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ABSTRACT

We propose a framework to continuously learn object-centric representations for
visual learning and understanding. Existing object-centric representations either
rely on supervisions that individualize objects in the scene, or perform unsuper-
vised disentanglement that can hardly deal with complex scenes in the real world.
To mitigate the annotation burden and relax the constraints on the statistical com-
plexity of the data, our method leverages interactions to effectively sample di-
verse variations of an object and the corresponding training signals while learn-
ing the object-centric representations. Throughout learning, objects are streamed
one by one in random order with unknown identities, and are associated with la-
tent codes that can synthesize discriminative weights for each object through a
convolutional hypernetwork. Moreover, re-identification of learned objects and
forgetting prevention are employed to make the learning process efficient and ro-
bust. We perform an extensive study of the key features of the proposed frame-
work and analyze the characteristics of the learned representations. Furthermore,
we demonstrate the capability of the proposed framework in learning representa-
tions that can improve label efficiency in downstream tasks. Our code and trained
models are made publicly available at: https://github.com/pptrick/
Object-Pursuit.

1 INTRODUCTION

What are human infants and toddlers learning while they are manipulating a discovered object? And,
how do such continual interaction and learning experiences, i.e., objects are discovered and learned
one by one, help develop the capability to understand the scenes that consist of individual objects?
Inspired by these questions, we aim for training frameworks that enable an autonomous agent to con-
tinuously learn object-centric representations through self-supervised discovery and manipulation of
objects, so that the agent can later use the learned representations for visual scene understanding.

A majority of object-centric representation learning methods focus on encoding images or video
clips into disentangled latent codes, each of which explains an entity in the scene, and together
they should reconstruct the input. However, without explicit supervision and more sophisticated in-
ductive biases beyond parsimony, the disentanglement usually has difficulties aligning with objects,
especially for complex scenes. We leverage the fact that an autonomous agent can actively explore
the scene, and propose that the data collected by manipulating a discovered object can serve as an
important source for building inductive biases for object-level disentanglement.

In our proposed framework, whenever an object is discovered by the agent, a dataset containing im-
ages and instance masks of this object can easily be sampled via interaction compared to annotating
all the objects. Theoretically speaking, any function of the images induced by the discovered object
could be a representation of the object. For example, let ¢ be an encoder implemented by a neural
network, and let x be the image of an object, we can say that ¢(x) is a representation of the object.
Similarly, the encoder itself can also be a representation of this object since ¢ = argmin, £(¢,x),
i.e., ¢ is the output of an optimization procedure that takes the object’s images as input.
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We employ network weights as the object-centric representations. Specifically, the proposed method
learns an object-centric representation from the data collected by manipulating a single object,
through learning a latent code that can be translated into a neural network. The neural network
is produced by a discriminative weight generation hypernetwork and is able to distinguish the rep-
resented object from anything else. In order to learn representations for objects that stream in one
by one, the proposed framework is augmented with an object re-identification procedure to avoid
learning seen objects. Moreover, we hypothesize that object representations are embedded in a
low-dimensional manifold, so the proposed framework first checks whether a new object can be
represented by learned objects; if not, the new object will be learned as a base object serving the
purpose of representing future objects, thus the name object pursuit. Furthermore, the proposed
framework deals with the catastrophic forgetting of learned object representations by enforcing the
hypernetwork to maintain the mapping between the learned representations and their corresponding
network weights.

In summary, our work makes the following contributions: 1) we propose a novel framework named
object pursuit that can continuously learn object-centric representations using training data collected
from interactions with individual objects, 2) we perform an extensive study to understand the pursuit
dynamics and characterize its typical behaviors regarding the key design features, and 3) we analyze
the learned object space, in terms of its succinctness and effectiveness in representing objects, and
empirically demonstrate its potential for label efficient visual learning.

2 RELATED WORK

Object-centric representation learning falls in the field of disentangled representation learning
(Higgins et al., [2016; |[Kim & Mnih, 2018 Press et al., 2019; (Chen et al., 2018bj |Karras et al., 2019;
Li et al.l [2020; |[Locatello et al., [2020a} [Zhou et al.l [2021). However, object-centric representations
require that the disentangled latents correspond to objects in the scene. For example, (Eslami et al.|
2016; Kosiorek et al., 2018) model image formation as a structured generative process so that each
component may represent an object in the generated image. One can also apply inverse graphics
(Yao et al.l 2018 Wu et al., [2017) or spatial mixture models (Greff et al., [2017; 2019} Engelcke
et al., 2020b) to decompose images into interpretable latents. Monet (Burgess et al., 2019) jointly
predicts segmentation and representation with a recurrent variational auto-encoder. Capsule autoen-
coders (Kosiorek et al., 2019) are proposed to decompose images into parts and poses that can be
arranged into objects. To deal with complex images or scenes, (Yang et al., |2020; Bear et al., 2020)
employ motion to encourage deomposition into objects. Besides motion, (Klindt et al., 2021} shows
that the transition statistics can be informative about objects in natural videos. Similarly, (Kabra
et al., 2021) infers object latents and frame latents from videos. Slot-attention (Locatello et al.,
2020b; Jiang et al., 2020) employs the attention mechanism that aggregates features with similar ap-
pearance, while Giraffe (Niemeyer & Geiger, 2021) factorizes the scene using neural feature fields.
Even though better performance is achieved with more sophisticated network designs, scenes with
complex geometry and appearance still lag. As shown in (Engelcke et al.|, 2020a)), the reconstruction
bottleneck has critical effects on the disentanglement quality. Instead of relying on reconstruction
as a learning signal, our work calls for interactions that stimulate and collect training data from
complex environments.

Rehearsal-based continual learning. In general, continual learning methods can be divided into
three streams: rehearsal-based, regularization-based, and expansion-based. The rehearsal-based
method manages buffers to replay past samples, in order to prevent from forgetting knowledge of
the preceding tasks. The regularization-based methods learn to regularize the changes in parameters
of the models. The expansion-based methods aim to expand model architectures in a dynamic
manner. Among these three types, rehearsal-based methods are widely-used due to their simplicity
and effectiveness (Liiders et al., [2016;  Kemker & Kanan, 2017; [Rebuffi et al., 2017; |Cha et al.|
20215 von Oswald et al.| [2019; [Riemer et al., 2018}; |Lopez-Paz & Ranzato, 2017} |Buzzega et al.,
2020; |Aljundi et al.| 2019} |Chaudhry et al.l [2020; Parisi et al., 2018 Lopez-Paz & Ranzato, [2017).
Samples from previous tasks can either be the data or corresponding network activations on the data.
For example, (Shin et al.,[2017) proposes a dual-model architecture where training data from learned
tasks can be sampled from a generative model and (Draelos et al., 2017} Kamra et al.,[2017) propose
sampling in the output space of an encoder for training tasks relying on an auto-encoder architecture.
ICaRL Rebuffi et al.|(2017) allows adding new classes progressively based on the training samples
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Figure 1: Object space as discriminative weights. Objects live in a low-dimensional manifold of
a high-dimensional latent space. A latent code representing a specific object is translated into seg-
mentation weights that can distinguish the object from anything else at different viewing conditions.
The hypernetwork consists of blocks built of convolutional and upsampling layers.

with a small number of classes, while (Pellegrini et al., 2020; |Li & Hoieml [2017) store activations
volumes at some intermediate layer to alleviate the computation and storage requirement. Co?L (Cha
et al., 2021) proposes continual learning within the contrastive representation learning framework,
and (Balaji et al.,|2020) studies continual learning in large scale where tasks in the input sequence are
not limited to classification. Similar to the forgetting prevention component in our framework, ivon
Oswald et al.| (2019) applies a task-conditioned hypernetwork to rehearse the task-specific weight
realizations. Please refer to (Parisi et al., 2019} |Delange et al., [2021) for a more comprehensive
review on this subject.

