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ABSTRACT

Contextual semantic information plays a pivotal role in the brain’s visual inter-
pretation of the surrounding environment. When processing visual information,
electrical signals within synapses facilitate the dynamic activation and deactivation
of synaptic connections, guided by the contextual semantic information associated
with different objects. In the realm of Artificial Intelligence (AI), neural networks
have emerged as powerful tools to emulate complex signaling systems, enabling
tasks such as classification and segmentation by understanding visual informa-
tion. However, conventional neural networks have limitations in simulating the
conditional activation and deactivation of synapses, collectively known as the con-
nectome, a comprehensive map of neural connections in the brain. Additionally, the
pixel-wise inference mechanism of conventional neural networks failed to account
for the explicit utilization of contextual semantic information in the prediction
process. To overcome these limitations, we developed a novel neural network,
dubbed the Shape Memory Network (SMN), which excels in two key areas: (1)
faithfully emulating the intricate mechanism of the brain’s connectome, and (2) ex-
plicitly incorporating contextual semantic information during the inference process.
The SMN memorizes the structure suitable for contextual semantic information
and leverages this structure at the inference phase. The structural transformation
emulates the conditional activation and deactivation of synaptic connections within
the connectome. Rigorous experimentation carried out across a range of seman-
tic segmentation benchmarks demonstrated the outstanding performance of the
SMN, highlighting its superiority and effectiveness. Furthermore, our pioneering
network on connectome emulation reveals the immense potential of the SMN for
next-generation neural networks.

1 INTRODUCTION

The past few decades have witnessed remarkable progress in deep learning (DL) research, largely
driven by the significant advancements in graphics processing units (GPUs). These GPUs, with their
exceptional computational powers, have played a pivotal role in accelerating the development of
DL methodologies. Fully Connected Networks (FCN) and Visual Geometry Group (VGG) have
been introduced as early baseline networks (Long et al., 2015; Simonyan & Zisserman, 2014).
Recently, deep neural networks (DNNs) have been applied to many tasks, such as YoLo for detection
tasks (Redmon & Farhadi, 2018) and U-Net for segmentation tasks Ronneberger et al. (2015). More
recently, efforts to emulate the neuronal and cognitive intricacies of the human brain have continued
to prompt the development of advanced DL models. For instance, Woo et al. (2018) conceptualized
the Convolutional Block Attention Module (CBAM), a novel architecture encapsulating the attention
mechanism, and Vaswani et al. (2017) introduced the Transformer model processing sequential data.
Moreover, an innovative perspective of treating images as sequences by Dosovitskiy et al. (2020) led
to the development of Vision Transformer (ViT), which interprets images as sequential data.

Nonetheless, Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) have limi-
tations when it comes to effectively leveraging contextual semantic information. In contrast, the
human brain excels at visually interpreting objects’ morphological attributes by actively incorporating
contextual semantic information, thereby facilitating a holistic understanding of the surrounding
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environment (Trobe, 2001; Farah, 2000). For example, the human brain intuitively recognizes that
the sky appears above the land, vehicles tend to be found on roads, and the road area is typically
more extensive than the space occupied by cars. These contextual semantic cues contribute to our
comprehensive understanding of the visual environment (Farah, 2000; Grill-Spector & Malach, 2004).
Similarly, artificial intelligence (AI) relies on the utilization of contextual semantic information to
accurately identify objects within its environment (Brézillon, 1999; Chalmers et al., 1992). This
parallelism with human brain functioning implies that neural networks (NNs), like their biological
counterparts, also require the ability to incorporate contextual cognition (Chalmers et al., 1992;
Goodfellow et al., 2016; Nebauer, 1998). However, despite recent advancements in NNs that integrate
spatial information of objects (Jaderberg et al., 2015; He et al., 2016), there are still constraints in
effectively incorporating contextual semantic information. This limitation stems from pixel-level clas-
sification approaches that lack a deep comprehension of the morphological attributes of objects (Guo
et al., 2022; Zheng et al., 2021). As a result, although NNs demonstrate proficiency in identifying
objects based on spatial information, they have faced challenges in comprehending the intrinsic
semantics (Waldrop, 2019; Goodfellow et al., 2016; Guo et al., 2022).

In the early era, the pioneering work of Rosenblatt (1958); Minsky & Papert (1988) introduced
the concept of multi-layer perceptrons as an attempt to emulate the mechanism of human neurons.
Furthermore, the concept of the NNs, interconnected perceptrons designed to mimic the complex
mechanisms within the brain, has been introduced (Rumelhart et al., 1985; 1986). Additionally, a
range of activation functions have been developed alongside NNs to emulate neurotransmission,
including baseline activation functions such as sigmoid and ReLU, as well as advanced functions
such as ELU (Clevert et al., 2015), GALU (Hendrycks & Gimpel, 2016), Swish (Ramachandran
et al., 2017), SeLU (Klambauer et al., 2017), and ASH (Lee et al., 2022). The activation functions in
NNs have been developed to simulate neurotransmission by emulating the mechanisms of membrane
and action potentials. However, it is important to note that the human signal transmission system is
significantly more complex, incorporating both electrical signals within neurons and chemical signals
in synaptic transmission, as depicted in Figure 1. Hence, the previous methods have been limited
in simulating complex neural transmission systems. To address this, a novel Spike Neural Network
(SNN) has been proposed in recent years (Tavanaei et al., 2019; Lee et al., 2016). However, the lack
of an optimal training algorithm for SNNs has been a limiting factor for their practical application in
real-world scenarios.

Figure 1: Schematic illustrations depicting the electrochemical neurotransmission process in the
human brain, as well as the mechanism by which control neurons emulate neurotransmission. In
this mechanism, the architecture of neural connections in control neurons is dynamically modified in
response to control signals, resulting in a variable network architecture.

Contribution We present a two-fold objective aimed at (1) devising a novel neuro-mechanical
neurotransmission model inspired by the signal transmission processes within the human brain and
synapses, implementing an electrochemical methodology, and (2) developing a novel network that
explicitly employs contextual semantic information during segmentation. Building upon the insights
from the ensemble network (see Section 2), we introduce a novel network architecture that aims to
optimize predictive performance. This innovative network dynamically adapts its structure based

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

on the contextual semantic information embedded in the input image during the prediction process.
Due to its ability to store and recall the optimal architecture in response to contextual semantic
information, we have coined the term Shape-Memory Network (SMN) for this network. Furthermore,
to facilitate structural modifications, we designed a novel conditional neuron capable of altering the
inter-neuronal connections in response to received control signals that regulate inter-neuron signal
transmission and neuronal activation (Fig. 1). In summary, our approach involved the two-fold design
of a network that explicitly harnesses and capitalizes on contextual semantic information. First, we
proposed a conditional neuron with a novel signal transmission system facilitating structural variants
upon the control signal. Second, this conditional neuron was then organically integrated into the
SMN.

The main contributions of this paper are summarized below:

• We proposed a novel network (i.e., SMN) that explicitly leverages the contextual semantic
information for segmentation tasks by adjusting its architecture in a test-time fine-tuning
manner and providing an appropriate structure for a particular domain.

• To realize the explicit utilization of contextual semantic information, we developed a novel
algorithm that reconstructs an entropy-map by integrating CAMs (Zhou et al., 2016).

• In SMN, we introduced a novel mechanism, the conditional neuron, incorporating a control
signal and enabling contextually adaptive activation of inputs, drawing inspiration from
synaptic mechanisms while maintaining its distinct computational characteristics.

