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ABSTRACT

Rank-adaptive low-rank adaptation (LoRA), a parameter-efficient fine-tuning
(PEFT) technology, has achieved state-of-the-art performance in fine-tuning foun-
dation models (FM). Directly transplanting the rank-adaptive LoRA methods from
centralized learning to federated learning raises two critical issues: client drift and
rank drift. This paper presents a Riemannian LoRA algorithm with adaptive rank
for federated fine-tuning of foundation models (FFT-FM), RAFFT, which solves
the client-drift and rank-drift issues, and significantly improves the computational
cost. First, by utilizing Riemannian Procrustes analysis, we propose a Rieman-
nian parameter matching method to avoid the client-drift issue for ensuring the
effectiveness of FFT-FM with rank-adaptive LoRA, and to reduce the cost of ma-
trix decomposition by transforming the singular value decomposition (SVD) of
high-dimensional full parameter matrices into the SVD of low-dimensional r × r
matrices, where r is the rank parameter in the LoRA. We theoretically derive the
equivalence between our RAFFT algorithm with rank-adaptive LoRA for the FFT-
FM and the standard FFT-FM on the full parameter matrices based on FedAvg
and verify the bounded error introduced by approximation. Second, by leveraging
Riemannian manifold theory, we develop a Riemannian gradient descent (RGD)
method to guarantee the local full parameter matrices on clients in the form of
low-rank ones with fixed rank optimized by the server in each FFT-FM round,
for alleviating the rank-drift issue to speed up the convergence of RAFFT. We
theoretically demonstrate that the RGD optimization on the Riemannian manifold
ensures the rank invariance during the local update process and the RGD opti-
mization can converge in the FFT-FM context.

1 INTRODUCTION

Parameter-efficient fine-tuning (PEFT) for fine-tuning of foundation models (FT-FM) has attracted
active research in recent years, such as adapter tuning (Houlsby et al., 2019; Lin et al., 2020; Pfeiffer
et al., 2021; Rücklé et al., 2021; He et al., 2022), prefix tuning (Li & Liang, 2021), P-Tuning (Liu
et al., 2021b), P-Tuning V2 (Liu et al., 2021a), low-rank adaptation (LoRA) (Hu et al., 2022),
and prompt tuning (Lester et al., 2021; Li & Liang, 2021). These methods freeze the backbone
parameters (i.e., original weights of pre-trained FMs) and adjust only a small portion of parameters
(i.e., adapter weights during the FT phase), to improve the efficiency. Among the above PEFT
approaches, LoRA has achieved the state-of-the-art FT performance (Wu et al., 2024). The idea of
the LoRA method can be illustrated as follows: W = W0+∆W = W0+BA, where W ∈ Rm×n

is the complete parameter of a FM. W0 and ∆W are the backbone (pre-trained FM parameters)
and adapter parameters respectively. A low-rank decomposition ∆W = BA where B ∈ Rm×r,
A ∈ Rr×n, and rank r << min(m,n). During the FT phase, only B and A are trained while
freezing W0 on the clients. Notice that in the LoRA-style methods, rank r is often user-defined and
keeps unchanged during the entire FT process.

In order to further enhance the performance of the LoRA-style methods, various rank-adaptive
LoRA methods have been recently proposed to dynamically allocate the ranks among parameter ma-
trices based on their importance: assigning more/less trainable parameters with higher/lower ranks to
the critical/insignificant parameter matrices for better model performance/efficiency. These methods
can be broadly classified into two categories: (1) SVD-based approaches in centralized fine-tuning
(CFT) dynamically adjust the ranks by truncating singular values in the form of SVD (Zhang et al.,
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2023b; Ding et al., 2023; Zhang et al., 2023a); (2) Rank sampling-based algorithms in both CFT
and FFT search for the best rank by sampling a range of ranks and sorting the representations learnt
by the model at different ranks during training (Valipour et al., 2023; Rajabzadeh et al., 2024; Xu
et al., 2024). They need to fine-tune the model multiple times at different ranks, raising non-trivial
cost. Several pioneering rank-adaptive LoRA algorithms for FFT-FM iteratively aggregate local full
parameter metrics into a global one and perform the SVD on the latter to find the optimal rank (Chai
et al., 2022; Wu et al., 2021; Niu et al., 2023). However, iterative SVD on the high-dimensional full
parameter matrices is prohibitive.

A critical challenge of transplanting the SVD-based rank-adaptive LoRA methods from the CFT to
the FFT is the client-drift issue (Sun et al., 2024; Wang et al., 2024). To address this, they attempt to
resolve the problem by either freezing one of the parameter matrices or using aggregation methods
based on matrix stacking and multiplication. However, we addresses a more challenging problem by
considering both low-rank parameter matrices Uk,Vk and Σk to determine the rank. For a detailed
analysis, please refer to Appendix 7.8. Here, we introduce an illustrative example with two clients to
better explain this issue. An implicit assumption ensuring the global convergence of FFT-FM based
on FedAvg McMahan et al. (2017) is ∆W = 1

2 (∆W1 + ∆W2), where ∆W is the global model
parameter after the model aggregation on server, ∆W1 and ∆W2 are the local model parameter on
clients 1 and 2. Let the SVDs be ∆W1 = U1Σ1V1 and ∆W2 = U2Σ2V2. After using FedAvg
to aggregate the low-rank parameter matrices, the server produces
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where the left side denotes the parameter aggregation of FFT-FM with LoRA, while the right side
represents the standard parameter aggregation of FFT-FM. Therefore, the client drift issue is defined
as the discrepancy between independently aggregating client’s low-rank matrices and aggregating
the ideal parameter matrix. As shown in Figure 1, the difference between two sides may become
more significant when (1) the number of local update steps between aggregations is large and (2) the
local datasets are different across clients. In this case, FFT-FM with LoRA may fail to converge and
result in poor model performance.

U2+Avg +Avg V1 V2Σ2U1 +Avg V1 +Avg U1
Σ1 V2

U2
Σ2

Parameter aggregation with SVD-based rank-adaptive LoRA Ideal parameter aggregation with FedAvg on full parameter matrices

Σ1

Figure 1: Client Drift in FFT-FM with Rank-Adaptive LoRA
Another significant challenge in FFT-FM with rank-adaptive LoRA is the rank-drift issue, caused
by data heterogeneity (McMahan et al., 2017; Smith et al., 2017; Chen et al., 2018; Khodak et al.,
2019; Sattler et al., 2019; Liu et al., 2019a; Hsieh et al., 2020), a common problem in federated
learning. Non-Independent Identically Distributed (Non-IID) data across clients result in substantial
differences between local models and the global model. During training, local models may oscillate
across rounds, leading to unstable convergence and suboptimal performance. Similarly, the optimal
ranks of local models vary significantly due to data heterogeneity, causing rank-drift. This oscil-
lation further slows convergence and impairs performance. For a detailed analysis, please refer to
Appendix 7.8.

To address the client-drift issue, by utilizing Riemannian Procrustes analysis, due to the fact that
all local parameter matrices lie on the Riemannian manifold, we propose a Riemannian param-
eter matching method to match the local parameter matrices Uk and Vk on other clients with
pivots U1 and V1 on client 1, in terms of their lengths and directions. To maintain the consis-
tency between low-rank parameter metrics before and after the Riemannian parameter matching,
i.e., ∆Wk = UkΣkVk = ŨkΣ̃kṼk, for ensuring the effectiveness of FFT-FM with rank-adaptive
LoRA, we derive a modified diagonal matrix Σ̃k for the other clients by performing the SVD on
low-dimensional r × r matrices (U1)TUk and (V1)TVk. Based on the global diagonal matrix
1
K

(
Σ1 +

∑K
k=2 Σ̃

k
)

, it is easy to find the optimal rank of the global parameter matrix, with aggre-
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gation on only the local low-rank matrices Uk, Σ̃k, and Vk (See Eq.(14)). We theoretically derive
the equivalence between our RAFFT algorithm with rank-adaptive LoRA for the FFT-FM and the
standard FFT-FM on the full parameter matrices based on FedAvg and verify the bounded error
introduced by approximation.

For alleviating the rank-drift issue, we propose to extend stochastic gradient descent (SGD)
algorithms on a Riemannian manifold and develop a Riemannian gradient descent (RGD)
method to guarantee the local full parameter matrices ∆Wk on the clients in the form
of low-rank ones Uk,Σk, and Vk with fixed rank optimized by the server in each FFT-
FM round, to speed up the convergence of RAFFT:

(
(Uk)(t+1), (Σk)(t+1), (Vk)(t+1)

)
=

f
(
−ηt

((
ΓUkLk

)(t)
,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)))
, where ηt is a learning rate at round t, ∆Wk

is a point on a Riemannian manifold M consisting of all matrices with a fixed rank r in Rm×n,
Lk(∆Wk) is the loss function Lk at ∆Wk in Euclidean space, ΓVkLk represent the components
of the Riemannian gradient at ∆Wk, and f is a retraction f : TM →M mapping the tangent space
at ∆Wk to the manifold. We theoretically demonstrate that the RGD optimization on the Rieman-
nian manifold ensures the rank invariance during the local update process and the RGD optimization
can converge in the FFT-FM context.

To our best knowledge, this work is the first to offer a rank-adaptive low-rank adaptation solution
for FFT-FM with Riemannian theory. Our RAFFT method exhibits three compelling advantages:
(1) The proposed Riemannian parameter matching technique based on Riemannian Procrustes anal-
ysis is able to solve the client-drift issue when transplanting the centralized LoRA methods to the
federated setting. Existing rank-adaptive LoRA methods in the CFT can be plugged into our frame-
work for FFT-FM. Moreover, the model aggregation of FFT-FM is conducted on only local low-rank
parameter matrices, without the need of aggregating the global full parameter matrices; (2) Trans-
forming the SVD of high-dimensional full parameter matrices into the SVD of low-dimensional
r × r matrices can significantly improve the efficiency of FFT-FM with low-rank adaption. In ad-
dition, this design avoids the expensive cost of training FFT multiple times at different ranks by
rank sampling-based algorithms; and (3) The combination of Riemannian gradient descent and Rie-
mannian manifold theory guarantees the local parameter matrices with fixed rank optimized by the
server in each FFT-FM round, for alleviating the rank-drift issue to speed up the convergence of
RAFFT.

Empirical evaluation on real datasets demonstrates the superior performance of our RAFFT model
against several state-of-the-art federated prompt tuning, federated LoRA, and federated rank-
adaptive LoRA methods. More experiments, implementation details, and hyperparameter setting
are presented in Appendices 7.5-7.6.

2 BACKGROUND

2.1 RANK-ADAPTIVE LOW-RANK ADAPTATION

AdaLoRA Zhang et al. (2023b) is a parameter-efficient fine-tuning (PEFT) method in centralized
setting that parameterizes full parameter metrics as ∆W = UΣV and adaptively allocates the rank
r for low-rank parameter metrics U, Σ, and V according to their importance in the form of singular
value decomposition (SVD) of ∆W.

W = W0 +∆W = W0 +UΣV (2)
where W,W0,∆W ∈ Rm×n are the complete, backbone, and adapter parameter matrices respec-
tively. U ∈ Rm×r and V ∈ Rr×n are matrices representing the left and right singular vectors of full
parameter matrices ∆W respectively. Σ ∈ Rr×r is a diagonal matrix containing the singular values
{Σii}1≤i≤r with rank r << min(m,n). AdaLoRA is thus able to dynamically adjust the number
of the singular values in Σ and assign more/less trainable parameters with higher/lower rank r to
the critical/insignificant parameter matrices for better model performance/efficiency.

2.2 FEDERATED FINE-TUNING

First, given a machine learning (ML) task (e.g., image classification), K clients with their local
training data D = {D1, · · · , DK}, and a server, federated learning (FL) based on the FedAvg
algorithm McMahan et al. (2017) aims to learn a global ML model on the server by optimizing the
problem below.

3
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min
W∈Rm×n

L(W) =

K∑
k=1

nk

n
Lk(W) where Lk(W) =

1

nk

∑
{xi,yi}∈Dk

li(W) (3)

where li(W) = l(xi, yi;W) denotes the loss function of the prediction on data example {xi, yi} ∈
Dk made with a global model parameter W. nk = |Dk| denotes the size of local dataset Dk. n is
the size of total training data D, i.e., n = n1 + · · ·+ nK . In the FL, the global model parameter W
is iteratively updated with the aggregation of all local model parameters W1, ·,WK on K clients in
each round, i.e., W =

∑K
k=1

nk

n Wk.

In the context of federated fine-tuning (FFT), in Eq.(2), the backbone parameter matrices W0 are
frozen and only the adapter parameter matrices ∆W are adjusted in each round by updating their
low-rank versions U, Σ, and V respectively.

min
∆W∈Rm×n

L(∆W) =

K∑
k=1

nk

n
Lk(∆W) where Lk(∆W) =

1

nk

∑
{xi,yi}∈Dk

li(∆W) (4)

3 RIEMANNIAN PARAMETER MATCHING FOR ELIMINATING CLIENT DRIFT
ON SERVER

As discussed in Section 1, directly using FedAvg McMahan et al. (2017) to aggregate the clients’
local matrices Uk,Σk,Vk on the server side leads to client-drift issues, as shown in Eq.(1), which
negatively impact the convergence and performance of federated learning. Among three categories
of rank-adaptive low-rank approximation techniques, SVD-based methods in centralized learn-
ing Zhang et al. (2023b); Ding et al. (2023); Zhang et al. (2023a) encounter the dilemma of the client
drift issue (Sun et al., 2024), rank sampling-based algorithms Valipour et al. (2023); Rajabzadeh
et al. (2024); Xu et al. (2024) and federated rank-adaptive LoRA algorithms Chai et al. (2022); Wu
et al. (2021); Niu et al. (2023) raise extremely expensive cost. To address these challenges, we pro-
pose a Riemannian parameter matching method to match the local parameter matrices Uk and Vk

from other clients with the pivot matrices U1 and V1 on client 1, i.e., Ũk ≈ U1 and Ṽk ≈ V1,
preserving both their lengths and directions. Correspondingly, we adjust the diagonal matrix Σk to
ensure consistency in the low-rank parameter measurements before and after Riemannian parameter
matching, i.e., UkΣkVk = ŨkΣ̃kṼk ≈ U1Σ̃kV1. This approach allows the server to directly
aggregate the aligned local low-rank matrices Uk, Σ̃k, and Vk while avoiding client-drift issues.
Moreover, the global diagonal matrix enables the server to easily identify the optimal rank for the
global parameter matrix, enhancing both efficiency and performance.

Since both Uk and Vk are orthogonal matrices, they belong to the Riemann manifold, which
is defined as the set of standard orthogonal matrices S = {Uk ∈ Rm×r : (UK)T (UK) =
I} (Chakraborty & Vemuri, 2019; Atiyah & Todd, 1960). Therefore, we can performing the Rieman-
nian parameter matching to ensure that the length and direction of the parameter matrices between
clients are as aligned as possible. We adopt the Procrustes distance metric proposed in Kendall et al.
(2003) to efficiently compute the parameter matching on the manifold. The procrustes representa-
tion Sp on the Riemann manifold S can be defined as follows: an m × r matrix Uk on Sr,m is
identified with the equivalence class of matrices UkRk in Rm,r, for R > 0.

The squared Procrustes distance for each two matrices Uk and U1, considering the representation
Sp on the Riemann manifold S, is defined as the minimum squared Euclidean distance over all pairs
of matrices in the respective equivalence classes.

Therefore, we aim to solve the following Riemann distance optimization problem.

d2SP
(U1,Uk) = min

Rk>0
tr
(
(U1 −UkRk)T (U1 −UkRk)

)
= min

Rk>0
tr
(
(Rk)TRk − 2(U1)TUkRk + Ir

) (5)

where Ir is an identity matrix. Matrix Rk is a r × r symmetric positive constraint that ensures the
aggregated points remain on the Riemannian manifold.

Notice that (U1)TUk is a low-rank matrix with low dimensions r × r. We perform the SVD on
(U1)TUk to generate (U1)TUk = PkΛkQk. According to the properties of the matrix trace and
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the symmetry of the Frobenius inner product (Schneider, 2015), the optimization problem in Eq.(5)
is further converted to another equivalent optimization problem below.

min
Rk

tr
(
(RK)TRk − 2(U1)TUkRk

)
= min

Rk
∥Rk−PkΛkQk∥2F = min

Rk
∥(Qk)TRkQk−(Qk)TPkΛk∥2F

(6)
We introduce two auxiliary variable Yk, Zk and let Yk = (Qk)TRkQk,Zk = (Qk)TPk, then we
transform the Riemann Procrustes distance optimization problem into an equivalent optimization
problem.

d2SP
(U1,Uk) ⇐⇒ min

Rk
∥Yk−ZkΛk∥2F =

r∑
i=1

(Yk
ii−Zk

iiΛ
k
i )

2+
∑
j>i

(
(Yk

ij − Zk
ijΛ

k
i )

2 + (Yk
ij − Zk

jiΛ
k
j )

2
)

(7)

where Yk
ij , Zk

ij and Zk
ji represent the elements of the symmetric matrix Yk and matrix Zk, respec-

tively. Additionally Yk
ii, Λ

k
i and Λk

j denote the diagonal elements of the symmetric matrix Yk and
matrix Λk.

Given the inherent symmetry of Y, the variables Yk
ij (where j ≥ i ) are uncoupled, allowing us to

minimize each term separately. Specifically, we minimize (Yk
ii − Zk

iiΛ
k
i )

2 and (Yk
ij − Zk

ijΛ
k
i )

2 +

(Yk
ij − Zk

jiΛ
k
j )

2 for j > i. Since Y is a symmetric matrix, it suffices to compute only the upper
triangular part. Then we generate the solution of the optimal problem as follows.

Yk
ij =


Zk

iiΛ
k
i , i = j ≤ rank((U1)TUk),

Zk
ijΛ

k
i +Zk

jiΛ
k
j

2 , j > i and i ≤ rank((U1)TUk),

0, otherwise.
(8)

Then we generate optimal Rk below.
Rk = QkYk(Qk)T (9)

By following the same approach, we produce an optimal matrix Sk for another Riemannian param-
eter matching problem minSk d2SP

(V1,Vk)s.t. (Sk)T = Sk.

Therefore, the low-rank parameter matrices are aligned together. Ũk and Ṽk are the aligned param-
eter matrices for client k.

Ũk = UkRk ≈ U1, Ṽk = SkVk ≈ V1 (10)

To maintain parameter consistency before and after performing the Riemannian parameter matching,
as well as the effectiveness of FFT-FM with rank-adaptive LoRA, i.e., ŨkΣ̃kṼk = UkΣkVk =
∆Wk, we need to derive a modified version Σ̃k of Σk.

min
Σ̃k

∥ŨkΣ̃kṼk −UkΣkVk∥2F (11)

However, it is difficult to directly solve the above optimization problem. We convert it to another
equivalent problem below.

min
Σ̃k

∥(Uk)T
(
ŨkΣ̃kṼk −UkΣkVk

)
(Vk)T ∥2F (12)

Since Uk and Vk are orthogonal matrices, the problem can be further transformed. Notice that
Ũk = UkRk, Ṽk = SkVk. Additionally, since Rk and Sk are non-singular matrices, an invertible
matrix must exist.

min
Σ̃k

∥RkΣ̃kSk −Σk∥2F = min
Σ̃k

∥Σ̃k − (Rk)−1Σk(Sk)−1∥2F (13)

The optimal solution is obtained when Σ̃ii
k
= (Rii

k)−1Σii
k(Sii

k)−1. Next, the server can directly
perform the aggregation on local low-rank parameter matrices to generate the global ones without
the client-drift issue.