Hypernetwork. The goal of hypernetworks is to generate the weights of a target network, which is
responsible for the main task (Ha et al., 2016; |Krueger et al., [2017; Chung et al., 2016; [Bertinetto
et al., 2016; |Lorraine & Duvenaud, 2018; [Sitzmann et al.| 2020; Nirkin et al., 2021). For example,
(Krueger et al., 2017) proposes Bayesian hypernetworks to learn the variational inference in neural
networks and (Bertinetto et al., 2016)) proposes to learn the network parameters in one shot. Hyper-
Seg (Nirkin et al., [2021) presents real-time semantic segmentation by employing a U-Net within a
U-Net architecture, and (Finn et al., | 2019)) applies hypernetwork to adapt to new tasks for continual
lifelong learning. Moreover, (Tay et al., 2020) proposes a new transformer architecture that lever-
ages task-conditioned hypernetworks for controlling its feed-forward layers, whereas (Ma et al.,
2021)) proposes hyper-convolution, which implicitly represents the convolution kernel as a function
of kernel coordinates. Hypernetworks have shown great potential in different meta-learning settings
(Rusu et al., 2018 Munkhdalai & Yu, |2017; [Wang et al.,|2019), mainly due to that hypernetworks
are effective in compressing the primary networks’ weights as proved in (Galanti & Wolf}, 2020).

3 METHOD

We consider an agent that can explore the environment and manipulate objects which are discovered
in an unknown order. Suppose there are N objects in the scene, each of which randomly appears in
an image x € R *W>3 whose ground-truth instance segmentation mask is y € R7*W*N Qpe
can train a deep neural network that maps an image x to its mask y with a dataset D = {(x;,y;)}
that consists of such paired training samples. However, sampling from the joint distribution p(x,y)
can be extremely time-consuming, e.g., someone may have to manually draw the instance masks for
every object in an image.

On the other hand, sampling from the marginals can be much more accessible through interactions.
Let D* be the dataset collected by observing an image x; and the corresponding binary mask of
the k-th object y¥ € REXW 'je, DF = {(x;,y¥)} ~ p(x,y*), which is the marginal distribution
obtained by integrating out other objects’ masks in y. The goal of the proposed object pursuit frame-
work is to learn object-centric representations from the data collected by continuously sampling the
marginals. Next, we detail the representations used for objects (as illustrated in Fig.[T]), and how we
can learn them without catastrophic forgetting.
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3.1 REPRESENTING OBJECTS VIA DISCRIMINATIVE WEIGHT GENERATION

In order to represent an object, one can compute any functions of the data produced with this object.
For example, the encoding of an image containing a specific object that can be used to reconstruct
the input image. Here we take a conjugate perspective instead of asking the representation to store
information of an object that is good for reconstruction. We propose that the object-centric repre-
sentation of an object shall generate the mechanisms for performing certain downstream tasks on
this object, e.g., distinguishing this object from the others.

Let ¢ be a segmentation network with learnable weights 6 that maps an image to a binary mask, i.e.,
¢ © x REXWX3 _ REXW Moreover, let ¢ : ( — © be the mapping from the latent space ¢
to the weights of the segmentation backbone ¢. We define the object-centric representation of an
object o as a latent z, € ¢, such that:

E(xi7yf)~p(x,y0)A(¢<'¢)(Zo)7Xi)ayg) > T, (1)

where the expectation is computed according to p(x, y°), i.e., the marginal distribution of object o,
and A is a similarity measure between the prediction from ¢ and the sampled mask y°. In other
words, z, is a representation of object o, if the network weights generated from z, are capable
of predicting high-quality instance masks regarding the object under the corresponding marginal
distribution. The threshold 7 is a scalar parameter that will be studied in the experiments. Now we
detail the proposed object pursuit framework, which unifies object re-identification, succinctness of
the representation space, and forgetting prevention, for continuously learning object representations.

3.2 OBIJECT PURSUIT

Given the definition of object-centric representations in Eq. [I] our goal is to construct a low-
dimensional manifold to embed objects in the input space ¢ of the weight generation hypernetwork
1. We conjecture that the low-dimensional manifold can be spanned by a set of base object repre-
sentations. More explicitly, we instantiate two lists z and g, which store the representations of the
base objects and the embeddings of the learned objects, respectively. We denote z! 1 = {7}/,
and p'~t = {4;}*_; (n > m, with n the number of learned objects and m the number of base
objects, up to time ¢ — 1) as the constructed lists after encountering a (¢ — 1)-th object. Note that y;
has the same dimension as the number of base object representations. Similarly, we denote /'~ ! as
the corresponding hypernetwork parameters.

As discussed, when the ¢-th object o, is discovered, a dataset D' = {(x;, yj)} can be easily sampled
from the marginal distribution p(x,y?) through interactions. However, such object might already
be seen previously. Thus, it is necessary to apply re-identification to avoid repetitively learning the
same object. According to the definition in Eq. [I] object o, will be claimed as a seen or learned
object if the following condition is true (| - | is the cardinality of a set):

Jhax, E ytyep AW (zi), %)), 55) 2 7. 2

with z; = p; -z' 1. In this case, object o; will be assigned the identity i* that achieves the maximum
value. Otherwise, if Eq. is not valid, o; is considered as an object that has not been learned.

Learning base object representations. An object o; that can not be identified with the list of
learned objects !~ can potentially serve as a base object whose representation should be added to
the list of base representations z. To ensure that object o; qualifies as a base object, we propose the
following test which checks whether o, can be embedded in the current manifold spanned by z‘~:

p' = argmax Eqo yoepe MA@ ™ (17271, x5),v5) + allull, 3)
IJ«GR‘ztil‘

where * is the optimal embedding for object o, regarding z‘~! under the ¢, regularizer to encourage
sparsity. If the first term of Eq. [3| passes the threshold 7 with the representation z*” z'~, then we
consider o; as an object that should not be added to the list of bases since it can already be represented
by the existing base objects.

Next, if o; does not fall on the manifold spanned by z‘~*, a joint learning of the representation of o;
and the hypernetwork 1 shall be performed so that a new base object representation can be added
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Figure 2: Data collected in iThor. Target objects are highlighted by their instance masks.

to the list. However, since updating the hypernetwork could result in catastrophic forgetting of the
previously learned object representations, it is also necessary to constrain the learning process, and
the training loss is:

25" = argfilaX]E(xj,ypeDtA@W(Z)»Xj),yz-) + al|z||1

+8 > w2 = wlE I @

i<t

where the first two terms help to find a good representation for object o; under the sparsity con-
straint, and the third term enforces that the updated weight generation hypernetwork maintains the
previously learned object representations. The value of the negative scalar coefficients «, 8 will be
detailed in the experiments.

