem.
Remark 3.6. The success probability of the sketch can be boosted from 9/10 to 1� � by sampling a
factor of O(log(1/�)) more rows. See the discussion in Chen and Price [12, Section 2] about matrix
concentration bounds for more details.

4 Kronecker Regression

Now we describe the key ingredients that allow us to design an approximate Kronecker regression
algorithm whose running time is subquadratic in the number of columns in the design matrix.

1. The leverage score distribution of a Kronecker product matrix K = A(1) ⌦ · · · ⌦A(N) is a
product distribution of the leverage score distributions of its factor matrices. Therefore, we can
sample rows of K from `(K) with replacement in Õ(N) time after a preprocessing step.
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2. The normal matrix K|K + �I in the ridge regression problem minxkKx � bk22 + �kxk22 is
a O(1)-spectral approximation of the sketched matrix (SK)|SK + �I by Lemma 3.3. Thus
we can use Richardson iteration with (K|K+ �I)+ as the preconditioner to solve the sketched
instance, which guarantees a (1+ ")-approximation. Using (K|K+�I)+ as the preconditioner
allows us to heavily exploit the Kronecker structure with fast matrix-vector multiplications.

3. At this point, Kronecker matrix-vector multiplications are still the bottleneck, so we partition the
factor matrices into two groups by their number of columns and use our novel way of multiplying
sparsified Kronecker product matrices as well as fast rectangular matrix multiplication to get a
subquadratic running time.

This first result shows how �-ridge leverage scores of a Kronecker product matrix decompose accord-
ing to the SVDs of its factor matrices. All missing proofs in this section are deferred to Appendix B.
Lemma 4.1. Let K = A(1) ⌦A(2) ⌦ · · ·⌦A(N), where each factor matrix A(n) 2 RIn⇥Rn . Let
(i1, i2, . . . , iN ) be the natural row indexing of K by its factors. Let the factor SVDs be A(n) =
U(n)⌃(n)V(n)|. For any � � 0, the �-ridge leverage scores of K are

`
�
(i1,...,iN )(K) =

X

t2T

QN
n=1 �

2
tn(A

(n))
QN

n=1 �
2
tn(A

(n)) + �

 
NY

n=1

u
(n)
intn

!2

, (5)

where the sum is over T = [R1]⇥ [R2]⇥ · · ·⇥ [RN ]. For statistical leverage scores, this simplifies
to `(i1,...,iN )(K) =

QN
n=1 `in(A

(n)).

This proof repeatedly uses the mixed-product property for Kronecker products and the definition of
�-ridge leverage scores in Equation (3).

4.1 Iterative Methods

Now we state a result for the convergence rate of preconditioned Richardson iteration [57], which
uses the notation kxk2M = x|Mx.
Lemma 4.2 (Preconditioned Richardson iteration). Let M be any matrix such that A|A 4 M 4
 ·A|A for some  � 1. Let x(k+1) = x(k) �M+(A|Ax(k) �A|b). Then,

kx(k) � x⇤kM  (1� 1/)kkx(0) � x⇤kM,

where x⇤ = argminx2RdkAx� bk22.
Remark 4.3. The ridge regression algorithm in Chowdhury et al. [14] is also based on sketching and
preconditioned Richardson iteration. They consider short and wide matrices where d� n and use
the sketched normal matrix as the preconditioner to solve the original problem. One of our main
technical contributions is to use the original normal matrix as the preconditioner to solve the sketched
problem. Reversing this is advantageous because computing the pseduoinverse and matrix-vector
products with the original Kronecker matrix is substantially less expensive due to its Kronecker
structure. However, this still motivates the need for faster Kronecker matrix-vector multiplications.

4.2 Fast Kronecker-Matrix Multiplication

The next result is a simple but useful observation about extracting the rightmost factor matrix from the
Kronecker product and recursively computing a new less expensive Kronecker-matrix multiplication.
Lemma 4.4. Let A(n) 2 RIn⇥Jn , for n 2 [N ], and B 2 RJ1···JN⇥K . There is an algorithm
KronMatMul([A(1)

, . . . ,A(N)],B) that computes (A(1) ⌦A(2) ⌦ · · · ⌦A(N))B 2 R(I1···IN )⇥K

in O(K
PN

n=1 J1 · · · JnIn · · · IN ) time.

