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ABSTRACT

Langevin Monte Carlo (LMC) is a popular Markov chain Monte Carlo sampling
method. One drawback is that it requires the computation of the full gradient at
each iteration, an expensive operation if the dimension of the problem is high. We
propose a new sampling method: Random Coordinate LMC (RC-LMC). At each
iteration, a single coordinate is randomly selected to be updated by a multiple of
the partial derivative along this direction plus noise, and all other coordinates re-
main untouched. We investigate the total complexity of RC-LMC and compare it
with the classical LMC for log-concave probability distributions. When the gra-
dient of the log-density is Lipschitz, RC-LMC is less expensive than the classical
LMC if the log-density is highly skewed for high dimensional problems, and when
both the gradient and the Hessian of the log-density are Lipschitz, RC-LMC is al-
ways cheaper than the classical LMC, by a factor proportional to the square root
of the problem dimension. In the latter case, our estimate of complexity is sharp
with respect to the dimension.

1 INTRODUCTION

Monte Carlo sampling plays an important role in machine learning (Andrieu et al., 2003) and
Bayesian statistics. In applications, the need for sampling is found in atmospheric science (Fabian,
1981), epidemiology (Li et al., 2020), petroleum engineering (Nagarajan et al., 2007), in the form
of data assimilation (Reich, 2011), volume computation (Vempala, 2010) and bandit optimiza-
tion (Russo et al., 2018).

In many of these applications, the dimension of the problem is extremely high. For example, for
weather prediction, one measures the current state temperature and moisture level, to infer the flow
in the air, before running the Navier–Stokes equations into the near future (Evensen, 2009). In a
global numerical weather prediction model, the degrees of freedom in the air flow can be as high
as 109. Another example is from epidemiology: When a disease is spreading, one measures the
everyday new infection cases to infer the transmission rate in different regions. On a county-level
modeling, one treats 3, 141 different counties in the US separately, and the parameter to be inferred
has a dimension of at least 3, 141 (Li et al., 2020).

In this work, we focus on Monte Carlo sampling of log-concave probability distributions on Rd,
meaning the probability density can be written as p(x) ∝ e−f(x) where a f(x) is a convex
function. The goal is to generate (approximately) i.i.d. samples according to the target probabil-
ity distribution with density p(x). Several sampling frameworks have been proposed in the lit-
erature, including importance sampling and sequential Monte Carlo (Geweke, 1989; Neal, 2001;
Del Moral et al., 2006); ensemble methods (Reich, 2011; Iglesias et al., 2013); Markov chain Monte
Carlo (MCMC) (Roberts and Rosenthal, 2004), including Metropolis-Hasting based MCMC (MH-
MCMC) (Metropolis et al., 1953; Hastings, 1970; Roberts and Tweedie, 1996); Gibbs samplers
(Geman and Geman, 1984; Casella and George, 1992); and Hamiltonian Monte Carlo (Neal, 1993;
Duane et al., 1987). Langevin Monte Carlo (LMC) (Rossky et al., 1978; Parisi, 1981; Roberts and
Tweedie, 1996) is a popular MCMC method that has received intense attention in recent years due to
progress in the non-asymptotic analysis of its convergence properties (Durmus and Moulines, 2017;
Dalalyan, 2017; Dalalyan and Karagulyan, 2019; Durmus et al., 2019).

Denoting by xm the location of the sample at m-th iteration, LMC obtains the next location as
follows:

xm+1 = xm −∇f(xm)h+
√

2hξmd , (1)
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where h is the time stepsize, and ξmd is drawn i.i.d. fromN (0, Id), where Id denotes identity matrix
of size d× d. LMC can be viewed as the Euler-Maruyama discretization of the following stochastic
differential equation (SDE):

dXt = −∇f(Xt) dt+
√

2 dBt,d , (2)

whereBt,d is a d-dimensional Brownian motion. It is well known that under suitable conditions, the
distribution of Xt converges exponentially fast to the target distribution (see e.g., (Markowich and
Villani, 1999)). Since (1) approximates the SDE (2) with an O(h) discretization error, the probabil-
ity distribution of xm produced by LMC (1) converges exponentially to the target distribution up to
a discretization error (Dalalyan and Karagulyan, 2019).

A significant drawback of LMC is that the algorithm requires the evaluation of the full gradient
at each iteration. This could be potentially very expensive in most practical problems. Indeed,
when the analytical expression of the gradient is not available, each partial derivative component
in the gradient needs to be computed separately, either through finite differencing or automatic
differentiation (Baydin et al., 2017), so that the total number of such evaluations can be as many
as d times the number of required iterations. In the weather prediction and epidemiology problems
discussed above, f stands for the map from the parameter space of measured quantities via the
underlying partial differential equations (PDEs), and each dimensional partial derivative calls for
one forward and one adjoint PDE solve. Thus, 2d PDE solves are required in general at each
iteration. Another example comes from the study of directed graphs with multiple nodes. Denote
the nodes by N = {1, 2, . . . , d} and directed edges by E ⊂ {(i, j) : i, j ∈ N}, and suppose
there is a scalar variable xi associated with each node. When the function f has the form f(x) =∑

(i,j)∈E fij(xi, xj), the partial derivative of f with respect to xi is given by

∂f

∂xi
=

∑
j:(i,j)∈E

∂fij
∂xi

(xi, xj) +
∑

l:(l,i)∈E

∂fli
∂xi

(xl, xi) .

Note that the number of terms in the summations equals the number of edges that touch node i, the
expected value of which is about 2/d times the total number of edges in the graph. Meanwhile,
evaluation of the full gradient would require evaluation of both partial derivatives of each fij for all
edges in the graph. Hence, the cost difference between these two operations is a factor of order d.

In this paper, we study how to modify the updating strategies of LMC to reduce the numerical cost,
with the focus on reducing dependence on d. In particular, we will develop and analyze a method
called Random Coordinate Langevin Monte Carlo (RC-LMC). This idea is inspired by the random
coordinate descent (RCD) algorithm from optimization (Nesterov, 2012; Wright, 2015). RCD is a
version of Gradient Descent (GD) in which one coordinate (or a block of coordinates) is selected at
random for updating along its negative gradient direction. In optimization, RCD can be significantly
cheaper than GD, especially when the objective function is skewed and the dimensionality of the
problem is high. In RC-LMC, we use the same basic strategy: At iteration m, a single coordinate of
xm is randomly selected for updating, while all others are left unchanged.

Although each iteration of RC-LMC is cheaper than conventional LMC, more iterations are required
to achieve the target accuracy, and delicate analysis is required to obtain bounds on the total cost.
Analogous to optimization, the savings of RC-LMC by comparison with LMC depend on the struc-
ture of the dimensional Lipschitz constants. Under the assumption that there is a factor-of-d differ-
ence in per-iteration costs, we compare our results with current results for classical LMC (Dalalyan
and Karagulyan, 2019; Durmus et al., 2019) and conclude the following:

1. (Theorem 4.1) When the gradient of f is Lipschitz but the Hessian is not, RC-LMC costs
Õ(d2/ε2) to get an ε-accurate solution. Therefore, RC-LMC outperforms LMC, in terms of
the computational cost, if f is skewed and the dimension of the problem is high, as discussed
in Remark 4.1. The optimal numerical cost in this setting is achieved when the probability of
choosing the i-th direction is proportional to the i-th directional Lipschitz constant.