Backward redundancy removal. The last but not the least component of the proposed object pur-
suit framework is to have a backward redundancy check. Since the welght generation hypernetwork
is updated to +* = +* with Eq. E], there may now exist an embedding ,u (computed using Eq. '
that re-certifies object o; as an object falls on the manifold spanned by z*~! under +/*. If this is true,
we set z = z'~!, otherwise, z* is added to the list of base object representations since object o; is
now confirmed as a base object. In some rare cases, object o, might be hard to learn, e.g., z* may not
satisfy the criterion described in Eq. [1junder the current hypernetwork 1¢. In this case, we simply
toss away this object so that it can be better learned in the future as the pursuit process evolves. The
proposed object pursuit framework is also summarized in Algorithm.

4 EXPERIMENTS

We target the learning scenario where a scene consists of multiple objects, each of them can be
discovered and manipulated through interactions. The objects are learned one by one in a continuous
manner but with unknown orders. There are two main aspects of the whole pipeline, i.e., data
collection by sampling the marginals of individual objects and construction of the object-centric
representations with Object Pursuit. We focus on continuous object-centric representation learning,
and thus orient our study on the behavior and characteristics of the proposed object pursuit algorithm.
We also perform experiments on one-shot and few-shot learning, and show the potential of the
learned object-centric representations in effectively reducing supervisions for object detection. Next,
we brief our data collection process.

4.1 SETUP

Data collection. To learn diverse objects from variant positions and viewing angles, we collect
synthetic data within the iThor environment ((Kolve et al.,|2017)), which provides a set of interactive
objects and scenes, as well as accurate modeling of the physics. We collect data of 138 different
objects to generate their images and masks. The 138 objects are divided into 52 pretraining objects,
60 train objects for the pursuit process, and 25 test unseen objects. To focus on the representation
learning part, we abstract the interaction policy, and the data collection procedure of a single object
can be summarized as follows: 1) Randomly set the positions of all the objects in the scene. 2)
Calculate all available camera positions and viewing angles from which the target object (to be
learned) is visible so that the sampling is effective. The camera position, yaw angle, and pitch angle
change within the range of 0.4 (grid size), 4° and 30° respectively. 3) For each camera position and
viewing angle, we collect a 572 x 572 RGB image and a binary mask of the target object. 4) Repeat
(1-3) for all objects in the stream. Please check Fig. |2|for the sampled data.
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Table 2: Re-identification: rate of unseen objects been

Table 1: Re-identification: recall identified along the course of the pursuit process.

and precision on seen objects. - No. of trained objects
T 05 06 07 08 8 16 24 32 40 48 56
recall 1.0 10 10 1.0 05 040 052 056 060 064 0.64 0.72
precision 1.0 1.0 10 1.0 0.6 008 020 028 044 056 0.60 0.60

07 016 028 032 040 040 048 044
0.8 0.00 0.08 0.16 024 028 028 028

Network implementation In our experiment, we use Deeplab v3+ (Chen et al., [2018a) as the seg-
mentation network ¢, which consists of 3 parts: a backbone to encode features at different levels,
an aspp module, and a decoder to predict the segmentation probability per pixel. We use resnetl8
as the backbone (encoder), whose weights are fixed both in the pretraining and the pursuit process.
The weights of the aspp module and the decoder are generated by the convolutional hypernetwork
1. For each convolution layer in the aspp module and the decoder, v takes object representation
z as input, and predict weights of the convolution kernel using an upsampling convolution block.
The input representation z first expanded to a 1024-dim vector by a linear mapping and resized to a
1 x 1 x 32 x 32 tensor. After going through several upsampling blocks, each of which consists of
an upsampling followed by a convolution and a leaky Relu, the 1 x 1 x 32 x 32 tensor turns into
the output kernel weight. For other network weights like "running_mean’ and ’running_var’ in batch
normalization, the hypernetwork linearly maps representation z to generate them.

Training details. For the similarity measure A, we use the dice score proposed in (Milletari et al.).
In addition to A, we find that it will be beneficial to add an extra binary cross-entropy term when
learning base object representations using Eq. ] Note, to deal with imbalanced foreground and
background sizes, we also put a weighting on the entropy terms that correspond to the object so the
learning can be more efficient. The sparsity constraint « is set to —0.2, —0.1 for Eq. 3] and Eq. [
respectively, and 5 = —0.04 for all our experiments. To improve the convergence, we also warm
up the hypernetwork using the pretraining objects. During pretraining, each mini-batch contains
training data from one object, and we randomly choose which object to use in the next batch. In
backpropagation, we update the hypernetwork 1) and representation z for each object. When the
pretraining is done, we perform a redundancy check to get rid of the objects that can be represented
by others. For simplicity, this check is performed in sequential order, and we are left with a set of
base object representations to carry out the following studies.

4.2 ON THE REPRESENTATION QUALITY MEASURE

The learning dynamics and the output of Algorithm. [I] i.e., the lists of base object representations
z and the learned objects u, together with the weight generation hypernetwork ), are primarily af-
fected by the representation quality measure 7 introduced in Eq.[I} For example, 7 controls whether
an object will be claimed as seen, and it also determines whether or not an object falls on the mani-
fold spanned by the current base object representations. We study each of them in the following.

4.2.1 RE-IDENTIFICATION

As described in Eq. 2] when an object is discovered, it will be first checked against the learned
objects and re-identified if the maximum expected similarity passes 7. To examine how the quality
measure 7 influences the re-identification process, we run multiple object pursuit processes with
different 7’s. All runs are performed with the same training object order so that the only variant is
the value of 7. For evaluation, we preserve a separate set of 25 objects (unseen test objects) that
never appear during training. Note, among these unseen test objects, there are also objects that are
similar to the training ones. And we use 27 objects (seen test objects) from the warp-up joint training
described above to check the re-identification accuracy.

First, we check how 7 affects the re-identification for seen objects. As reported in Tab. |1} if an object
is learned and added to the object list p, it will be claimed as seen by Eq.[2] and the re-identification
accuracy is always one. This is true for 7 varying between 0.5 and 0.8, which demonstrates the
robustness of the re-identification process against 7 for objects learned.
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Second, we check the behavior of the
re-identification component for un-
seen objects under different 7’s along
the pursuit process. In Tab.[2] we can
observe that as more and more ob-
jects are learned during the pursuit,
the unseen objects that are claimed
as seen from the re-identification pro-
cess also increase. This observation
is consistent across different 7’s. Fur-
thermore, the rate of unseen objects
identified as seen converges at the end
of the pursuit process, but at differ-
ent levels for different 7’s, i.e., the
converged rate is lower for larger 7.
It may seem incorrect if an unseen
object is claimed as seen by the re-
identification component. However,
if we examine the unseen objects (see
Fig.[3), we can see that it is quite nat-
ural for these unseen objects to be la-
beled as seen, because they are sim-
ilar to one or multiple objects in the
object list p. This is indeed a de-
sired characteristic since representing
or learning an object that is similar to existing ones may not be informative. Moreover, one can adjust
T to tune the similarity level. For example, if one insists on learning an object similar to previously
seen objects, increasing the value of 7 should work as evidenced by the converged rates for 7’s in
Tab.

In a nutshell, the representation quality measure 7 has little effect on the re-identification recall
and accuracy for learned objects. Yet, it controls the granularity of the learned representations by
modulating the rate of unseen objects that would be identified as learned ones.

unseen objects

Plate_10

candidate seen objects

Plate”3

=

Apple_9

Figure 3: Unseen objects re-identified as learned. 1st row:
unseen objects, 2nd to 4th row: similar objects from the
learned object list. Bounding boxes highlight the objects
with embedded text indicating the instance identity.