The following theorem is more sophisticated. We write the statement in terms of rectangular matrix
multiplication time MM(a, b, c), which is the time to multiply an a⇥ b matrix by a b⇥ c matrix.
Theorem 4.5. Let A(n) 2 RIn⇥Rn , for n 2 [N ], I = I1 · · · IN , R = R1 · · ·RN , b 2 RI , c 2 RR,
and S 2 RI⇥I be a diagonal matrix with Õ(R"

�1) nonzeros. The vectors
(A1 ⌦ · · ·⌦AN )|Sb and S(A1 ⌦ · · ·⌦AN )c

can be computed in time Õ(minT✓[N ] MM(
Q

n2T Rn, R"
�1

,
Q

n/2T Rn)).
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Algorithm 2 FastKroneckerRegression
Input: Factor matrices A(n) 2 RIn⇥Rn , response vector b 2 RI1···IN , L2 regularization strength �,
error ", failure probability �

1: Set R R1R2 · · ·RN

2: for n = 1 to N do
3: Compute a spectral approximation Ã(n) with Õ(RnN

2
"
�2) rows by Lemma 3.3 such that

A(n)|A(n) 4 Ã(n)|Ã(n) 4 (1 + log(1 + "/4)/N)A(n)|A(n) (6)

4: Compute Ã(n)|Ã(n) and the SVD of Ã(n)|Ã(n) = V(n)(⌃(n)|⌃(n))V(n)|

5: Compute (1 + log(1 + "/2)/N)-approximate leverage scores `(A(n)) using Lemma B.4 by
applying a random Johnson–Lindenstrauss projection

6: Initialize product distribution data structure P to sample indices from (`(A(1)), · · · , `(A(N)))
7: Set D (⌃(1)|⌃(1) ⌦ · · ·⌦⌃(N)|⌃(N) + �IR)+

8: Let M+ = (V(1) ⌦ · · ·⌦V(N))D(V(1) ⌦ · · ·⌦V(N))|
9: Set s d1680R ln(40R) ln(1/�)/"e

10: Set S SampleRows(K, s,P)
11: Let K̃ = SK and b̃ = Sb
12: Initialize x 0R

13: repeat
14: x x� (1�

p
")M+(K̃|K̃x+ �x� K̃|b̃) using fast Kronecker-matrix multiplication

15: until convergence
16: return x

The core idea behind Theorem 4.5 is that the factor matrices can be partitioned into two groups to
achieve a good “column-product” balance, i.e., minT✓[N ] max{

Q
n2T Rn,

Q
n 62T Rn} is close top

R. Then we use the fact that nnz(S) = Õ(R"
�1) with a sparsity-aware KronMatMul to solve each

part of this partition separately, and combine them with fast rectangular matrix multiplication. If
we achieve perfect balance, the running time is Õ(R1.626

"
�1) using results of Gall and Urrutia [24],

which are explained in detail in van den Brand and Nanongkai [62, Appendix C]. If one of these two
factor matrix groups has at most 0.9 of the “column-product mass,” the running time is Õ(R1.9

"
�1).

4.3 Main Algorithm

We are now ready to present our main algorithm for solving approximate Kronecker regression.
Theorem 4.6. For any Kronecker product matrix K = A(1) ⌦ · · · ⌦ A(N) 2 RI1···IN⇥R1···RN ,

b 2 RI1···IN , � � 0, " 2 (0, 1/4], and � > 0, FastKroneckerRegression returns x⇤ 2 RR1···RN

in

Õ

⇣PN
n=1

�
nnz(A(n)) +R

!
nN

2
"
�2
�
+minS✓[N ] MM

⇣Q
n2S Rn, R"

�1
,
Q

n2[N ]\S Rn

⌘⌘
,

time such that, with probability at least 1� �,

kKx⇤ � bk22 + �kxk22  (1 + ")min
x
kKx� bk22 + �kxk22.

We defer the proof to Appendix B.2 and sketch how the ideas in Algorithm 2 come together. First,
we do not compute the pseudoinverse K̃+ but instead use iterative Richardson iteration (Lemma 4.2),
which allows us avoid a Õ(R!