• Through rigorous mathematical justification, we provided a solid theoretical foundation for
the concept of conditional neurons within the SMN. Furthermore, to validate the practical
performance of the SMN, we extensively tested it on multiple segmentation benchmark
datasets, demonstrating its superior segmentation capabilities compared with other methods.

2 PROBLEM STATEMENT

Semantic Domain Gap Many studies have highlighted the effect of domain gaps hampering the
predictive efficacy of DL networks (Shu, 2015; Wei et al., 2018). The domain gap significantly
emerges due to the diversity in sensors, environmental conditions during data acquisition, or variations
in pre-processing methodologies, particularly in the field of computer vision (Regmi & Shah, 2019;
Nam et al., 2021). The datasets, each with characteristic attributes, are typically considered distinct
domain groups, yet Pan et al. (2020) introduced the existence of intra-group domain gaps within
one single domain as well. In this work, we aim to focus on contextual semantic information as a
primary one of the multiple factors contributing to domain gaps. Contextual semantic information
incorporates semantic attributes of objects such as their size (proportional area occupied in the image,
denoted as density in this paper), spatial location, and morphological form.

Suppose three subsets of U1, U2, and U3 ⊂ U in the multi-dimensional space of contextual semantic
information (U ⊆ RH×W×C). Suppose U1 and U2 are similar, and U1 and U3 are different in terms
of contextual semantic information, such that |U1 − U2| < |U1 − U3| where |A − B| indicate the
average distance between all samples in the sets of A and B. Additionally, let L(θM ;U) be a loss
function that leverages the samples in U , using the parameters (θM ) of a DL model (M ), leading to

Proposition I. |U1−U2| < |U1−U3| =⇒ L(ΘM ;U2) < L(ΘM ;U3) where ΘM = argminθML(θ
M ;U1).

The Proposition I implies that the DL model optimized to a specific domain provides imprecise
predictions on the different domains. Thus, the problem statement that aims to find the DL network
providing precise predictions disregarding domain gaps is formulated as below:

ΘM = argmin
θM

L(θM ;U1) and |U1 − U2| < |U1 − U3| =⇒ L(ΘM ;U2) ∼ 0 and L(ΘM ;U3) ∼ 0 (1)

Ensemble Model The trivial solution to bridge the domain gaps and achieve precise predictive
accuracy is to employ an ensemble DL model for the prediction. Suppose different sets of Ui where
(i = 1, 2, ..., N) indicating different N numbers of domains and DL models (Mi), which is optimized
to Ui, respectively. Then the ensemble model can provide precise prediction as below:

Proposition II. To precisely predict sample (u ∈
⋃

i Ui), the ensemble model (M ) can be derived using models
optimized for each domain as M(u) = Mi(u) (if u ∈ Ui).
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Therefore, by employing an appropriate model suitable to each domain, the ensemble model can
provide precise predictions and thus realize Equation 1. However, note that the ensemble model
exhibits limitations, including heavy memory requirements and the inability to provide accurate
predictions for domains that have not been trained.

Optimal Solution Many domain adaptation (DA) methodologies have been extensively studied
to mitigate domain gaps, encompassing various approaches such as transfer learning (Patricia &
Caputo, 2014; Kouw & Loog, 2018), generative DA (Bousmalis et al., 2017; Hu et al., 2018), and
unsupervised and self-supervised DA (Pan et al., 2020; Xu et al., 2019; Liu et al., 2021; Bartler et al.,
2022). Among them, test-time adaptation (TTA) has emerged as a prominent approach, similar to
the ensemble model for addressing Equation 1, where the TTA models yield improved prediction
accuracy by retraining the network with optimized parameters during the inference phase (Liu et al.,
2021; Bartler et al., 2022). In this work, we integrate the ensemble model with the TTA method to
tackle Equation 1 (Liu et al., 2021; Bartler et al., 2022). Consequently, we propose a DL model that
fine-tunes its parameters and dynamically adjusts the optimal architecture.

3 METHOD

3.1 SHAPE-MEMORY NETWORK

Figure 2: Illustration of the architecture of the SMN, consisting of several components, including
segmentation, density regression, entropy map reconstruction, and signal control.

Design Principle The fundamental architecture of our Shape-Memory Network (SMN) is designed
to process and utilize contextual semantic information in visual data effectively. For instance, consider
a semantic segmentation task on urban scene datasets. The input images typically contain multiple
object classes with consistent spatial and contextual information: transportation infrastructure (roads,
sidewalks) occupies the lower regions, architectural structures appear with specific scale constraints,
and environmental elements (sky, vegetation) maintain consistent spatial positions.

To implement this, the SMN captures the contextual patterns via two primary computational compo-
nents. First, the component implements density mapping, quantifying the proportional distribution of
object classes within the input space. Particularly, in urban scene analysis, road surfaces typically con-
stitute 30-40% of the pixel space, while vehicular objects occupy 5-10%. The density distributions are
represented as statistical priors, leading to the network for validating segmentation predictions against
expected contextual patterns. Significant deviations from the learned distributions (e.g., vehicles
occupying 80% of the pixel space) are automatically flagged as anomalous configurations. The second
component facilitates entropy mapping, quantifying information complexity in the spatial regions.
The entropy mapping mechanism is particularly important for analyzing regions with high-class
intersection probability, such as object boundaries or regions of class ambiguity. Computationally,
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regions exhibiting higher entropy values indicate areas requiring more sophisticated feature extraction
and analysis than regions with uniform class distribution.

Architectural Design Regarding the design principles, we formalize our SMN structure with several
key mathematical components. Particularly, the SMN employs conditional neurons to transform
its structure during test-time adaptation (TTA) dynamically. Furthermore, we implement a self-
supervised learning-based re-optimization method, utilizing the entropy-map as a medium for loss
minimization and explicit integration of contextual semantic information. While spatial information
is effectively conveyed through skip connections, we focus on optimizing the network’s contextual
understanding by introducing density measurements that quantify the proportional distribution of
object classes. Therefore, we focus on optimizing the network’s insight into contextual semantic
information of input images by introducing density, representing the proportion of the occupied area
in the image.

Definition I. Let Ωc(h,w; I) be a category (c) recognition function at pixel I∥h,w in input (I), such that
Ωc(h,w; I) is 1 iff argmax

x
I∥h,w = c, otherwise 0.

Definition II. Let dcl : RH×W×C → R be the density function of the target object (c) in semantic label
(ŷ ∈ Y ⊂ RH×W×3), such that dcl (ŷ) =

1
HW

∑H
h

∑W
w Ωc(h,w; I) with the image of height (H), width (W ),

and the number of categories (C).

Lemma I.
∑C

c dcl (ŷ) = 1 since
∑C

c

∑H
h

∑W
w Ωc(h,w; I) = HW .

The density-regression pipeline facilitates two functions: (1) it enables the generation of Class
Activation Maps (CAM) and entropy-maps for TTA optimization, and (2) it manages control signals
for structural transformation based on input characteristics. By leveraging our novel approach, the
CAM not only captures the visual attributes of target objects but can also be transformed into an
entropy-map. This allows us to optimize the SMN, by minimizing the similarity loss between the
entropy-map reconstructed using CAM and the entropy-map generated in the segmentation pipeline.

Network Architecture Fig. 2 illustrates the detailed architecture of the SMN based on multi-task
and self-supervised learning for TTA. The SMN incorporates the segmentation pipeline and the
density-regression pipeline. Here, the main task of the SMN is the semantic segmentation task to
localize objects into segmentation maps, and the pretext task is to predict the density of the target
object in a multi-labeled manner. Note that the cognition of the contextual semantic information could
be explicitly realized by incorporating the spatial information conveyed from the skip connections
and the mathematical morphology achieved by the recognition of density prediction. Subsequently,
the cognition of contextual semantic information leads to the structural transformation of the SMN
via the entropy-map-based optimization in a self-supervised and TTA manner.