4.2.2 SUCCINCTNESS AND EXPRESSIVENESS

We want to study how the representation quality measure
7 affects the overall learning dynamics in terms of the suc-
cinctness and expressiveness of the learned base object rep-
resentations. By checking Eq. 2] Eq[3|and also the previous

Table 3: Pursuit dynamics by varying
7. Please see the enclosing descrip-
tion for the meaning of the metrics
and corresponding analysis.

experiment, we conjecture that if 7 is small, objects similar

to the learned ones will be more easily identified as seen and 05 06 07 08
certified as on the manifold. If so, the number of objects that Z[/N 034 042 042 040
will be used for learning the base representations may also |ul/N 046 058 046 040
be small, thus increasing the succinctness of the final repre- 75 019 021 0.00 0.00
sentations. Conversely, when 7 increases, we would expect R ; 008 0.18 042 054
that more objects will contribute to the base representations, A, 075 0.77 0.83 086

thus increasing the expressiveness. We like to check if the
observations align with our conjecture and how such behav-
ior affects the quality of the learned bases. To facilitate the analysis, we propose to check the
following quantities: 1) |z|/N, which is the portion of objects that contribute to base representa-
tions; 2) || /N, which is the portion of learnable objects that are added to the object list u; 3) R,
rate of objects that are confirmed unseen but can be expressed by the base object representations; 4)
R ¢, rate of objects to be learned as base representations, which are later considered as redundant or
unqualified; 5) A,,, segmentation accuracy on learned objects.

We report the above metrics across different 7’s in Tab.[3] As expected, a larger 7 generally encour-
ages more objects to be learned as base representations. For example, the number of base objects
learned is much larger when 7 increases from 0.5 to 0.6 (first row). This is also evidenced by the
third row of Tab. 3] which shows that the probability of an unseen object to be expressed by base rep-
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resentations will decrease as 7 increases, creating more attempts to learn objects as bases. However,
the number of learnable objects, i.e., a base object or an object that falls on the manifold spanned by
the bases, attains the maximum at a medium value 7 = 0.6 (second row). The underlying reason is
two-fold: First, a very small 7 means that many objects will be identified as seen and thus discarded
to save computation; Second, a very large 7 can make the qualification of an object representation
extremely difficult such that it will be put aside for future learning. The latter is also supported by
the metric Ry shown in the fourth row, i.e., the probability that an object will be considered redun-
dant or unqualified after learning as a base object will increase as 7 becomes large. Lastly, when
checking the quality of the base representations in expressing a common set of learned objects, we
can see that the segmentation accuracy correlates with 7 in a positive manner (fifth row).

In general, 7 directly impacts the quality of the base representations for learned objects, but its effect
on the number of base representations produced by the pursuit procedure is not monotone. Within
a moderate range, we can increase 7 to encourage learning more base representations, however, we
may not want 7 to be too large that only a few objects are qualified as base representations.

4.2.3 LABEL EFFICIENCY

Besides the training dynamics, Table 4: N-shot learning the representation of a new object.
we evaluate the usefulness of the  Training is performed by searching the optimal representation
learned object base representa- either on the manifold spanned by the base objects, or over the
tions in terms of how it facilitates  entire representation space. Segmentation accuracy on the test
learning the representation of a et is reported for bases and hypernetworks learned at different
new object with only a few anno- g,

tations. For comparison, we also
perform legrnlng of the ObJ?Ct over base object representations full representation space
representations over the entire n

representation space. Training 05 06 07 08 05 06 07 038
is similar to Eq. B] The quality 1 0377 0416 0454 0446 0225 0.264 0.288 0.289
of the learned object representa- 5 0.595 0.606 0.634 0.614 0.461 0.475 0.468 0.453
tions is measured by their seg- 10 0.622 0.647 0.677 0.649 0.542 0.526 0.524 0.520
mentation accuracy on test data, 2000 0.697 0.731 0.740 0731 0.669 0.698 0.702 0.718

As reported in Tab.[d] the quality

of the few-shot learned representations increases as 7 gets large, which aligns with our observation
in the previous section that the expressiveness of the learned object base representations highly
correlates with 7. However, note that there is a slight drop in performance when 7 increases from 0.7
to 0.8 (fourth and fifth column). The reason is that as 7 gets really large, it also becomes much easier
to omit objects that can not pass the quality test. As a result, the hypernetwork, which translates the
representation to network weights, also gets less trained. Thus, when tested on new objects, the
performance may not match that of the trained objects for the same set of base representations,
suggesting again that a moderate 7 is needed to balance between the succinctness and generalization
of the learned base representations.

The above observation does not hold for the representations learned over the full space. Moreover,
when comparing the performance within the low data regime, we can see that those object repre-
sentations found on the manifold outperform those found in the entire space by a large margin. For
example, the new object representations found with the learned bases under 7 = 0.7 outperform their
counterparts by 57.6%, 35.5%, 29.2% for the 1-shot, 5-shot, and 10-shot settings, respectively. This
demonstrates the potential of using the learned base representations to help reduce the supervision
needed to learn a new object. Also, it confirms that the learned base representations are meaningful
since the manifold spanned by them provides a good regularity for learning unseen objects.

4.3 ORDER OF TRAINING OBJECTS Table 5: Pursuit dynamics under

The proposed object pursuit algorithm learns object repre- random training object order.

sentations in a stream, so we also check how the learning lz|/N |ul/N Re Ry A,
dynamics vary when the order of training objects changes.
We fix 7 to 0.6 and run ten pursuit processes with random
training object order. We reported the mean and standard de-
viation of the metrics proposed in Tab. 3] As observed in
Tab. 5] the pursuit process is robust to the training object order.

mean 043 050 0.10 0.15 0.76
std-dev 0.02 0.03 0.04 0.04 0.01
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4.4 FORGETTING PREVENTION

In this section, we want to check if the forgetting preven- T .

. . . . - . able 6:
tion term in Eq. |4|is effective and how it affects the pursuit
dynamics. We run pursuit processes with different values of
the coefficient 3, where the quality measure 7 and training
quect order i§ fixed. Segmentati.on accuracy A, and forgf:t— 18] 00 002 004 01
ting rate -y (i.e., how many objects falls under the quality
measure after the process is finished) in Tab. [6] demonstrate |2|/N 061 046 042 039
the effectiveness of the forgetting prevention term: when || |“7‘€/ N 8?2 8?1 8;213 8;‘1‘
decreases, the segmentation accuracy drops, and the forget- RE 019 014 018 021
ting rate increases; when |3| vanishes, the forgetting rate A;{ 002 067 071 072
reaches 97%, which means that the hypernetwork almost vy 097 004 002 0.02
forgets all the object representations it previously learned.
We can also observe that both |z|/N and |u|/N increase
when || decreases. This is due to the fact that when the hypernetwork forgets what are learned,
any incoming object will be unlikely to be considered as seen, nor to be expressed by current bases.
So the hypernetwork tends to learn them as new base objects, which causes |z|/N to increase. This
is also evidenced by the drop in R, which is rate of new objects that are certified as on the object
manifold. Furthermore, without the constraint of the forgetting prevention term, it is more likely to
get higher accuracy in learning a new object, which decreases the number of unqualified objects.
Since the number of redundant objects and unqualified objects both drop when || decreases, |u|/N
increases. Thus, in order to reduce computational cost and enforce learning meaningful representa-
tions, one would like to apply a relatively large | /3| during the pursuit process.