2. (Theorem 4.2) When both the gradient and the Hessian of f are Lipschitz, RC-LMC requires
Õ(d3/2/ε) iterations to achieve ε accuracy. On the other hand, the currently available result
indicates that the classical LMC costs Õ(d2/ε). Thus, RC-LMC saves a factor of at least d1/2

regardless of the stiffness structure of f , as discussed in Remark 4.2.
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3. (Proposition 4.2) The Õ(d3/2/ε) complexity bound for RC-LMC is sharp when both the gradient
and the Hessian of f are Lipschitz.

(The notation Õ(·) omits possible log terms.) We make three additional remarks. (a) Throughout the
paper we assume that one element of the gradient is available at an expected cost of approximately
1/d of the cost of the full gradient evaluation. Although this property is intuitive, and often holds
in many situations (such as the graph-based example presented above), it does not hold for all prob-
lems (Wright, 2015). (b) Besides replacing gradient evaluation by coordinate algorithms, one might
also improve the dimension dependence of LMC by utilizing a more rapidly convergent method
for the underlying SDEs than (2). One such possibility is to use underdamped Langevin dynamics,
see e.g., (Rossky et al., 1978; Dalalyan and Riou-Durand, 2018; Cheng et al., 2018; Eberle et al.,
2019; Shen and Lee, 2019; Cao et al., 2019), which can also be combined with coordinate sampling.
For the clarity of presentation, we will focus only on LMC in this work and leave the extension to
underdampped samplers to a future work. (c) It is also possible to reduce the cost of full gradient
evaluation using stochastic gradient (Welling and Teh, 2011) or MALA-in-Gibbs sampling (Tong
et al., 2020). However, both methods require specific forms of the objective function that are not
considered in our work.

The paper is organized as follows. We present the RC-LMC algorithm in Section 2. Notations and
assumptions on f are listed in Section 3, where we also recall theoretical results for the classical
LMC method. We present our main results regarding the numerical cost in Section 4 and numerical
experiments in Section 5. Proofs of the main results are deferred to the Appendix.

2 RANDOM COORDINATE LANGEVIN MONTE CARLO

We introduce the Random Coordinate Langevin Monte Carlo (RC-LMC) method in this section. At
each iteration, one coordinate is chosen at random and updated, while the other components of x
are unchanged. Specifically, denoting by rm the index of the random coordinate chosen at m-th
iteration, we obtain xm+1

rm according to a single-coordinate version of (1) and set xm+1
i = xmi for

i 6= rm.

The coordinate index rm can be chosen uniformly from {1, 2, . . . , d}; but we will consider more
general possibilities. Let φi be the probability of component i being chosen, we denote the distribu-
tion from which rm is drawn by Φ, where

Φ := {φ1, φ2, . . . , φd}, where φi > 0 for all i and
∑d
i=1 φi = 1. (3)

The stepsize may depend on the choice of coordinate; we denote the stepsizes by {h1, h2, . . . , hd}
and assume that they do not change across iterations. In this paper, we choose hi to be inversely
dependent on probabilities φi, as follows:

hi =
h

φi
, i = 1, 2, . . . , d , (4)

where h > 0 is a parameter that can be viewed as the expected stepsize. In Section 4.2-4.3, we
will find the optimal form of Φ under different scenarios. The initial iterate x0 is drawn from a
distribution q0, which can be any distribution that is easy to draw from (the normal distribution, for
example). We present the complete method in Algorithm 1.

When we compare (5) with the classical LMC (1), we see that only one random coordinate is updated
per iteration, meaning:

∇f(xm)→ ∂rmf(xm)erm , ξmd → ξmerm

where ei is the unit vector for i-th direction and ξm is drawn fromN (0, 1). Define the elapsed time
at m-th iteration as

Tm :=

m−1∑
n=0

hrn , and T 0 := 0 , (6)

then for t ∈ (Tm, Tm+1], the updating formula (5) can be viewed as the Euler approximation to the
following SDE: Xrm(t) = Xrm(Tm)−

∫ t

Tm
∂rmf(X(s)) ds+

√
2

∫ t

Tm
dBs ,

Xi(t) = Xi(T
m) , ∀i 6= rm ,

(7)
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Algorithm 1 Random Coordinate Langevin Monte Carlo (RC-LMC)

Input: Coordinate distribution Φ := {φ1, φ2, . . . , φd}; parameter h > 0 and stepsize set
{h1, h2, . . . , hd} defined in (3)–(4); M (stop index).
Sample x0 from an initial distribution q0

for m = 0, 1, 2, . . .M − 1 do
1. Draw rm ∈ {1, . . . , d} according to probability distribution Φ;
2. Draw ξm from N (0, 1);
3. Update xm+1 by

xm+1
i =

{
xmi − hi∂if(xm) +

√
2hi ξ

m, i = rm

xmi , i 6= rm.
(5)

end for
return xM

where Bt is a 1-dimensional Brownian motion. We will show in Section 4.1 that the SDE preserves
the invariant measure, that is, X(t) ∼ p for any t > 0 if X(0) ∼ p, and it is ergodic. The invariant
measure of RC-LMC, which can be viewed as a discretized version of the SDE, is not exactly p, due
to the unavoidable discretization error.

3 NOTATIONS, ASSUMPTIONS AND CLASSICAL RESULTS

We unify notations and assumptions in this section, and summarize and discuss the classical results
on LMC. Throughout the paper, to quantify the distance between two probability distributions, we
use the Wasserstein distance defined by

W (µ, ν) =
(

inf
(X,Y )∈Γ(µ,ν)

E|X − Y |2
)1/2

,

where Γ(µ, ν) is the set of distribution of (X,Y ) ∈ R2d whose marginal distributions, for X and Y
respectively, are µ and ν. The distributions in Γ(µ, ν) are called the couplings of µ and ν. Due to
the use of power 2 in the definition, this is sometimes called the Wasserstein-2 distance. Here and
in the sequel, we use |·| to denote the Euclidean norm of a vector.