1

K

(
U1 +

K∑
k=2

UkRk

)
× 1

K

(
Σ1 +

K∑
k=2

Σ̃k

)
× 1

K

(
V1 +

K∑
k=2

SKVK

)

= U1 × 1

K

(
Σ1 +

K∑
k=2

Σ̃k

)
×V1 ≈ 1

K

(
K∑

k=1

UkΣkVk

)
=

1

K

K∑
k=1

∆Wk

(14)

Thus, when searching for the optimal rank on the globally low-rank parameter matrix, there is
no need to physically generate full parameter matrix ∆W and execute iterative SVD on ∆W.
However, approximation errors may arise during the calculation process. The following theorem
derives the bounded error introduced by approximation in Eq.(14).

5
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Theorem 1. We assume that the Frobenius norm of Rk is bounded by a constant H , and its eigen-
values lie within the interval [λRmin

, λRmax
]. Similarly, the Frobenius norm of Sk is bounded by a

constant N , with eigenvalues in the range [λSmin
, λSmax

]. Additionally, the matrix ∆W has rank r.
Given these conditions, the total approximation error bound in Eq.(14) is derived as follows

∥U1 × 1

K

(
Σ1 +

K∑
k=2

Σ̃k

)
×V1 − 1

K

(
K∑

k=1

UkΣkVk

)
∥2F

=

K∑
k=2

(
2r(1−H −N) + (1 + (

λRmax

λRmin

)2)H2 + (1 + (
λSmax

λSmin

)2)N2

) (15)

Please refer to Appendix 7.2 for detailed proof of Theorem 1.
By following the same idea in existing efforts Falini (2022); Wu et al. (2022), this paper utilizes
singular value contribution rate Θ(r) to determine the rank Σ̃k′

after each round of FFT-FM. Θ(r)
is defined as the cumulative percentage of the first r singular values to all the singular values. We
retain the first r singular values such that Θ(r) is bigger than a threshold value φ.

Θ(r) =

∑r
i=1 Σ̃

′
ii∑rmax

i=1 Σ̃
′
ii

≥ φ (16)

where rmax is a maximum acceptable rank.

4 RIEMANNIAN GRADIENT DESCENT FOR ALLEVIATING RANK DRIFT ON
CLIENTS

The data heterogeneity issue in the FFT-FM may bring the rank-drift challenges. When the server
dispatches the low-rank parameter matrix with the appropriate rank r to the clients, the rank of
its local full parameter matrix ∆Wk = UkΣkVk on each client may significantly change after
local training epoch, and so does the appropriate rank of the global parameter matrix. This may
slow down the convergence of FFT-FM and degrade the model performance too. We develop a
Riemannian gradient descent (RGD) method to guarantee the local full parameter matrices ∆Wk in
the form of low-rank ones Uk,Σk, and Vk with fixed appropriate rank determined by the server in
each iteration of FFT-FM, to speed up the convergence of RAFFT.

By following AdaLoRA (Zhang et al., 2023b), we parameterize full parameter metrics on client k
as ∆Wk = UkΣkVk, in order to avoid the expensive cost of iterative SVD on the large-scale
full parameter metrics. We introduce a regularizer into the loss function, defined as R(Uk,Vk) to
enforce the orthogonality of Uk and Vk.

R(Uk,Vk) = ∥(Uk)TUk − I∥2F + ∥Vk(Vk)T − I∥2F (17)

We introduce a Riemannian manifold containing all fixed-rank matrices, i.e., the set M of all ma-
trices with a fixed rank r: M = {∆W : ∆W ∈ Rm×n, rank(∆W) = r} (do Carmo, 2018;
Vandereycken, 2014). This forms a smooth submanifold of Rm×n. This structure ensures that
the updated parameter matrices UkΣkVk stay within the manifold, maintaining rank invariance
throughout the local update process. In terms of low-rank parameter metrics, the local objective
function of FFT-FM on client k is defined below.

min
∆Wk∈M

Lk(∆Wk) = Lk(Uk,Σk,Vk) =
1

nk

∑
{xi,yi}∈Dk

li(U
k,Σk,Vk) +R(Uk,Vk) (18)

The tangent space TM at the point ∆W on the manifold M is defined as follows.

TM =

{
(U

k
U

k
⊥)

[
Rr×r Rr×(n−r)

R(m−r)×r 0(m−r)×(n−r)

]
(V

k
V

k
⊥)

T

}
=

{
U

k
G(V

k
)
T

+ U
k
p(V

k
)
T

+ U
k
(V

k
p)

T

: G ∈ Rr×r
,U

k
p ∈ Rm×r

, (U
k
p)

T
U

k
= 0,V

k
p ∈ Rn×r

, (V
k
p)

T
V

k
= 0

} (19)

where Uk
⊥ and Vk

⊥ denote the orthogonal complements of Uk and Vk respectively. G,Uk
p,V

k
p

represent the tangent vector at ∆W . Please refer to Appendix 7.3 for details of tangent space.

When the data have a manifold structure, traditional gradient descent methods in Euclidean space,
such as SGD, often result in updates that stray off the manifold. Thus, we propose to project the
gradient ∇Lk(∆Wk) in Euclidean space onto the tangent space TM at the point ∆W on the man-
ifold M and compute the Riemannian gradient ΓLk(∆Wk). This projection can be accomplished
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through orthogonal projection PTM
, ensuring that the optimization trajectory remains confined to

the manifold Lee (2012) and is effectively directed towards minimizing the loss function.

ΓLk(∆Wk) = (ΓUkL
k,ΓΣkL

k,ΓVkL
k) = P∇Lk ∈ TM ⊆ Rm×n

= Uk((Uk)T∇LkVk)(Vk)T + (Im −Uk(Uk)T )∇LkVk(Vk)T+

Uk(Uk)T∇Lk(In − (Vk)(Vk)T )

(20)

where ΓUkLk, ΓΣkLk, and ΓVkLk represent the Riemannian gradients with respect to Uk,Σk, and
Vk respectively. Im and In are the m/n-dimensional identity matrices. Please refer to Appendix 7.3
for derivation details of Riemannian gradient.

Therefore, the gradients of Uk, Σk, and Vk in Riemannian space can be derived as follows.

ΓUkL
k = (Im −Uk(Uk)T )∇UkL

k, ΓVkL
k = (In −Vk(Vk)T )∇VkL

k,

ΓΣkL
k = ((Uk)T∇UkL

k −∇U (L
k)TUk)Σk +Σk(Vk∇Vk (L

k)T −∇VkL
k(Vk)T ) +∇ΣkL

k
(21)

where ∇UkLk, ∇VkLk, and ∇ΣkLk denote the corresponding Euclidean gradients. They are the
conventional derivatives in Euclidean space that are used to compute the gradient descent steps
before projection onto the manifold.

We try to find the steepest descent direction P∇Lk within the tangent space TM . Consider the
intrinsic geometry of the manifold, we take a gradient step in the direction opposite to P∇Lk and
apply the learning rate ηt to reach a new point ∆Wk, which still lies within the tangent space
TM . The retraction maps the tangent vector corresponding to the point ∆Wk back to the manifold,
ensuring that the rank of the updated point ∆Wk remains unchanged. Namely, our RAFFT approach
ensures that the local updates of Uk,Σk, and Vk preserve a fixed-rank structure. Thus, the approach
keeps the rank invariant during the stage of local updates by maintaining the model parameters
moving towards the Riemannian manifold.

The following theorem demonstrates that the RGD optimization on the Riemannian manifold en-
sures the rank invariance during the local update process.
Theorem 2. Let ∆Wk be a point on a Riemannian manifold M consisting of all matrices with a
fixed rank r in Rm×n. Suppose ∇Lk(∆Wk) is the Euclidean gradient of the loss function Lk at
∆Wk, and ΓUkLk, ΓΣkLk, and ΓVkLk represent the components of the Riemannian gradient at
∆Wk. The RGD optimization with a learning rate ηt at round t (0 ≤ t ≤ C) ensures that the local
update(

(Uk)(t+1), (Σk)(t+1), (Vk)(t+1)
)
= f

(
−ηt

((
ΓUkL

k
)(t)

,
(
ΓΣkL

k
)(t)

,
(
ΓVkL

k
)(t)))

(22)

preserves the rank r of ∆Wk, maintaining the structure within the manifold M , where f is a
retraction f : TM →M mapping the tangent space at ∆Wk to the manifold.

Please refer to Appendix 7.3 for the derivation of Riemannian retraction function and the detailed
proof of Theorem 2.
We also conduct the convergence analysis of our RAFFT algorithm based on the RGD optimization
on the Riemannian manifold.
Theorem 3 (Nonconvex). Suppose that optimization problem in Eq.(18) satisfies Assumption 1 and
2. We run Algorithm 1, where the selected clients perform gradient descent with a fixed stepsize,
and we set ηt ≤ 1

cg
. Then, the output of Algorithm 1 satisfies the following

min
0≤t≤C

E
[
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2] ≤ 2cg
C

(
L(∆W1)− L(∆W∗)

)
(23)

where ∆W∗ denotes the point on the manifold M that minimizes the function L(∆W∗) =
argmin∆W∈M L(∆W).
Theorem 4 (Convex). Suppose that optimization problem in Eq.(18) satisfies Assumptions 1, 2, and
3, where the local functions L are geodesically convex in W (see Definition3). We consider Algo-
rithm 1, where the selected clients perform gradient descent with a fixed stepsize, and the stepsize is
set such that ηt ≤ 1

2cg
. Then, the output of Algorithm 1 satisfies the following

E
[
L(∆W(C))− L(∆W∗)

]
≤ ζcgd

2(∆W,∆W∗)

(ζ + C − 2)
=

ζcgd
2(∆(U0,Σ0,V0),∆(U∗,Σ∗,V∗))

(ζ + C − 2)
(24)
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where ∆W∗ denotes the point on the manifold M that minimizes the function L(∆W∗) =
argmin∆W∈M L(∆W) and ζ is defined in Assumptions 3

Please refer to Appendix 7.4 for detailed proof of Theorems 3 and 4
By assembling different pieces together, we provide the pseudo code of our RAFFT algorithm in
Algorithm 1 in Appendix 7.9.

5 EXPERIMENTAL EVALUATION

In this section, we present the experimental results over 13 baselines and 3 commonly-used tasks to
demonstrate the advantages of our method. We consider an FL environment with 100 devices and a
parameter server. In each epoch, we randomly sample 10 devices to perform the local update. We
exploit three widely used NLP tasks including SST-2 (Socher et al., 2013), MRPC Dolan & Brockett
(2005) and MPQA (Wiebe et al., 2005). We evaluated fix rank method and all other methods on
RoBERTa-LARGE (Liu et al., 2019b), which consists of 24 layers of transformers followed by a
large language model head and 355M pretrained parameters. To demonstrate the adaptability of our
method, we carried out extra experiments with two additional decoder-based models,i.e., LLaMA
3B Touvron et al. (2023) model on MRPC, MPQA, SST-2 dataset, LLaMA 7B model Radford et al.
(2019) on MRPC, MPQA, SST-2 dataset. At the same time, we conducted experiments on the image
classification data sets CIFAR10 (Krizhevsky et al., 2010), CIFAR100 (Krizhevsky et al., 2010), and
Tiny-IamgeNet Le & Yang (2015) of the ViT model. The backbones of these models are frozen for
all methods. Please see Appendix 7.5 for details.

alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Cntralized LoRA 80.40 0.3606 5,712 70.30 0.8222 5,762 71.00 0.8047 5,287
AdaLoRA 77.75 0.4070 5,450 78.70 0.3736 5,464 77.75 0.4070 5,421

P-tuning v2 87.25 0.2512 5,717 88.90 0.2510 5,820 87.85 0.2779 5,450
FedPrompt 87.20 0.2556 5,636 88.80 0.2632 5,648 88.30 0.2917 5,450
FedPepTAO 87.60 0.2460 5,639 89.65 0.2526 5,651 88.70 0.2651 5,442
PromptFL 87.35 0.2507 5,670 89.40 0.2507 5,708 86.55 0.3115 5,453

PE FL 87.00 0.2570 5,682 88.65 0.2643 5,678 87.90 0.2954 5,447
SLoRA 88.75 0.2474 5,296 87.90 0.2451 5,318 86.40 0.2878 5,481

HetLoRA 83.75 0.2964 5,057 86.25 0.2611 5,056 85.95 0.2518 5,038
FedLoRA 78.10 0.4356 4,996 77.50 0.3702 5,033 76.80 0.4629 5,019

FFA-LoRA 87.05 0.2167 5,000 87.45 0.2176 5,318 86.80 0.2249 5,317
Fedkseed 87.81 0.2662 5,641 88.77 0.2698 5,675 88.74 0.3022 5,447
FLoRA 85.60 0.2756 5,306 88.34 0.2594 5,310 87.69 0.2656 5,210

RAFFT 92.00 0.2079 5,010 91.55 0.2293 4,980 90.90 0.1934 4,965
RAFFT-RGD 88.35 0.2365 4,952 89.10 0.2514 4,955 88.90 0.2349 4,961
RAFFT-MR 90.80 0.2602 5,021 90.60 0.2501 4,917 86.05 0.2718 4,886

Table 1: Performance comparison of different methods on LLaMA 7B+MPQA.

Baselines. We take 13 existing approaches as baselines, including 2 stand-alone version lora
method,i.e., LoRA (Hu et al., 2022), AdaLoRA (Zhang et al., 2023b), which significantly reduce
the number of trainable parameters by injecting low-rank decomposition matrices into each layer of
a Transformer model. We adapt both methods to a federated learning setting for comparison. 1 full
parameters tuning method, i.e., Fedkseed (Qin et al., 2024), which uses a finite set of random seeds
for zeroth-order optimization, reducing the communication overhead between the server and clients.
5 prompt-based tuning method, i.e., P-Tuning v2 (Liu et al., 2021a), FedPrompt (Zhao et al., 2023),
FedPepTAO (Che et al., 2023), PromptFL (Guo et al., 2024), PE-FL (Zhao et al., 2024), which
integrate lightweight trainable blocks into the frozen foundational models (FMs) and fine-tune addi-
tional parameters for localized model adaptation, enhancing computational and communication effi-
ciency while allowing customization based on specific local data characteristics or user preferences
and 5 reparameterization-based methods, i.e., SLoRA (Babakniya et al., 2023), HetLoRA (Cho
et al., 2023), FedLoRA (Yi et al., 2024), FFA-LoRA (Sun et al., 2024),FLoRA (Wang et al., 2024),
which hypothesize that fine-tuning adaptations can be reparameterized into optimization within low-
rank subspaces, addressing performance gaps due to data heterogeneity and optimizing performance
across diverse client devices. For detailed descriptions of each baseline, please refer to the appendix
7.1.
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Variants of the RAFFT Model. We evaluate two versions of the RAFFT model to showcase the
strengths of distinct technical approaches. The first variant, which we term the RAFFT-RGD Model,
solely utilizes the Riemannian gradient. This model primarily focuses on the fundamental capability
to manage gradient descent within the geometric constraints of the RAFFT manifold, using FedAvg
as the aggregation method. The second variant is the RAFFT-MR model, which does not use the
Riemannian theory fix rank during training. This means rankings will drop during local updates.

alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 71.90 0.7170 3,329 72.16 0.6129 3,395 67.08 0.6977 3,369
AdaLoRA 71.76 0.6936 3,535 71.35 0.6031 3,515 68.11 0.7818 3,529

SLoRA 71.75 0.6843 3,309 71.06 0.7023 3,380 68.14 0.7474 3,316
HetLoRA 71.76 0.6939 3,355 71.26 0.5861 3,331 65.96 0.6800 3,437
FedLoRA 71.56 0.7149 3,282 70.72 0.7149 3,384 68.19 0.6634 3,421

FFA-LoRA 71.47 0.7135 3,321 70.24 0.7369 3,321 65.76 0.6831 3,358
FLoRA 70.95 0.7266 3,401 71.09 0.6335 3,347 65.85 0.6890 3,361

RAFFT 74.54 0.5757 3,304 73.22 0.5765 3,281 70.04 0.6504 3,285
RAFFT-RGD 72.96 0.5945 3,288 72.52 0.6381 3,292 67.14 0.7159 3,299
RAFFT-MR 72.88 0.6070 3,291 72.02 0.6435 3,307 67.24 0.6879 3,311

Table 2: Performance comparison of different methods on ViT+CIFRA10.
Evaluation metrics. In line with protocols established in previous studies on federated learning for
large language models (Babakniya et al., 2023; Cho et al., 2023; Sun et al., 2024), we employ three
crucial metrics to evaluate the efficacy of parameter efficiency in fine-tuning for classification tasks:
Loss, Accuracy, and Time.Loss measures the model’s prediction error, providing insight into the
effectiveness of the learning process. Accuracy gauges the model’s performance on classifying new,
unseen data, reflecting the practical applicability of the federated learning model. Time is evaluated
to determine the speed of convergence and the overall computational demand, which are critical in
federated settings where computational resources and time are often limited.

Accuracy of classification with Riemannian Manifold. Tables 1 and 2 show the classification
accuracy of our method, which uses Riemannian parameter matching and a Riemannian optimizer
across two datasets. For comparison, the baseline reflects the accuracy of FedPEFT. Our Non-IID
dataset was partitioned using a Dirichlet distribution. Our method consistently outperforms 13 other
approaches, addressing both ”client drift” and ”rank drift.” Notably, we see accuracy improvements
of up to 10.94% on MPQA for LLaMA-3B, 23.21% for LLaMA-7B, and 14.11% on SST-2 for
RoBERTa. In image classification, the ViT model sees gains up to 16.61% on CIFAR-100. These
results highlight the potential of our approach as a strong alternative to existing FedPEFT methods.
For more details, see Appendix 7.5.

Ablation study. Tables 1-2 further compare the accuracy across three datasets with two variants of
our RAFFT model, which differ in their aggregation methods and optimizer updates. Our observa-
tions reveal that our method consistently achieves optimal precision and minimal error on the SST-2,
MRPC, and MPQA datasets, significantly outperforming the two variants. A plausible explanation
for this superiority is that our RAFFT approach performs Riemannian parameter matching, effec-
tively addressing “client drift” issues and thereby enhancing the efficacy of rank-adaptive LoRA in
federated learning. Additionally, our method leverages the Riemannian Gradient Descent (RGD)
technique to ensure that each iteration of federated learning by the server maintains locally updated
weight matrices with a fixed optimal rank. This not only mitigates rank drift but also accelerates the
aggregation process in RAFFT, enhancing the overall performance.

Execution Time. Tables 1-2 report the total running time for training large models across all clients
for both variants of our RAFFT method and all comparison methods on three datasets. Compared
to other FedPEFT methods that require operations on the full weight matrix during aggregation,
our RAFFT approach achieves higher efficiency. Apart from these methods, our RAFFT method
maintains similar efficiency while ensuring higher accuracy rates.

Impact of number of client Figure 2 (c,d) evaluates the performance effects with varying numbers
of clients by changing N from 40 to 80. We observe that as N increases, the performance curve of
RAFFT generally trends downward. Notably, when the number of clients reaches 80, the accuracy
of RAFFT significantly decreases. A plausible explanation for this is that as the number of clients
increases, the amount of data allocated to each client decreases, leading to lower quality local model
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updates. Additionally, the increase in the number of clients exacerbates the heterogeneity issue. Data
distributions may vary significantly across different clients, resulting in substantial differences in the
model parameters trained by each client. This increased training complexity ultimately affects the
model’s performance. As the number of clients increases, the overall training time tends to increase.
This is likely due to the higher communication overhead and synchronization delays introduced
when coordinating a larger number of clients.