Pursuit dynamics under
different forgetting prevention con-
straints.

We can also observe that as | 3| changes from 0.02 to 0.1, R ¢ increases monotonically, this is be-
cause the forgetting prevention constraint affects the quality of the learned representations, since
less freedom is available when |3 is extremely large. Consequently, fewer objects will be qualified
with a good representation measured by 7. On the other hand, R is also high when beta is set to
0. The reason is that when learning a new object without the constraint of the forgetting prevention
term, the hypernetwork tends to overfit, thus making it easier for this new object to be considered
as redundant, i.e., it can be expressed by the existing base representations, even though the learned
representation will be forgotten by the network right after the current learning episode.

4.5 MORE RESULTS

In the appendix, we also provide ablation studies on how the sparsity constraints in Eq.[3]and Eq. ]
affect the learning dynamics and the quality of the learned representations. By examining the most
relevant base objects for a novel object that can be expressed by the base representations (Fig. ), we
can qualitatively see that high-level concepts are learned within the representation space as objects
that share similar geometry or appearance will be more correlated than others. For curiosity, we also
test the usefulness of the base object representations on real-world video objects. As demonstrated
in Fig.[7} the learned base representations can capture well the representations of real-world objects
with a single learning example even if they are trained on synthetic data.

5 CONCLUSION

We demonstrate that the proposed object pursuit framework can be used for continuously learning
object-centric representations from data collected by manipulating a single object. The key designs,
e.g., object re-identification, forgetting prevention, and redundancy check, all contribute to the qual-
ity of the learned base object representations. We also show the potential of using the learned object-
centric representations for tasks at a low-annotation regime. Especially, the learned object manifold
provides a meaningful and effective prior on objects, which can facilitate downstream tasks that
require object-level reasoning. As inspired by an initial attempt on the real-world data (Fig.[7), we
would also like to check the proposed object pursuit algorithm in the real world. For example, we
can train an autonomous agent to collect data from the natural 3D environment with a more effi-
cient interaction policy, and then test the learned object representations on real-world compositional
visual reasoning tasks. These are in our future research agenda.
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A APPENDIX

A.1 ALGORITHM

Here is the Object Pursuit algorithm we describe in the method section. In this algorithm, we
first check if the object is seen according to Eq. [2| If the object is seen, we directly move on to
the next object, otherwise, we start to check if the object can be represented by current bases ac-
cording to Eq. 3] If it can be expressed, we add this object to the object list 4 and move on to
the next object, otherwise, we need to train for a new z and update the hypernetwork using loss
function Eq. 4 After training, we start a second redundancy check, with the same criterion Eq.
in the first check. If the object can be represented by bases, we just add it to the object list p,
otherwise, we consider it a new base and add it to both base list z and object list p. The algo-
rithm runs in a loop to simulate that objects are continually showing up and learned by our system.

Algorithm 1: Object Pursuit

Result: A set of object representations u” = {; } Y, 27 = {z;}2 |, and the hypernet ¢7,
withT > N > B
initialization: z° = u® = (), ¥° is randomly initialized;
while ¢t < T do
Sample D" = {(x,¥5)} ~ p(x, y');
Check if object o; is in p!~! (parameter 7);
if YES then
ul = i1,

7t = gt 1;

,¢t — wt—l.

else

Check if object o can be represented using z*~! (parameter 7);
if YES then

pt=p U e,

7t =zt

wt — 77[]1571.
else

Training for z,, and ¢/’ under the constraint of all objects in p!~1;

wt — 1//,/.
Check if z,, can now be approximated by z‘~!;
if YES then

pt=p " Ut

7t =zt 1,

else
Ht = /J’t71 U[0707 ey 0, 1];

t t—1 )
z 21U %o,;

end
end

end
end
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A.2 ABLATION ON THE SPARSITY CONSTRAINTS

1. L-1 norm coefficient on

Table 7: Pursuit dynamics under dif-

In this ablation study, we aim to understand whether L-1 -
ferent L-1 norm coefficients on

norm on combination coefficient i in Eq. [3|affects an object
falls on the manifold or not. From Tab. [/] we can see that
when L-1 norm coefficient || change from 0.0 to 0.2 (ab-

laf 00 01 02 05

solute value), R increases, which means more object can |z|/N 045 042 042 040
be expressed by current bases, causing the number of base  |p¢|/N 057 055 058 0.1
objects (|z|/N) to decrease. It shows that if we properly in- Re 011 019 021 008

R; 021 0.5 0.17 025

crease the constraint on p and promote the sparsity of p, it
K P P y H A, 074 0.75 0.73 0.77

may be easier to find a u that can express the object. How-
ever, if |a| exceeds a certain limit, e.g. 0.5, too much con-
straint added to ¢ (which makes p harder to change), finding
a i to express an object becomes difficult, thus the number of objects that can be expressed (R.)
decreases, as shown in Tab.

We can also see that R ; first drops then increases when || gets bigger. Our reasoning is that, even
though more objects can not be expressed by the bases at the first redundancy check and have to be
learned as new representations when |« increases, the chances that they are unqualified or redundant
after training also increase, making the base number continually decreases.

2. L-1 norm coefficient on z

In this ablation study, we focus on how L-1 norm on z af-  Table 8: Pursuit dynamics under dif-
fects object pursuit. We change the coefficient a and eval-  ferent L-1 norm coefficient on z
uate the pursuit process. As Tab. [8 shows, when || in-

creases, the number of objects that can be expressed by || 00 01 02 05
bases (R.) also increases, causing the base number (|z|/N) Zl/N 046 042 042 039
to decrease. This is because regularization on z prevents lul/N 056 058 056 055
the object representations from getting too far from each R. 0.12 021 021 024
other, thus making z distribute more uniformly. Since z is Ry 014 018 012 0.19

well distributed, it may be easier to find a coefficient x that
can express an object. We also find it in our experiment
that when |«| gets bigger, more objects will be considered
as unqualified due to their low training accuracy, especially when || = 0.5. It shows that more
constraints on z may cause it harder to find a proper z to represent an object during training, thus
decrease the accuracy. It also explains why the number of learnable objects (|| /N) decreases when
|| change from 0.1 to 0.5.

Ay 0.74 072 0.74 0.72

A.3 UNDERSTAND THE BASE REPRESENTATIONS

Fig. [ shows some visualization results of unseen objects and the corresponding active base objects.
The results are from the pursuit process. When an unseen object is detected, and if it can be ex-
pressed by the current bases, we then find the combination coefficient 1 through Eq.[3] In Fig. ] we
show three examples that the unseen objects can be expressed by base objects, and the combination
coefficient values are shown below the corresponding bases. We show the top 5 bases that have the
highest coefficient value among all the bases.

In the first example (the 1st row), the base object *DishSponge_1" has the highest coefficient value
in expressing a green cup (Cup_3). We conjecture that ’Cup_3’ and ’DishSponge_1" share a similar
color, and green objects are rare in this set of bases, causing the DishSponge’s coefficient to be the
highest one. 'Dumbell_1’ may share a similar shape with ’Cup_3’, since they are both thin in the
middle and thick in the end. The second example (the 2nd row) shows that if there is a base object
(Bowl_7) that is evidently more similar to the target object (Bowl_10) than other bases, its coefficient
value may be the highest. Here Bowl_7 and Bowl_10 are similar in both color and shape, but they
are different in shape at the bottom of the bowl. In the third example (the 3rd row), the black cup
(Cup-2) and the black pot (Pot_1) share the same color, while the black cup (Cup-2) and the glass
cup (Cup_1) share a similar shape.
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unseen base objects
Cup_3

DlshSponge1 Dumbell_1 CreditCard_1 TeddyBear_1 Box_1 N

A.