Let X ⊂ RH×W×3 and Y ⊂ RH×W×C be the sets of input RGB images and corresponding
segmentation labels, where H and W are the height and width of an input image, and C is the number
of categories of inputs, and E : RH×W×3 → RH′×W ′×k and D : RH′×W ′×k → RH×W×C the
encoder and decoder of SMN, respectively, where RH′×W ′×k is the encoded feature space for fk in
Fig. 2, such that M(x) := (D◦E)(x) and fk := E(x) where x ∈ X and k is the number of channels.
Subsequently, assuming the predicted segmentation map (M(x)) represents the probabilities obtained
from the softmax output, the following constraint is imposed on the subsequent operations.

Lemma II. 0 ≤M(x)∥h,w,c ≤ 1, and thus
∑

c M(x)∥h,w,c = 1.

Therefore, in the predicted segmentation map and density-regression pipeline, the density of the
target object is defined as below:

Definition III. Let dcs : RH×W×3 → R be the density function of the target object (c) on x ∈ X using the
SMN, such that dcs(x) = 1

HW

∑H
h

∑W
w Ω(h,w;M(x)) and

∑
c d

c
s(x) = 1 by Lemma II.

Definition IV. Let dc : RH×W×3 → R be the density function of the target object (c) predicted density on
x ∈ X using the SMN, such that dc(x) =

∑
k W

c
k

∑
h,w fk(h,w).

Optimization and Inference of SMN The SMN is trained via three loss functions. Like in the
general segmentation task, the predicted segmentation map (ŷ = (D ◦ E)(x) where x ∈ X ) by the
SMN is optimized to the segmentation label (y ∈ Y) via the cross-entropy loss function (LCE), such
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that L1(θ
M ; (X ,Y)) :=

∑X
x LCE(y, ŷ). Additionally, the predicted entropy-map in the segmentation

pipeline is optimized to the entropy-map reconstructed from the CAM, such that L2(θ
M ;X ) :=∑X

x Lssim(E(x), EM(
∑

k W
c
kfk)), where E(x) = −

∑
c M(x)∥h,w,c logM(x)∥h,w,c, Lssim is the

structural similarity loss (Lu, 2019), and EM is the entropy-map-reconstructing algorithm from the
CAM (See Sec. 3.2). The L2 implies explicitly utilizing contextual semantic information during
segmentation. Furthermore, the predicted density (dc) by the SMN is optimized to the calculated
density by the predicted segmentation map based on Definition II and Definition IV, such that
L3(θ

M ; (X ,Y)) :=
∑X

x |dc(x) − dcl (y)|2. Therefore, the following constraint is imposed on the
subsequent operations.

Proposition III. dc in the density-regression pipeline of the optimized SMN satisfies the property in Lemma I,
such that 0 ≤

∑
k W

c
k

∑
h,w fk(h,w) ≤ 1 and

∑
c

∑
k W

c
k

∑
h,w fk(h,w) = 1 by Lemma II.

Proposition IV. The optimization of dc facilitates the incorporation of contextual semantic information into the
parameters of the SMN, enhancing its ability to comprehend and utilize such information effectively.

During the inference phase, the SMN is re-optimized via a self-supervised manner only using L2.
Particularly, L2(θ

′M ;X ) is applied, where θ′M represents the parameters for the condition signals,
thus indicating the manifestation of the structural transformation of the SMN at the inference phase.
The TTA employing L2 yields two primary outcomes: (1) TTA enables expedited re-optimization
and minimizes memory requirements by utilizing a reduced number of training parameters, and (2)
TTA enhances prediction accuracy by providing an optimal architecture aligned with the contextual
semantic information of input x.

3.2 ENTROPY-MAP RECONSTRUCTION VIA CLASS ACTIVATION MAP

In the previous work, Zhou et al. (2016) introduced the CAM (
∑

k W
c
kfk), directly indicating the

importance of the activation at spatial grid (h,w). Additionally, dc(x) indicates the density of
target objects in x (e.g., dc(x) = 0 implies that the absence of c in x and dc(x) = 1 implies that
the x is filled with c). Since we designed and trained 0 ≤ dc(x) =

∑
k W

c
k

∑
h,w fk(h,w) =∑

h,w

∑
k W

c
kfk(h,w) ≤ 1, Based on this, we expect the important area in density regression to

be the contextual semantic information in terms of mathematical morphology, and thus
∑

k W
c
kfk

highlights the regions of the target object (c), and
∑

k W
c
kfk(h,w) implies the expected density at

the spatial grid of (h,w).

Proposition V. The CAM (
∑

k W
c
kfk) generated by the SMN is figured to highlight the regions of c.

Moreover, by stacking the CAMs for each category (c) as [
∑

k W
c
kfk(h,w)] ∈ RC , the concatenated

feature-map incorporates the important ratio for density prediction of each category c, and thus the
factors could be normalized by using the softmax function to calculate stochastic variables d̄c(x)∥h,w
for the density of target c, and thus

∑
c d̄

c(x)∥h,w = 1. Therefore, the entropy-map is calculated by
leveraging the probability as −

∑
c

(
d̄c(x)∥h,w log d̄c(x)∥h,w

)
, and the Theorem for the definition

of EM(x) is formulated.

Theorem I. EM(x)∥ = −
∑

c

(
d̄c(x)∥h,w log d̄c(x)∥h,w

)
where d̄c(x)∥h,w = e

∑
k Wc

kfk(h,w)∑
c e

∑
k Wc

k
fk(h,w)

3.3 CONTROL NEURON

The control neuron functions as a fundamental element within the adaptive architecture of the SMN.
It processes information through three interconnected pipelines that collectively define its operation:
(1) standard neural inputs from linked neurons analogous to those in traditional neural networks, (2)
a control signal based on predicted density distributions, and (3) a self-activation mechanism gating
signals. The three pipelines enable the network to dynamically adapt its structure in response to
varying input characteristics, resembling how biological neural systems adjust connectivity patterns.
During the processing of an input image, control neurons selectively engage or disengage connections
based on contextual information, thereby achieving an optimal configuration for the specific input.

As Proposition IV, optimizing dc promotes the interpretation of contextual semantic informa-
tion. Consequently, employing dc(x) as a control signal enables the structural transformation
of the SMN by aligning its structure with the contextual semantic information. For instance, to
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achieve Proposition II, suppose three inputs of x1, x2, and x3 ∈ X , and let dc(x1) and dc(x2)
be in a similar density distribution (dc(x)), whereas dc(x3) be in a different distribution, such that
DB(d

c(x1), d
c(x2)) < DB(d

c(x1), d
c(x3)), where DB(P,Q) is Bhattacharyya distance. Addition-

ally, suppose two structurally distinct networks of M1, which yields optimal performance for x1 and
x2, and M2 for x3. Then, the SMN predicts x1, x2, and x3 as below:

M(x) =

{
M1(x) (if x = x1 or x = x2)

M2(x) (if x = x3)
(2)

Note that, the control signal affects the selection of optimal Mi in Equation 2. To design a control
signal that interprets the contextual semantic information, we employed the predicted densities (dc)
as inputs based on Proposition IV, and formulated the control signal as below.

Definition V. The control signal of SMN is obtained by a linear combination of predicted densities (dc).

Figure 3: control neuron.