We assume that f is strongly convex, so that p is strongly log-concave. We obtain results under two
different assumptions: First, Lipschitz continuity of the gradient of f (Assumption 3.1) and second,
Lipschitz continuity of the Hessian of f (Assumption 3.2 together with Assumption 3.1).
Assumption 3.1. The function f is twice differentiable, f is µ-strongly convex for some µ > 0 and
its gradient∇f is L-Lipschitz. That is, for all x, x′ ∈ Rd, we have

f(x)− f(x′)−∇f(x′)>(x− x′) ≥ µ

2
|x− x′|2 , (8)

and
|∇f(x)−∇f(x′)| ≤ L|x− x′| . (9)

It is an elementary consequence of (8) that

(∇f(x′)−∇f(x))>(x′ − x) ≥ µ|x′ − x|2, for all x, x′ ∈ Rd. (10)

Since each coordinate direction plays a distinct role in RC-LMC, we distinguish the Lipschitz con-
stants in each such direction. When Assumption 3.1 holds, partial derivatives in all coordinate
directions are also Lipschitz. Denoting them as Li for each i = 1, 2, . . . , d, we have

|∂if(x+ tei)− ∂if(x)| ≤ Li|t| (11)

for any x ∈ Rd and any t ∈ R. We further denote Lmax := maxi Li and define condition numbers
as follows:

κ = L/µ ≥ 1, κi = Li/µ ≥ 1 , κmax = max
i
κi . (12)
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As shown in (Wright, 2015), we have

Li ≤ Lmax ≤ L ≤ dLmax, κi ≤ κmax ≤ κ ≤ dκmax . (13)

These assumptions together imply that the spectrum of the Hessian is bounded above and below for
all x, specifically, µId � ∇2f(x) � LId and [∇2f(x)]ii ≤ Li ≤ Lmax for all x ∈ Rd.

Both upper and lower bounds of L in term of Lmax in (13) are tight. If ∇2f is a diagonal matrix,
then Lmax = L, both being the biggest eigenvalue of∇2f . Thus, κmax = κ in this case. This is the
case in which all coordinates are independent of each other, for example f =

∑
i λix

2
i . On the other

hand, if∇2f = e · e> where e ∈ Rd satisfies ei = 1 for all i, then L = dLmax and κ = dκmax. This
is a situation in which f is highly skewed, that is, f = (

∑
i xi)

2/2.

The next assumption concerns higher regularity for f .
Assumption 3.2. The function f is three times differentiable and∇2f is H-Lipschitz, that is

‖∇2f(x)−∇2f(x′)‖2 ≤ H|x− x′|, for all x, x′ ∈ Rd. (14)

When this assumption holds, we further define Hi to satisfy

|∂iif(x+ tei)− ∂iif(x)| ≤ Hi|t| , (15)

for any i = 1, 2, . . . , d, all x ∈ Rd, and all t ∈ R, where ∂iif is [∇2f(x)]ii, the (i, i) diagonal entry
of the Hessian matrix∇2f .

We summarize existing results for the classical LMC in the following theorem.
Theorem 3.1 ((Durmus et al., 2019, Theorem 9), (Dalalyan and Karagulyan, 2019, Theorem 5)). Let
qm be the probability distribution of the m-th iteration of LMC (1), and p be the target distribution.
Using the notation Wm := W (qm, p), we have the following:

• Under Assumption 3.1, let h ≤ 1/L, we have

Wm ≤ exp (−µhm/2)W0 + 2(κhd)1/2 ; (16)

• Under Assumptions 3.1 and 3.2, let h < 2/(µ+ L), we have

Wm ≤ exp (−µhm)W0 +
Hhd

2µ
+ 3κ3/2µ1/2hd1/2 . (17)

This theorem yields stopping criteria for the number of iterations M to achieve a user-defined accu-
racy of ε. When the gradient of f is Lipschitz, to achieve ε-accuracy, we can require both terms on
the right hand side of (16) to be smaller than ε/2, which occurs when

h = Θ(ε2/dκ) , M = Θ

(
1

µh
log

(
W0

ε

))
= Θ

(
dκ

µε2
log

(
W0

ε

))
, (18)

leading to a cost of Õ(d2κ/(µε2)) evaluations of gradient components (when we assume that each
full gradient can be obtained at the cost of d individual components of the gradient). When both the
gradient and the Hessian are Lipschitz, to achieve ε-accuracy, we require all three terms on the right
hand side of (17) to be smaller than ε/3. Assuming d� 1 and all other constants are O(1), we thus
obtain

h = Θ(εµ/(dH + d1/2L3/2)) , M = Θ

(
dH + d1/2L3/2

µ2ε
log

(
W0

ε

))
, (19)

which yields a cost of Õ(d2H/(µ2ε)) evaluations of gradient components. HereA = Θ(B) denotes
cB ≤ A ≤ CB for some absolute constant c and C.

4 MAIN RESULTS

We discuss the main results from two perspectives. In Section 4.1 we examine the convergence of
the underlying SDE (7), laying the foundation for the convergence in the discrete setting. We then
build upon this result and show the convergence of the RC-LMC algorithm in Section 4.2 and 4.3
under two different assumptions. We show in Section 4.4 that when both Assumption 3.1 and 3.2
are satisfied, our bound is tight with respect to d and ε.
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4.1 CONVERGENCE OF THE SDE (7)

To study the convergence of (7), we first let Xm = X(Tm) and denote the probability filtration
by Fm =

{
x0, rn≤m, Bs≤Tm

}
. Then {Xm}∞m=0 is a Markov chain and the following proposition

shows its geometric ergodicity.

Proposition 4.1. Let Xm = X(Tm) solve (7). If f satisfies Assumption 3.1 and h ≤ µmin{φi}
4+8L2+32L4 ,

then p(x) is the stationary probability density of the Markov chain {Xm}∞m=0.

See proof in Appendix A. Under some mild conditions, we can further prove that the solution to
the SDE converges to the target distribution exponentially (Proposition A.1). Since xm, the samples
generated by the algorithm can be viewed as discrete version of Xm, the algorithm then is expected
to converge up to a discretization error as well. This is indeed shown in the upcoming two subsec-
tions, where we document the non-asymptotic convergence rate, and calculate the complexity of the
algorithm.

4.2 CONVERGENCE OF RC-LMC. CASE 1: LIPSCHITZ GRADIENT

Under Assumption 3.1, we have the following result. The proof can be found in Appendix B.

Theorem 4.1. Assume f satisfies Assumption 3.1, and hi = h/φi with h ≤ µmin{φi}
8L2 . Let qm

be the probability distribution of xm computed in (5), let p be the target distribution, and denote
Wm := W (qm, p). Then we have

Wm ≤ exp

(
−µhm

4

)
W0 +

5h1/2

µ

√√√√ d∑
i=1

L2
i

φi
. (20)

We make a few comments here: (1) the requirement on h is rather weak. When both µ and L are
moderate (both O(1) constants), the requirement is essentially h . 1/d. (2) The estimate (20)
consists of two terms. The first is an exponentially decaying term and the second comes from
the variance of random coordinate selection. If we assume all Lipschitz constants Li are of O(1),
this remainder term is roughly O(h1/2d). (3) The theorem suggests a stopping criterion: to have
WM ≤ ε, we roughly need h < ε2/d2, and M = Õ(d2/ε2), assuming Li = O(1). In terms of ε and
d dependence, this puts M at the same order as (18), as required by the classical LMC.