Impact of initial rank Based on Figure 2 (a,b), we evaluate the performance effect when set-
ting the initial ranking value r to 2, 4, 8, and 16. Theoretically, the highest rank should yield
the best performance. However, as ovserved in the experiments from the LoRA Hu et al. (2022)
and AdaLoRA Zhang et al. (2023b) papers, there is no clear trend between performance and rank.
Our results are consistent with this observation, showing that the best rank varies depending on the
task. For example, rank 16 performed best for SST-2, MRPC, and MPQA, while rank 8 was opti-
mal for CIFAR-10. Additionally, higher ranks increase training time due to greater computational
complexity. When the ranking is higher, the model has more parameters to learn and optimize,
which essentially requires more computing resources and time. Thus, different tasks require differ-
ent ranks, and our approach is adaptive to the rank, allowing it to find the appropriate rank for each
specific task.
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Figure 2: Accuracy and Time (s) with various LoRA ranks and client numbers on Roberta-SST2

Impact of select rank threshold Based on Figure Appendix 7.6, we evaluate the performance
effect of setting the selection ranking threshold to 0.6, 0.7, 0.8, 0.9, and 1. We observe that as the
threshold increases, the performance improves slightly initially and performs best at a threshold of
0.9. Beyond this point, performance starts to degrade. This trend suggests that a threshold of 0.9
is optimal, probably because it strikes a balance between filtering out irrelevant information and
retaining useful information. When the threshold is set to 1, it means there is no level truncation
which may introduce too much noise or redundant information, leading to performance degradation.

6 CONCLUSIONS

In this work, we propose rank-adaptive LoRA-based federated fine-tuning algorithm for foundation
models. First, we design a novel Riemannian parameter matching method with the SVD on a low-
rank matrix to avoid the client-drift issue to enhance the effectiveness of FFT-FM, while further
improving its efficiency. Second, we develop a Riemannian gradient descent method on Riemannian
manifold to guarantee the local parameter matrices with fixed optimal rank in each iteration, to speed
up the convergence.
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7 APPENDIX

7.1 RELATED WORK

Parameter Efficient Fine Tuning (PEFT). As the scale of large language models (LLMs) contin-
ues to grow, the cost associated with the standard full fine-tuning paradigm has become extremely
high. To address this issue, parameter-efficient fine-tuning (PEFT) methods Houlsby et al. (2019)
have been proposed. These methods introduce a minimal set of additional trainable parameters to
enhance model performance while keeping the majority of the pre-trained parameters frozen. Gen-
erally, PEFT approaches can be classified into two main categories based on how they manipulate
model parameters. The first category, additive PEFT, involves the incorporation of new trainable
modules or parameters to adjust the model architecture, minimizing the parameter count for down-
stream tasks. This includes Adapter Tuning (Houlsby et al., 2019), where small, trainable adapter
modules are inserted within the model architecture to allow for task-specific adaptation without
altering the original model weights, and methods such as prefix-tuning (Devlin et al., 2019), P-
tuning (Liu et al., 2022), P-tuning v2 (Liu et al., 2021a), and prompt tuning (Lester et al., 2021),
which append learnable vectors at the beginning of input sequences. The second category involves
reparameterized PEFT techniques that build low-rank representations of original model parameters,
incorporating additional trainable parameters during training. This category includes Low-Rank
Decomposition, techniques like LoRA Hu et al. (2022) and KronA (Edalati et al., 2022), which
decompose original model parameters into low-rank and residual matrices, and LoRA derivatives
such as AdaLoRA Zhang et al. (2023b) and SoRA (Liu et al., 2024b), which dynamically select the
rank of LoRA to construct adaptable low-rank representations. Collectively, these methods represent
the cutting-edge in efficient model training techniques, enabling the deployment of large language
models in resource-constrained environments without sacrificing performance.

Additive PEFT Methods in Federated Learning. These methods are specifically designed to
minimize computational demands and associated communication overheads. The additive meth-
ods integrate lightweight trainable blocks into the frozen foundational models (FMs) and fine-tune
additional parameters for localized model adaptation. This approach not only enhances computa-
tional and communication efficiency but also allows for the customization of heterogeneous models
based on specific local data characteristics or user preferences. Recent work has introduced Fed-
CLIP, a method that leverages lightweight adapters to enhance CLIP’s performance in federated
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settings, significantly reducing computational and communication costs while ensuring fast gener-
alization and personalization (Lu et al., 2023). Similarly, FedDAT has been developed to fine-tune
foundation models in a multi-modal, heterogeneous federated learning environment, utilizing Dual-
Adapter Teachers to efficiently handle data heterogeneity and improve knowledge transfer (Chen
et al., 2024). The Client-Customized Adaptation approach further tailors federated learning to ad-
dress client heterogeneity through hypernetworks that generate client-specific adapters, enhancing
both the efficiency and efficacy of pre-trained model adaptation (Kim et al., 2023). In address-
ing the challenges of multilingual neural machine translation, a communication-efficient frame-
work has been proposed that minimizes the need for heavy data transmission by transferring only
lightweight adapters, thus maintaining performance despite substantial discrepancies in data dis-
tribution (Liu et al., 2023c). A practical approach toward federated learning in NLP, AdaFL1,
identifies and configures adapter modules to optimize training efficiency and model performance
across various NLP tasks (Cai et al., 2023a). Joint efforts in federated learning and personalization
for on-device ASR have shown that integrating personalized adapters with federated training sub-
stantially reduces word error rates, demonstrating the effectiveness of combined federated learning
and personalization strategies (Jia et al., 2023). Furthermore, the FedPETuning framework explores
parameter-efficient tuning methods within federated learning, offering insights into privacy protec-
tion, performance efficiency, and resource constraints (Zhang et al., 2023c). Research into image
reconstruction from PEFT gradients within federated learning frameworks reveals potential security
vulnerabilities, suggesting that even lightweight adapter gradients can be exploited to reconstruct
training data (Zhou et al., 2024). The novel concept of Dual-Personalizing Adapter for Federated
Foundation Models introduces test-time personalization to address distribution shifts effectively, en-
hancing both global and local adaptation (Yang et al., 2024). FedPEAT combines emulator-assisted
tuning with parameter-efficient fine-tuning within a federated context to tackle the challenges of
deploying large foundation models efficiently (Chua et al., 2023). Adaptive model pruning within
federated learning frameworks demonstrates a significant reduction in computation and communica-
tion latency, enabling efficient learning even over wireless networks (Liu et al., 2024a). The devel-
opment of a communication-efficient federated learning framework for industrial human-robot inter-
action addresses data privacy and heterogeneity while reducing communication costs (Khalid et al.,
2023). Moreover, new approaches in parameter-efficient fine-tuning aim to reduce latency and stor-
age requirements without compromising the model’s performance, indicating a shift towards more
sustainable and efficient federated learning methodologies (Liao et al., 2023; Tobaben et al., 2023;
Cai et al., 2023a; Shysheya et al., 2023). The other is promt tuning. prompt tuning incorporates
trainable task-specific continuous cue vectors at the input layer (Liu et al., 2022). PromptFL Guo
et al. (2024) ships an off-the-shelf CLIP, to distributed clients who would cooperatively train shared
soft prompts based on very few local data. FedPerfix Sun et al. (2023a) use a local adapter to gener-
ate prefixes and aggregate raw self-attention layers.Efforts to mitigate communication overhead in
deploying large pre-trained models across decentralized networks have introduced techniques like
model split aggregation, which significantly reduce the parameter transmission cost while maintain-
ing robust defenses against adversarial attacks (Zhao et al., 2023). Other studies have emphasized the
reduction of communication costs by employing compact, federated visual prompts specifically in
contexts like medical imaging, where data heterogeneity often leads to catastrophic forgetting (Feng
et al., 2023; Li et al., 2023). The PromptFL framework exemplifies another novel approach, shifting
from traditional model training to prompt-based federated learning, leveraging foundational models
to improve local training efficiency on limited data (Guo et al., 2024). Concurrently, text-driven
prompt generation methods have been developed to adapt vision-language models to federated set-
tings, demonstrating superior generalization capabilities across seen and unseen classes (Qiu et al.,
2024). Multilingual and domain-specific adaptations further extend the applicability of prompt tun-
ing in federated learning, offering significant improvements in data efficiency and robustness across
various languages, especially in low-resource scenarios (Zhao et al., 2024; Bai et al., 2024b; Deng
et al., 2024). Meanwhile, research on personalization and robustness trade-offs in federated systems
has explored the implications of localized fine-tuning on model performance, revealing that strategic
prompt tuning can significantly enhance both the personalization and robustness of federated models
under diverse conditions (Collins et al., 2023; Lin et al., 2023). Innovative methods such as Fed-
erated Black-Box Prompt Tuning have also been proposed to address privacy concerns associated
with large pre-trained models, emphasizing parameter-efficient strategies that reduce memory and
communication requirements without compromising the model effectiveness (Lin et al., 2023; Sun
et al., 2023b). The exploration of federated prompt tuning continues to evolve, tackling not only
linguistic and domain-specific challenges but also aiming at enhancing the deployment efficiency
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and personalization of large-scale models across heterogeneous environments (Wang et al., 2023;
Yu et al., 2023; Cai et al., 2023b; Che et al., 2023).

Reparametrization-based PEFT Methods in Federated Learning. The hypothesis behind this
class of methods is that fine-tuning adaptions can be reparameterized into optimization within low-
rank subspaces (Aghajanyan et al., 2021). Low-Rank Adaptation (LoRA) (Hu et al., 2022), as a
popular PEFT method from the area of LLMs, reduces the number of trainable parameters for down-
stream tasks by representing the weight updates with two smaller matrices (called update matrices)
through low-rank decomposition (Liu et al., 2023a). For instance, FedIT Zhang et al. (2024) lever-
ages LoRA to improve the response quality of LLMs by utilizing diverse instructions from different
clients. Noticeably, LoRA and its variants have also exhibited considerable potential in addressing
the challenges inherent in data heterogeneity among clients in FL. Researchers have developed Het-
erogeneous LoRA, which introduces a novel approach by employing low-rank approximations with
heterogeneous ranks across clients to balance overfitting risks and convergence speed, significantly
enhancing federated fine-tuning efficiency and efficacy (Cho et al., 2023). Similarly, the SLoRA
method tackles the challenges posed by high data heterogeneity in federated environments by em-
ploying a data-driven initialization technique that effectively bridges the performance gap between
traditional fine-tuning and parameter-efficient methods (Babakniya et al., 2023). The application
of LoRA in privacy-preserving federated settings has also been refined through Federated Freeze
A LoRA (FFA-LoRA), which optimizes the stability and efficiency by adjusting the update mecha-
nisms for low-rank matrices (Sun et al., 2024).FedRA introduces a random allocation strategy that
leverages heterogeneous client capabilities to optimize federated tuning, highlighting an approach
that can dynamically adapt to varying client resources without requiring each to support the full
model (Su et al., 2023). The pFedLoRA framework emerges as a solution to model-heterogeneous
personalized federated learning by using homogeneous small adapters for efficient knowledge ex-
change across diverse federated clients, proving to significantly outperform existing methods in
terms of computational and communication overheads (Yi et al., 2024). Moreover, the DP-LoRA al-
gorithm has been tailored for differentially private federated learning, enabling secure, efficient large
language model fine-tuning across sensitive domains by incorporating a Gaussian noise mechanism
for privacy preservation (Liu et al., 2023b). In scenarios with severe resource constraints, Low-
Parameter Federated Learning (LP-FL) combines few-shot prompt learning and LoRA techniques
to mitigate the high costs associated with large language models, demonstrating robust performance
even in limited data environments (Jiang et al., 2023). The automated FedPipe system has also been
developed to enhance the parameter-efficient fine-tuning of large language models, employing low-
rank adapters and a novel parameter quantization strategy to optimize both training efficiency and
memory usage (Fang et al., 2024). Lastly, FedMS introduces a novel two-stage federated learning
algorithm that integrates a mixture of sparsely activated foundation models to cater to personalized
needs, employing a unique activation strategy to manage computational demands effectively (Wu
et al., 2023). Heroes presents a lightweight federated learning framework employing a novel neural
composition and adaptive local update mechanism, tailored for heterogeneous edge networks. This
method significantly reduces traffic consumption and enhances the speed of federated learning by
adaptively configuring neural components and update frequencies according to the capabilities and
resources of participating clients (Yan et al., 2023). Meanwhile, efforts to facilitate large-vocabulary
neural language model training in resource-constrained environments incorporate Differential Pri-
vacy and Partial Embedding Updates. This approach, combined with Low-Rank Adaptation and
Noise Contrastive Estimation, allows for effective language model training on compute-constrained
devices while ensuring privacy and reducing memory demands (Xu et al., 2023).

Rank-Adaptive Low-Rank Adaption for FFT-FM. This category of algorithms aim to dynami-
cally allocate the rank among low-rank parameter matrices based on their importance score. Dy-
LoRA Valipour et al. (2023) addresses these issues by introducing dynamic, search-free rank ad-
justment during training, allowing for flexible adaptation across a range of ranks with minimal
retraining and significantly accelerates training times across various tasks without substantial sac-
rifices in performance. QDyLoRA Rajabzadeh et al. (2024) evolves this concept into quantized
settings, facilitating dynamic rank adjustments within a single training session on constrained hard-
ware, thus maintaining competitive performance while optimizing hardware utilization efficiently.
DP-DyLoRA Xu et al. (2024) integrates dynamic low-rank adaptation with differential privacy un-
der federated learning settings to enhance privacy while mitigating typical performance degradation
associated with such measures, making it feasible to deploy large models in privacy-sensitive en-
vironments. Structure-Aware Low-Rank Adaptation (SaLoRA) Hu et al. (2023) fine-tunes LLMs
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by adapting the rank of updates based on the inherent structural properties of the model’s lay-
ers, optimizing the allocation of trainable parameters to reflect varying importance across different
model components. Sparse Low-rank Adaptation (SoRA) Ding et al. (2023) introduces an innova-
tive method to dynamically adjust the intrinsic rank during the adaptation process using a gating
mechanism that optimizes parameter sparsity, effectively balancing the trade-off between parameter
efficiency and computational overhead. Hyperparameter Optimization for Large Language Model
Instruction-Tuning Tribes et al. (2023)challenges optimizing LoRA’s parameters through advanced
blackbox optimization techniques to enhance the model’s alignment with human-like processing
abilities. ALoRA Liu et al. (2024c) pushes boundaries by dynamically allocating ranks during
the fine-tuning process based on evaluated importance of different model components, thus allow-
ing for more targeted and efficient adaptation tailored to specific downstream tasks. Lastly, In-
creLoRA Zhang et al. (2023a) proposes an incremental parameter allocation method that adaptively
adjusts ranks based on real-time assessments of module importance during training, showing great
potential particularly in resource-constrained environments by optimizing parameter efficiency and
model performance. Several pioneer rank-adaptive LoRA algorithms for FFT-FM iteratively aggre-
gate local full parameter metrics into a global one and perform the SVD on the latter to find the
optimal rank (Chai et al., 2022; Wu et al., 2021; Niu et al., 2023).

To our best knowledge, the common characteristics of the above rank-adaptive low-rank adaption
methods is to (1) either fail to transplanting from the centralized setting to the federated environ-
ment (SVD-based rank-adaptive LoRA methods Zhang et al. (2023b); Ding et al. (2023); Zhang
et al. (2023a)) due to the client-drift issue (Sun et al., 2024). (2) or raise extremely expensive
cost in centralize learning and federated learning (rank sampling-based algorithms Valipour et al.
(2023); Rajabzadeh et al. (2024); Xu et al. (2024) due to multi-time model fine-tuning at different
ranks and federated rank-adaptive LoRA algorithms Chai et al. (2022); Wu et al. (2021); Niu et al.
(2023) with iterative SVD on large-scale full parameter metrics). This work is the first to offer a
rank-adaptive low-rank adaptation solution for FFT-FM with Riemannian manifold theory, by elim-
inating the client-drift issue and the multi-time model FT, and reducing the SVD of large-scale full
parameter matrix to the SVD of a low-rank matrix with low dimensions, for further enhancing both
effectiveness and efficiency of FFT-FM.

7.2 APPROXIMATION MATRIX UPPER BOUND

Lemma 1 (Orthogonal Matrix and Frobenius Norm Preservation). Let U ∈ Rn×n be an orthogonal
matrix, i.e., U⊤U = I . For any A ∈ Rn×m, the Frobenius norm ∥A∥F satisfies:

∥U⊤A∥F = ∥A∥F . (25)

Please refer to Golub & Van Loan (2013) for the detailed proof.

Lemma 2 (Cauchy-Schwarz Inequality for Frobenius Norm). For any A,B ∈ Rn×m, the Frobenius
norms ∥A∥F and ∥B∥F satisfy:

|tr(A⊤B)| ≤ ∥A∥F ∥B∥F . (26)

where tr(·) is the trace of a matrix.

Please refer to Horn & Johnson (2012) for the detailed proof.

Lemma 3 (Condition Number and Off-Diagonal Error Amplification). Let S ∈ Rn×n be a symmet-
ric positive definite matrix with condition number κ(S) = λmax(S)/λmin(S). Then the Frobenius
norm of the off-diagonal part of the inverse matrix is bounded by:

∥S−1
off-diagonal∥F ≤ κ(S)∥Soff-diagonal∥F . (27)

where S−1 is the inverse of the matrix S.

Please refer to Trefethen & Bau (1997) for the detailed proof.

The following theorems provide upper bounds on the Frobenius norm error for off-diagonal elements
after an orthogonal transformation.
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Theorem 1. We assume that the Frobenius norm of Rk is bounded by a constant H , and its eigen-
values lie within the interval [λRmin

, λRmax
]. Similarly, the Frobenius norm of Sk is bounded by a

constant N , with eigenvalues in the range [λSmin
, λSmax

]. Additionally, the matrix ∆W has rank r.
Given these conditions, the total approximation error bound in Equation 14 is derived as follows

∥U1 × 1

K

(
Σ1 +

K∑
k=2

Σ̃k

)
×V1 − 1

K

(
K∑

k=1

UkΣkVk

)
∥2F

=

K∑
k=2

(
2r(1−H −N) + (1 + (

λRmax

λRmin

)2)H2 + (1 + (
λSmax

λSmin

)2)N2

) (28)

Proof. From Equation 14, we observe that the total approximation error consists of three compo-
nents: the approximation error from the matrices UkRk, the approximation error from VkSk, and
the approximation error due to the diagonal optimal solution of the Σ̃k matrix. We calculate the
error between the two components by computing the square of the Frobenius norm between them.
These components can be expressed as follows:

∥U1 × 1

K

(
Σ1 +

K∑
k=2

Σ̃k

)
×V1 − 1

K

(
K∑

k=1

UkΣkVk

)
∥

=

K∑
k=2

(∥U1 −UkRk∥2F + ∥V1 − SkVk∥2F

+ ∥(Rii
k)−1Σii

k(Sii
k)−1 − (Rk)−1Σk(Sk)−1∥2F )

(29)

The approximation error analysis for both UkRk and VkSk is similar. Therefore, we focus on
UkRk as an example. By expanding the Frobenius norm of the difference, we obtain the following
expression:

∥U1 −UkRk∥2F = tr
(
(U1)TU1

)
− 2tr

(
(U1)TUkRk

)
+ tr

(
(Rk)T (Uk)TUkRk

)
(30)

For the first term, since U1 is an orthogonal matrix, we have (U1)TU1 = I , and thus tr(I) = r.
Similarly, since Uk is an orthogonal matrix, the third term can be simplified as tr(Rk)TRk)) =
∥Rk∥2F ≤ H2 For the second term, as shown in Equation (15), we have −2tr(PkΛk(Qk)TRk).
Using the Cauchy-Schwarz inequality, we can further bound this term as follows:

tr(Λk(Qk)TRkPk) ≤ ∥Λk∥F · ∥(Qk)TRkPk∥F ≤ rH (31)

Then we get approximation error between UkRk and U1

∥U1 −UkRk∥2F = r − 2rH +H2 (32)

Similarly, the approximation error between VkSk and V1 be bounded as follows

∥V1 − SkVk∥2F = r − 2rN +N2 (33)

The error between the optimal diagonal solution and the original complete matrix primarily arises
from the off-diagonal elements. Since Σk is a diagonal matrix, the off-diagonal error is determined
solely by the off-diagonal components of Rk and Sk. Then we have

∥(Rii
k)−1Σii

k(Sii
k)−1 − (Rk)−1Σk(Sk)−1∥2F

=
∑
i ̸=j

((Rk)−1
ij (Sk)−1

ji )
2 ≤ ∥(Rk)−1

ij ∥
2
F ∥(Sk)−1

ji ∥
2
F

(34)

Based on the condition number of the matrix, we know that the norm of the off-diagonal part of
the inverse matrix can be amplified by at most κ times the norm of the off-diagonal part of the
original matrix. Since Rk and Sk are symmetric positive definite matrices, the condition number is
determined by the ratio of the largest to smallest eigenvalues, then we get

∥(Rii
k)−1Σii

k(Sii
k)−1 − (Rk)−1Σk(Sk)−1∥2F ≤ (

λRmax

λRmin

)2H2 + (
λSmax

λSmin

)2N2 (35)
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7.3 RIEMANN GRADIENT AND RETRACTION

Lemma 4 (Partitioning and Submatrix Inversion). Let W ∈ Rm×n with rank r. If w11 ∈ Rr×r is
an invertible submatrix of W , then W can be partitioned as:

W =

[
w11 w12

w21 w22

]
(36)

where w12, w21, and w22 are submatrices. The submatrix X ∈ Rr×(n−r) satisfies:

X = w−1
11 w12, w22 = w21X = w21w

−1
11 w12 (37)

Please refer to Boumal (2023) for detailed proof.
Lemma 5 (Differentiability of Local Defining Function). Let h : R(m−r)×(n−r) → Rm×n be
defined as:

h(Y ) = Y22 − Y21Y
−1
11 Y12 (38)

where Yij are submatrices of Y . Then h is smooth and has an inverse mapping h−1 such that
ker(Dh(Y )) is a linear subspace that spans Rm×n.