0.111 0.099

<

1
1
1
1
1
1

1
1
1
\

Bowl_10

V4 \

Plunger_1 Bowl_7 Cloth_1 \

0.287 0.126 0.110
Figure 4: Unseen objects expressed by base objects. Unseen objects in the 1st column (Cup_3,
Bowl_10, Cup_2) are represented by base objects in the 2nd to 6th columns with combination co-
efficients shown below the object. Higher coefficient means greater weight or importance in the

combination.

These results show that the object representation space learned through object pursuit characterizes
some high-level concepts (e.g. color, shape) that help better understanding the objects. An unseen
object tends to be represented by a base object with similar color or shape. Although in some cases,
understanding the base representations is not as easy as the examples shown in Fig. ] this regular
pattern is still evident in most cases.

A.4 MORE VISUAL RESULTS ON SYNTHETIC DATA

Fig.[5]shows more segmentation results from the experiments. In these examples (the 1st row and the
2nd row), ’bowl’ and ’kettle’ are two unseen objects which are not in the object list p and the base list
z. To represent an unseen object, we fix the hypernetwork and try to find a combination coefficient
p* to express the target object with the bases, according to Eq.[3] The unseen object, which resides
on the manifold (the object space) with latent code z can be segmented by the segmentation network
generated from its representation with the hypernetwork. Note, we test the segmentation network
on the validation dataset.

Even if the unseen object is expressed by base objects which may share some similarity with it, the
unseen object can still be segmented accurately from various backgrounds in different positions and
angles, as Fig. [ shows. It verifies that the learned representations, together with the hypernetwork,
preserve discriminative object-centric knowledge.

A.5 REAL-WORLD DATA COLLECTION AND LEARNING

We propose that our framework object pursuit can be used with autonomous agents that explore
the environment and interact with objects. Through interactions, an agent could learn object-centric
representations, and this is an unsupervised setting since no human annotations are required when
the agent interacts with objects in the physical scene.
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novel object ‘bowl’

Figure 5: More segmentation results. The objects showed above are unseen objects that are ex-
pressed by base objects.

Figure 6: Demonstration of obtaining instance masks of manipulated objects through interaction.
Ist row: images of a robotic arm manipulating a cube. 2nd row: instance masks obtained from
interaction by motion segmentation and edge refinement.

Currently, we perform the major experiments on synthetic data due to the lack of a robot to perform
the data collection in the real world. Moreover, we like to have a proof of concept before carrying
out real-world experiments, which could involve an enormous amount of research funds and effort,
which is out of the scope of our current work. However, we are confident that transitioning from the
synthetic environment to the real world is highly practical as all the technical components that need
to be used in the real world are ready.

In order to evaluate how practical it is for a robot to perform the pursuit process in the real world,
we need to look into two aspects. First, how possible it is to obtain instance masks of the manipulated
object. Second, how efficient the learning can be given the objects that need to be learned. Next, we
demonstrate how it is possible to get the instance masks of a real-world object through interaction.
And we discuss the second aspect in the following section.

A.5.1 COLLECT DATA IN THE REAL-WORLD VIA INTERACTION

In our setting, a robot manipulates only one object at a time and learns its representation. Two cues
can be used to obtain the instance mask of the object being manipulated. Robotic arm localization
and motion. It is easy to know where the robotic arm is within the view through calibration. Also,
motion segmentation is a well-studied topic on real-world objects in the literature (Charig Yang
et al.l 2021} |Yang et al.l 2019). A possible pipeline is to first apply motion segmentation on the
images, and this should give the masks of both the robotic arm and the object as they are both
moving. To remove the portion of the robotic arm, the agent can treat its arm as the first object to
learn, so that it knows how to segment its arm in the future. By subtracting the arm, it now has the
mask of the manipulated object.

Fig. [6] shows an example of getting instance masks from a video of object manipulation without
supervision. In this example, the background in the video is static (but the motion segmentation
algorithm we employed can also work when there is ego-motion), and we first segment the cube
together with the robot hand using motion segmentation (Charig Yang et al.,2021)). Then we remove
the robot hand from the segmentation mask, using “densecrf” (Krihenbiihl & Koltun, 2011) as
post-processing. As mentioned, there are other substitutes to exclude the hands, such as using a
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specifically trained segmentation model of the robotic arm. The segmentation process can run at
5 frames per second. And the results show the practicality of obtaining instance masks during
manipulating objects in the real world.

A.5.2 REAL-WORLD OBJECT PURSUIT

To evaluate the efficiency and robustness of learning on real-world images or videos, we conduct
experiments on two large-scale real-world datasets, i.e., Youtube VOS (Xu et al.,2018) and CO3D
(Reizenstein et al., [2021)).

YouTube-VOS We train and evaluate our framework on the Youtube-VOS dataset, which contains
65 categories. Each category may appear in multiple video sequences, and there may be multiple
instances of the same category in a video sequence. We traverse all the categories, and for each
category, we sample one video sequence from all sequences containing a single instance of this
category to serve as the object we pursuit (Note this is to stimulate the interaction that should happen
in the real world). The number of frames in a video sequence typically ranges from 20 - 36. For
each video sequence, we repeat the frames many times so that the effective dataset size is around
500 samples. For each frame, we apply horizontal flip augmentation and random crop augmentation.
Specifically, we crop each frame with the same ratio along the x and y-axis, which is a random
number between 0.6 and 1. Finally, we resize the frame to 320x180 (The origin size is 1280x720).

CO3D We also test our framework on CO3D. Since processing the original dataset is too time-
consuming (18,619 objects of 50 MS-COCO categories), we randomly select 285 objects from 8
object classes: apple, banana, backpack, baseball bat, bench, bicycle, book, and bottle as training
objects. The data of each object contains a video sequence that shows different views of the object.
We randomly crop each frame to a square image, then apply horizontal flip augmentation. After aug-
mentation, the effective dataset size is about 200 samples per object. Each frame is at the resolution
256x256.

Other training details. For both datasets, we initialize the hypernet with the model pretrained on
synthetic data, with no initial bases and objects. We set different quality measures 7 (0.5, 0.6, 0.7,
and 0.8) to evaluate our framework on real-world data. Other settings are the same as the synthetic
data experiment.

Table 9: Pursuit dynamics on YouTube-VOS Table 10: Pursuit dynamics on CO3D dataset
dataset by varying 7. by varying 7.

T 0.5 0.6 0.7 0.8 T 0.5 0.6 0.7 0.8

lz|/N 035 038 038 040 lz|/N 015 021 022 028

|w|/N 048 049 049 051 lw|/N 019 029 029 037

Re 020 0.16 0.14 0.10 Re 0.14 024 0.16 0.11

Ry 030 032 052 0.58 Ry 037 038 055 0.58

Ay 072 0.76 0.81 0.84 Ay 0.69 074 0.82 0.87

Pursuit dynamics. Tab.[9)and Tab.[I0] show pursuit dynamics under different 7 on YouTube-VOS
and CO3D datasets, respectively. The real-world data experiments share similar patterns with the
synthetic data experiments: when 7 gets bigger, A,, (average segmentation accuracy) and R ¢ (pro-
portion of unqualified and redundant objects) gets bigger, while R, (proportion of expressed objects)
first increases then decreases. A higher 7 excludes objects with poor training accuracy, thus improv-
ing the overall segmentation performance. On the other hand, a higher 7 could make an object easier
to be considered as unqualified, which would be skipped and would not be learned by our system.
The number of bases and qualified objects both increase with 7, because fewer objects would be
claimed as seen when 7 increases, increasing the number of learned objects. The similar patterns
between real-data and synthetic data show that the conclusions we made from Tab. [3|can generalize
to the real-world domain and transfer between different datasets.