To implement Definition V, the densely connected parameters
were employed in the SMN (Fig. 2). Suppose [dc(x)]c=1,2,...,C ∈
R1×C and the parameters of [[vc]c=1,...,C ]n=1,...Ncn ∈ RC×Ncn ,
where Ncn is the number of control neurons. Subsequently, we de-
fined the linear combinations of dc(x) and vn as

∑C
c vn,cdc(x) ∈

R as the control signal of nth control neuron. Note that, the pa-
rameter of v is trainable, and thus the architecture of the SMN is
aligned alongside the contextual semantic information of input (x)
upon the predicted density in the train and inference phases.

Furthermore, to effectuate the structural transformation in response
to the control signal, each neuron in the SMN is designed to receive three distinct input signals
of inter-neuronal inputs, self-activation, and a control signal that incorporates contextual semantic
information resampled from the density distribution (Definition V), as depicted in Fig. 3. Similar
to the human brain, wherein the inter-neuronal transmission is facilitated via chemical signal trans-
mission in synapses, inputs from other neurons in the SMN are designed to emulate the chemical
neurotransmission. Additionally, the control signal and self-activation are conceived to emulate
the electrical transmission mechanism. Consequently, the control signal is intended to simulate the
threshold for membrane potential, and self-activation is associated with the sustained stimulus to
neurons. Furthermore, the output of the control neuron emulates the action potential.

Definition VI. The output of a control neuron is A(
∑

Inputi) ∗ ((Control > tn) | (self-activation))
where A is an activation function, tn is a neural threshold of nth control neuron of SMN, * is a
arithmetic multiplication operator, and | is bit-wise or operator.

To design an output responsive to a control signal and neural threshold, the terms of control signal and
self-activation are implemented into the A(

∑
Inputi), which is the same output of the conventional

neuron. The output signal is activated when the amplitude of the control signal surpasses an
intrinsic threshold or when self-activation is true. The activation of the control signal indicates
that the neuron has been subjected to a stimulus exceeding the threshold, and self-activation is
introduced to prevent the loss of informative activation caused by the sparsity problem. The criteria
for informative activation derive from the premise that among interconnected neurons (feature maps),
a specific neuron hold more information than others. Let sin

i , sout, and sct be input signals, output
signal, and control signal, and λn and A be the intrinsic threshold of neuron and the adaptive
activation function filtering informative activation (Appendix), then Definition VI is formulated as:
sout =

(
H(sct − λn) + H(A(

∑
i s

in
i ))

)∑
i s

in
i , where H(x) is a Heaviside step function, where

H(x) = max(x, 0). However, since the λn is not arithmetically connected to input signals, the λn is
not trainable, but the intrinsic threshold of λn should be trainable. To realize, we approximated the
H(x) into arithmetic form, and thus the output of the control neuron is formulated using a sigmoid
function (σ(x)) and a large value of α as

Theorem II. The output signal of the control neuron with input (sin
i )and control (sct) signals is formulated as(

σ(−2α1(s
ct − λn)) + σ(−2α2A(

∑
i s

in
i )
)∑

i s
in
i .
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Since the λn is arithmetically connected to the inputs, the λ is trainable during the training phase.
Therefore, the control neurons retain the intrinsic threshold to store the optimal architecture of the
SMN, and the SMN adjusts its own architecture by fine-tuning v in run-time to align the appropriate
architecture to contextual semantic information.

4 MAIN RESULTS

To evaluate the performance of SMN, various benchmark datasets, such as aerial imagery datasets of
Inria (Maggiori et al., 2017b) and LoveDA (Wang et al., 2021) and scene understanding benchmarks
of ADE20K (Zhou et al., 2017), Youtube-VOS (Xu et al., 2018), and BDD100K (Yu et al., 2020)
were utilized. To demonstrate the general feasibility of the SMN for semantic segmentation, the
datasets for scene understanding were employed. In addition, since the density of the objects should
be a crucial feature for aerial imagery, aerial datasets are employed to illustrate the strength of the
SMN effectively. Furthermore, the GTA5 dataset (Richter et al., 2016) was utilized to evaluate the
scalability of the SMN to the synthesis parsing. The more detailed descriptions of the datasets are
illustrated in the Appendix.

4.1 COMPARISON ANALYSIS

To compare the segmentation performance of the SMN, we employed compatible DL models, such
as the baseline models (Ronneberger et al., 2015; Xie et al., 2021), multi-Path models (Zhuang, 2018;
Bai & Zhou, 2020), state-of-the-art for segmentation models (Seg-SotA) (Wang et al., 2022b;c), and
video object segmentation models (VOS) Cheng & Schwing (2022); Yang et al. (2022). To evaluate
the efficacy and superior performance of the SMN in the segmentation task, the baseline models,
the SotA models, and the VOS models were employed. Additionally, the performance of SMN
was compared using the multi-path models, which stand a similar role to the ensemble model. The
detailed descriptions for the datasets and experimental setups are illustrated in the Appendix.

Table 1: Quantitative comparison analysis of SMN to other compatible deep learning models in
terms of intersection over union (IoU). The best performance values are highlighted in bold, and the
second-best values are underlined.

Baseline Model Multi-Path Seg SotA VOS Ours
U-Net SegFormer LADDERNet MPDNet InternImage BEiT-3 Xmem AOST Ours - SA Ours

Inria 62.96% 67.97% 64.77% 64.51% 68.60% 66.69% 64.85% 69.30% 68.60% 72.72%
LoveDA 47.71% 51.33% 49.66% 48.25% 49.81% 49.63% 51.29% 50.57% 50.40% 54.28%
ADE20K 42.61% 46.72% 52.66% 44.30% 51.04% 51.67% 44.88% 52.06% 48.84% 55.76%

Youtube-VOS 77.12% 81.07% 86.04% 83.57% 85.13% 86.67% 83.36% 87.09% 85.66% 88.66%
BDD100K 36.69% 42.59% 41.13% 40.03% 47.25% 39.85% 42.69% 43.09% 43.81% 48.83%

GTA5 65.84% 65.99% 68.64% 70.69% 70.94% 70.90% 68.00% 71.06% 69.07% 76.58%

Quantitative Analysis Table 1 illustrates the segmentation performance of the SMN compared
to other deep learning models. Here, Ours-SA indicates the SMN without a self-activation path in
control neurons. Table 1 involves two novel findings of (1) the SMN exhibits a superior segmentation
performance than other compatible DL networks, and (2) the self-activation incorporates a significant
role in the SMN. The SMN provides the 6.36% improved IoU values on average, and also exhibits a
powerful improvement with a 13.15% improvement in maximum. Additionally, depending on the
existence of self-activation, a performance difference of up to 7.51% is exhibited, indicating that
self-activation drives a significant contribution to the feature extraction in SMN, implicating that
self-activation plays a compulsory role in improving the sparsity problem.

Quantitative Analysis Fig. 4 exhibits the segmentation results of SMN and other compatible
deep learning models using ADE20K, GTA5, and LoveDA datasets. Upon inspecting the semantic
segmentation map predicted by SMN and other DL models, it is evident that the segmentation
facilitated by the SMN is remarkably predicted in precise, contrasting with other comparative
networks. The quantitative analysis demonstrated the superior performance of the SMN in the
segmentation task. Particularly, it is noteworthy that the SMN provides precise segmentation maps
when segmenting small objects and objects of various sizes, distinguishing the SMN from other
networks by precisely segmenting the boundaries of the objects. Therefore, the segmentation
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Figure 4: Predicted segmentation maps by SMN (ours) and other competitive DL models.

performance of the SMN, when compared to other competitive DL models, was corroborated to
stand out in aerial images wherein the density of the objects significantly impacts the segmentation
performance. Moreover, the exceptional adaptability of the SMN, highlighted by its ability to adjust
its network structure based on contextual semantic information dynamically, further underscores its
superiority in delivering precise segmentation, even under diverse and challenging conditions.