Please refer to Boumal (2023) for detailed proof.
Lemma 6 (Tangent Space on the Stiefel Manifold). Let Uk ∈ Rm×r and Vk ∈ Rn×r lie on the
Stiefel manifolds St(m, r) and St(n, r), respectively. For any Ω ∈ Skew(r) and B ∈ R(m−n)×r, the
tangent space velocities Uk′(0) and Vk′(0) are given by:

Uk′(0) = UkΩ+Uk
⊥B, Vk′(0) = VkΩ′ +Vk

⊥C (39)

where Uk
⊥ and Vk

⊥ are orthogonal complements.

Please refer to Absil et al. (2008) for detailed proof.
Lemma 7 (Orthogonal Projection onto Tangent Space). Let ∆W k = UkΣk(V k)⊤ represent a point
on Mr. The orthogonal projection of a matrix Zk ∈ Rm×n onto the tangent space TMr

at ∆W k is
given by:

Proj∆Wk(Zk) = UkG(V k)⊤ + Uk
⊥(V

k
⊥)⊤ + Uk(V k

⊥)⊤ (40)
where G is a general matrix related to the variation of Uk and V k along their tangent directions,
Uk
⊥ and V k

⊥ denote the components of Zk orthogonal to Uk and V k, respectively.

Please refer to Absil et al. (2008) for detailed proof.
Lemma 8 (Retraction for Fixed-Rank Matrices). Let H ∈ Rm×n represent the perturbation in
the ambient space. The retraction function f maps the tangent space TM to the manifold M by
minimizing the Frobenius norm distance:

f(H) = arg min
∆W∈M

∥∆W k +H −∆W∥2F (41)

Under the constraint of fixed rank r, the retraction is given by the truncated singular value decom-
position of ∆W k +H .

Please refer to Golub & Van Loan (2013) for detailed proof.

We define the set of weight parameter matrices of size m× n with rank r as:

Mr = {∆Wk ∈ Rm×n : rank(∆Wk) = r} (42)

which is an embedded submanifold of Rm×n. For any ∆Wk ∈ Rm×n
r , we define a continuous,

smooth, local defining function. Given that the rank of ∆Wk is r, it contains an invertible submatrix
of size r × r. Consequently, ∆Wk can be partitioned as:

∆Wk =

[
Rr×r Rr×(n−r)

R(m−r)×r R(m−r)×(n−r)

]
(43)

We assume that w11 ∈ Rr×r is an invertible matrix, w12 ∈ Rr×(n−r), w21 ∈ R(m−r)×r, w22 ∈
R(m−r)×(n−r) Given a matrix w ∈ Rm×n with rank r, its last n−r columns are linear combinations
of the first r columns. This implies the existence of a matrix X ∈ Rr×(n−r) such that:[

w12

w22

]
=

[
w11

w21

]
X (44)
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Here, w11 is an invertible r× r matrix, and w12, w21, w22 are submatrices of X partitioned accord-
ingly.

From this relationship, it follows that:

X = w−1
11 w12 (45)

and consequently,
w22 = w21X = w21w

−1
11 w12 (46)

This decomposition shows that under the assumption of w11 being invertible, the described relation-
ship between the blocks of w is both necessary and sufficient for w to maintain a rank of r. Consider
U to be a subset of Rm×n where the upper-left r × r submatrix is invertible. This subset U , being
an open set in Rm×n, serves as the domain for the candidate local defining function h given by:

h : U → R(m−r)×(n−r), Y =

[
Y11 Y12

Y21 Y22

]
7→ Y22 − Y21Y

−1
11 Y12 (47)

This mapping h is smooth within U and has the inverse mapping h−1(0) = Rm×n ∩ U , indicating
that the pre-image of zero under h intersects with U . Moreover, the differential of h at any matrix
Y in U , for V ∈ Rm×n, is:

Dh(Y )[V ] = V22 − V21Y
−1
11 Y12 + Y21Y

−1
11 V11Y

−1
11 Y12 − Y21Y

−1
11 V12 (48)

utilizing the identity for differentiating a matrix inverse:

D(M 7→M−1)(M)[H] = −M−1HM−1 (49)

Please refer to the book Boumal (2023) for detailed proof.
The codomain of Dh(Y ) spans R(m−r)×(n−r), meaning any matrix in this space can be achieved
by choosing an appropriate V . Setting V11, V12, V21 to zero simplifies Dh(Y )[V ] to V22, showing
that Dh(Y ) is surjective. Thus, h serves as a local defining function for the smooth submanifold
around w in Rm×n. If the top-left submatrix of size r × r is non-invertible, another local defining
function can be constructed similarly for different submatrix choices.
These local defining functions collectively establish that Rm×n

r is an embedded submanifold of
Rm×n, endowed with dimension:

dimRm×n
r = dimRm×n − dimR(m−r)×(n−r) = mn− (m− r)(n− r) = r(m+ n− r) (50)

Definition 1 (Tangent Spaces and Embedded Submanifolds). Boumal (2023) Let M be a subset
of E and w ∈ M . The tangent space at w, denoted TwM , consists of velocity vectors at w of all
smooth curves c : I → M that pass through w at t = 0, where I is an open interval containing
t = 0. Formally,

TwM = {c′(0) | c : I →M is smooth and c(0) = w} (51)

For an embedded submanifold M of E , TwM coincides with the subspace defined by kerDh(w) if
M is not open within E , otherwise TwM = E . This structure highlights that TwM not only captures
the linear approximation to M at w but also conforms to the embedding properties of submanifolds
within E .

We recognize that each tangent space possesses a dimension as delineated in equation 50, it is suffi-
cient to exhibit a linear subspace of that dimension which is included in the tangent space. Returning
to the 19 of the tangent space , we undertake the explicit construction of smooth curves on Rm×n

r .
We have ∆Wk = UkΣk(Vk)T , define U(t) as a smooth trajectory within St(m, r) initiating at
U(0) = Uk, and similarly for V (t) within St(n, r) starting from V (0) = Vk. Additionally, let S(t)
describe a trajectory within the invertible r×r matrices, forming an open submanifold, starting from
S(0) = Σk. Consequently, the curve c(t) = U(t)S(t)V (t)T forms a smooth trajectory in Rm×n

r
with c(0) = ∆Wk, where its initial velocity c′(0) represents a tangent vector at w:

c′(0) = U ′(0)Σk(Vk)T +UkS′(0)(Vk)T +UkΣkV ′(0)T ∈ TwRm×n
r (52)

Given that U(t) traverses smoothly through Uk on St(m, r), the velocity U ′(0) lies within its tan-
gent space at Uk. For any vector within TUSt(m, r), a corresponding smooth curve U(t) can exhibit
such velocity at t = 0. Referencing the specified relationship for the tangent space at ∆Wk in the
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Stiefel manifold Absil & Malick (2012) T∆WkSt(n, p) = {∆WkΩ+∆Wk
⊥B : Ω ∈ Skew(p), B ∈

R(n−p)×p}, it implies for any Ω ∈ Skew(p) and B ∈ R(n−p)×p that:

U ′(0) = UkΩ+Uk
⊥B (53)

where Uk
⊥ ensures orthogonality with Uk. Likewise, for any Ω′ ∈ Skew(r) and C ∈ R(n−r)×r, the

expression for V ′(0) becomes:
V ′(0) = VkΩ′ +Vk

⊥C (54)
with Vk

⊥ maintaining orthogonality with Vk. As S(t) evolves smoothly within its manifold, the
derivative S′(0) can adopt any matrix configuration within Rr×r. with Vk

⊥ such that VkVk
⊥ is

orthogonal. Since S(t) is a smooth curve on an open submanifold of Rr×r, we can choose S′(0) to
be any matrix A ∈ Rr×r. Finally, incorporating the relationships with Uk

⊥ and Vk
⊥, we observe that

U ′(0) can be represented as UkΩ+Uk
⊥B and V ′(0) as VkΩ′ +Vk

⊥C, with Ω,Ω′ ∈ Skew(r) and
B,C ∈ R(m−r)×r. These adjustments ensure the continuation of U(t) and V (t) as smooth curves,
affirming the orthogonality of Uk and Vk to their respective complements. Overall, this analysis
demonstrates that the following velocities are within the tangent space of Rm×n

r at w:

c′(0) = (UkΩ2 +Uk
⊥B)Σk(Vk)T +UkΣk((Vk)Ω′

2 +Vk
⊥C)T

= Uk(Ω2 +A−ΣkΩ′
2)(V

k)T +Uk
⊥B(Vk)T +Uk(Vk

⊥C)T
(55)

with A = ΣkΩ2 − Ω2Σ
k, where Ω2,Ω

′
2 ∈ Skew(r), B ∈ R(m−r)×r, and C ∈ R(n−r)×r are

arbitrary matrices. Since Σk is invertible, it follows that any matrix of the form

UkM(Vk)T +Uk
p(V

k)T +Uk(Vk
p)

T (56)

with M ∈ Rr×r, Uk
p ∈ Rm×r, Vk

p ∈ Rn×r such that (Uk)TUk
p = (Vk)TVk

p = 0 is tangent
at ∆Wk. The conditions on Uk

p and Vk
p impose 2r2 linear constraints, thereby defining a linear

subspace of TwRm×n
r with dimension

r2 +mr + nr − 2r2 = r(m+ n− r) (57)

Then the singular value decomposition (Uk,Σk,Vk) of the matrix ∆Wk, the tangent space TMr

at the point ∆Wk on the manifold Mr can be represented as:

TM =

{
(Uk Uk

⊥)

[
Rr×r Rr×(n−r)

R(m−r)×r 0(m−r)×(n−r)

]
(Vk Vk

⊥)
T

}
=
{
UkG(Vk)T +Uk

p(V
k)T +Uk(Vk

p)
T

: G ∈ Rr×r,Uk
p ∈ Rm×r, (Uk

p)
TUk = 0,Vk

p ∈ Rn×r, (Vk
p)

TVk = 0
} (58)

With Rm×n
r still endowed with the standard inner product, we now consider the orthogonal projec-

tors of Rm×n
r . From equation 19, the normal space at ∆Wk = UkΣk(Vk)T is defined as:

Nk = {UkΣk(Vk)T : ∆Wk ∈ R(m−r)×(n−r)} (59)

The orthogonal projection of a matrix Zk ∈ Rm×n onto the tangent space T∆WkRm×n
r can be

expressed as:
Zk − Proj∆Wk(Zk) = Uk∆Wk

⊥(V
k)T (60)

for some orthogonal complement ∆Wk
⊥, and subsequently,

Proj∆Wk(Zk) = UkG(Vk)T +Uk
⊥(V

k
p)

T +Uk(Vk
p)

T (61)

for matrices G, Uk
p , Vk

p such that (Uk)TUk
p = (Vk)TVk

p = 0. These matrices satisfy:

Zk = UkG(Vk)T +Uk
p(V

k)T +Uk(Vk
p)

T +Uk
⊥∆Wk

⊥(V
k)T⊥ (62)

Define the projectors P k
U = Uk(Uk)T , P k

V = Vk(Vk)T , and their complements P k
U⊥

= Im − P k
U ,

P k
V⊥

= In − P k
V . Then, we derive:

P k
UP

k
V Z

k = UkG(Vk)T , P k
U⊥

P k
V Z

k = Uk
p (V

k)T , and P k
UP

k
V⊥

Zk = Uk(Vk
p)

T (63)
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This leads to a reformulated projection:

Proj∆Wk(Zk) = P k
UZ

kP k
V + P k

U⊥
ZkP k

V + PUZ
kP k

V⊥
(64)

yielding the complete orthogonal projection:

Projw(Z
k) = Uk((Uk)TZkVk)(Vk)T+(Im−Uk(Uk)T )ZkVk(Vk)T+Uk(Uk)TZk(In−Vk(Vk)T )

(65)

Here, M = (Uk)TZkVk, Uk
p = ZkVk −UkM , and V k

p = (Zk)TUk −VkMT , indicating that
these components form a tangent vector at w represented by the variation Zk.

Therefore, the gradient of (Uk,Σk,Vk) in Riemannian space can be expressed as:

ΓUkLk = (Im −Uk(Uk)T )∇UkLk, ΓVkLk = (In −Vk(Vk)T )∇VkLk,

ΓΣkLk = ((Uk)T∇UkLk −∇U (L
k)TUk)Σk +Σk(Vk∇Vk(Lk)T −∇VkLk(Vk)T ) +∇ΣkLk

(66)

According to the theorem2, we can ensure that the rank remains unchanged during the local training
process.

Theorem 2. Let ∆Wk be a point on a Riemannian manifold M consisting of all matrices with a
fixed rank r in Rm×n. Suppose ∇Lk(∆Wk) is the Euclidean gradient of the loss function Lk at
∆Wk, and ΓUkLk, ΓΣkLk, and ΓVkLk represent the components of the Riemannian gradient at
∆Wk. The RGD optimization with a learning rate ηt at round t ensures that the local update(

(Uk)(t+1), (Σk)(t+1), (Vk)(t+1)
)
= f

(
−ηt

((
ΓUkL

k
)(t)

,
(
ΓΣkL

k
)(t)

,
(
ΓVkL

k
)(t)))

(67)

preserves the rank r of ∆Wk, maintaining the structure within the manifold M , where f is a
retraction f : TM →M mapping the tangent space at ∆Wk to the manifold.

Proof. To construct a retraction f for updating within a Riemannian manifold, we utilize metric
projection. This method involves making a step in the ambient space, denoted by H , and then
projecting back to the manifold to minimize the distance in the Frobenius norm, ensuring that the
updated matrix retains the same rank as the original. The retraction function is formulated as:

f(H) = argmin∆Wk∈Rr
m×n

∥∆Wk +H −∆Wk∥2F (68)

According to the Eckart-Young-Mirsky theorem Golub et al. (1987), the optimal solution to this
optimization problem, under the constraint of rank r, is achieved by the truncated singular value
decomposition of ∆Wk +H . According to quation 19, the ∆Wk +H can be represented as:

∆Wk +H = (Uk)(t)((Σk)(t) + (−ηt
(
ΓΣkL

k
)(t)

))((Vk)(t))T + Up((V
k)(t))T + (Uk)(t)V T

p

=
[
(Uk)(t) Up

] [((Σk)(t) + (−ηt
(
ΓΣkLk

)(t)
)) Ir

Ir 0

] [
(Vk)(t) Vp

]T
.

(69)

Where Ir is the r-dimensional identity matrix. QR factorizations of the augmented matrices (Uk)(t)

and Up, as well as (Vk)(t) and Vp, are given by:

QURU = [(Uk)(t) Up], QV RV = [(Vk)(t) Vp] (70)

Here, QU and QV represent the orthogonal matrices resulting from the QR factorizations of the
left and right matrices, ensuring that columns are orthonormal. RU and RV are upper triangular
matrices which correspond to the R components in the QR factorization process.

Employing the QR factorizations, the perturbed matrix W +H is expressed as:

∆Wk +H = QURU

[
((Σk)(t) + (−ηt

(
ΓΣkLk

)(t)
)) Ir

Ir 0

]
RT

V QT
V . (71)

By performing singular value decomposition on the middle part, we obtain Ũ Σ̃Ṽ T , where Ũ , Ṽ ,
and Σ̃ represent the orthogonal matrices and diagonal matrix of singular values, respectively.
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The retraction f(H) of the perturbation H at the point ∆Wk on the manifold is given by:

f(H) = (QU Ũ)Σ̃(QV Ṽ )T (72)

This expression concludes that the triplet (QU Ũ , Σ̃, QV Ṽ ) represents the retracted point on the
rank-r manifold Rm×n

r . The final outcome of our optimization process on the manifold, representing
the updated components for the next iteration, is:(

(Uk)(t+1), (Σk)(t+1), (Vk)(t+1)
)
= (QU Ũ , Σ̃, QV Ṽ ) (73)

7.4 CONVERGENCE ON RIEMANNIAN MANIFOLD

Definition 2 (L-smoothness on manifolds). A function L is said to be Lipschitz smooth on a manifold
M if there exists a constant c ≥ 0 such that the following inequality holds:

∥gradL(y)− Py→xgradL(x)∥ ≤ cd(x, y), (74)

where Py→x is the parallel transport operator along the geodesic connecting y and x, and d(x, y)
is the geodesic distance between x and y.

For a complete Riemannian manifold, the following inequality holds:

L(y) ≤ L(x) + ⟨gx,Exp−1
x (y)⟩x +

Lg

2
d2(x, y), ∀x, y ∈M (75)

Please refer to the paper Zhang & Sra (2016) for detailed proof.

Definition 3 (Geodesic convexity). A function L ∈ C1(M) is said to be geodesically convex if for
all x, y ∈M, there exists a geodesic γ such that γ(0) = x, γ(1) = y, and:

f(γ(t)) ≤ (1− t)L(x) + tL(y), ∀t ∈ [0, 1] (76)

Or equivalently,
L(y) ≥ L(x) + ⟨gradL(x),Exp−1

x (y)⟩x (77)

Please refer to the paper Zhang & Sra (2016) for detailed proof.

Assumption 1. For all client k, we assume that the function Li is geodesically cL-Lipschitz contin-
uous. Therefore, the function l is also geodesically cL-Lipschitz continuous.

Assumption 2. For all client k, we assume that the function Li is geodesically cg-smooth, which
implies that the function L is geodesically cg-smooth.