Theorem 4.1 holds for all choices of {φi} satisfying (3). From the explicit formula (20) we can
choose {φi} to minimize the right-hand side of the bound. Nesterov (2012) proposed distributions
Φ that depend on the dimensional Lipschitz constants Li, i = 1, 2, . . . , d from (11). For α ∈ R, we
can let φi(α) ∝ Lαi , specifically,

φi(α) :=
Lαi∑
j L

α
j

, and Φ(α) := {φ1(α), φ2(α), . . . , φd(α)} . (21)

Note that when α = 0, φi(0) = 1/d for all i: the uniform distribution among all coordinates. When
α > 0, the directions that with larger Lipschitz constants have higher probability to be chosen. Since
hi = h/φi, one uses smaller stepsizes for stiffer directions. (On the other hand, when α < 0, the
directions with larger Lipschitz constants are less likely to be chosen, and the stepsizes are larger in
stiffer directions, a situation that is not favorable and should be avoided.) The following corollary
discusses various choices of α and the corresponding computational cost.
Corollary 4.1. Under the same conditions as in Theorem 4.1, with φi = φi(α) defined in (21),
the number of iterations M required to attain WM ≤ ε is M = Θ

(
K2−αKα
µε2 log

(
W0

ε

))
, where

Kα =
∑d
i=1 κ

α
i . This cost is optimized when α = 1, for which we have

M = Θ

(
(
∑
i κi)

2

µε2
log

(
W0

ε

))
. (22)

See proof in Appendix B. We note that the initial error W0 enters through a log term and is essen-
tially negligible.
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Remark 4.1. We now compare the numerical cost of RC-LMC and LMC in Case 1. We separate the
discussion on uniform sampling (φi = 1/d) and the optimal sampling (φi ∝ Li) below.

– Optimal sampling: According to Corollary 4.1, the optimal sampling strategy is achieved when
α = 1, meaning φi ∝ Li. In this case, we compare (22) with (18), adjusting (18) by a factor of d to
account for the higher cost per iteration. RC-LMC has more favorable computational cost if

d2κ ≥

(∑
i

κi

)2

.

Considering κi ≤ κmax ≤ κ ≤ dκmax, as presented in (13), this is guaranteed if κ ≥ κ2
max. In the

regime when κ ∼ dκmax this holds so long as d > κmax, meaning the dimension of the problem is
high. And in the regime when κmax ∼ κ, RC-LMC still outperforms when κi decreases fast. One
example is to set f(x) = dx2

1 +
∑d
i=2 x

2
i with d� 1.

– Uniform sampling: Uniform sampling means φi = 1/d for all i, with α = 0 in Corollary 4.1.

This leads to a cost of Θ
(∑

κ2
i

µε2 log
(
W0

ε

))
. Comparing with (18) adjusted by a factor of d, we see

that RC-LMC still has a more favorable computational cost if

d2κ ≥
∑
i

κ2
i .

As in the optimal case, this happens when f is highly skewed.

Our proof of Theorem 4.1 follows from a coupling approach similar to that used by Dalalyan and
Karagulyan (2019) for LMC. We emphasize that for the coordinate algorithm, we need to overcome
the additional difficulty that the process of each coordinate is not contracting on the SDE (7) level.
This is a different situation from the classical LMC (Dalalyan and Karagulyan, 2019) whose corre-
sponding SDE (2) already provides the contraction property and thus only the discretization error
needs to be considered. Despite this, the algorithm RC-LMC still enjoys the contraction property
that ensures that the distance between two different trajectories following the algorithm contract.
However, this contraction property is not component-wise, so we need to choose Young’s constant
wisely and take summation of every coordinate. The summation will also produce some extra terms,
which we need to bound. Dalalyan and Karagulyan (2019) obtains an estimate for the cost of the
classical LMC of Õ(d2κ2/(µε2)). Compared with this estimate, our estimate for the cost of RC-
LMC is always cheaper (since κ2 ≥ κ2

max). The improved estimate of the cost of LMC (18) was
obtained by Durmus et al. (2019) using a quite different approach based on optimal transportation.
It is not clear whether their technique can be adapted to the coordinate setting to obtain an improved
estimate.

4.3 CONVERGENCE OF RC-LMC. CASE 2: LIPSCHITZ HESSIAN

We now assume that Assumption 3.1 and 3.2 hold, that is, both the gradient and the Hessian of f are
Lipschitz continuous. In this setting, we obtain the following improved convergence estimate. The
proof can be found in Appendix C.

Theorem 4.2. Assume f satisfies Assumptions 3.1 and 3.2 and let hi = h/φi, with h ≤ µmin{φi}
8L2 .

Denoting by qm(x) the probability density function of xm computed from (5) and by p the target
distribution, and letting Wm := W (qm, p), we have:

Wm ≤ exp

(
−µhm

4

)
W0 +

3h

µ

√√√√ d∑
i=1

(L3
i +H2

i )

φ2
i

. (23)

We see again two terms in the bound, an exponentially decaying term and a variance term. Assuming
all Lipschitz constants areO(1), the variance term is ofO(hd3/2). By comparing with Theorem 4.1,
we see that ε error can be achieved with the looser stepsize requirement h . ε

d3/2
.

By choosing {φi} to optimize the bound in Theorem 4.2, we obtain the following corollary.
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Corollary 4.2. Under the same conditions as in Theorem 4.2, the optimal choice of {φi} is to set:

φi =

(
L3
i +H2

i

)1/3∑d
i=1 (L3

i +H2
i )

1/3
.

For this choice, the number of iterations M required to guarantee WM ≤ ε satisfies

M = Θ


(∑d

i=1

(
L3
i +H2

i

)1/3)(∑d
i=1

(
L3
i +H2

i

)1/3)1/2

µ2ε
log

(
W0

ε

) . (24)

If µ, κi and Hi are all constants of O(1), then the total cost is Õ(d3/2/ε) regardless of the choice
of {φi}.

Remark 4.2. We now compare RC-LMC with LMC in Case 2 using Theorem 4.2 and Corollary 4.2.
We still separate the discussion on optimal sampling and uniform sampling strategy.

– Optimal sampling: This is to set φi as stated in Corollary 4.2. Comparing the cost shown in (24)
and the cost of LMC ( (19) adjusted by a factor of d to account for the higher cost per iteration), we
see that RC-LMC always has a more favorable computational cost since

d2H + d3/2L3/2 ≥ d3/2(L3 +H2)1/2 .

(Here we relaxed (24) using Li ≤ L,Hi ≤ H .)

– Uniform sampling: This is to set φi = 1/d in (23). Then the total cost of RC-LMC is

M = Θ


(∑d

i=1

(
L3
i +H2

i

)1/3)3/2

µ2ε
log

(
W0

ε

) ,

according to Corollary4.2. Comparing with (19) adjusted by a factor of d as the cost for LMC, and
use the fact that Li ≤ L,Hi ≤ H , it is clear that RC-LMC is always cheaper, similar to the optimal
case.

SupposeL andH are all constants ofO(1), then the cost of RC-LMC is roughly Õ(d3/2/ε), while the
classical LMC requires Õ(d2/ε), according to Dalalyan and Riou-Durand (2018). This represents
a savings factor of d1/2, regardless of the structure of f .