Learning efficiency. The running time of our framework depends on the threshold 7. Generally,
a smaller 7 leads to a shorter running time since objects are easier to be expressed by bases or
recognized as seen objects, which will save the time of learning base object representations. In the
synthetic data experiments, 7 = 0.5 could finish running 67 objects in about 10 hours, while 7 = 0.8
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needs 1.5 days. In the real-world experiments on youtubeVOS and CO3D datasets, our framework
can learn around 80 objects per day under 7 = 0.5 and 40 objects per day under 7 = 0.8.

Conclusion on real-world practicality. With these experiments, we can conclude that the observa-
tions we make in the synthetic environment transfer to real-world data. Moreover, two key factors
that are directly related to how practical it is to run object pursuit in the real world are checked to
be positive. First, collecting data with object instance masks through interaction in the real world is
practical, as verified by the effectiveness of the proposed pipeline in the previous section. Second,
the pursuit framework is robust on the real-world data, and the efficiency is good enough to perform
learning in the real world. For example, in a house with hundreds of objects, the training can be
finished within three weeks and requires no human supervision, which is far more time-consuming
and complicated in practice.

A.6 ADDITIONAL RESULTS ON RE-IDENTIFICATION

In section 4.2.1, we demonstrate the impact of the quality measure 7 on seen objects and unseen
objects separately during re-identification. To further elaborate on the impact of 7, in this section,
we report precision and recall on both seen objects and unseen objects (collectively) on the scale of
all testing objects. For unseen objects, we define recall as the fraction of correctly identified unseen
objects among all the unseen objects, and precision is defined as the fraction of correctly identified
unseen objects among all the objects we identify as unseen. Same for seen objects.

Table 11: Re-identification: recall and preci- Table 12: Re-identification: recall and preci-
sion of unseen objects (on all testing objects). sion of seen objects (on all testing objects).
T 0.5 0.6 0.7 0.8 T 0.5 0.6 0.7 0.8
recall 0.28 040 056 0.72 recall 1.0 1.0 1.0 1.0
precision 1.0 1.0 1.0 1.0 precision 0.60 0.64 0.71 0.80

Tab. [IT]and Tab.[I2]report recall and precision on unseen objects and seen objects, taking all testing
objects into consideration. We collect the number of objects our model identifies as seen or unseen
from the re-identification experiment introduced in Section 4.2.1, then compute recall and precision.
From these two tables, the precision of unseen objects and the recall of seen objects are 1.0 under
all 7, which shows that a seen object can always be identified correctly. This is crucial to our
framework: if a seen object is not identified as seen, it would be problematic since we have to learn
that object repeatedly, unlimitedly enlarging the object list 2. On the other hand, the recall of unseen
objects and the precision of seen objects are lower than 1.0, showing that some unseen objects could
be identified as seen. By visualizing the data (Fig. [3), we find this situation happens only when
the unseen object has substantial similarities., e.g., in terms of color or shape, to a seen object. It
has no significant impact on the training process, since these “seen but actually unseen” objects
contribute very little information to the learned object representations. Therefore, our model learns
object representations in a way that prevents learning the same or highly similar objects, improving
efficiency.

We also find that the recall of unseen objects and the precision of seen objects get larger when 7
gets bigger. It is because a larger 7 increases the bar of determining an object as seen, according to
Eq.[2] Therefore, a difference would make the model consider two as different objects. As 7 gets
bigger, the learned representation becomes more discriminative, at the cost of generalization, which
is a characteristic that allows us to tune the system depending on the actual need.

A.7 EVALUATION ON BASE AND NON-BASE OBJECTS

Tab. 3] shows pursuit dynamics, including segmentation accuracy and re-identification rate with dif-
ferent 7 for base and non-base objects. We take all objects in the object list 1 into consideration.
However, these objects are added to the object list in two different ways: some can be expressed by
current bases (non-base), while others are trained and accepted as a new base (base). For the former,
we simply find combination coefficients ;¢ without updating the hypernet, optimizing the model in
much smaller parameter space than the latter. This may cause different pursuit dynamics in these
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two situations. This section analyzes the segmentation accuracy and re-identification rate to promote
the understanding on this aspect.

As reported in Tab. [I3] for both base and

non-base objects, A, shows the average seg-  Taple 13: Segmentation accuracy and re-

mentation accuracy, and Reiq shows the jdentification rate on base and non-base objects.
proportion of the objects that are correctly

re-identified as seen objects. We report A

and R ,.;q under different 7. For 7 = O.8H, T 05 06 07 038
we found that all objects that appeared in the non-base Aw 0065 069 073 N/A
pursuit sequence could not be expressed by Rreia 10 10 10 NA
bases at first and would be learned as a new base A, 078 0.82 0.84 0.86
base, since the threshold 7 is too high for an Rreia 10 1.0 1.0 1.0

object to be considered as being expressed
by bases. In this case, we could not compute
A, and R,.iq for non-base objects. For other 7, the re-identification rate R,¢;q stays stably at 1.0,
showing that if a base or non-base object has been encountered, it could be re-identified correctly.
Tab. [I3|shows that .4,, of both base and non-base objects increases when 7 gets bigger, which shares
a similar pattern with Tab. 3]

We also find that .4,, on non-base objects could be lower than .4,, on base objects. It indicates
that updating the hypernet and training as a new base can perform better than simply combining
bases due to a larger degree of freedom. This difference can be reduced by increasing the capacity
of the hypernetwork. In conclusion, the re-identification performance is stable and accurate on
both base and non-base objects, and the segmentation accuracy increases with 7. Furthermore, the
segmentation accuracy of base objects is generally higher than non-base objects.

A.8 ONE-SHOT LEARNING ON REAL DATA

We perform one-shot learning on
the DAVIS 2016 dataset (Per-
azzi et al,} 2016), a video object  yio e ObjP. (Ours) OSVOS SEA HVS JMP
segmentation dataset in the real
scene. Under the one-shot learn- JJ llgiizrlllTT ggg 25; 2(3)‘11 2‘1‘2 2;2

ing scheme, we fix the hypernet . : : : :

an%l the bases, initialize theﬁ))mbi- T Decay | 21.2 216 364 236 394
nation coefficient p with only one

training sample (first frame in the sequence). From pu, we can get the representation z for the train-
ing object, generate the parameters of a segmentation network using the hypernet, then evaluate the
segmentation accuracy. We first conduct pre-training on training dataset, acquiring an updated hy-
pernet and new bases. We then test one-shot learning on the DAVIS evaluation set, which contains
20 video sequences. We use the first frame as initialization and evaluate the rest frames. Finally, we
compare our results with a set of semi-supervised video object segmentation works on the DAVIS
benchmark, using the Jaccard index (IoU) as the evaluation criterion.

Table 14: Jaccard index on DAVIS evaluation set.