4.2 EXPLICIT UTILIZATION OF CONTEXTUAL SEMANTIC INFORMATION

Figure 5: (Left) Similarity of the intrinsic threshold of control neurons containing the similar density
of the target objects and (Right) samples of entropy-map and reconstructed entropy-map.

Fig. 5 offers an explicit depiction of contextual semantic information during segmentation by the
SMN. Fig. 5(Left) manifests the degree of similarity between the intrinsic threshold values of the
control neurons. These neurons are engaged when predicting two disparate images, exhibiting
analogous object densities. The premise for determining similarity rests on acknowledging a match
when the concurrence level of a specific control neuron, operating in two distinct structures for the
prediction of two different images, falls beneath a defined error rate. Therefore, a reduced error rate
in similarity computation signifies imposing more stringent conditions. Nonetheless, Fig. 5(Left)
highlights a strong correlation between the intrinsic threshold values based on density, and thereby
indicating that the structural transformations within the SMN are relevant and fluctuate in response to
the contextual semantic information. Fig. 5(Right) illustrates the similarity between the entropy-map
generated via the EM algorithm in the optimized SMN, and the entropy-map conveyed within the
segmentation pipeline. The experimental results emphasize using contextual semantic information by
the SMN during the segmentation tasks.

9
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5 DISCUSSION

Hyper-parameter Tuning Note that the experiment did not aim to find the best-performing model
with the fully searched parameters, but aimed to demonstrate the feasibility of the proposed deep
neural networks and to show superior performance compared to other state-of-the-art (SotA) models.
To search for the best parameters for the highest performance remained as future works. Furthermore,
among the trainable variables, zk, alpha1, and α2 are not significantly treated in this paper since
those values cannot significantly affect the segmentation performance of the SMN. For instance, the
values of α are optimized to nearly 10.0, which significantly approximates the sigmoid function to the
Heaviside step function. Additionally, the zk is a hyperparameter of the ASH activation function, such
that its values are significantly different by the convolution operations and the locations. Therefore, it
is natural that the self-optimization of zk could lead to the optimal performance of the SMN.

Computational Complexity To implement the SMN for real-world applications, we address the
computational complexity of the TTA mechanism. The current implementation requires optimization
of matrix M ∈ RC×N during inference, with time complexity O(T · C ·N) and space complexity
O(C · N), where T represents optimization steps (typically T ≤ 5), C denotes categories, and
N indicates control neurons. While our current implementation achieves 32.8 FPS with 47.5M
parameters and 549.8G FLOPs, we propose several optimization strategies to enhance efficiency.
These include early stopping criteria (Lt+ 1 − Lt < ϵ), parameter pruning (Mpruned = M ⊙
(|M | > τ)), and quantization (Mquant = round(M · 2b)/2b). Preliminary experiments suggest
these optimizations could reduce computational overhead by 30-40% while maintaining performance
within 1-2% of current results. Future work will focus on developing lightweight TTA variants and
memory-efficient implementations to further improve real-time performance.

Extension to Other Tasks Our framework demonstrates significant potential for extension beyond
semantic segmentation tasks. As illustrated in Appendix Fig. 5, the SMN architecture can be
generalized via a modular design approach: maintaining the encoder with control neurons while
allowing customization of the header and pretext task for specific applications. The adaptability of
the SMN is achieved by two key components: (1) the latent features extracted from the encoder
and (2) the control signals derived from the features. The latent features, representing high-level
semantic information, are processed through task-specific headers to generate appropriate outputs
(e.g., class probabilities for classification, bounding box coordinates for detection), while the control
signals guide the structural adaptation of the network based on a pretext task appropriate for the target
application. While our segmentation implementation uses density-based pretext tasks to identify
spatial information, other applications might employ different self-supervised learning objectives
- for instance, classification tasks could utilize feature correlation learning based on variational
auto-encoder, while detection tasks might benefit from pretext tasks using object localization patterns.
The detection task is conducted as a preliminary study in appendix, and the classification task remains
as future works.

6 CONCLUSION

In this paper, we proposed a novel deep learning network that emulates the brain connectome, which
incorporates intricate neural connections, and explicitly leverages contextual semantic information
during segmentation. To this end, during the training phase, the network is designed to memorize
the optimal structural configurations for contextual semantic information, and to transform into the
optimal structure suitable for the input’s contextual semantic information during the prediction phase,
leading to accurate predictions. To depict the explicit utilization of contextual semantic information
for segmentation, we designed a novel optimization method based on the class activation map and
entropy-map as illustrated in Theorem I. Moreover, to implement the structural transformation of the
network, we proposed a novel neuronal system called a control neuron, illustrated in Theorem II.
To evaluate the performance of the proposed network, we employed several semantic segmentation
benchmark datasets, and the experimental results demonstrated the superior predictive performance
of our method in the segmentation task. Furthermore, our research is foundational for the next-
generative networks capable of emulating the human signal transmission system by incorporating
test-time adaptation methods and structural transformation, demonstrating the potential of the SMN
for scalability in various applications.
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A SHAPE-MEMORY NETWORK

Mechanism To illustrate the mechanisms of the Shape-Memory Network (SMN), we first define
the mathematical notations and expressions. Let E and D be the encoder and decoder of the SMN,
respectively. Then, the encoded feature-map (fk) would be represented as E(Ii) = [fk]k=1,2,...,C ,
where Ii ∈ I ⊂ RH×W×3 is the input image with its height (H) and width (W ), and C is the
number of feature-map, and the final output, the segmentation map (Yi ∈ Y ⊂ RH×W×C), is
represented as Y = D([fk]) = (D ◦ E)(I), where C is the number of categories in the datasets.
In the pipeline for the class activation map (CAM), the encoded feature-maps are average-pooled,
such that

∑
x,y fk(x, y) represents an individual feature. Here, suppose W c

k for the weight for
the density-regression for a category (c), and then density prediction(dc : RH×W×3 → R) is
calculated as dc(Ii) =

∑
k W

c
k

∑
x,y fk(x, y) =

∑
k W

c
k

∑
x,y E(Ii), such that [dc(Ii)]c=1,2,...,C ∈

RC . Furthermore, the predicted densities for each category are mapped to the control signal (sct ∈ RN)
with the number of individual pixels of feature-maps in D (N) via dense layers with the trainable
matrix (M ∈ RC×N) such that sct = [dc(Ii)] ·M, where · is the matrix multiplication. Subsequently,
the sct is imported into the D, and thus the final prediction of the SMN is implemented in detail as
below:

Yi = D(E(Ii); sct)

= D
(
E(Ii); [

C∑
k

W c
k

∑
x,y

E(Ii)] · M
) (3)

Note that all elements of the segmentation map (Yi) are the softmax output, such that 0 ≤ Yi∥h,w,c ≤
1. Therefore, we can define the trainable parameters of the SMN as (1) parameters of encoder and
decoder, such that θE and θD; (2) parameters (W c

k ) for the CAM pipeline as a dense layer; (3) matrix
(M) to map the predicted density to a control signal. Note that only the matrix M is optimized in the
inference phase to change the structure of the SMN. To summarize, the key outputs by the SMN are
listed as below:

Segmentation Map: Yi = D
(
E(Ii); [

C∑
k

W c
k

∑
x,y

E(Ii)] · M
)

Density-regression: dc(Ii) =
∑
k

W c
k

∑
x,y

E(Ii)

Class Activation Map: Cc(Ii) =
∑
k

W c
kfk =

∑
k

W c
kE(Ii)

Entropy-map: E(Ii) = −Yi log Yi

(4)

In addition, as illustrated in Sec.3.2 in the manuscript, remember that the entropy-map function
(EM(Ii)) reconstructs the entropy-map from the CAMs (Cc for c = 1, 2, ..., C) as below:

EM(Ii)∥h,w = −
C∑
c

d̄c(Ii)∥h,w log d̄c(Ii)∥h,w where d̄c(Ii)∥h,w =
e[
∑

k W c
kE(I

i)]∥h,w∑C
c e[

∑
k W c

kE(Ii)]∥h,w

(5)

The training process of the SMN is illustrated in Sec 3.1 of the manuscript. The predictive procedure
of the SMN in the inference phase is listed as the following:

1. The SMN generates the pseudo-labels for the segmentation map and density-regressions.

2. The entropy-maps are generated via the pipeline of the segmentation (E(Ii)) and the recon-
struction algorithm (EM(Ii)).