Assumption 3. We assume that the manifold under consideration is complete and that there exists
a compact subsetW ⊂ M with diameter bounded by M , such that all the iterates of Algorithm 1
and the optimal points lie within W . The sectional curvature of W is bounded within the interval
[κmin, κmax]. Furthermore, we define the following key geometric constant that captures the impact
of the manifold’s curvature (Zhang et al., 2017)

ζ =


√

|κmin|M

tanh
(√

|κmin|M
) if κmin < 0,

1 if κmin ≥ 0.
(78)

Theorem 3 (Nonconvex). Suppose that optimization problem in Eq.(18) satisfies Assumption 1 and
2. We run Algorithm 1, where the selected clients perform gradient descent with a fixed stepsize,
and we set ηt ≤ 1

cg
. Then, the output of Algorithm 1 satisfies the following

min
0≤t≤C

E
[
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2] ≤ 2cg
C

(
L((∆W)1)− L((∆W∗))

)
(79)

where x∗ denotes the point on the manifold M that minimizes the function f(x)x∗ =
argminx∈M L(x).
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Proof. According to Equation14, our aggregation method is equivalent to the aggregation of the
matrix ∆W. However, in Euclidean space, it is challenging to accurately measure the distance
between two points before and after the update. Therefore, following the approach from [12, 13],
we project ∆W back to the tangent space using the inverse retraction for aggregation. To measure
the distance between the updated point xt+1 and the previous point xt, we use the following distance
formula

d(xt+1, xt) =
∥∥f−1

xt
(xt+1)

∥∥ =

∥∥∥∥∥1k ∑
i∈St

f−1
xt

(x(i))

∥∥∥∥∥ (80)

According to the update rule of formula 22 we have:

(∆Wk)(t+1) =
(
(Uk)(t+1), (Σk)(t+1), (Vk)(t+1)

)
= f

(
−ηt

((
ΓUkLk

)(t)
,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)))
f−1
(∆Wk)(t)

(
(∆Wk)(t+1)

)
=
(
−ηt

((
ΓUkLk

)(t)
,
(
ΓΣkLk

)
,
(
ΓVkLk

)(t))) (81)

Using Lipschitz smooth (cg-smooth) of Li based on Definition 2, we have

L((∆Wk)(t+1))− L((∆Wk)(t)) ≤
〈
f−1
(∆Wk)(t)

(
(∆Wk)(t+1)

)
,
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)
,
(
ΓVkLk

)(t))〉
+

cg
2
d2((∆Wk)(t+1), (∆Wk)(t))

=

〈
1

K

K∑
k=1

f−1
(∆Wk)(t)

(
(∆Wk)(t+1)

)
,
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)
,
(
ΓVkLk

)(t))〉

+
cg
2

∥∥∥∥∥1k
K∑

k=1

f−1
(∆Wk)(t)

(
(∆Wk)(t+1)

)∥∥∥∥∥
2

= −ηt∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2
+

η2t cg
2
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2
(82)

Then we have

E
[
L((∆Wk)(t+1))− L((∆Wk)(t))

]
≤ −ηtE

[
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2]
+ E

[
η2t cg
2
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2]
(83)

By taking ηt ≤ 1
cg

, then we have

E
[
L((∆Wk)(t+1))− L((∆Wk)(t))

]
≤ − 1

cg
E
[
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2]
+ E

[
( 1
cg
)2cg

2
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2]

= − 1

2cg
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2
(84)

Summing this inequality over t from 1 to C, we have

1

2cg

C∑
t=1

∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2 ≤ L((∆W)1)− L((∆W)R)

≤ L((∆W)1)− L((∆W∗))

(85)
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Theorem 4 (Convex). Suppose that optimization problem in Eq.(18) satisfies Assumptions 1, 2, and
3, where the local functions L are geodesically convex in W (see Definition 3). We consider Algo-
rithm 1, where the selected clients perform gradient descent with a fixed stepsize, and the stepsize is
set such that ηt ≤ 1

2cg
. Then, the output of Algorithm 1 satisfies the following

E
[
L(∆W(C))− L(∆W∗)

]
≤ ζcgd

2(∆W,∆W∗)

(ζ + C − 2)
=

ζcgd
2(∆(U0,Σ0,v0),∆(U∗,Σ∗,v∗))

(ζ + C − 2)
(86)

where x∗ denotes the point on the manifold M that minimizes the function f(x)x∗ =
argminx∈M L(x) and ζ is defined in Assumptions 3

Proof.

Lemma 9 ( Zhang & Sra (2016)[Corollary 8]). For any Riemannian manifold M where the sec-
tional curvature is lower bounded by κmin and any point x, x(t) ∈ M, the update x(t+1) =
Expx(t)(−αg(t)) with g(t) ∈ Tx(t)M satisfies〈
−g(t),Exp−1

x(t)(x)
〉
≤ 1

2α

(
dist2(x, x(t))− dist2(x, x(t+1))

)
+

ζ(κmin, dist(x, x(t)))α

2
∥g(t)∥2,

(87)
Where Expx(t)(x) is the exponentail map that projects a tangent vctor x onto the manifold,
Exp−1

x(t)(x) is the inverse exponential map that maps a point x back to the tangent space, α is the
learning rate controlling the magnitude of the update, dist(x, x(t+1)) denotes the geodesic distance

between points x and x(t+1) on the manifold, and ζ(κ, c) =

√
|κ|c

tanh
(√

|κ|c
) is the curvature adjustment

for distance.

From Lemma 9 we have〈
1

K

K∑
k=1

f−1
(∆W)t

(
(∆Wk)

)
, f−1

(∆W)t ((∆W))

〉
≤ 1

2

(
d2(∆W)t,∆W))− d2(∆W)(t+1),∆W))

)

+
ζ

2

∥∥∥∥∥1k
K∑

k=1

f−1
(∆W)t

(
(∆Wk)

)∥∥∥∥∥
2

(88)
According to the formula 82 we get

− ηt

〈(
1

K

K∑
k=1

((
ΓUkLk

)(t)
,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)))
, f−1

(∆W)t ((∆W))

〉

≤ 1

2

(
d2(∆W)t,∆W))− d2(∆W)(t+1),∆W))

)
+

ζ

2

∥∥∥∥∥1k
K∑

k=1

f−1
(∆W)t

(
(∆Wk)

)∥∥∥∥∥
2 (89)

Based on the geodesic convexity of Li and inequality 89, we define ∆t = L(∆W)t) − L(∆W∗)
and ∆k

t = Lk(∆W)t)− Lk(∆W∗), and we have:

∆k
t ≤ −⟨

((
ΓUkLk

)(t)
,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t))
, f−1

(∆W)t(∆W∗)⟩. (90)

Summing this inequality over k = 1, . . . ,K, we get:

∆t ≤ −
1

n

〈(
1

K

K∑
k=1

((
ΓUkLk

)(t)
,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)))
, f−1

(∆W)t(∆W∗)

〉

≤ 1

2η

(
d2((∆W)t,∆W∗))− d2((∆W)(t+1),∆W∗))

)
+

ζ

2η

∥∥∥∥∥1k
K∑

k=1

f−1
(∆W)t

(
(∆Wk)

)∥∥∥∥∥
2

≤ 1

2η

(
d2((∆W)t,∆W∗))− d2((∆W)(t+1),∆W∗))

)
+

ζη

2n
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2.
(91)
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From Inequality82 we have

∆(t+1) −∆t ≤ (−η +
η2cg
2

)∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2 (92)

we multiply 92 by ζ and add it into 91, then we get:

ζ∆(t+1) − (ζ − 1)∆t ≤ ζ

(
η

2n
− η +

η2cg
2

)
∥
((

ΓUkLk
)(t)

,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)) ∥2
+

1

2η

(
d2((∆W)t,∆W∗))− d2((∆W)(t+1),∆W∗))

)
(93)

We take η ≤ 1
2cg

and
(

η
2n − η +

η2cg
2

)
≤ 0, thus

ζ∆(t+1) − (ζ − 1)∆t ≤
1

2η

(
d2((∆W)t,∆W∗))− d2((∆W)(t+1),∆W∗))

)
(94)

Summing this up over t from 0 to C-1 we get

ζ∆C +

C−1∑
t=0

∆t ≤ (ζ − 1)∆1 +
d2(∆W,∆W∗)

2η
≤ ζd2(∆W,∆W∗)

2η
(95)

Where the last inequality follows from η ≤ 1
2cg

and ∆0 ≤ cgdist(∆W,∆W∗). Taking expectation
for 92 then we get

(ζ + C − 2)E[∆C ] ≤
ζd2(∆W,∆W∗)

2η
≤ ζcgd

2(∆W,∆W∗) (96)

thus

∆C ≤
ζcgd

2(∆W,∆W∗)

(ζ + C − 2)
=

ζcgd
2(∆(U0,Σ0,V0),∆(U∗,Σ∗,V∗))

(ζ + C − 2)
(97)

7.5 EXPERIMENTAL DETAILS

Environment. The experiments were conducted on a compute server running on Red Hat Enterprise
Linux 7.2 with 2 CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce
GTX 2080 Ti (with 11 GB of GDDR6 on a 352-bit memory bus and memory bandwidth in the
neighborhood of 620GB/s) and 4 GPUs of NVIDIA H100 (each with 80GB of HBM2e memory on
a 5120-bit memory bus, offering a memory bandwidth of approximately 3TB/s),256GB of RAM,
and 1TB of HDD. Overall, the experiments took about 10 days in a shared resource setting. We
expect that a consumer-grade single-GPU machine could complete the full set of experiments in
around 21-23 days, if its full resources were dedicated. The codes were implemented in Python
3.7.10 and PyTorch 1.9.0. Since the datasets used are all public datasets and our methodologies and
the hyperparameter settings are explicitly described in section 5 and 7.5, our codes and experiments
can be easily reproduced on top of a GPU server.

Training. We study text classification model on three standard text datasets: SST-2 Socher et al.
(2013),MRPC Dolan & Brockett (2005) and MPQA (Wiebe et al., 2005). The above three text
datasets are all public datasets, which allow researchers to use non-commercial research and
educational purposes. We use 7606 examples as training data and 1000 examples as test data for
MPQA. We use 3668 examples as training data and 408 as test data for MRPC. We use 20000
examples as training data and 872 examples as test data for SST-2. We train LLaMA-3B,LLaMA-
7B and Roberta on this three dataset for text classification. We also train a ViT on CIFAR-10,
CIFAR-100 and Tiny-imagnet for image classification. The neural networks are trained with
Kaiming initialization using RGD for 50 epochs with an initial learning rate of 4e-4 and batch size
8. In addition, we run each experiment for 3 trials for obtaining more stable results.

Implementation. For 11 state-of-the-art federated large language models of LoRA Hu et al. (2022),
AdaLoRA Zhang et al. (2023b), P-Tuningv2 Liu et al. (2021a), FedPrompt Zhao et al. (2023), Fed-
PepTAO Che et al. (2023), PromptFL Guo et al. (2024),PE-FL Zhao et al. (2024), SLoRA Babakniya
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et al. (2023), HetLoRA Cho et al. (2023), FedLoRA Yi et al. (2024)and FFA-LoRA Sun et al. (2024),
we utilized the same model architecture as the official open-source implementation and default pa-
rameter settings provided by the original authors for FedPEFT in all experiments. All hyperpa-
rameters are standard values from reference codes or prior works. We validate the performance of
different FedPEFT methods with a range of rank ∈ {2, 4, 8, 16}. All models were trained for 10,
25 and 50 epochs, with a batch size of 8, and a learning rate of 4e-4. We use the Dirichlet distri-
bution with concentration parameters α ∈ {1, 3, 5} to partition the data into non-IID splits. Each
device is then assigned a certain number of samples based on the corresponding Dirichlet distribu-
tion. The above open-source codes from the GitHub are licensed under the MIT License, which only
requires preservation of copyright and license notices and includes the permissions of commercial
use, modification, distribution, and private use.

For our RAFFT model, we performed hyperparameter selection by performing a parameter
rank r ∈ {2, 4, 8, 16}, Dirichlet alpha α ∈ {1, 3, 5}, training epochs of the FedPEFT model
∈ {10, 25, 50, 100}, select rank and learning rate∈ {1e−4, 3e−4, 4e−4, 5e−5}. We select the best
parameters over 50 epochs of training and evaluate the model at test time.

Hyperparameter settings. Unless otherwise explicitly stated, we used the following default pa-
rameter settings in the experiments. As shown in Table 37

Parameter Value
Training data on SST-2 20,000
Test data ratio on SST-2 872
Training data on MRPC 3,668
Test data on MRPC 408
Training data on MPQA 7,606
Test data on MPQA 1,000
Training data on CIFRA10 50,000
Test data on CIFRA10 10,000
Training data on CIFRA100 5,000
Test data on CIFRA100 1,000
Training data on Tiny-ImageNet 100,000
Test data on Tiny-ImageNet 10,000
Select rank threshold α 0.9
Training epochs of the FedPEFT model 50
Batch size for training the model 8
Learning rate 4e-4

Table 3: Model parameters and settings

7.6 ADDITIONALEXPERIMENTS

In this section, we present additional experimental results beyond those described in Section 3 to
demonstrate the advantages of our proposed method. We considered a Federated Learning (FL) en-
vironment with 100 devices and a parameter server, randomly sampling 10 devices in each epoch
to perform local updates. We utilized three widely-used NLP tasks, including SST-2 Socher et al.
(2013), MRPC Dolan & Brockett (2005), and MPQA (Wiebe et al., 2005). Evaluations were con-
ducted on the RoBERTa-LARGE Liu et al. (2019b) model for the MRPC and SST-2 datasets, the
LLaMA 3B Touvron et al. (2023) model for the MRPC and SST-2 datasets, and the LLaMA 7B Rad-
ford et al. (2019) model for the MRPC and SST-2 datasets. Additionally, we experimented with
the ViT model on image classification datasets CIFAR-10 and CIFAR-100. For all methods, the
backbone models remained frozen. These comprehensive evaluations across multiple models and
datasets illustrate the robustness and effectiveness of our fixed rank approach compared to 11 base-
line methods across three common tasks.
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alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 89.65 0.2510 1,442 89.85 0.2857 1,419 86.25 0.3776 1,433
AdaLoRA 85.85 0.4134 1,774 82.00 2.2912 1,748 81.95 2.3407 1,763

P-tuning v2 87.45 0.3563 1,581 86.80 0.3256 1,614 86.50 0.3509 1,623
FedPrompt 86.00 0.5352 1,463 85.45 0.4666 1,479 84.80 0.4345 1,537
FedPepTAO 89.20 0.2854 1,608 89.05 0.2545 1,565 88.45 0.2749 1,592
PromptFL 85.75 0.5358 1,696 83.75 0.4847 1,516 83.35 0.4236 1,498

PE FL 85.50 0.5331 1,663 85.25 0.4669 1,568 83.35 0.4274 1,505
SLoRA 90.05 0.2545 1,473 89.75 0.2546 1,446 86.70 0.2579 1,488

HetLoRA 87.70 0.3377 1,207 87.15 0.3159 1,212 87.25 0.3227 1,239
FedLoRA 89.95 0.2473 1,416 89.95 0.2416 1,517 89.60 0.2492 1,399

FFA-LoRA 87.50 0.3580 1,193 86.95 0.3386 1,168 87.30 0.3443 1,166
Fedkseed 81.90 0.6226 1,193 82.35 0.5921 1,186 82.75 0.5833 1,176
FLoRA 82.25 0.5549 1,216 83.35 0.5286 1,213 84.25 0.5227 1,154

RAFFT 91.45 0.1692 905 91.60 0.1701 902 91.20 0.1602 905
RAFFT-RGD 90.05 0.2311 869 89.85 0.2392 894 89.35 0.2281 890
RAFFT-MR 90.15 0.2299 890 90.10 0.2288 885 89.50 0.2209 884

Table 4: Performance comparison of different methods on Roberta+MPQA.

alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 88.40 0.2249 3,351 88.65 0.2203 3,339 88.00 0.2362 3,229
AdaLoRA 83.60 0.3318 3,134 84.85 0.3343 3,136 83.45 0.3179 3,137

P-tuning v2 88.60 0.4830 3,360 86.85 0.3565 3,360 88.50 0.4606 3,358
FedPrompt 86.70 0.4537 3,358 87.70 0.4110 3,387 87.70 0.4110 3,354
FedPepTAO 88.90 0.4001 3,345 87.20 0.3535 3,335 87.70 0.5189 3,354
PromptFL 88.90 0.4000 3,352 88.50 0.2580 3,352 88.85 0.4520 3,360

PE FL 88.25 0.3837 3,357 88.60 0.2580 3,353 88.60 0.2580 3,356
SLoRA 84.55 0.3028 3,893 81.35 0.3215 3,912 81.73 0.3579 3,851

HetLoRA 88.80 0.2685 2,848 88.95 0.2501 2,842 88.60 0.2310 2,842
FedLoRA 84.55 0.3028 2,792 81.35 0.3215 2,801 81.65 0.3579 2,805

FFA-LoRA 85.25 0.2552 2,789 84.35 0.2745 2,813 84.15 0.2776 2,811
Fedkseed 88.81 0.3979 3,356 88.83 0.2865 3,937 88.55 0.4165 3,356
FLoRA 87.05 0.3469 2,915 84.80 0.3443 2,957 84.84 0.4316 3,105

RAFFT 91.50 0.2769 2,718 91.35 0.2330 2,728 91.00 0.2418 2,754
RAFFT-RGD 90.15 0.3123 2,681 89.50 0.2930 2,678 88.90 0.2741 2,683
RAFFT-MR 89.95 0.2962 2,699 88.90 0.2899 2,701 88.70 0.2775 2,691

Table 5: Performance comparison of different methods on LLaMA 3B+MPQA.

alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 81.32 0.4122 1,407 80.77 0.4217 1,411 80.70 0.4519 1,411
AdaLoRA 81.13 0.4309 1,563 80.29 0.4373 1,554 79.16 0.4818 1,570

P-tuning v2 78.48 0.4325 1,049 79.41 0.4116 1,057 77.59 0.3935 1,064
FedPrompt 75.87 0.6784 1,004 75.87 0.6346 979 74.98 3.8650 1,022
FedPepTAO 81.83 0.3691 1,066 80.24 0.3577 1,053 81.21 0.3722 1,066
PromptFL 75.84 0.5917 1,001 75.97 0.7182 977 75.29 0.7722 1,022

PE FL 76.18 0.5868 1,024 74.98 3.8320 1,052 75.45 0.6071 1,022
SLoRA 80.43 0.4559 1,044 80.81 0.4152 1,052 81.29 0.4075 1,043

HetLoRA 80.52 0.4470 1,086 80.33 0.4404 1,168 79.51 0.3834 1,146
FedLoRA 81.64 0.5644 1,124 82.99 0.4428 1,204 82.21 0.4141 1,193

FFA-LoRA 77.74 0.4846 1,149 78.22 0.4395 1,026 77.02 0.4180 1,070
Fedkseed 81.34 0.7509 1,083 81.29 0.675 1,058 81.40 0.6975 1,036
FLoRA 81.70 0.6994 1,105 82.38 0.6346 1,037 81.29 0.6579 1,175

RAFFT 85.49 0.2758 818 84.09 0.3583 863 83.85 0.3623 890
RAFFT-RGD 82.8 0.4166 802 82.78 0.3928 822 82.12 0.4140 822
RAFFT-MR 82.25 0.4259 798 83.12 0.4039 819 81.95 0.4232 851

Table 6: Performance comparison of different methods on Roberta+MRPC.
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alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 92.89 0.3394 1,883 93.35 0.3276 1,862 92.89 0.3166 1,877
AdaLoRA 88.07 1.7253 1,710 87.96 1.7722 1,711 87.16 1.6742 1,720

P-tuning v2 89.44 0.6417 1,545 90.36 0.5675 1,504 90.60 0.4632 1,533
FedPrompt 89.68 0.7164 1,487 93.81 0.5829 1,460 89.33 0.5689 1,495
FedPepTAO 91.06 0.4388 1,614 91.74 0.4267 1,620 91.51 0.3499 1,581
PromptFL 92.20 0.5044 1,453 93.12 0.5096 1,444 93.92 0.3634 1,489

PE FL 93.00 0.4628 1,503 93.00 0.4732 1,498 93.69 0.3523 1,470
SLoRA 92.66 0.2616 1,447 92.88 0.1956 1,473 90.25 0.2588 1,501

HetLoRA 93.46 0.2785 1,067 92.43 0.5086 1,095 93.46 0.2091 1,128
FedLoRA 93.35 0.3002 1,221 93.58 0.2877 1,192 93.69 0.2878 1,248