4.4 TIGHTNESS OF THE COMPLEXITY BOUND

When both the gradient and the Hessian are Lipschitz, we claim that estimate Õ(d3/2/ε) obtained
in Corollary 4.2 is tight. An example is presented in the following proposition.
Proposition 4.2. Let φi = 1/d for all i, and set the initial distribution and the target distribution to
be:

q0(x) =
1

(4π)d/2
exp(−|x− e|2/4) , p(x) =

1

(2π)d/2
exp(−|x|2/2) , (25)

where e ∈ Rd satisfies ei = 1 for all i. Let qm be the probability distribution of xm generated by
Algorithm 1, and denote Wm := W (qm, p). Then we have

Wm ≥ exp (−2mh)

√
d

3
+
d3/2h

6
, m ≥ 1 . (26)

In particular, to have WM ≤ ε, one needs at least M = Õ(d3/2/ε).

See proof in Appendix D.
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5 NUMERICAL RESULTS

We provide some numerical results in this section. Since it is extremely challenging to estimate
the Wasserstein distance between two distributions in high dimensions, we demonstrate instead the
convergence of estimated expectation for a given observable. Denoting by {x(i),M}Ni=1 the list of
N samples, with each of them computed through Algorithm 1 independently with M iterations, we
define the error as follows:

ErrorM,N =

∥∥∥∥∥ 1

N

N∑
i=1

ψ(x(i),M )− EpX(ψ)

∥∥∥∥∥
2

, (27)

where ψ is a matrix function and Ep(ψ) is the expectation of ψ under the target distribution p. As
h → 0 and Mh → ∞, we have WM → 0, and x(i),M can be regarded as approximately sampled
from p. According to the central limit theorem, we have limh→0,Mh→∞ ErrorM,N = O(1/

√
N).

In this example, we set the target and initial distributions to be Gaussian p(x) ∝ p1(x)p2(x) and
q0(x) ∝ p1(x− e)p2(x) with

p1(x) = exp

(
−1

2
x (T + (d/10)I)

>
(T + (d/10)I) x>

)
, p2 = exp

(
−1

2

100∑
i=11

|xi|2
)
,

where x = (x1, x2, . . . , x10)
>, e = (1, 1, . . . , 1)

> ∈ R10, I is the identity matrix and T is a random
matrix with each entry i.i.d. drawn from N (0, 1). We run the simulation with N = 105, and we
compute ErrorM with ψ(x) = xx>. This measures the spectral norm of the covariance matrix of the
first 10 entries.

The results are shown in Figure 1. We run RC-LMC with time stepsize h = 10−5 and α = 1,
following (21). It is unclear what stepsize h to choose for LMC to yield a fair comparison. Bearing
in mind that d = 100 in this example, so that the per-iteration cost of LMC is 100 times of that
of RC-LMC, we try first h = 10−3. It is clear that RC-LMC, presented by the purple dashed line,
achieves lower error than LMC at the same cost, before achieving the error plateau. Next, we try
smaller choices of h in LMC. The choices h = .0008 and h = .0005 yield slower decay rates (see
the red (star) and yellow (circle) lines, respectively), but lower error plateaus as well, meaning that
the saturation error is smaller. However, computation required to reach these plateaus is longer, and
the plateaus are still higher than for RC-LMC.

2000 4000 6000 8000 10000 12000 14000

Cost

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
rr

o
r

LMC, h=10
-3

LMC, h=8*10
-4

LMC, h=5*10
-4

RC-LMC, h=10
-5

Figure 1: The decay of error with respect to the cost (number of ∂f calculations).
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A PROOF OF PROPOSITION 4.1

We recall the SDE (7):Xrm(t) = Xrm(Tm)−
∫ t

Tm
∂rmf(X(s)) ds+

√
2

∫ t

Tm
dBs ,

Xi(t) = Xi(T
m) , ∀i 6= rm ,

(28)

where rm is randomly selected from 1, . . . , d. Moreover, recall that Xm+1 = X
(
Tm+1

)
is a

Markovian process. We denote its transition kernel by Ξ, meaning that

Xm+1 d
= Ξ(Xm, ·) .

Moreover, we denote Ξn the n-step transition kernel. Proposition 4.1 is a consequence of the
following Proposition.
Proposition A.1. Denote Πm the probability distribution of Xm and Π be the probability distribu-
tion induced by p(x), then under the conditions of Proposition 4.1, we have

• Π is the stationary distribution of the Markov chain {Xm}∞m=0.

• If the second moment of Π0 is finite and X0 is drawn from Π0, then there are constants
R > 0 and r > 1, independent of m, such that for any m ≥ 0 we have

dTV (Πm,Π) dx ≤ Rr−m . (29)

Remark A.1. According to Mattingly et al. (2002), the constants R and r do not depend on m,
but their dependence on other parameters such as h, d, and L is hard to trace. This contrasts
with the results in Dalalyan and Karagulyan (2019) for the classical Langevin dynamics, which
are built upon the contraction property. The new complication comes mainly from the complicated
coordinate selection process, making the contraction property no longer available. Nor can we claim
sharpness of the theorem. In fact, unlike in Dalalyan and Karagulyan (2019); Xu et al. (2018), where
the authors directly studied LMC, we discuss here only convergence of the SDE, the continuous
version of RC-LMC. The explicit dependencies of the convergence rate here are unimportant, and
we allow the results to be loose. Non-asymptotic convergence results of the algorithms are presented
in Section 4.2 and 4.3.

To prove Proposition A.1, we need to introduce the following lemma:
Lemma A.1. Under conditions of Theorem 4.1, there are constants R1 > 0, r1 > 1, such that for
any z0 ∈ Rd

sup
A∈B(Rd)

∣∣∣∣Ξmd(z0, A)−
∫
A

p(x) dx

∣∣∣∣ ≤ (|z0 − x∗|2 + 1
)
R1r

−m
1 , (30)

where x∗ is the minimal point of f(x) and Ξ is the transition kernel for {Xm}∞m=0.

We postpone the proof of Lemma A.1 to Section A.1. Now, we are ready to prove the proposition.

Proof of Proposition A.1 (Proposition 4.1). To prove the first bullet point of Proposition A.1, we
assume the distribution of Xm is Π and we need to prove:

For any choice of rm, the conditional distribution of Xm+1 is also Π.

Without loss of generality, we consider rm = 1. Under this condition, we have the following.

• The distribution of X2≤j≤d(t) between [Tm, Tm+1] is preserved.

12
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• For fixed z2, z3, . . . , zd, the stationary density of SDE

dz = −∂1f(z, z2, z3, . . . , zd) dt+
√

2 dBs , (31)

is exp(−f(z,z2,...,zd)∫
exp(−f(z,z2,...,zd) dz

. This implies that the conditional distribution of X1(t) with fixed
X2≤j≤d(t) is also preserved.

Combining these two points, we find that under condition rm = 1, the conditional distribution of
Xm+1 is Π, which further proves that Π is the stationary distribution and Proposition 4.1 holds.