3. To fine-tune M, minimize the similarity loss (Lssim) between E(Ii) and EM(Ii), such that
M′ = argmin

M
Lssim(E(Ii),EM(Ii)).
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4. The SMN with M′ predicts the final output as: D
(
E(Ii); [

∑C
k W

c
k

∑
x,y E(Ii)] · M′

)
It’s important to note that during the training phase, M is trained, with each individual M being
mapped to unique domains, representing different characteristics of contextual semantic information.
Hence, Mi represents sub-domain Xi, where the intersection of all Xi equates to the dataset X , but
no intersection exists among individual Xi. During the inference phase, the similar Mi is derived by
fine-tuning the Shape-Memory Network (SMN) for sample xi ∈ Xi. This process showcases how
the SMN redeploys its saved structure by modifying its architecture, which led to the network being
dubbed the Shape-Memory Network, and Fig. 5 in the manuscript verifies the effective utilization of
similar Mi. Additionally, an illustration of the optimization of M, as well as the provision of the
final predicted segmentation map by the SMN, is presented in Algorithm 1.

Algorithm 1: Fine-tuning and Inference of the Shape-Memory Network
Input :sample xi in test-set (X ⊂ RH×W×3), such that xi ∈ X , where H and W are height and

width, respectively, and the pre-trained SMN (M ).

Output :Predicted segmentation map (yi ∈ Y ⊂ RH×W×C ) corresponding to input (xi), where C

is the number of category.

Assumption :X =
⋃N

i Xi where N is the number of subset.
⋂N

i Xi = ∅, indicating that the Xi

represents distinct domain.

ȳi ← D
(
E(Ii); [

∑C
k W c

k

∑
x,y E(Ii)] · M

)
; /* Predict pseudo-label */

C̄1 ← −ȳi log ȳi ; /* Entropy-map by segmentation pipeline */

C̄2 ← −
∑C

c d̄c(Ii)∥h,w log d̄c(Ii)∥h,w ; /* Entropy-map by EM algorithm */

M′ ← argmin
M
Lssim(E(Ii),EM(Ii)) ; /* Fine-tune M */

yi ← D
(
E(Ii); [

∑C
k W c

k

∑
x,y E(Ii)] · M

′
)

;

To summarize, the mechanism of the SMN is (1) to store the appropriate architecture for a certain
domain; (2) to restore its structure corresponding to the input domain by fine-tuning a parameter;
and (3) to provide precise prediction to the input image. Here, the structural mutation is achieved by
fine-tuning the control signal that supervises the connections of neurons. The neural connections in
the SMN are activated or deactivated based on the control signal, and thus fine-tuning the parameter
that supervises the control signal enables the SMN to modify its network structure corresponding to
the input image.

Appendix Figure 1: Schematic illustration of control neurons in the feature-maps.
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Appendix Fig. 1 illustrates how the control signal achieves the structural mutation. By activating and
deactivating the output of each neuron, which is the individual element in a feature-map, the condition
signal changes the structure of the SMN, and thus the control signal supervises the adaptive domain
adaptation with respect to the contextual semantic information of inputs. Thereby, the structural
adjustment by the control signal fine-tuned with the contextual semantic information can bring out a
superior segmentation performance of the SMN.

Contributions To summarize, our contributions, in this paper, are listed below:

• Construction of Shape-Memory Network. We designed the shape-memory network that
can explicitly interpret the contextual semantic information by employing the run-time
adaptation method via structural modification.

• Design of Control Neuron. We newly devised a control neuron that can adaptively change
the connections to other control neurons, leading to the implementation of structural modi-
fication of the SMN. This mechanism represents the close emulation of the human brain
connectome and synapse mechanism.

• Implementation of Entropy-Map Reconstruction Algorithm. For the explicit interpreta-
tion of the contextual semantic information in the SMN, we newly devised the entropy-map
reconstruction algorithm to train the SMN using the class activation maps regarding the con-
textual semantic information. The devised algorithm incorporates the contextual semantic
information in the training of the SMN.

B ENTROPY-MAP RECONSTRUCTION FROM CLASS ACTIVATION MAP

In the previous research (Zhou et al., 2016), it was revealed that the Class Activation Map (CAM)
identifies the regions of significant relevance to the primary task. As a result, when tasked with
density regression, the CAM is influenced to concentrate on areas specific to the target object (c),
leading to the derivation of Proposition V. In this context, density refers to the proportion of pixels
in the input image representing the target object compared to the total pixel count. In response, we
developed the Shape-Memory Network, which integrates multi-label density regression tasks to yield
multiple CAMs for each category (c). Parameters specific to the density regression process for each
category are then multiplied with the encoded feature-map, and then, a CAM for each category is
generated. Subsequently, we incorporate the CAMs that exhibit attention areas for each category to
produce a pseudo-entropy-map 2.

Appendix Figure 2: Schematic illustrations of reconstructing entropy-map from the class activation
map (CAM). Each CMAs for each category are leveraged to generate entropy-map via a probability-
based normalization method.
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Appendix Figure 3: Schematic illustration of control neurons.

C CONTROL NEURON

Note that the control neuron represents an element in a feature-map (See Appendix Fig.1). Therefore,
the control neuron refers to pixel-wise activation rather than convolutional weights. Suppose there are
N numbers of control neurons in the SMN, and each control neuron has individual intrinsic threshold
value (λn) for nth control neuron. The output of the control neuron is activated when (1) the value of
the control signal (sct) is above the intrinsic threshold value, such that sct ≥ λn or (2) self-activation
is true. Therefore, the sout

n is activated when the following condition is satisfied:

(self-activation)|(sct ≥ λn) (6)

Here, the self-activation indicates that the current control neuron (pixel or element) is more informative
than other elements in the same feature-map. To avoid the loss of the informative features from the
feature extraction process, the self-activation is designed. Therefore, the logical or (|) operator is
placed in Eq. 6. Suppose fk for the encoded feature-map by E. In fk with its height (Hk) and width
(Wk), the number of control neurons are HkWk, and the nth control neuron is more informative
when the condition below is satisfied:

sout
n is in top − k% among all elements in fk. (7)

In the previous study Lee et al. (2022), the sampling elements met the Eq. 7 is formulated as below:

sout
n is informative when sout

n ≥ mfk + zk ∗ vfk (8)

where mfk and vfk are the mean and the standard deviation values of all elements in fk, and the zk
refers to a statistical z-value for the Z-table corresponding to k%.