FFA-LoRA 92.77 0.3048 1,022 91.62 0.8016 1,087 92.43 0.4128 1,065
Fedkseed 93.23 0.3662 1,124 93.23 0.3633 1,251 93.00 0.3636 1,103
FLoRA 93.46 0.3175 1,158 93.46 0.3254 1,186 93.12 0.3307 1,251

RAFFT 95.07 0.1894 1,012 95.41 0.1720 1,012 95.18 0.1605 1,020
RAFFT-RGD 93.12 0.2654 957 92.88 0.3290 952 93.35 0.2026 961
RAFFT-MR 93.00 0.2921 962 92.88 0.3280 951 93.46 0.2337 958

Table 7: Performance comparison of different methods on Roberta+SST2.

alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 82.07 0.3670 4,331 81.67 0.4179 4,255 81.36 0.4257 4,291
AdaLoRA 81.22 0.8810 4,086 81.22 0.8473 4,069 81.22 0.7275 4,078

P-tuning v2 81.34 4.1410 4,023 81.34 4.0730 4,103 80.82 4.1940 4,062
FedPrompt 81.18 4.3970 4,120 81.46 0.5310 4,094 81.22 0.4466 4,109
FedPepTAO 81.34 4.1410 3,891 81.34 0.5334 4,093 81.22 0.4460 4,125
PromptFL 79.19 5.7040 4,120 81.34 0.5884 4,093 81.22 0.4490 4,125

PE FL 73.99 6.8350 4,114 81.34 0.5792 4,101 81.22 0.4447 4,111
SLoRA 81.78 0.3714 4,955 81.89 0.3811 4,952 80.15 0.4276 4,966

HetLoRA 76.80 4.6050 3,994 78.22 6.8990 3,995 78.27 7.0250 4,012
FedLoRA 82.07 0.4880 4,093 82.14 0.4748 4,207 81.97 0.3731 4,017

FFA-LoRA 80.76 3.2140 4,186 79.03 7.0660 4,008 78.78 7.1700 3,991
Fedkseed 74.92 6.5395 4,114 82.00 0.5822 4,100 81.84 0.4495 4,110
FLoRA 81.64 2.0501 4,912 81.83 0.5054 4,985 81.68 0.4092 4,963

RAFFT 82.63 0.4869 3,904 82.41 0.5877 3,915 82.63 0.4738 3,892
RAFFT-RGD 82.07 0.5319 3,971 81.95 0.5170 3,978 81.95 0.5623 3,956
RAFFT-MR 82.20 0.5133 3,956 81.98 0.6992 3,985 81.98 0.6992 3,985

Table 8: Performance comparison of different methods on LLaMA3B+MRPC.

alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 94.61 0.1793 3,899 95.41 0.1268 3,897 94.38 0.1752 3,921
AdaLoRA 87.16 0.8543 3,532 88.12 0.9312 3,528 86.47 1.0330 3,548

P-tuning v2 93.23 0.2659 3,891 94.15 0.2156 3,900 92.43 0.2635 3,888
FedPrompt 93.69 0.3066 3,881 94.15 0.2606 3,893 94.04 0.2540 3,894
FedPepTAO 93.12 0.2619 3,778 94.15 0.2162 3,896 94.04 0.2540 3,894
PromptFL 93.92 0.3336 3,906 94.15 0.2606 3,893 92.32 0.2612 3,893

PE FL 93.92 0.3063 3,924 94.15 0.2588 3,901 93.92 0.2627 3,890
SLoRA 94.04 0.2177 5,878 94.27 0.1750 5,792 93.81 0.1809 5,924

HetLoRA 94.04 0.2637 3,893 93.92 0.2726 3,638 94.50 0.2174 3,634
FedLoRA 94.61 0.2022 3,664 94.72 0.1556 3,723 95.18 0.1804 3,704

FFA-LoRA 93.12 0.2330 3,789 93.12 0.2419 3,593 93.46 0.2061 3,606
Fedkseed 93.92 0.3074 3,918 94.69 0.2604 3,900 94.80 0.2649 3,890
FLoRA 94.36 0.2370 3,853 94.90 0.19 3,904 94.00 0.2198 3,922

RAFFT 95.64 0.2048 3,672 95.53 0.1458 3,733 95.64 0.2029 3,749
RAFFT-RGD 93.81 0.2365 3,596 94.15 0.2314 3,634 93.92 0.2604 3,671
RAFFT-MR 93.80 0.2389 3,604 94.03 0.2353 3,615 93.57 0.2529 3,648

Table 9: Performance comparison of different methods on LLaMA3B+SST2.
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alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 80.32 0.3386 7,783 80.02 0.3900 7,691 80.09 0.3255 7,722
AdaLoRA 81.18 0.7412 7,522 81.07 0.7650 7,509 81.07 0.6333 7,518

P-tuning v2 81.07 0.9424 7,329 81.05 0.9306 7,261 81.07 0.8343 7,257
FedPrompt 81.34 0.5585 7,735 81.35 0.5322 7,667 81.63 0.4787 7,685
FedPepTAO 81.22 0.8325 7,328 81.11 0.9207 7,270 81.07 0.8174 7,253
PromptFL 81.46 0.5137 7,735 81.34 0.5329 7,673 81.07 0.8174 7,253

PE FL 81.46 0.5348 7,741 81.35 0.5334 7,666 81.53 0.4791 7,678
SLoRA 81.66 0.5086 7,400 81.93 0.4805 7,314 81.30 0.3968 7,342

HetLoRA 80.88 0.5677 7,400 80.47 0.5675 7,342 80.88 0.4960 7,349
FedLoRA 81.60 0.4918 7,328 81.75 0.4760 7,492 81.60 0.4917 7,303

FFA-LoRA 80.90 0.8238 7,394 80.37 0.8623 7,337 81.26 0.7849 7,331
Fedkseed 81.81 0.5464 7,740 82.06 0.5397 7,666 81.74 0.5715 7,285
FLoRA 81.74 0.6461 7,314 80.98 0.7247 7,311 79.16 0.6914 7,338

RAFFT 83.62 0.4950 7,285 82.58 0.6641 7,216 83.11 0.6454 7,298
RAFFT-RGD 80.85 0.7416 7,291 80.73 0.7416 7,188 80.89 0.8807 7,301
RAFFT-MR 81.55 0.5580 7,295 82.03 0.6274 7,246 81.64 0.7618 7,288

Table 10: Performance comparison of different methods on LLaMA7B+MRPC.

alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 94.61 0.1541 7,332 94.84 0.1400 7,442 95.18 0.1677 6,922
AdaLoRA 93.35 0.2736 7,129 93.58 0.2273 7,154 78.89 1.0824 6,811

P-tuning v2 90.02 0.2629 6,790 85.32 0.2731 6,807 94.04 0.2220 6,825
FedPrompt 82.91 0.3996 6,797 85.89 0.2773 6,813 93.92 0.2249 6,810
FedPepTAO 90.14 0.2632 6,719 90.14 0.2215 6,822 94.50 0.2258 6,811
PromptFL 88.42 0.2809 6,827 84.98 0.2677 6,813 93.92 0.2220 6,816

PE FL 86.93 0.3327 6,797 84.29 0.2869 6,809 93.92 0.2262 6,815
SLoRA 89.22 0.2458 6,770 81.94 0.4805 7,314 81.29 0.3968 7,342

HetLoRA 91.40 0.2757 6,818 90.25 0.2588 6,860 95.18 0.1805 6,818
FedLoRA 94.45 0.1840 6,979 94.38 0.1599 6,498 95.18 0.1805 6,454

FFA-LoRA 94.38 0.2463 6,810 92.66 0.2617 6,838 92.89 0.1956 6,817
Fedkseed 86.77 0.3502 6,799 85.40 0.2927 6,809 94.18 0.2298 6,814
FLoRA 92.66 0.2216 6,610 92.77 0.1940 6,637 93.96 0.2028 6,916

RAFFT 96.33 0.1982 6,681 95.53 0.1949 6,618 95.41 0.2015 6,744
RAFFT-RGD 92.78 0.2951 6,731 93.69 0.2795 6,731 93.12 0.3003 6,738
RAFFT-MR 94.15 0.2758 6,724 93.92 0.2323 6,692 93.69 0.3629 6,819

Table 11: Performance comparison of different methods on LLaMA7B+SST2.

alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 46.43 1.7763 3,340 46.32 1.8492 3,394 43.43 2.0657 3,314
AdaLoRA 46.15 1.7674 3,548 46.10 1.8546 3,488 42.81 2.1023 3,454

SLoRA 44.10 1.9510 3,372 43.34 1.9870 3,306 41.39 2.1920 3,362
HetLoRA 46.31 1.8132 3,347 45.68 1.8629 3,321 43.53 2.0552 3,305
FedLoRA 50.08 1.5120 3,404 44.94 1.8940 3,290 42.40 2.1020 3,371

FFA-LoRA 45.99 1.8065 3,363 46.06 1.8210 3,363 43.19 1.9970 3,334
FLoRA 40.39 1.5424 3,288 45.36 1.6339 3,326 41.93 1.811 3,418

RAFFT 48.44 1.3240 3,273 48.36 1.3390 3,295 45.82 1.5210 3,314
RAFFT-RGD 47.11 1.5020 3,308 46.96 1.5480 3,280 43.33 1.6940 3,297
RAFFT-MR 47.21 1.4959 3,625 46.47 1.5746 3,301 43.75 1.7250 3,309

Table 12: Performance comparison of different methods on ViT+CIFRA100.
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alpha = 5 alpha = 3 alpha = 1

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 26.92 2.9963 11,497 26.18 3.0743 11,139 24.34 3.2956 11,260
AdaLoRA 27.10 3.0361 12,278 26.72 3.0535 11,820 24.38 3.2249 11,908

SLoRA 26.76 3.2740 11,176 25.76 3.3610 11,755 24.18 3.6510 11,878
HetLoRA 26.78 3.0303 11,487 25.90 3.0713 11,317 24.14 3.2865 11,278
FedLoRA 26.80 3.2570 11,643 26.24 3.3519 11,720 24.32 3.6429 11,960

FFA-LoRA 26.42 3.2642 11,700 26.02 3.3664 11,787 24.06 3.6111 11,797
FLoRA 23.96 3.5034 11,564 23.56 3.5504 11,508 21.82 3.8373 11,755

RAFFT 28.82 2.9140 11,236 27.88 2.9350 11,195 25.12 3.1270 11,225
RAFFT-RGD 27.74 3.0150 11,159 26.90 3.0470 11,598 24.08 3.2850 11,591
RAFFT-MR 27.16 3.0480 10,938 27.18 3.0370 11,245 24.58 3.2260 10,957

Table 13: Performance comparison of different methods on ViT+IamgeNet.

Accuracy of classification using Riemannian manifolds on different numbers of clients.To com-
prehensively investigate the applicability of our RAFFT method for classification tasks under differ-
ent client numbers, we evaluated the method with 40, 60, 80, and 100 clients while keeping other
settings constant. Tables 14-19 present the classification accuracy on three datasets using Rieman-
nian manifold techniques. We observed consistent results, indicating that the three variants of our
RAFFT method achieved the best accuracy in most experiments. This demonstrates the superior
performance of RAFFT under varying client numbers. A plausible explanation is that the rigorous
mathematical analysis based on Riemannian manifold theory significantly enhances the effective-
ness and applicability of our RAFFT method across different scenarios.

N = 40 N = 60 N = 80 N = 100

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 91.70 0.1511 1,481 90.95 0.1604 1,489 91.40 0.2203 1,472 89.65 0.2510 1,433
AdaLoRA 89.60 0.2471 1,669 89.15 0.2639 1,730 88.05 0.3008 1,710 85.85 0.4136 1,763

P-tuning v2 89.25 0.2481 1,588 88.10 0.2930 1,610 87.60 0.3337 1,631 87.45 0.3563 1,581
FedPrompt 87.90 0.4247 1,485 87.15 0.4846 1,584 85.25 0.5106 1,495 86.00 0.5352 1,463
FedPepTAO 89.95 0.1627 1,586 89.60 0.2348 1,683 89.20 0.2421 1,583 89.20 0.2854 1,608
PromptFL 87.70 0.4394 1,479 86.50 0.4824 1,575 84.90 0.5149 1,499 85.75 0.5358 1,696

PE FL 88.05 0.3954 1,507 86.15 0.4736 1,489 85.65 0.4727 1,529 85.50 0.5331 1,663
SLoRA 91.15 0.1598 1,410 90.70 0.2509 1,463 91.00 0.2743 1,469 90.05 0.2544 1,488

HetLoRA 88.10 0.3145 1,154 86.80 0.3668 1,221 84.00 0.4775 1,276 87.70 0.3377 1,207
FedLoRA 91.30 0.1522 1,493 90.75 0.2478 1,539 91.10 0.2744 1,571 89.95 0.2473 1,399

FFA-LoRA 87.55 0.3448 1,065 86.00 0.4245 1,098 84.45 0.3580 1,119 87.50 0.3580 1,193
Fedkseed 88.80 0.3138 1,114 86.90 0.4047 1,141 84.95 0.5082 1,168 82.75 0.5833 1,176
FLoRA 89.05 0.2966 1,202 87.75 0.3707 1,151 85.65 0.4662 1,129 84.25 0.5227 1,154

RAFFT 91.80 0.1065 842 92.00 0.1285 905 91.70 0.1469 885 91.45 0.1692 905

Table 14: Performance comparison of different methods on Roberta+MPQA with varying numbers
of clients (N).

N = 40 N = 60 N = 80 N = 100

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 85.21 0.2362 1,416 83.55 0.3623 1,395 83.72 0.3956 1,443 81.32 0.4122 1,407
AdaLoRA 83.37 0.2942 1,545 83.62 0.3217 1,506 83.75 0.3641 1,514 81.13 0.4309 1,563

P-tuning v2 80.63 0.2974 1,037 78.13 0.4139 1,088 79.11 0.4611 1,059 78.48 0.4325 1,049
FedPrompt 76.29 0.5435 1,003 75.29 0.6265 1,003 75.13 0.7028 992 75.87 0.6784 1,004
FedPepTAO 84.98 0.2090 1,042 81.40 0.2732 1,080 81.68 0.3586 1,120 80.85 0.3982 1,049
PromptFL 75.55 0.6329 1,022 74.98 0.6772 1,045 75.34 0.7687 972 75.84 0.5917 1,001

PE FL 83.26 0.2482 1,045 80.75 0.2792 1,087 81.27 0.3896 1,037 76.18 0.5686 1,024
SLoRA 85.43 0.3257 1,029 83.57 0.3722 1,066 81.39 0.3846 1,021 80.43 0.4559 1,044

HetLoRA 81.68 0.4203 1,035 78.83 0.4678 1,143 76.77 0.5138 1,150 80.52 0.4470 1,086
FedLoRA 85.07 0.4072 1,083 84.11 0.4674 1,114 82.92 0.5052 1,075 81.64 0.5645 1,095

FFA-LoRA 81.06 0.3960 1,116 80.87 0.4550 1,033 78.30 0.5054 1,036 77.74 0.4846 1,060
Fedkseed 81.32 0.6024 1,075 81.28 0.6224 1,084 81.34 0.6945 1,041 81.40 0.6975 1,153
FLoRA 82.38 0.5507 1,153 81.52 0.6001 1,031 81.38 0.6627 1,052 81.29 0.6579 1,188

RAFFT 86.80 0.2629 994 85.55 0.2914 1,005 85.70 0.3949 997 84.75 0.3519 1,097

Table 15: Performance comparison of different methods on Roberta+MRPC with varying numbers
of clients (N).
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N = 40 N = 60 N = 80 N = 100

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 94.83 0.2296 1,149 94.38 0.2550 1,133 94.38 0.2523 1,157 92.89 0.3394 1,883
AdaLoRA 93.81 0.2471 1,269 93.69 0.2498 1,270 93.46 0.2424 1,223 88.07 1.7253 1,710

P-tuning v2 90.02 0.6433 1,562 88.07 0.7700 1,527 87.27 0.7822 1,534 89.44 0.6417 1,545
FedPrompt 93.69 0.4831 1,501 90.13 0.6522 1,490 90.37 0.7105 1,472 89.68 0.7164 1,487
FedPepTAO 91.28 0.4281 1,592 90.83 0.5123 1,623 90.71 0.5028 1,603 91.06 0.4388 1,614
PromptFL 92.78 0.4751 1,469 91.86 0.5922 1,472 90.48 0.6318 1,432 92.20 0.5044 1,453

PE FL 94.50 0.4647 1,512 92.43 0.5441 1,492 91.85 0.5617 1,478 93.00 0.4628 1,503
SLoRA 95.64 0.2084 1,185 95.30 0.2302 1,215 95.18 0.2233 1,239 81.65 3.4859 1,447

HetLoRA 93.69 0.2472 1,071 93.23 0.2734 1,143 93.12 0.3029 1,054 93.46 0.2785 1,067
FedLoRA 95.41 0.2875 1,178 95.05 0.2962 1,206 94.95 0.2701 1,215 93.35 0.3002 1,221

FFA-LoRA 93.00 0.3431 1,032 92.32 0.4621 995 92.77 0.5617 1,015 93.46 0.3048 1,022
Fedkseed 94.03 0.2437 1,258 93.58 0.2739 1,314 93.69 0.2736 1,142 93.00 0.2724 1,046
FLoRA 94.38 0.2389 1,192 93.69 0.2623 1,207 93.69 0.2544 1,103 93.12 0.3307 1,045

RAFFT 95.76 0.1561 922 95.30 0.1665 944 95.30 0.1396 969 95.07 0.1894 1012

Table 16: Performance comparison of different methods on Roberta+SST2 with varying numbers
of clients (N).

N = 40 N = 60 N = 80 N = 100

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 71.95 0.6527 3,278 71.77 0.6565 3,321 71.48 0.6874 3,286 71.90 0.7170 3,329
AdaLoRA 72.34 0.6616 3,518 72.12 0.6467 3,627 71.83 0.6873 3,590 71.76 0.6936 3,535

SLoRA 72.76 0.6372 3,301 72.39 0.6652 3,294 71.77 0.6634 3,330 71.75 0.6843 3,309
HetLoRA 72.22 0.6614 3,310 71.81 0.6831 3,312 71.30 0.7046 3,350 71.76 0.6939 3,355
FedLoRA 72.35 0.6800 3,269 71.64 0.6867 3,343 71.53 0.6873 3,301 71.56 0.7149 3,282

FFA-LoRA 71.79 0.6435 3,269 71.91 0.6848 3,362 71.53 0.6993 3,310 71.47 0.7135 3,321
FLoRA 72.59 0.5949 3,409 72.25 0.6060 3,373 71.03 0.5980 3,350 70.95 0.7266 3,401

RAFFT 75.71 0.5021 3,279 75.67 0.5252 3,286 74.61 0.5232 3,301 74.54 0.5757 3,304

Table 17: Performance comparison of different methods on ViT+CIFRA10 with varying numbers
of clients (N).

N = 40 N = 60 N = 80 N = 100

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 45.69 1.7550 3,267 45.88 1.7610 3,295 45.46 1.8640 3,251 46.43 1.7763 3,340
AdaLoRA 44.28 1.8590 3,535 44.53 1.8950 3,489 43.54 1.9040 3,538 46.15 1.7674 3,548

SLoRA 44.78 1.8630 3,304 45.16 1.8620 3,237 44.52 1.9560 3,311 44.10 1.9510 3,372
HetLoRA 45.80 1.7540 3,278 45.90 1.7990 3,315 45.50 1.8280 3,334 46.31 1.8132 3,347
FedLoRA 46.13 1.7310 3,335 45.72 1.7500 3,286 44.95 1.8430 3,289 45.26 1.5120 3,404

FFA-LoRA 45.75 1.7200 3,331 45.85 1.7780 3,280 45.28 1.8550 3,404 45.99 1.8065 3,363
FLoRA 48.11 1.6190 3,329 48.09 1.6210 3,494 46.76 1.6030 3,344 40.39 1.5424 3,288

RAFFT 48.94 1.1740 3,193 48.85 1.2130 3,122 48.27 1.3310 3,284 48.44 1.3240 3,273

Table 18: Performance comparison of different methods on ViT+CIFRA100 with varying numbers
of clients (N).