To show (29), we take the expectation of (30) using Π0, then we can obtain that for any A ∈ BRd
hat ∣∣Πmd(A)−Π(A)

∣∣ (I)
=

∣∣∣∣EΠ0

(
Ξmd(·, A)

)
− EΠ0

(∫
A

p(x) dx

)∣∣∣∣
(II)

≤ EΠ0

(∣∣∣∣Ξmd(z,A)−
∫
A

p(x) dx

∣∣∣∣)
(III)

≤ R1r
−m
1

∫
Rd

(
|z − z∗|2 + 1

)
q0(z) dz < C0r

−m
1 ,

where we use Xmd d
= Ξmd(X0, ·) and Π(A) =

∫
A
p(x) dx in (I), Π0 is a non-negative measure in

(II) and (30) in (III). Since this is true for all A ∈ BRd , we have

dTV (Πmd,Π) = sup
A∈BRd

∣∣Πmd(A)−Πm(A)
∣∣ < C0r

−m
1 . (32)

By using (28) with Itô’s formula, we have

dE|Xrm(t)|2

dt
= −2E (∂rmf(Xrm(t))Xrm(t)) + 2 ≤ 2 + E|∂rmf(Xrm(t))|2 + E|Xrm(t)|2

≤ 2 + L2
rmE|Xrm(t)− x∗rm |2 + E|Xrm(t)|2 ≤ C1,rmE|Xrm(t)|2 + C2,rm ,

where C1,rm and C2,rm are constants that depend only on x∗ and Lrm . From Grönwall’s inequality,
we obtain

E
(
|Xm+1

i |2
∣∣rm = i

)
≤ exp(C1,ihi)

[
E(|Xm

i |2) + C2,ihi
]
, for all i = 1, 2, . . . , d.

Then, if E|Xm|2 <∞, we have for any i = 1, 2, . . . , d that

E
(
|Xm+1

i |2
)

=
1

d
E
(
|Xm+1

i |2
∣∣rm = i

)
+

(
1− 1

d

)
E
(
|Xm+1

i |2
∣∣rm 6= i

)
≤ 1

d
exp(C1,ihi)

[
E(|Xm

i |2) + C2,ihi
]

+

(
1− 1

d

)
E(|Xm

i |2) <∞ ,

which implies E|Xm+1|2 <∞. Therefore, if Π0 has finite second moment, then Πi all have finite
second moments for i = 1, . . . , d − 1. Suppose the initial data is drawn from Πi for i < d, then
taking the expectation of (30) and using (32), we obtain

dTV (Πmd+i,Π) ≤ Cir−m1 ,

where Ci is a constant. This bound holds true for all 0 ≤ i ≤ d − 1, we set R = (maxi Ci)r1 and
r = r

1/d
1 to obtain (29).

A.1 PROOF OF LEMMA A.1

Before we prove the Lemma, we first recall a result from (Mattingly et al., 2002) for the convergence
of Markov chain using Lyapunov condition together with minorization condition.
Theorem A.1. [(Mattingly et al., 2002, Theorem 2.5)] Let {Xn}∞n=0 denote the Markov chain on
Rd with transition kernel Ξ and filtration Fn. Let {Xn}∞n=0 satisfy the following two conditions:
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Lyapunov condition: There is a function L : Rd → [1,∞), with limx→∞ L(x) = ∞, and real
numbers α ∈ (0, 1), and β ∈ [0,∞) such that

E
(
L(Xn+1)

∣∣Fn) ≤ αL(Xn) + β .

Minorization condition: For L from the Lyqpunov condition, define the set C ⊂ Rd as follows:

C =

{
x ∈ Rd | L(x) ≤ 2β

γ − α

}
, (33)

for some γ ∈ (α1/2, 1). Then there exists an η > 0 and a probability measureM supported on C
(that is,M(C) = 1), such that

Ξ(x,A) ≥ ηM(A), ∀A ∈ B(Rd), x ∈ C .

Under these conditions, the Markov chain {Xn}∞n=0 has a unique invariant measure π. Further-
more, there are constants r ∈ (0, 1) and R ∈ (0,∞) such that, for any z0 ∈ Rd, we have

sup
A∈B(Rd)

∣∣Ξn(z0, A)− π(A)
∣∣ ≤ L(z0)Rr−n . (34)

To use this result to prove Lemma A.1, we will consider the d-step chain of {Xn} and verify the
two conditions, as in the following two lemmas for the Lyapunov function and the minorization over
a small set, respectively.
Lemma A.2. Assume f satisfies Assumption 3.1 and

h ≤ µmin{φi}
4 + 8L2 + 32L4

, (35)

where L is the Lipschitz constant defined in (9). Let the Lyapunov function be L(x) = |x−x∗|2 +1,
then we have:

E
(
L(Xm+1)

∣∣Fm) ≤ α1L(Xm) + β1 (36)
with

α1 = 1− µh , β1 = (24 + 120L2 + µ)h .

Lemma A.3. Under conditions of Lemma A.2, with L(x) = |x−x∗|2+1, let Ξ denote the transition
kernel. Define the set C ⊂ Rd as in (33), for some γ ∈ (α1/2, 1). Then there exists an η > 0 and a
probability measureM withM(C) = 1, such that

Ξd(x,A) ≥ ηM(A), ∀A ∈ B(Rd), x ∈ C . (37)

Lemma A.1 follows easily from these results.

Proof of Lemma A.1. It suffices to show d-step chain
{
Xmd

}∞
m=0

satisfies the conditions in Theo-
rem A.1 with L(x) = |x − x∗|2 + 1, α = αd1 and β = dβ1, and π is induced by p. We apply (36)
from Lemma A.2 iteratively, d times, to obtain

E
(
L
(
X(m+1)d

)∣∣∣Fmd) ≤ αd1L (Xmd
)

+ dβ1 ,

which implies that
{
Xmd

}∞
m=0

satisfies Lyapunov condition in Theorem A.1 with α = αd1. More-
over, Lemma A.3 directly implies that the d-step transition kernel satisfies the minorization condi-
tion. Therefore, by Theorem A.1, we have

sup
A∈B(Rd)

∣∣Ξmd(z0, A)− π(A)
∣∣ ≤ L(z0)Rr−m ,

which concludes the proof of the lemma when we substitute π(A) =
∫
A
p(x) dx.
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Proof of Lemma A.2. We assume without loss of generality that x∗ = 0 ∈ Rd (so that L(x) =
|x|2 + 1) and drop the filtration Fm in the formula for simplicity of notation. Then

E
(
L
(
Xm+1

))
=

d∑
i=1

φiE
(
L
(
Xm+1

)∣∣rm = i
)
. (38)

Since
L
(
Xm+1

)
= |Xm+1|2 + 1 = |Xm + (Xm+1 −Xm)|2 + 1

= L (Xm) + 2Xm(Xm+1 −Xm) + |Xm+1 −Xm|2 ,
we have

E
(
L
(
Xm+1

)∣∣rm = i
)

=L (Xm) + 2E
[
Xm
i

(
Xm+1
i −Xm

i

)∣∣rm = i
]

+ E
[(
Xm+1
i −Xm

i

)2∣∣∣rm = i
]
.

(39)

To deal with second term and third term in (39), we first note that, under condition rm = i:

Xm+1
i −Xm

i = −
∫ Tm+hi

Tm
∂if(X(s)) ds+

√
2

∫ Tm+hi

Tm
dBs . (40)

This means

2E
[
Xm
i

(
Xm+1
i −Xm

i

)∣∣rm = i
]

=− 2E

[
Xm
i

∫ Tm+hi

Tm
∂if(X(s)) ds

∣∣∣∣∣rm = i

]

=− 2hiX
m
i ∂if(Xm)− 2E

[
Xm
i

∫ Tm+hi

Tm
(∂if(X(s))− ∂if(Xm)) ds

∣∣∣∣∣rm = i

]
.