To generalize, suppose a feature-map (F) in the SMN, and the nth control neuron in F . Therefore,
we can define the function (g(sout

n ;F)) that determines whether sout
n is informative or not as below:

g(sout
n ;F) =

{
1(if sout

n ≥ mF + zk ∗ vF )
0(else)

(9)

In this case, the zk is not trainable since the zk is not arithmetically placed, but in the conditional
statement. To make the zk be trainable, the Heaviside step function and its approximation are utilized.
Additionally, the Heaviside step function (H(x)) is approximated to the sigmoid function (σ(−2αx))
with a large value of α. Therefore, we formulate the Eq. 9 as below:

g(sout
n ;F) = H(g(sout

n ;F)−mF + zk ∗ vF )
= σ

(
− 2α(g(sout

n ;F)−mF + zk ∗ vF )
) (10)

Here, α and zk are trainable. Therefore, the self-activation that determines the current condition
neuron is informative or not is trained during the training phase, and the pre-trained self-activation
determines the activation of the condition neuron in the inference phase.
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Furthermore, another condition in Eq. 6 related to the control signal is formulated using the approxi-
mation of the Heaviside step function as below:

σ
(
− 2α(sct − λn)

)
(11)

In addition, the logical or operator is replaced by the addition operator in arithmetic and analysis, and
thus the Eq. 6 is substituted as below:

σ
(
− 2α(g(sout

n ;F)−mF + zk ∗ vF )
)
+ σ

(
− 2α(sct − λn)

)
(12)

Therefore, let the input signals be sin, and thus the final output (sout
n ) value of the nth control signal is

provided as below:

sout
n = sin ∗

(
σ
(
− 2α1(g(s

out
n ;F)−mF + zk ∗ vF )

)
+ σ

(
− 2α2(s

ct − λn)
))

(13)

Here, in addition to the trainable parameters in Appendix A, the zk, α1, and α2 are trainable, and
zk represents the adaptive threshold to discriminate the informative features, and α1 and α2 are the
conditional values for the approximation. In the empirical analysis and experiments, the value of α is
trained at nearly 10.0.

D EXPERIMENTAL ENVIRONMENT DESCRIPTION

Implementations The experiments were implemented in the Apple Macbook Pro with M1 Max
and 64GB unified memories. Besides, we developed our neural network and the state-of-the-art deep
learning models using Tensorflow (for ARM processor) version 2.9.0 (Abadi et al., 2016) for precise
implementation. For the training, the batch size (Bottou, 2010) of the training was set to 32, and the
Adam optimizer was utilized with the default values of all parameters (Kingma & Ba, 2014). Every
parameter of the neural networks and the optimizer was initialized with the Gaussian distribution, of
which the mean and the standard deviation values are 0.0 and 1.0.

Comparative Models To demonstrate the segmentation performance of the Shape-Memory Net-
work (SMN), four groups of deep learning models were utilized as shown in the followings; (1)
Baseline models including the early vanilla models of U-NetRonneberger et al. (2015), and Seg-
Former (Xie et al., 2021); (2) Multi-Path models for the segmentation task including LADDER-
NET (Zhuang, 2018) and MPDNet (Bai & Zhou, 2020); (3) SotA models for the segmentation task,
including InterImage (Wang et al., 2022b) and BeiT-3 (Wang et al., 2022c); (4) SotA models for the
video object segmentation (VOS), including Xmem (Cheng & Schwing, 2022) and AOST (Yang
et al., 2022). The baseline networks were compared to demonstrate the standard feasibility of the
SMN for the segmentation task. While the SoTA models, used here, were utilized to exhibit superior
segmentation performance of the SMN for the benchmark datasets of scene parsing and autonomous
driving, including VOS. Here, the best-performing SotA models were selected by referring to Kaggle
benchmark lists. Additionally, the multi-path models were employed to compare the SMN in terms
of the ensemble models for Eq. (1) in the manuscript.

Dataset In the experiments, five categories of distinct datasets were employed to evaluate the
segmentation performance of the SMN compared to other baseline and SotA models; (1) Scene
parsing benchmark using ADE20K (Zhou et al., 2017) and Youtube-VOS (Xu et al., 2018); (2)
Autonomous driving using BDD100K (Yu et al., 2020); (3) Aerial image datasets of Inria (Maggiori
et al., 2017b;a) and LoveDA (Wang et al., 2021); (4) Medical Imaging datasets using MRI for a brain
tumor (Buda et al., 2019) and ultrasound dataset for breast cancer (Al-Dhabyani et al., 2019); (5)
Synthetic images of GTA5 (Richter et al., 2016). To demonstrate the general feasibility of SMN for
semantic segmentation, the datasets for scene understanding and autonomous driving datasets were
utilized. In addition, since the density, which is a crucial feature for SMN, of objects is most important
in the segmentation of aerial images, the benchmarks using aerial images were utilized. Furthermore,
to evaluate the scalability of the SMN, the medical imaging datasets and benchmark for the synthetic
images were employed. Note that since the density of the target object, especially the disease area,
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is a significant key feature in medical imaging, the SMN could be expected to provide its superior
segmentation performance in the medical imaging field. Furthermore, the precise segmentation
performance of the SMN could provide the potential for transfer learning and extensibility to large-
scale models. For training models, the images in each dataset are divided into ten-fold for the k-fold
cross-validation.

Comparison to Domain Adaptation Models A great deal of DA methods, such as adversarial
training (Ganin et al., 2016), maximum mean discrepancy minimization (Tzeng et al., 2014), unsuper-
vised DA (Ganin & Lempitsky, 2015), and self-ensembling (French et al., 2017), have demonstrated
success in reducing discrepancies between distinct source and target domains. However, methods
typically assume the availability of labeled source domain data and unlabeled target domain data
during the training phase, a condition that may not hold in real-world scenarios. Test-time DA
(TTDA) methods, in contrast, aim to refine models at the inference stage, by leveraging the test
data distribution without explicit access to the labels. Techniques such as transductive parameter
transfer (Shu et al., 2018), and test-time self-supervised learning (Azimi et al., 2022; Lee et al.,
2021; Wang et al., 2022a) have been proposed to bridge the gap between the training and test data
distributions.

Despite the promising results achieved by the aforementioned methods, they are primarily designed
for addressing domain discrepancies between two or more distinct domains, rather than within a
single domain. To apply the domain adaptation method, two significantly distinct domains should be
identified. However, in our study, the key factor for the domain discrepancy is contextual semantic
information, and the contextual semantic information could be identified by the deep learning models,
not by the human, and thus the labels for the different domains regarding the contextual semantic
information could not be provided. Therefore, despite the promising performance of the domain
adaptation decreasing the domain gap, the domain adaptation method could not be applied and
implemented to resolve the issues addressed in the problem statement (Sec. 2).

E EXPERIMENTS

Verification of M Appendix Fig. 4 illustrates the similarity between Mi and Mj for samples
of xi and xj in the same domain X alongside three error rates. This experiment was conducted to
measure the justification that fine-tuning M could represent similar or different architecture for the
SMN within different domains.

To measure the similarity, the following function is devised:

S(x, y; r) :=

{
1 (if |x−y|

x ≤ r)

0 (else)
(14)

where 0 ≤ r ≤ 1 represents the error rate, and thus S represent 1 if two elements is within the error
rate. Here, the Similarity of the Intrinsic Threshold is calculated below:

Appendix Table 1: Detailed description of the datasets. To validate, 10-fold cross-validation was
used.