N = 40 N = 60 N = 80 N = 100

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 28.46 3.0426 11,604 26.34 3.1904 11,737 26.82 3.2050 11,546 26.92 2.9963 11,497
AdaLoRA 28.86 2.9607 12,264 26.50 3.1529 12,481 26.64 3.1230 12,433 27.10 3.0361 12,278

SLoRA 28.32 3.0342 11,583 26.40 3.2080 11,834 26.92 3.2540 11,734 26.76 3.2740 11,176
HetLoRA 28.50 2.9923 11,838 26.58 3.2077 12,349 27.00 3.2010 12,045 26.78 3.0303 11,487
FedLoRA 28.30 2.9999 11,855 26.48 3.1991 12,008 26.84 3.2300 11,922 26.80 3.2570 11,643

FFA-LoRA 28.44 3.0310 11,789 26.40 3.2059 11,810 26.78 3.2140 11,941 26.42 3.2642 11,700
FLoRA 26.96 3.499 11,586 26.68 3.4914 11,716 25.76 3.5060 11,516 23.96 3.5034 11,564

RAFFT 29.66 2.6210 11,038 27.36 2.9390 11,142 29.24 2.8190 11,349 28.82 2.9140 11,236

Table 19: Performance comparison of different methods on ViT+IamgeNet with varying numbers
of clients (N).

Accuracy of classification using Riemannian manifolds on different initial rank values.To com-
prehensively investigate the applicability of our RAFFT method for classification tasks with different
initial rank values, we set the initial ranks to 2, 4, 8, and 16 while keeping other settings constant.
Tables 20-25 present the classification accuracy on three datasets using Riemannian manifold tech-
niques. We observed consistent results, indicating that the three variants of our RAFFT method
achieved the best accuracy in most experiments. A plausible explanation is that the rigorous mathe-
matical analysis based on Riemannian manifold theory significantly enhances the effectiveness and
applicability of our RAFFT method across different scenarios.
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r = 2 r = 4 r = 8 r = 16

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 90.6 0.2157 1,040 90.55 0.2153 1,038 89.65 0.2510 1,442 90.55 0.2075 1,011
AdaLoRA 82.46 0.8709 1,237 81.80 0.8581 1,195 85.85 0.4136 1,774 82.10 0.8887 1,228

SLoRA 90.10 0.2219 1,034 90.10 0.2213 1,065 90.05 0.2545 1,473 90.10 0.2222 1,073
HetLoRA 86.60 0.3707 1,318 83.20 0.5256 1,203 87.70 0.3377 1,207 89.60 0.2552 1,186
FedLoRA 90.20 0.2170 1,095 90.30 0.2175 1,049 89.95 0.2473 1,416 90.20 0.2177 1,140

FFA-LoRA 87.95 0.3290 1,158 88.55 0.3251 1,139 87.50 0.3580 1,193 87.85 0.3413 1,140
FLoRA 84.15 0.5238 1,159 84.10 0.5257 1,180 84.25 0.5227 1,197 84.30 0.5250 1,186

RAFFT 91.00 0.1900 849 91.05 0.1806 848 91.45 0.1692 905 91.55 0.1500 918

Table 20: Performance comparison of different methods on Roberta+MPQA with varying rank
values (r).

r = 2 r = 4 r = 8 r = 16

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 82.27 0.3894 1,417 82.49 0.3853 1,385 81.32 0.4122 1,402 81.86 0.3862 1,401
AdaLoRA 79.98 0.4240 1,516 82.34 0.3992 1,528 81.14 0.4309 1,563 81.66 0.4020 1,572

SLoRA 82.27 0.3864 1,039 82.08 0.3794 1,012 80.43 0.4559 1,044 81.38 0.3824 1,074
HetLoRA 75.40 0.5103 1,045 74.78 0.5767 1,033 80.52 0.4470 1,086 74.78 0.9160 1,082
FedLoRA 81.45 0.5971 1,047 81.37 0.5958 1,022 81.64 0.5645 1,056 81.33 0.5974 1,018

FFA-LoRA 74.81 0.5438 1,003 74.98 0.5441 1,014 77.74 0.4846 1,060 74.91 0.5549 1,048
FLoRA 81.16 0.6580 1,037 81.17 0.6591 1,084 81.29 0.6579 1,010 81.67 0.6592 1,024

RAFFT 85.16 0.3345 813 84.57 0.3000 825 85.39 0.2758 818 86.04 0.3453 830

Table 21: Performance comparison of different methods on Roberta+MRPC with varying rank
values (r).

r = 2 r = 4 r = 8 r = 16

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 93.35 0.2529 1,040 93.19 0.2613 1,001 92.89 0.3394 1,883 93.12 0.2614 1,076
AdaLoRA 89.44 1.5001 1,237 89.79 1.4422 1,195 88.07 1.7253 1,710 89.56 1.5087 1,184

SLoRA 93.18 0.2571 1,034 92.30 0.2595 1,065 81.65 3.4859 1,447 95.18 0.1595 1,105
HetLoRA 93.35 0.2531 1,032 93.00 0.3403 1,085 93.46 0.2785 1,067 92.20 0.7275 1,093
FedLoRA 93.92 0.2559 1,095 90.30 0.2175 1,049 93.92 0.2548 1,221 93.92 0.2559 1,086

FFA-LoRA 91.74 0.6232 1,017 91.97 0.5818 1,042 92.77 0.3048 1,022 91.86 0.7081 1,036
FLoRA 92.26 0.2368 1,224 93.34 0.2369 1,206 93.12 0.3307 1,232 94.27 0.2369 1,249

RAFFT 94.15 0.2316 994 95.18 0.1790 992 95.07 0.1894 1012 95.30 0.2130 1,014

Table 22: Performance comparison of different methods on Roberta+SST2 with varying rank
values (r).

r = 2 r = 4 r = 8 r = 16

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 71.14 0.7078 3,256 72.08 0.6924 3,241 71.90 0.717 3,329 70.69 0.7221 3,318
AdaLoRA 71.06 0.717 3,600 71.62 0.7060 3,510 71.76 0.6936 3,535 71.47 0.7127 3,622

SLoRA 71.54 0.6927 3,269 72.12 0.6871 3,337 71.75 0.6843 3,309 72.03 0.7002 3,357
HetLoRA 71.50 0.7071 3,358 70.66 0.7172 3,333 71.76 0.6939 3,355 70.91 0.7045 3,361
FedLoRA 71.87 0.7133 3,277 71.28 0.7287 3,300 71.56 0.7149 3,282 71.83 0.7111 3,306

FFA-LoRA 71.90 0.6900 3,316 72.10 0.7000 3,291 71.47 0.7135 3,321 71.22 0.7167 3,341
FLoRA 71.75 0.5803 3,840 72.38 0.6042 3,913 70.95 0.7266 3,901 71.34 0.5885 3,970

RAFFT 73.67 0.5615 3,282 74.23 0.5953 3,244 74.54 0.5757 3,304 73.97 0.579 3,301

Table 23: Performance comparison of different methods on ViT+CIFRA10 with varying rank
values (r).

r = 2 r = 4 r = 8 r = 16

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 44.45 1.8870 3,212 44.32 1.9000 3,333 46.43 1.7763 3,340 44.64 1.8830 3,399
AdaLoRA 44.24 1.9410 3,519 43.76 1.9600 3,507 46.15 1.7674 3,548 43.41 1.9920 3,559

SLoRA 43.81 1.9670 3,382 43.42 2.0000 3,317 44.10 1.9510 3,372 43.00 1.9810 3,437
HetLoRA 44.87 1.8690 3,314 44.83 1.8740 3,358 46.31 1.8132 3,347 44.46 1.9110 3,440
FedLoRA 44.41 1.9140 3,365 44.56 1.9090 3,351 45.26 1.8920 3,260 44.53 1.8830 3,337

FFA-LoRA 44.62 1.9000 3,389 44.60 1.9220 3,375 45.99 1.8065 3,363 44.00 1.8880 3,464
FLoRA 45.05 1.6170 3,873 45.23 1.6100 3,813 40.39 1.5424 3,888 46.91 1.6500 3,839

RAFFT 48.76 1.3330 3,305 48.13 1.3220 3,255 48.44 1.3240 3,273 48.94 1.3000 3,296

Table 24: Performance comparison of different methods on ViT+CIFRA100 with varying rank
values (r).
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r = 2 r = 4 r = 8 r = 16

Method Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Centralized LoRA 27.02 3.2640 11,425 27.20 3.2700 11,383 26.92 2.9963 11,497 26.64 3.2910 11,542
AdaLoRA 26.58 3.2550 12,272 26.28 3.2700 12,256 27.10 3.0362 12,278 26.36 3.2980 12,294

SLoRA 26.82 3.2590 11,102 26.84 3.2520 11,145 26.76 3.2740 11,176 26.16 3.2850 11,191
HetLoRA 26.80 3.2540 11,502 27.08 3.2500 11,394 26.78 3.0303 11,487 27.10 3.2540 11,674
FedLoRA 26.56 3.2610 11,523 27.26 3.2190 11,401 26.80 3.2570 11,643 26.28 3.2890 11,723

FFA-LoRA 27.00 3.2530 11,685 26.92 3.2660 11,504 26.42 3.2642 11,700 26.68 3.2630 11,894
FLoRA 24.36 3.477 11,817 24.48 3.4890 11,905 23.96 3.5033 11,564 23.44 3.4843 12,218

RAFFT 29.24 2.9230 11,295 28.40 2.9040 11,012 28.82 2.9140 11,236 28.42 2.9330 11,096

Table 25: Performance comparison of different methods on ViT+IamgeNet with varying rank
values (r).

Model ACC

Θ = 0.6 Θ = 0.7 Θ = 0.8 Θ = 0.9 Θ = 1

Roberta+SST-2 95.30 95.30 95.41 95.07 93.00
Roberta+MRPC 84.22 83.22 85.67 84.75 82.25
Roberta+MPQA 91.15 91.30 91.55 91.45 90.15
LLaMA 7B+SST-2 95.41 95.53 95.41 95.64 94.15
LLaMA 7B+MRPC 82.77 82.77 82.77 83.62 81.55
LLaMA 7B+MPQA 91.40 91.45 91.70 92.00 90.80
ViT+CIFAR10 74.07 73.53 73.95 73.89 72.88
ViT+CIFAR100 49.16 48.22 47.97 48.44 47.21
ViT+ImageNet 28.92 28.64 28.66 28.82 27.16

Table 26: Performance comparison of different models with varying Theta values (ACC).

Model Time (s)

Θ = 0.6 Θ = 0.7 Θ = 0.8 Θ = 0.9 Θ = 1

Roberta+SST-2 976 981 968 1,012 962
Roberta+MRPC 853 850 843 838 798
Roberta+MPQA 865 886 883 905 890
LLaMA 7B+SST-2 6,848 6,848 6,852 6,988 6,961
LLaMA 7B+MRPC 7,595 7,504 7,513 7,558 7,541
LLaMA 7B+MPQA 4,840 5,025 4,916 5,010 5,021
ViT+CIFAR10 3,591 3,611 3,587 3,555 3,687
ViT+CIFAR100 3,553 3,695 3,638 3,585 3,625
ViT+ImageNet 13,260 13,073 13,388 12,706 13,164

Table 27: Performance comparison of different models with varying Theta values (Time).

Model ACC

LR=0.0001 LR=0.0005 LR=0.001 LR=0.005 LR=0.01

Roberta+SST-2 86.24 93.81 94.84 95.30 95.64
Roberta+MRPC 74.78 77.33 81.93 84.40 87.04
Roberta+MPQA 79.55 90.10 91.20 91.55 91.70
LLaMA 7B+SST-2 95.18 96.10 96.33 61.70 50.92
LLaMA 7B+MRPC 81.52 82.70 83.62 81.22 81.22
LLaMA 7B+MPQA 91.10 92.00 91.90 67.60 67.70
ViT+CIFAR10 74.54 69.28 54.97 27.90 23.73
ViT+CIFAR100 48.44 44.07 29.38 6.55 6.18
ViT+ImageNet 28.82 16.80 15.40 9.28 2.72

Table 28: Performance comparison of different models with varying Learning Rates (ACC).
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Model Time (s)

LR=0.0001 LR=0.0005 LR=0.001 LR=0.005 LR=0.01

Roberta+SST-2 979 981 990 980 967
Roberta+MRPC 862 847 832 826 825
Roberta+MPQA 905 914 920 907 952
LLaMA 7B+SST-2 6,971 6,953 6,988 6,812 6,937
LLaMA 7B+MRPC 7,511 7,508 7,558 7,612 7,545
LLaMA 7B+MPQA 4,886 4,906 4,878 4,988 4,949
ViT+CIFAR10 3,555 3,647 3,783 3,642 3,671
ViT+CIFAR100 3,585 3,704 3,651 3,598 3,543
ViT+ImageNet 12,706 13,041 13,215 13,192 13,264

Table 29: Performance comparison of different models with varying Learning Rates (Time).

Model ACC

Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 20

Roberta+SST-2 87.79 93.81 94.72 95.18 95.07

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Roberta+MRPC 76.60 79.82 81.81 83.40 85.67

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Roberta+MPQA 88.85 90.15 90.70 91.20 91.45

Epoch 2 Epoch 4 Epoch 6 Epoch 8 Epoch 10

LLaMA 7B+SST-2 89.91 94.84 95.41 95.41 95.64

Epoch 5 Epoch 10 Epoch 15 Epoch 20 Epoch 25

LLaMA 7B+MRPC 81.29 81.29 82.28 82.28 83.62

Epoch 5 Epoch 10 Epoch 15 Epoch 20 Epoch 25

LLaMA 7B+MPQA 89.45 90.90 91.25 91.25 92.00

Epoch 40 Epoch 80 Epoch 120 Epoch 160 Epoch 200

ViT+CIFAR10 57.69 64.74 69.42 71.85 74.54

Epoch 40 Epoch 80 Epoch 120 Epoch 160 Epoch 200

ViT+CIFAR100 29.51 37.72 42.42 45.43 48.44

Epoch 50 Epoch 100 Epoch 200 Epoch 300 Epoch 400

ViT+ImageNet 13.16 17.68 22.48 25.48 28.82

Table 30: Performance comparison of different models with varying Training Epochs (ACC).

Accuracy of classification using Riemannian manifolds on different parameters. As shown
in Table 32-33, RAFFT demonstrates superior performance and stability in extreme non-IID data
environments across diverse tasks. For instance, in the LLaMA 7B + MPQA task with α = 0.5,
RAFFT achieves the highest accuracy of 90.80, outperforming all baseline methods. Similarly, in
the ViT + CIFAR-10 task with α = 0.1, RAFFT achieves the best accuracy of 61.22, surpassing
all other methods. These results highlight RAFFT’s robustness and effectiveness in handling high
data heterogeneity, further supported by its Riemannian framework, which mitigates both client-
drift and rank-drift issues and ensures stability across diverse data distributions. As illustrated in
Figure 3, the distribution of samples per class for each client in the MPQA dataset reflects the highly
heterogeneous nature of the data.
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Model Time (s)

Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 20

Roberta+SST-2 84 324 638 949 1,012

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Roberta+MRPC 173 341 517 655 843

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Roberta+MPQA 186 360 528 701 905

Epoch 2 Epoch 4 Epoch 6 Epoch 8 Epoch 10

LLaMA 7B+SST-2 1,380 2,642 4,043 5,462 6,988

Epoch 5 Epoch 10 Epoch 15 Epoch 20 Epoch 25

LLaMA 7B+MRPC 1,547 2,994 4,602 6,012 7,558

Epoch 5 Epoch 10 Epoch 15 Epoch 20 Epoch 25

LLaMA 7B+MPQA 5,071 5,063 5,102 4,972 5,010

Epoch 40 Epoch 80 Epoch 120 Epoch 160 Epoch 200

ViT+CIFAR10 736 1,450 2,143 2,935 3,555

Epoch 40 Epoch 80 Epoch 120 Epoch 160 Epoch 200

ViT+CIFAR100 722 1,460 2,203 2,911 3,585

Epoch 200 Epoch 250 Epoch 300 Epoch 350 Epoch 400

ViT+ImageNet 1,645 3,288 6,728 9,691 12,706

Table 31: Performance comparison of different models with varying Training Epochs (Time).

Method Accuracy (%) Loss Time (s)

Centralized LoRA 82.9000 0.2834 5432
AdaLoRA 32.7500 10.5591 5503
P-tuning v2 85.2000 0.2912 5664
FedPrompt 87.3500 0.2639 5393
FedPepTAO 87.6000 0.2584 5475
PromptFL 87.4000 0.2574 5586
PE FL 87.2500 0.2661 5263
SLoRA 84.1000 0.3372 5622
HetLoRA 84.2300 0.3035 5229
FedLoRA 87.7400 0.1664 5308
FFA-LoRA 80.0000 0.3496 5358
Fedkseed 82.4500 0.2918 5452
FLoRA 79.1900 0.3016 5293
RAFFT 90.8000 0.2766 5198
RAFFT-RGD 86.2100 0.2947 5151
RAFFT-MR 86.7300 0.3004 5177

Table 32: Performance comparison of methods on LLaMA 7B + MPQA (25 rounds) with α = 0.5.
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Method Accuracy (%) Loss Time (s)

Centralized LoRA 60.4800 1.0437 3578
AdaLoRA 60.9200 1.1428 3260
SLoRA 58.8900 0.8824 3402
HetLoRA 59.6300 1.0270 3387
FedLoRA 59.1100 0.9824 3310
FFA-LoRA 60.2100 0.9651 3412
FLoRA 59.3100 1.0490 3249
RAFFT 61.2200 0.8544 3222
RAFFT-RGD 60.6200 0.9478 3288
RAFFT-MR 59.9100 1.0032 3265

Table 33: Performance comparison of methods on ViT + CIFAR-10 with α = 0.1.
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(b) α = 1
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(c) α = 3
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(d) α = 5

Figure 3: Client class distribution on MPQA dataset for different α values. Each plot shows the
number of samples per class across clients, illustrating the heterogeneity in data distribution.

Resource Efficiency Analysis Using Riemannian Optimization. The resource usage of our
method is comprehensively quantified across multiple dimensions, including FLOPS (measuring
computational complexity), throughput (processing rate), communication volume (data transfer dur-
ing training), training time, and accuracy, as shown in our experimental results. Definitions of these
metrics are provided in Bai et al. (2024a).

As shown in Table 34, the resource usage of 16 federated parameter-efficient fine-tuning methods
is evaluated on the LLaMA 7B + MPQA task. Our method, RAFFT, achieves the highest through-
put of 6229.19 tokens/sec with lower FLOPS (72.73 GFLOPS) compared to other methods (72.76
GFLOPS). This reduction in FLOPS is achieved because the server selects the optimal rank and
sets the remaining ranks and their corresponding parameters to zero, thereby reducing unnecessary
computations. Additionally, RAFFT significantly reduces the communication volume to 3146112
bytes, the lowest among LoRA-based methods, and achieves the highest accuracy of 0.908. Simi-
larly, on the ViT + CIFAR-10 task, RAFFT achieves the best accuracy of 61.22, with the shortest
training time of 3222 seconds and a communication volume of 98352 bytes. These results highlight
RAFFT’s ability to balance computational and communication efficiency effectively. A plausible ex-
planation for this superior performance is that the Riemannian parameter matching and Riemannian
gradient optimization enable faster convergence and improved accuracy, while the adaptive rank se-
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lection reduces redundant computation, making RAFFT a highly practical and efficient approach for
real-world federated learning scenarios.