"
�1) running time. This technique by itself, however, only allows us

to reduce the running time to Õ(R2
"
�1) since all of the matrix-vector products (e.g., K̃|b̃, K̃x, and

multiplication against M+) naively take ⌦(R2) time. To achieve subquadratic time, we need three
more ideas: (1) compute an approximate SVD of each Gram matrix A(n)|A(n) in order to construct
the decomposed preconditioner M+; (2) use fast Kronecker-vector multiplication (e.g., Lemma 4.4)
to exploit the Kronecker structure of the decomposed preconditioner; (3) noting that Lemma 4.4 for
the Kronecker-vector products K̃|b̃ and K̃|(K̃x) is insufficient because the intermediate vectors can
be large, we develop a novel multiplication algorithm in Theorem 4.5 that fully exploits the sparsity,
Kronecker structure, and fast rectangular matrix multiplication of Gall and Urrutia [24].
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5 Applications to Low-Rank Tucker Decomposition

Now we apply our fast Kronecker regression algorithm to TuckerALS and prove Theorem 1.2. We
list the running times of different factor matrix and core update algorithms in Table 1, and we analyze
these subroutines in Appendix C.3.

Core Tensor Update. The core update running time in Theorem 1.2 is a direct consequence of
our algorithm for fast Kronecker regression in Theorem 4.6. The only difference is that we avoid
recomputing the SVD and Gram matrix of each factor since these are computed at the end of each
factor matrix update and stored for future use.

Factor Matrix Update. The factor matrix updates require more work because of the G|
(n)y term

in Line 8 of TuckerALS. To overcome this, we substitute variables and recast each factor update as
an equality-constrained Kronecker regression problem with an appended low-rank block to account
for the L2 regularization of the original variables. To support this new low-rank block, we use the
Woodbury matrix identity to extend the technique of using Richardson iterations with fast Kronecker
matrix-vector multiplication for solving sketched regression instances.

The next result formalizes this substitution and reduces the problem to block Kronecker regression
with a subspace constraint. This result relies on the fact that the least squares solution to kMx� zk22
with minimum norm is M+z.
Lemma 5.1. Let A 2 Rn⇥m, M 2 Rm⇥d, b 2 Rn, and � � 0. For any ridge regression problem
of the form argminx2Rd(kAMx� bk22 + �kxk22), we can solve

zopt = argmin
Nz=0

kAz� bk22 + �
��M+z

��2
2
,

where N = Im �MM+, and return vector M+zopt instead.

Proof. Let z = Mx 2 Rm. For any x 2 Rd, z is in the column space of M and hence orthogonal to
any vector in the left null space of M. Therefore, we can optimize over z 2 Rm subject to Nz = 0
instead because for any x 2 Rd, NMx = (Im �MM+)Mx = (M �M)x = 0. Using this
substitution, we can also replace the term �kxk22 by �kM+zk22 because for any z, the least squares
solution to z = Mx with minimum norm is M+z [54].

To solve this constrained regression problem, we can add a scaled version of the constraint matrix N
as a block to the approximate regression problem and take the projection of the resulting solution.
Lemma 5.2 (Approximate equality-constrained regression). Let M 2 Rn⇥d, N 2 Rm⇥d, b 2 Rn,
and 0 < " < 1/3. To solve minNx=0kMx� bk22 to a (1 + ")-approximation, it suffices to solve

min
x2Rd

����


Mp
wN

�
x�


b
0

�����
2

2

to a (1 + "/3)-approximation with w � (1 + 12/")kMN+k22.

Letting z = G|
(n)y in Line 8 of TuckerALS and modifying FastKroneckerRegression to support

additional low-rank updates to the preconditioner, we get the FastFactorMatrixUpdate algorithm,
presented as Algorithm 3 in Appendix C.2. The analysis is similar to the proofs of Theorem 4.6. The
factor matrix updates benefit in the same way as before from fast Kronecker matrix-vector products,
and new low-rank block updates are supported via the Woodbury identity. We defer the proofs of the
next two results to Appendix C.
Theorem 5.3. For any � � 0, " 2 (0, 1/3), and � > 0, the FastFactorMatrixUpdate algorithm
updates A(k) 2 RIk⇥Rk in TuckerALS with a (1+ ")-approximation, with probability at least 1� �,
in time

Õ

⇣
IkR

2
6=k"

�1 log(1/�) + IkR
PN

n=1 Rn +R
!
k "

�2
⌘
.