(41)

We further bound the second term of (41):∣∣∣∣∣E
[
Xm
i

∫ Tm+hi

Tm
(∂if(X(s))− ∂if(Xm)) ds

∣∣∣∣∣rm = i

]∣∣∣∣∣
≤ hiE

[
Xm
i

(
sup

Tm≤t≤Tm+hi

|∂if(X(t))− ∂if(Xm)|
)∣∣∣∣rm = i

]
(I)

≤ 2h2
i |Xm

i |2 + 2E
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))− ∂if(Xm)|2
∣∣∣∣rm = i

)
(II)

≤ 2h2
i |Xm

i |2 + 2L2
iE
(

sup
Tm≤t≤Tm+hi

|Xi(t)−Xm
i |

2

∣∣∣∣rm = i

)
(III)

≤ 2h2
i |Xm

i |2 + 16h2
iL

2
i |∂if(Xm)|2 + 60hiL

2
i

(IV)

≤ (2 + 16L4
i )h

2
i |Xm

i |2 + 60hiL
2
i ,

(42)

where we used Young’s inequality in (I), the Lipschitz condition in (II), Lemma A.4 below (specif-
ically, inequality (45)) in (III), and the Lipschitz condition again in (IV). This, when substituted
into (41), gives

2E
[
Xm
i

(
Xm+1
i −Xm

i

)∣∣rm = i
]
≤ −2hiX

m
i ∂if(Xm) + (4 + 32L4

i )h
2
i |Xm

i |2 + 120hiL
2
i .

15



Under review as a conference paper at ICLR 2021

To bound the third term in (39), again for the case rm = i, we use (40) again for:

E
[(
Xm+1
i −Xm

i

)2∣∣∣rm = i
]

= E

(∫ Tm+hi

Tm
∂if(X(s)) ds−

√
2

∫ Tm+hi

Tm
dBs

)2
∣∣∣∣∣∣rm = i


(I)

≤ 2h2
iE
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
∣∣∣∣rm = i

)
+ 4E

∣∣∣∣∣
∫ Tm+hi

Tm
dBs

∣∣∣∣∣
2
∣∣∣∣∣∣rm = i


= 2h2

iE
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
∣∣∣∣rm = i

)
+ 4hi

(II)

≤ 8h2
i |∂if(Xm)|2 + 88h3

iL
2
i + 4hi

(III)

≤ 8L2
ih

2
i |Xm

i |2 + 24hi ,

(43)

where we used Young’s inequality in (I), Lemma A.4 below (specifically, inequality (44)) in (II),
and Lipschitz continuity in (III), together with 88h2

iL
2
i ≤ 20 by (35).

Finally, we have

E
(
L
(
Xm+1

)∣∣rm = i
)
≤ L (Xm)−2hiX

m
i ∂if(Xm)+(4+8L2

i+32L4
i )h

2
i |Xm

i |2+(24+120L2
i )hi .

By summing according to (38), and using (4) and Li ≤ L for all i = 1, 2, . . . , d, we obtain

E
(
L
(
Xm+1

))
=

d∑
i=1

φiE
(
L
(
Xm+1

)∣∣rm = i
)

≤L (Xm)− 2h 〈Xm,∇f(Xm)〉+

(
4 + 8L2 + 32L4

)
h2

min{φi}
(L (Xm)− 1) + (24 + 120L2)h .

Finally, using 〈Xm,∇f(Xm)〉 ≥ µ(L (Xm)− 1) (from (10) with x′ = Xm and x = x∗ = 0) and
(35), we obtain (36).

Proof of Lemma A.3. To prove (37), we construct a new Markov process X̃m. Defining X̃0 = x0,
we obtain X̃m+1 from X̃m by running the following process:

T̃n =

n∑
i=1

hi, T̃ 0 = 0, Z(0) = X̃m .

Then for T̃n−1 ≤ t ≤ T̃n and n ≤ d, letZn(t) = Zn

(
T̃n−1

)
−
∫ t
T̃n−1 ∂nf (Z(s)) ds+

√
2
∫ t
T̃n−1 dBs ,

Zi(t) = Zi

(
T̃n−1

)
, i 6= n ,

and set X̃m+1 = Z
(
T̃ d
)

. Denote the transition kernel by Ξcyc (corresponding to one round of a
cyclic version of the coordinate algorithm). We then have the following properties:

• For any x ∈ C and A ∈ B(Rd), we have

Ξd(x,A) ≥ Πd
i=1φiΞcyc(x,A) > 0 .

• Ξcyc possesses a positive jointly continuous density.

According to (Mattingly et al., 2002, Lemma 2.3), since Ξcyc has a positive jointly continuous den-
sity, there exists an η′ > 0 and a probability measureM withM(C) = 1, such that

Ξcyc(x,A) > η′M(A), ∀A ∈ B
(
Rd
)
, x ∈ C ,

16



Under review as a conference paper at ICLR 2021

which implies

Ξd(x,A) ≥ Πd
i=1φiΞcyc(x,A) > Πd

i=1φiη
′M(A), ∀A ∈ B

(
Rd
)
, x ∈ C .

This proves (37) by setting η = Πd
i=1φiη

′.

In the proof of Lemma A.2, we used several estimates in inequalities (42) and (43). We prove these
estimates in the following lemma.
Lemma A.4. Suppose that the assumptions of Lemma A.2 hold, and letXi evolve according to (40).
Then we have the following bounds:

E
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
)
≤ 4|∂if(Xm)|2 + 44hiL

2
i , (44)

E
(

sup
Tm≤t≤Tm+hi

|Xi(t)−Xm
i |

2

)
≤ 8h2

i |∂if(Xm)|2 + 30hi . (45)

Proof. To obtain (44), we have

E
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
)

≤E
[

sup
Tm≤t≤Tm+hi

(|∂if(Xm)|+ Li |Xi(t)−Xm
i |)

2

]
≤2|∂if(Xm)|2 + 2L2

iE
(

sup
Tm≤t≤Tm+hi

|Xi(t)−Xm
i |

2

)
.

(46)

To bound the second term, we use (40) again:

E
(

sup
Tm≤t≤Tm+hi

|Xi(t)−Xm
i |

2

)
=E

(
sup

Tm≤t≤Tm+hi

∣∣∣∣∫ t

Tm
∂if (X(s)) ds−

√
2

∫ t

Tm
dBs

∣∣∣∣2
)

≤2h2
iE
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
)

+ 4E

(
sup

Tm≤t≤Tm+hi

∣∣∣∣∫ t

Tm
dBs

∣∣∣∣2
)

≤2h2
iE
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
)

+ 16hi ,

(47)

where we use Young’s inequality and

E

(
sup

Tm≤t≤Tm+hi

∣∣∣∣∫ t

Tm
dBs

∣∣∣∣2
)
≤ 4E

∣∣∣∣∣
∫ Tm+hi

Tm
dBs

∣∣∣∣∣
2
 = 4hi

by Doob’s maximal inequality. By substituting (47) into (46), we obtain

E
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
)

≤4h2
iL

2
iE
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
)

+ 2|∂if(Xm)|2 + 32hiL
2
i .