Method FLOPS (GFLOPS) Throughput (tokens/sec on H100) Communication Volume (Bytes) Training Time (s) Accuracy (%)

Centralized LoRA 72.7557 5701.2920 4,194,304 5432 82.90
AdaLoRA 72.7557 6052.1700 4,194,816 5503 32.75

P-tuning v2 72.3243 5563.1500 524,288 5664 85.20
FedPrompt 72.3243 5100.2800 524,288 5393 87.35
FedPepTAO 72.3243 5829.5450 524,288 5475 87.60
PromptFL 72.3243 5546.1950 524,288 5586 87.40

PE FL 72.3243 5710.5881 524,288 5263 87.25
SLoRA 72.7557 6199.1755 4,194,304 5622 84.10

HetLoRA 72.7557 5019.9379 4,194,304 5229 84.23
FedLoRA 72.7557 5100.2800 6,742,618,112 5308 87.74

FFA-LoRA 72.7557 5034.1700 4,194,304 5358 80.00
FLoRA 72.7557 4728.9951 4,194,304 5293 79.19
RAFFT 72.6401 6229.1855 3,146,112 5151 90.80

RAFFT-RGD 72.8020 5525.9890 4,194,816 5198 86.21
RAFFT-MR 72.7557 6392.1002 3,146,112 5177 86.73

Table 34: Performance comparison of methods on LLaMA 7B + MPQA.
Method FLOPS (GFLOPS) Throughput (images/sec on 2080Ti) Communication Volume (Bytes) Training Time (s) Accuracy (%)

Centralized LoRA 41.9654 5730.05 98,304 3578 60.48
AdaLoRA 41.9654 4722.30 98,352 3260 60.92

SLoRA 41.9654 5739.46 98,304 3402 58.89
HetLoRA 41.9654 5781.50 98,304 3387 59.63
FedLoRA 41.9654 5663.19 5,322,240 3310 59.11

FFA-LoRA 41.9654 5625.11 98,304 3412 60.21
FLoRA 41.9654 5646.20 98,304 3249 59.31
RAFFT 41.6335 5721.55 78,962 3222 61.22

RAFFT-RGD 41.9927 5315.95 98,304 3288 60.62
RAFFT-MR 41.9654 5681.28 78,962 3265 59.91

Table 35: Performance comparison of methods on ViT + CIFAR-10.
Accuracy of classification using Riemannian manifolds on different parameters. In order to
comprehensively study the applicability of our RAFFT method to classification tasks with different
parameter values, in addition to the select rank threshold in section 5 we also evaluate the follow-
ing parameters: training epoch, learning rate (LR), while keeping other settings unchanged. Table
27-31 shows the classification accuracy using Riemannian manifold techniques on data sets for dif-
ferent models. We observe consistent results, showing that the three variants of our RAFFT method
achieve the best accuracy in most experiments. A reasonable explanation is that rigorous mathe-
matical analysis based on Riemannian manifold theory significantly enhances the effectiveness and
applicability of our RAFFT method in different scenarios.
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Figure 4: Accuracy and Time (s) with various LoRA ranks and client numbers on Roberta-MRPC
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Figure 5: Accuracy and Time (s) with various LoRA ranks and client numbers on Roberta-MPQA
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Figure 6: Accuracy and Time (s) with various LoRA ranks and client numbers on ViT-CIFAR-10
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Figure 7: Accuracy and Time (s) with various LoRA ranks and client numbers on ViT-CIFAR-100
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Figure 8: Accuracy and Time (s) with various LoRA ranks and client numbers on
ViT-Tiny-ImageNet

7.7 POTENTIAL NEGATIVE SOCIETAL IMPACTS AND LIMITATIONS

In this work, the three large language datasets Socher et al. (2013); Dolan & Brockett (2005); Wiebe
et al. (2005) and the three image classification datasets are open-release datasets allowing researchers
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to use them for non-commercial research and educational purposes. These three datasets are widely
used for training/evaluating text classification. All baseline code is open access from GitHub and is
licensed under the MIT License, requiring only that the copyright and license notices be retained,
and containing permissions for commercial use, modification, distribution, and private use. To the
best of our knowledge, this work is the first to theoretically verify the possibility of solving client
drift and ranking drift through Riemannian manifold theory. Compared with existing FedPEFT
technology, this work explores the equivalence between the theoretical LoRA-based ranking adap-
tive federated learning method for base model fine-tuning and the standard federated base model
federated fine-tuning method. Our model can be used for various large model fine-tuning tasks that
require low latency and energy consumption in resource-intensive scenarios. This paper is primar-
ily of a theoretical nature. We expect our findings to produce positive environmental impact, i.e.,
significantly improve the efficiency and scalability of federated large model fine-tuning by reducing
the time and space requirements of large model fine-tuning in federated learning scenarios during
training and testing. To our best knowledge, we do not envision any immediate negative societal
impacts of our results, such as security, privacy, and fairness issues. An important product of this
paper is the theoretical exploration to verify the feasibility of addressing client drift and rank drift
through Riemannian manifold theory. Given the large scale of neural networks in practical sce-
narios and the limitations of current computational hardware, we employ approximate methods for
Riemannian distance. This ensures that the rank-adaptive federated learning method based on LoRA
for fine-tuning foundation models is equivalent to the standard federated fine-tuning of foundation
models on a fully parameterized FedAvg matrix. Our theoretical framework can inspire further im-
proved development and implementations on FedPEFT with better applicability and efficiency from
the academic institutions and industrial research labs.

7.8 CLINT-DRIFT AND RANK-DRIFT ISSUE DEFINITION

Client-drift issue: The client-drift issue is due to the aggregation of low-rank matrices in the FFT-
FM. Here, we introduce an illustrative example with two clients to better understand the client-drift
issue.

Concretely, if the clients locally fine-tune on full parameters and the server aggregates with FedAvg,
the new global model parameters can be expressed as follows.

W = W0 +
1

2
(∆W1 +∆W2) (98)

In our work, the clients locally fine-tune on both low-rank parameter matrices Uk and Vk and diag-
onal matrix Σk to determine the rank. The server uses FedAvg to aggregate the low-rank matrices
and diagonal matrix.

∆Wk = UkΣkVk, k ∈ 1, 2 (99)

The expected global model parameter updates ∆W can be expressed as follows.

∆W =
1

2
(∆W1 +∆W2) =

1

2
(U1Σ1V1 +U2Σ2V2) (100)

After using FedAvg to aggregate the local matrices Uk,Σk,Vk, the server produces
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∆W̃ =
1

2

(
U1 +U2

)
× 1

2

(
Σ1 +Σ2

)
× 1

2

(
V1 +V2

)
=

1

2
(U1Σ1V1 +U2Σ2V2)−3

8
U1Σ1V1 − 3

8
U2Σ2V2 +

1

8
U1Σ1V2 +

1

8
U1Σ2V1

+
1

8
U1Σ2V2 +

1

8
U2Σ1V1 +

1

8
U2Σ1V2 +

1

8
U2Σ2V1

= ∆W−3

8
U1Σ1V1 − 3

8
U2Σ2V2 +

1

8
U1Σ1V2 +

1

8
U1Σ2V1

+
1

8
U1Σ2V2 +

1

8
U2Σ1V1 +

1

8
U2Σ1V2 +

1

8
U2Σ2V1

(101)

where the underlined terms denote the difference between ∆W̃ and ∆W.

It is obvious that ∆W̃ ̸= ∆W when U1 ̸= U2, Σ1 ̸= Σ2, and V1 ̸= V2 due to the data
heterogeneity property of federated learning. Therefore, the client-drift issue is raised.

W̃ = W0 +∆W̃︸ ︷︷ ︸
Parameter aggregation with SVD-based rank-adaptive LoRA + FedAvg

̸= W0 +∆W = W︸ ︷︷ ︸
Ideal parameter aggregation with FedAvg on full parameter matrices

(102)

The difference between ∆W̃ and ∆W is mainly due to the noise introduced by the cross-products
of LoRA modules from different clients. This difference may become more significant when (1) the
number of local update steps between aggregations is large and (2) the local datasets are different
across clients.

In the (Sun et al., 2024) paper, when the clients locally fine-tune on low-rank parameters based on
LoRA and the server uses FedAvg to aggregate the low-rank matrices, the global model parameters
can be expressed as follows.

W̃ = W0 +
1

2
(B1 +B2)× 1

2
(A1 +A2)︸ ︷︷ ︸

Parameter aggregation with LoRA + FedAvg

̸= W0 +
1

2
(B1A1 +B2A2) = W0 +

1

2
(∆W1 +∆W2) = W︸ ︷︷ ︸

Ideal parameter aggregation with FedAvg on full parameter matrices

(103)

When the clients use LoRA locally, we have ∆Wk = BkAk on client k. The data heterogeneity is
a common challenging problem in the federated learning. The collected data on different clients are
Non-Independent Identically Distributed (NonIID). Thus, the parameters of local models trained on
the non-IID data are quite different from each other, i.e., B1 ̸= B2 and A1 ̸= A2. This leads to the
client-drift issue in the (Sun et al., 2024) paper, i.e., the difference between W and W̃ is not equal
to 0. In order to address the client-drift issue, the (Sun et al., 2024) paper keeps both W0 and A0

frozen and makes only B trainable.

W̃ = W0 +
1

2
(B1 +B2)×A0︸ ︷︷ ︸

Parameter aggregation with LoRA + FedAvg

= W0 +
1

2
(B1A0 +B2A0) = W0 +

1

2
(∆W1 +∆W2) = W︸ ︷︷ ︸

Ideal parameter aggregation with FedAvg on full parameter matrices

(104)

The magic of the (Sun et al., 2024) paper to handle the client-drift issue is to have only one parame-
ter matrix (B) trainable while freezing other parameter matrices. However, this approach cannot be
directly utilized to conduct the client-drift issue in our work. Our work has three trainable parameter
matrices Uk, Vk, and Σk. If updating only the diagonal matrix Σk and freezing the parameter ma-
trices Uk and Vk, then the algorithm fails to update the parameter matrices, resulting in poor model
performance. If updating either Uk or Vk and freezing Σk, then the rank cannot be optimized,
leading to high computational cost (by higher rank) or poor model performance (by lower rank).

Thus, We propose a Riemannian parameter matching method to match the local parameter ma-
trices Uk and Vk on other clients with pivots U1 and V1 on client 1, in terms of their lengths
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and directions, i.e. Ũk = UkRk ≈ U1 and Ṽk = SkVk ≈ V1. To maintain the consis-
tency between low-rank parameter metrics before and after the Riemannian parameter matching,
i.e., U2Σ2V2 = Ũ2Σ̃2Ṽ2 ≈ U1Σ̃2V1, for ensuring the effectiveness of FFT-FM with rank-
adaptive LoRA, we derive a modified diagonal matrix Σ̃k for the other clients by performing the
SVD on low-dimensional r × r matrices (U1)TUk and (V1)TVk. Thus, the client-drift issue is
resolved.

∆W̃ =
1

2

(
U1 + Ũ2

)
× 1

2

(
Σ1 + Σ̃2

)
× 1

2

(
V1 + ṼK

)
≈ U1 × 1

2

(
Σ1 + Σ̃2

)
×V1 =

1

2

(
U1Σ1V1 +U2Σ2V2

)
= ∆W

(105)

Based on the global diagonal matrix 1
2

(
Σ1 + Σ̃2

)
, it is easy to find the optimal rank of the global

parameter matrix, with aggregation on only the local low-rank matrices Uk, Σ̃k, and Vk.

Rank-drift issue: The data heterogeneity is a common challenging problem in the federated learn-
ing. The collected data on different clients are Non-Independent Identically Distributed (Non-IID).
Thus, the parameters of local models trained on the non-IID data are quite different from each other
as well as the parameters of global model. Each local model may oscillate back and forth in dif-
ferent training rounds, leading to unstable and slow convergence and causing suboptimal model
performance.

At the same time, due to the heterogeneity of local models, the optimal ranks of local models are
quite different from each other as well as the one of global model, raising the rank-drift issue. Sim-
ilarly, the oscillation of the optimal rank of each local model can slow down the model convergence
and degrade the model performance. For example, given two clients 1 and 2, in round 1, the local
model on client 1/2 has the optimal rank 5/20. The server aggregates local models from clients to
generate a global model based on FedAvg. The global model by model aggregation has the optimal
rank 12. In round 2, after the global model are sent back to the clients, the clients begin the training
with the global model with the optimal rank 12. Thus, the optimal rank of local models oscillate
between 5/20 and 12. The rank oscillation may repeat in each training round, slowing down the
model convergence.

The following table 36 presents a case study regarding the rank-drift in federated learning. In round
1, the optimal rank of the global model is 16. In round 2, the optimal rank is changed to 11. In
subsequent rounds, the optimal rank continue to oscillate back and forth. The ranks of local models
fluctuate around values such as 9.75, 10.17, and 10.53, while the rank of global modelgradually de-
creases and stabilizes at 8. These results confirm that rank-drift introduces instability into the train-
ing process, slowing convergence and degrading performance, which emphasizes the importance
of our Riemannian gradient descent optimization approach to stabilize ranks and ensure efficient
training.

7.9 ALGORITHM

In order to solve the client-drift and rank-drift issues and significantly improves the computational
cost, we exploit a Riemannian manifold based method as detailed in Algorithm 1. Within each
round, every client performs local updates(line 22). The updates are based on the Riemannian
gradient and the retraction function (line 11,line 13). After the updates, each client sends the updated
parameters back to the server(line 17). The server then performs Riemannian parameter matching
between the U and V matrices of all clients and those of the first client to achieve alignment in both
length and direction.(line 24-line 28) The singular value matrix is updated according to Formula7,
and the aggregated U, V and Σ matrices from all clients are combined.(line 29-line 33) The rank
for the next round of training is selected through Formula 16, and the model parameter matrix is
updated accordingly.(line 34-line 37)

7.10 NOTATION DEFINITION

Below, we provide detailed definitions of the notations used in the main text:
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Algorithm 1 Federated Learning with Optimal Rank Selection and Alignment

1: Input: Client datasets {Dk}Kk=1, Threshold α, The number of local epoch E, The number of
global round R

2: Output: Optimally ranked updated matrices UR, SR, VR

3: procedure SERVER INITIALIZATION
4: Initialize S as zero matrix
5: Initialize U, V with random Gaussian values
6: end procedure
7: procedure CLIENT UPDATE (K,U,S,V) // RUN ON CLIENT K
8: for each local epoch i from 1 to E do
9: batches← (Dk spilt into batches of size)

10: for batch b in batches do
11: computes the Riemannian gradient P∇Lk based on Eq.(21)
12: (UkLk,ΣkLk,VkLk)
13: computes (Uk)(t+1), (Σk)(t+1), (Vk)(t+1) based on Eq.(22)
14:

(
(Uk)(t+1), (Σk)(t+1), (Vk)(t+1)

)
= f

(
−ηt

((
ΓUkLk

)(t)
,
(
ΓΣkLk

)(t)
,
(
ΓVkLk

)(t)))
15: end for
16: end for
17: return (Uk)(t+1), (Σk)(t+1), (Vk)(t+1) to the server
18: end procedure
19: procedure SERVER ALIGNMENT AND AGGREGATION
20: for each round t from 1 to C do
21: for each client k in K clients do
22: (Uk)(t+1), (Σk)(t+1), (Vk)(t+1)← Client Update (k,(Uk)(t), (Σk)(t), (Vk)(t))
23: end for
24: Compute alignment matrix Sk,Rk using (U1)(t+1), (V1)(t+1) as reference based on

Eq.(9)
25: for k = 1 to K do
26: Align (Uk)(t+1) to (U1)(t+1): (Ũk)(t+1) = (Uk)(t+1)Rk

27: Align (Vk)(t+1) to (V1)(t+1): (Ṽk)(t+1) = Sk(Vk)(t+1)

28: end for
29: Update (Σk)(t+1) based on Eq.(13)
30: Aggregate updates:
31: Ũ

′
=
∑K

k=1
nk

n Ũk

32: Σ̃
′
=
∑K

k=1
nk

n Σ̃k

33: Ṽ
′
=
∑K

k=1
nk

n Ṽk

34: Determine rank r based on Eq.(16):

35: Θ(r) =
∑r

i=1 Σ̃
′
ii∑rmax

i=1 Σ̃
′
ii

≥ φ

36: Update Σ̃
′

to only include top r singular values
37: Update Ũ

′
, Ṽ

′
accordingly

38: end for
39: end procedure
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Round (1-25) Client Rank Server Rank
1 16.000000 16
2 9.206250 11
3 9.153125 10
4 9.750000 10
5 10.165625 9
6 10.004688 9
7 9.881250 9
8 9.951563 9
9 10.168750 9

10 10.392188 8
11 10.467188 8
12 10.526563 8
13 10.506250 8
14 10.518750 8
15 10.507813 8
16 10.454688 8
17 10.393750 8
18 10.295313 8
19 10.212500 8
20 10.175000 8
21 10.110938 8
22 10.029688 8
23 9.981250 8
24 9.932813 8
25 9.903125 8

Table 36: Client and Server Ranks for LLaMA 7B + MPQA across 25 Rounds
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Notation Explanation
W ∈ Rm×n Full parameter matrix of the foundation model
Wk ∈ Rm×n Local model parameter matrix for client K.
W0 ∈ Rm×n Pre-trained foundation model parameters
∆W ∈ Rm×n Adapter parameters, used for fine-tuning
∆Wk ∈ Rm×n Adapter parameter matrix for client K

Uk ∈ Rm×r,Vk ∈ Rr×n Matrices representing the left and right singular vectors of ∆Wk

Σk ∈ Rr×r Diagonal matrix containing the singular values of ∆Wk

B ∈ Rr×n,A ∈ Rm×r Low-rank matrices representing adapter parameters∆W = BA
r ∈ Rr×r Rank of decomposition, much smaller than m and n

D = {D1, · · · , DK} The set of local training data from K clients
K The total number of clients involved in federated learning
nk The size of the local dataset Dk, i.e., nk = |Dk|.
n The size of the total training data D, i.e., n = n1 + · · ·+ nK .

L(W) The global loss function to be minimized, aggregated over all clients.
Lk(W) The loss function for client K.
li(W) The loss function for a single data sample {xi, yi}
S The set of orthogonal matrices on Riemann manifold
Sp The procrustes representation space on manifold S

Rk ∈ Rr×r,Sk ∈ Rr×r The symmetric positive matrix for Riemannian parameter matching.
Pk ∈ Rm×r,Λk ∈ Rr×r, Qk ∈ Rr×n Matrices obtained from the SVD of (U1)TUk

Yk, Zk Auxiliary variables introduced to reformulate the Riemann problem.
Ũk ∈ Rm×r,Ṽk ∈ Rr×n Matrices representing the aligned parameters after Riemannian matching

Σ̃k Modified version of diagonal matrix Σk for ensuring consistency
λRmin , λRmax Minimum and maximum eigenvalues of the matrix Rk

λSmin
, λSmax

Minimum and maximum eigenvalues of the matrixSk

H,N Constants bounding the Frobenius norms of matrices λRmin and λSmin

Θ(r) Singular value contribution rate
φ Threshold value for determining rank

R(Uk,Vk) Regularization term to enforce orthogonality of Uk and Vk

M The set of fixed rank matrices on Riemann manifold
TM Tangent space of the Riemannian manifold M at the point ∆W

G ∈ Rr×r,Uk
p ∈ Rm×r,Vk

p ∈ Rn×r The tangent vector at ∆W

Uk
⊥,Vk

⊥ The orthogonal complements of Uk and Vk

∇Lk(∆Wk) Gradient of the local objective function Lk in Eucliean space
ΓLk(∆Wk) Riemannian gradient of the local objective function Lk

P Orthogonal projection
ΓUkLk, ΓΣkLk, ΓVkLk The components of the Riemannian gradient at∆Wk

ηt Learning rate
f() Retraction function

t (0 ≤ t ≤ C) Federated learning round
cg Geodesic smoothness constant for the function Lk

ζ Key geometric constant that captures the impact of the manifold’s curvature

Table 37: Definitions of Notations
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