Tab. [[4] shows the quantitative evaluation on
DAVIS. We report Jaccard Mean (average Jac-
card score for all test objects), Jaccard Recall
(average Jaccard score for test objects whose

Table 15: The number of optimizable parameters
and average time consumed per object in one-
shot learning.

score is higher than 50.0), and Jaccard Decay Measure ObjP. (Ours)  OSVOS
(evaluate the Jaccard score decay by time). We
compare our framework with video object seg- # of Parameters 52 5,426,529

mentation methods that use both appearance and ~_-earning Time (s) 10 20

temporal information, such as SEA (Avinash Ra-

makanth & Venkatesh Babu, 2014), HVS (Grundmann et al.,|[2010) and JMP (Fan et al.,[2015). We
also compare our work with OSVOS (Caelles et al.l [2017), a recent work of one-shot learning on
video without temporal information. To make a fair comparison, we implement OSVOS using the
same structure as the primary network in our framework, and remove the post-processing. As shown
in Tab. [T4] our method outperforms these four methods on both Jaccard mean and recall. Specific
experiment settings are described in A.9. Generally speaking, our method is comparable to the state-
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one-shot
training data

tesing data

Figure 7: Visualization results of one-shot learning on DAVIS dataset. 1st column: training data
that contains only one data sample. 2nd to 6th column: results on testing set (the rest frames in the
video clip).

of-the-art on one-shot object segmentation learning, though there is enough space for us to push the
performance.

Furthermore, in terms of learning efficiency, our method performs much better, as shown in Tab. |];5|
Since we only need to optimize the coefficient p with the size of |z|, the number of optimizable
parameters of our method is much smaller than that of OSVOS. So our framework is more efficient
in storage if the trained networks need to be transmitted and used elsewhere. Another advantage of
our framework is that the one-shot learning is much faster, which shows the potential of using our
framework for real-time applications.

Fig.[7] shows some visualization results of one-shot learning on the DAVIS dataset. Although only
one sample is provided during one-shot training, our model can predict the masks on subsequent
frames. In some sequences, for example, the "dog’ sequence showed in the 4th row of Fig.[7] the
viewing angle and the object’s shape vary significantly between frames, making it challenging to
predict subsequent frames only based on the first frame without any object prior. It could be inferred
from the results that our model contains useful object-centric priors that help segment objects in
subsequent frames.

A.9 DETAILS OF REAL-WORLD ONE-SHOT LEARNING

To achieve better performance on one-shot learning tasks, we explore one-shot learning on real-
world datasets. We find several critical factors that would significantly affect the one-shot learning
performance from these experiments. Section A.8 shows the final result we acquire on one-shot
learning. In this section, we’ll show how we reach the final score step by step.

A.9.1 PRETRAINING: STREAMED LEARNING V.S. JOINT LEARNING

We propose two ways to learn objects’ representation: streamed learning and joint learning. In
streamed learning, objects are learned one by one in a certain order, as the algorithm algo[I] shows.
To prevent catastrophic forgetting problems in streamed learning, we add memory constraints with
a coefficient 3, as Eq. [ shows. In joint learning, objects are learned together. Specifically, suppose
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we have n objects in total, we jointly update the hypernet and n representations (z) during training.
Each mini-batch of training data contains data of a randomly selected object. Different objects
appear alternately, and the representation z corresponds to the current object is updated. Forgetting
problems would not occur in joint training.

In this experiment, the hypernet predicts the parameters of the whole segmentation network. We
train it on the DAVIS training set, which contains 30 objects. The experiment found that ’joint
learning’ reaches higher average segmentation accuracy (52.96) than streamed learning (49.72).
There’re two possible reasons. First, we find that the average validation accuracy of joint training
(85.6) is higher than streamed learning (81.2), suggesting that joint learning acquires better base
representations that would help represent a novel object. Second, although the memory constraint
of streamed learning helps the model remember previous knowledge, it also restricts the searching
range, which would cause negative effects on finding representation for a novel object. We’ll use
joint learning for pre-training in the following experiments to reach better performance.

A.9.2 NETWORK ARCHITECTURE

As the experiment section 4.1 introduces, we use an encoder-decoder network as the primary net-
work (segmentation network). In the last experiment (A.9.1), the hypernetwork predicts the parame-
ters of both the encoder and the decoder. However, there’s another option: the hypernetwork predicts
the parameters of the decoder only. In this setting, the encoder updates with the hypernetwork in
pre-training, and is fixed in one-shot learning.

In this experiment, we find that such architecture differences would significantly affect the one-shot
performance. For pre-training, we use ’joint learning’, as we mention in A.9.1. Other settings are the
same as A.9.1. When the hypernetwork predicts the decoder only, we find that the test score (58.95)
is much higher than predicting the whole network (52.96). In our implementation, the encoder
has more network parameters than the corresponding hypernet that generates its parameters. The
hypernet could only generate a subset of all possible parameters of the encoder. The limitation of
the searching range in parameter space may cause the output result to fall into local extrema. Since
the encoders under these two settings are both fixed during one-shot learning and share the same
structure, we assume that an independently trained encoder that is not predicted by the hypernet can
better extract useful high-level features for the downstream processing. We’ll use this setting in the
following experiments.

A.9.3 PRETRAIN DATA

In our previous experiments, we train the hypernet and object representations on the DAVIS training
set, which contains 30 objects only. In this section, we expand our training dataset with Youtube
VOS (Xu et al., 2018). In total, we train our network with 694 real-world objects; each object
contains a 60-90 frames video sequence. Compared to the previous test score (58.95), training on our
extended dataset reaches a much higher score (64.45). When our model is trained on more objects,
it learns more prior knowledge about objects, thus performing better on the one-shot learning task.
Training with more objects would help our model better discriminate the shared object properties
that could be learned by the hypernet and the independent properties that should be saved in the
object’s representation z.

We also conduct experiments Table 16: One-shot learning accuracy and training efficiency.
to evaluate the effect of the One-shot training is performed by searching the optimal repre-
bases. In previous experiments, sentation either on the manifold spanned by the base objects, or
we represent novel objects over over the entire representation space.

base object representations; in

; base representation  full representation space
this part, we also perform learn-

J Mean 1 64.45 48.48

ing of the object representa- . "
Learning Time (s) | 12 103

tions over the entire representa-

tion space. Tab[I6] shows that

searching over base objects representation space performs much better than searching over full rep-
resentation space on both testing accuracy and training efficiency. We show a similar pattern in
4.2.3. In this experiment, we construct the base representation space through joint training on 694
object data. In the ’full representation space’ setting, we use the same hypernet as the over base
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representation’ setting. The result probably suggests that the base representation space, as a sub-
space of the full representation space, contains objects’ prior knowledge and shares some common
information about objects. When a novel object comes, it is more likely to accurately represent it
in this sub-space than in the full representation space. Searching over the full representation space
would make the searching process slower and possibly fall into local maxima.

A.9.4 FINAL RESULT

The final result is shown in Tab[l7]

. . Table 17: Jaccard index on DAVIS evaluation set.
The best score is acquired when we

pre-train our model on 694 ob]:ef:ts Measure  ObjP.(Origin)  ObjP.(Now)

(YoutubeVOS + DAVIS) using joint

training, and the hypernet predicts the JJ llkweallllTT ‘gg; g‘s‘g
ecal . .

parameters of the decoder only. The J Decay | 204 212

Jaccard score increases from 49.7 to
64.5 by modifying the critical factors.
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