Dataset Samples Train Test Category

ADE20K 27,574 24,817 2,757 150
Youtube-VOS 7,945 7,150 795 65

BDD100K 8,000 7,200 800 20
Inria 144,000 129,600 14,400 2

LoveDA 4191 3,772 419 8
BrainMRI 7,858 7,073 785 2

BUSI 789 709 80 2
GTA5 24,966 22,470 2,496 27
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Appendix Figure 4: Similarity of the intrinsic threshold of control neurons containing the similar
density of the target objects.

1

CN

C,N∑
c,n

S(Mi∥c,n,Mj∥c,n; r) (15)

If the error rate decreases, the Similarity of the Intrinsic Threshold guarantees a higher similarity,
whereas a large value of the error rate is a rough condition. Therefore, Appendix Fig. 4 verifies that
the fine-tuned M exhibits similar values regarding the same domain.

The SMN contains a small number of parameters compared to other state-of-the-art models, but the
SMN significantly provides precise prediction in the segmentation task due to its effective fine-tuning
mechanism. Additionally, despite the fine-tuning mechanism of the SMN, the SMN exhibits an
efficient FPS due to only a small number of parameters (M) being optimized in an inference phase.

Segmentation Performance This section illustrates the evaluation results of our model compared
to other deep learning models, including baseline models, multi-path models, SotA models for
segmentation, and the SotA models for VOS.

In addition, the figure below illustrates the samples of the predicted segmentation by the SMN and
other comparative models in eight datasets.
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Appendix Table 3: Segmentation Results of the SMN and other comparative models.

Network Complexity The SMN contains the trainable parameters of (1) parameters of encoder and
decoder, such that θE and θD; (2) parameters (W c

k ) for the CAM pipeline as a dense layer; (3) matrix
(M) to map the predicted density to a control signal. To verify the feasibility and scalability for a
real-world application, we compared the SMN to other deep learning models in terms of the number
of parameters (# of Param), the FLoating point Operations Per Second (FLOPs), and Frame Per
Second for generating predictions (FPS). The predictions were performed using the Apple Macbook
Pro with M1 Max and 64GB unified memories.
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Appendix Table 2: Comparison analysis in terms of mean IoU.

ADE20K Youtube-VOS BDD100K GTA5

2*Baseline Model U-Net 42.61% (±3.75) 77.12% (±3.38) 36.69% (±1.41) 65.84% (±1.81)

SegFormer 46.72% (±3.93) 81.07% (±2.37) 42.59% (±3.83) 65.99% (±2.17)

2*Multi-Path LADDERNet 52.66% (±3.44) 86.04% (±3.53) 41.13% (±3.44) 68.64% (±3.61)

MPDNet 44.3% (±3.11) 83.57% (±2.54) 40.03% (±3.6) 70.69% (±3.42)

2*Seg SotA InternImage 51.04% (±2.67) 85.13% (±2.2) 47.25% (±3.5) 70.94% (±3.27)

BEiT-3 51.67% (±2.08) 86.67% (±3.02) 39.85% (±1.22) 70.9% (±3.23)

2*VOS Xmem 44.88% (±1.78) 83.36% (±3.31) 42.69% (±3.35) 68% (±2.31)

AOST 52.06% (±3.12) 87.09% (±2.04) 43.09% (±1.41) 71.06% (±2.32)

2*Ours Ours - SA 48.84% (±2.42) 85.66% (±1.04) 43.81% (±3.59) 69.07% (±2.97)

Ours 55.76% (±2.9) 88.66% (±2.44) 48.83% (±1.14) 76.58% (±1.14)

Inria LoveDA BrainMRI BUSI

2*Baseline Model U-Net 62.96% (±3.34) 47.71% (±3.12) 75.11% (±1.64) 63.69% (±2.55)

SegFormer 67.97% (±3.19) 51.33% (±3.34) 74.28% (±3.36) 71.41% (±3.19)

2*Multi-Path LADDERNet 64.77% (±3.09) 49.66% (±3.59) 69.75% (±3.34) 60.36% (±2.88)

MPDNet 64.51% (±1.09) 48.25% (±3.43) 67.43% (±3.89) 67.51% (±1.28)

2*Seg SotA InternImage 68.6% (±3.27) 49.81% (±1.17) 76.08% (±3.82) 70.47% (±2.27)

BEiT-3 66.69% (±1.82) 49.63% (±1.75) 66.08% (±3.78) 67.46% (±1.63)

2*VOS Xmem 64.85% (±2.78) 51.29% (±3.12) 61.57% (±3.04) 67.24% (±3.41)

AOST 69.3% (±3.75) 50.57% (±3.43) 75.22% (±2.83) 60.16% (±3.2)

2*Ours Ours - SA 68.6% (±2.57) 50.4% (±2.69) 68.86% (±2.95) 72.99% (±3.42)

Ours 72.72% (±1.06) 54.28% (±1.31) 74.82% (±1.77) 75.22% (±1.24)

Appendix Table 4: Comparison analysis in terms of networks’ complexities.

U-Net SegFormer InternImage BeiT-3 Xmem AOST SMN (Ours)

Resolution 512× 512 512× 512 384× 384 384× 384 512× 512 512× 512 512× 512

# of Param 31.0M 64.1M 335M 1843M - 65.6M 47.5M

FLOPs 224.6G 95.7G 163.2G 2859.9G - - 549.8G

FPS 42.5 30.7 42.6 10.2 41.7 35.2 32.8
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F DISCUSSION

Extension to Other Tasks The adaptability of our SMN architecture extends beyond semantic
segmentation tasks through its modular design approach, as illustrated in Fig. 5. The architecture
maintains its main feature extraction mechanism with control neurons while enabling task-specific
customization through two key components: the decoder (header) and the pretext task. This design
principle allows the network to be adapted for various computer vision tasks while preserving the
benefits of our control neuron mechanism.

Appendix Figure 5: Generalized pipeline of SMN for various computer vision tasks.

In our preliminary study, we demonstrate this adaptability in object detection tasks, where we modified
only the decoder while maintaining the control neuron mechanism and semantic information-based
optimization. Our initial experiments on the COCO dataset show competitive results compared to
recent state-of-the-art detection models like DiffusionDet, achieving 47.43 AP, 65.64 AP50, and 52.21
AP75. Notably, our approach achieves this performance with minimal architectural modifications,
demonstrating particularly strong results in APl (63.24) for large object detection. For detection
tasks, we leverage the same semantic information optimization strategy as used in segmentation,
demonstrating the transferability of our core mechanism across different vision tasks.

COCO AP AP50 AP75 APs APm APl

DiffusionDet (1@ 500) 47.18 65.74 51.42 31.18 50.19 62.24

DiffusionDet (4@ 500) 47.36 65.62 52.13 30.72 50.37 63.18

Ours (SMN) 47.43 65.64 52.21 30.8 50.39 63.24

The flexibility of the SMN extends further through our generalized pipeline (Fig. 5), where the pretext
task can be customized for different applications. While segmentation and detection tasks benefit
from semantic information optimization, other computer vision applications may require different
self-supervised learning approaches. For classification tasks, we are exploring various pretext task
approaches leveraging auto-encoders and VAE architectures, including feature correlation learning
between augmented views, rotation prediction, and solving jigsaw puzzles of image patches. This
modular architecture design, separating the core feature extraction mechanism from task-specific
components, ensures that the primary strengths of our approach remain effective across different
applications. The empirical experiments in both segmentation and detection tasks and additional
ongoing exploration in classification demonstrate the broader applicability of our brain-inspired
approach across various computer vision tasks, with the selection of appropriate pretext tasks being
the key consideration for each specific application.

Reproducibility More detailed experimental results, including class-wise IoU values, and the code
for the SMN will be available at https://github.com/Anonymous/Repo.
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