Corollary 5.4. FastFactorMatrixUpdate updates A(k) 2 RIk⇥Rk in Õ(IkR
2�✓⇤

6=k "
�1 log(1/�)+

IkR
PN

n=1 Rn+R
!
k "

�2) time, where ✓⇤ > 0 is the optimally balanced MM exponent in Theorem 4.5.
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Figure 1: Running times of Kronecker regression algorithms with a design matrix of size n
2 ⇥ d

2.

6 Experiments

All experiments were run using NumPy [26] with an Intel Xeon W-2135 processor (8.25MB cache,
3.70 GHz) and 128GB of RAM. The FastKroneckerRegression-based ALS experiments for
low-rank Tucker decomposition on image tensors are deferred to Appendix D.2. All of our code is
available at https://github.com/fahrbach/subquadratic-kronecker-regression.

Kronecker regression. We build on the numerical experiments in [17, 18] for Kronecker regression
that use two random factor matrices. We generate matrices A(1)

,A(2) 2 Rn⇥d where each entry is
drawn i.i.d. from the normal distribution N (1, 0.001) and compare several algorithms for solving
minxk(A(1)⌦A(2))x�1n2k22+�kxk22 as we increase n, d. The running times are plotted in Figure 1.

The algorithms we compare are: (1) a baseline that solves the normal equation (K|K+�I)+K|b and
fully exploits the Kronecker structure of K|K before calling np.linalg.pinv(); (2) an enhanced
baseline that combines the SVDs of A(n) with Lemma 4.4, e.g., KronMatMul([(U(1))|, (U(2))|],b),
using only Kronecker-vector products; (3) the sketching algorithm of Diao et al. [18, Algorithm 1];
and (4) our FastKroneckerRegression algorithm in Algorithm 2. For both sketching algorithms,
we use " = 0.1 and � = 0.01. We reduce the number of row samples in both algorithms by ↵ = 10�5

so that the algorithms are more practical and comparable to the earlier experiments in [17, 18]. Lastly,
we set � = 10�3. We discuss additional parameter choice details and the full results in Appendix D.1.

The running times in Figure 1 demonstrate several different behaviors. The naive baseline quickly
becomes impractical for moderately large values of n or d. KronMatMul is competitive for n  104,
especially since it is an exact method. The runtimes of the sketching algorithms are nearly-independent
of n. Diao et al. [18] works well for small d, but deteriorates tremendously as d grows because it
computes ((SK)|SK + �I)+ 2 Rd2⇥d2

and cannot exploit the Kronecker structure of K, which
takes O(d6) time. FastKroneckerRegression, on the other hand, runs in O(d4) time because it
uses quadratic-time Kronecker-vector products in each Richardson iteration step (Line 14).

Table 2: Kronecker regression losses for d = 64. OPT denotes the loss of the KronMatMul algorithm,
DJSSW19 is Diao et al. [18, Algorithm 1], and Algorithm 2 is FastKroneckerRegression. We also
record the relative error of each algorithm and the number of rows sampled from A(1) ⌦A(2).

n OPT Algorithm 2 Approx DJSSW19 Approx Rows sampled (%)

1024 0.031 0.032 1.051 0.035 1.138 0.0370
2048 0.123 0.126 1.026 1.577 12.792 0.0093
4096 0.507 0.520 1.026 275.566 543.776 0.0023
8192 2.073 2.136 1.030 333.430 160.809 0.0006

16384 8.238 8.608 1.045 546391.728 66329.791 0.0001

These experiments also show that combining sketching with iterative methods can give better sketch
efficiency. Table 2 compares the loss of [18, Algorithm 1] and FastKroneckerRegression to an
exact baseline OPT for d = 64. Both algorithms use the exact same sketch SK for each value of n.
Our algorithm uses the original (K|K + �I)+ as a preconditioner to solve the sketched problem,
whereas Diao et al. [18, Algorithm 1] computes ((SK)|SK+ �I)+(SK)|Sb exactly and becomes
numerically unstable for n � 2048 when d 2 {16, 32, 64}. This raises the question about how to
combine sketched information with the original data to achieve more efficient algorithms, even when
solving sketched instances. We leave this question of sketch efficiency as an interesting future work.
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