Using hiLi ≤ 1
4 , we move the first term on the right to the left to obtain

3

4
E
(

sup
Tm≤t≤Tm+hi

|∂if(X(t))|2
)
≤ 2|∂if(Xm)|2 + 32hiL

2
i ,

leading to (44). Then we obtain (45) by plugging this in (47) and using the fact that 88h3
iL

2
i < 14hi

by (35).
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B PROOF OF THEOREM 4.1

The proof of this theorem requires us to design a reference solution to explicitly bound W (qm, p).
Let x̃0 be a random vector drawn from target distribution induced by p, so that W 2

2 (q0, p) = E|x0−
x̃0|2. We then require x̃ to solve the following SDE: for t ∈ (Tm, Tm+1], with Tm defined in (6):x̃rm(t) = x̃rm(Tm)−

∫ t

Tm
∂rmf(x̃(s)) ds+

√
2

∫ t

Tm
dBs ,

x̃i(t) = x̃i(T
m), i 6= rm .

(48)

If we use the same Brownian motion as in (5), we have

x̃m+1 = x̃m +

[
−
∫ Tm+1

Tm
∂rmf(x̃(s)) ds+

√
2hrmξ

m

]
erm , (49)

where erm is the unit vector in rm direction. Since the rm-th marginal distribution of x̃(t) is
preserved in each time step according to (48), the whole distribution of x̃(t) is preserved to be p
for all t. Therefore, by the definition Wm = W (qm, p), we have

W 2
m ≤ E|∆m|2 = E|xm − x̃m|2 ,

where
∆m := x̃m − xm . (50)

This means bounding Wm amounts to evaluating E|∆m|2. Under Assumption 3.1, we have the
following result.
Proposition B.1. Suppose the assumptions of Theorem 4.1 are satisfied and let {xm}, {x̃m}, and
{∆m} be defined in (5), (48), and (50), respectively. Then, we have

E|∆m+1|2 ≤
(

1− hµ

2

)
E|∆m|2 +

10h2

µ

d∑
i=1

L2
i

φi
. (51)

The proof of this result appears in Appendix B.1. The proof for Theorem 4.1 is now immediate.

Proof of Theorem 4.1. By iterating (51), we obtain

E|∆m|2 ≤
(

1− hµ

2

)m
E|∆0|2 +

20h

µ2

d∑
i=1

L2
i

φi
,

and since hµ/2 ∈ (0, 1), we have

E|∆m|2 ≤ exp

(
−µhm

2

)
E|∆0|2 +

20h

µ2

d∑
i=1

L2
i

φi
. (52)

By construction, we have W 2(q0, p) = E|∆0|2 and W 2(qm, p) ≤ E|∆m|2. By taking the square
root of both sides and using a2 ≤ b2 + c2 ⇒ a ≤ b+ c for any nonnegative a, b, and c, we arrive at
(20).

The proof for Corollary 4.1 is also obvious.

Proof of Corollary 4.1. To ensure that Wm ≤ ε, we set the two terms on the right hand side of (20)
to be smaller than ε/2, which implies that

h = O

 µ2ε2

100
∑d
i=1

L2
i

φi(α)

 and m ≥ 4

µh
log

(
2W0

ε

)
. (53)

By using the definition of φi(α) according to (21), we obtain

d∑
i=1

L2
i

φi(α)
=

(
d∑
i=1

L2
i

Lαi

) d∑
j=1

Lαj

 = µ2K2−αKα ,

18
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which implies that m = Õ
(
(K2−αKα) /(µε2)

)
. Furthermore, α = 1 gives the optimal cost,

because:

K2−αKα =
(∑

καi

)(∑
κ2−α
i

)
≥

(∑
i

κi

)2

= K2
1 ,

due to Hölder’s inequality.

B.1 PROOF OF PROPOSITION B.1

We prove the Proposition by means of the following lemma.
Lemma B.1. Under the conditions of Proposition B.1, for m ≥ 0 and i = 1, 2, . . . , d, we have

E|∆m+1
i |2 ≤

(
1 + hµ+

h2µ2

φi

)
E|∆m

i |2 − 2hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
3h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

(
2h3L3

i

µφ2
i

+
8h2L2

i

µφi

)
.

(54)

Proof. In the m-th time step, we have

P(rm = i) = φi, P(rm 6= i) = 1− φi ,
so that

E|∆m+1
i |2 = φiE

(
|∆m+1

i |2 | rm = i
)

+ (1− φi)E
(
|∆m+1

i |2 | rm 6= i
)

= φiE
(
|∆m+1

i |2 | rm = i
)

+ (1− φi)E |∆m
i |

2
.

(55)

We now analyze the first term on the right hand side under condition rm = i. By definition of
∆m+1
i , we have

∆m+1
i = ∆m

i + (x̃m+1
i − x̃mi )− (xm+1

i − xmi )

= ∆m
i +

(
−
∫ Tm+hi

Tm
∂if(x̃(s)) ds+

√
2hiξm

)
−

(
−
∫ Tm+hi

Tm
∂if(xm) ds+

√
2hiξm

)

= ∆m
i −

∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(xm)) ds

= ∆m
i −

∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(x̃m) + ∂if(x̃m)− ∂if(xm)) ds

= ∆m
i − hi (∂if(x̃m)− ∂if(xm))−

∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(x̃m)) ds

= ∆m
i − hi (∂if(x̃m)− ∂if(xm))− V m ,

(56)
where we have defined

V m :=

∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(x̃m)) ds . (57)

By Young’s inequality, we have

E
(
|∆m+1

i |2 | rm = i
)

= E
(
|∆m+1

i + V m − V m|2 | rm = i
)

≤ (1 + a)E
(
|∆m+1

i + V m|2 | rm = i
)

+

(
1 +

1

a

)
E
(
|V m|2 | rm = i

)
, (58)

where a > 0 is a parameter to be specified later.

For the first term on the right hand side of (58), we have

E
(
|∆m+1

i + V m|2 | rm = i
)

= E|∆m
i − hi (∂if(x̃m)− ∂if(xm)) |2

= E|∆m
i |2 − 2hiE [∆m

i (∂if(x̃m)− ∂if(xm))] + h2
iE |∂if(x̃m)− ∂if(xm)|2 . (59)
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Note that the second term will essentially become the second line in (54), and the third term will
become the third line in (54) (upon the proper choice of a). For very small h, this term is negligible.

For the second term on the right-hand side of (58), we recall the definition (57) and obtain

E
(
|V m|2

∣∣rm = i
) (I)
≤ hi

∫ Tm+hi

Tm
E
(
|∂if(x̃(s))− ∂if(x̃m)|2

∣∣∣rm = i
)

ds

(II)
≤ hiL

2
i

∫ Tm+hi

Tm
E
(
|x̃(s)− x̃m|2

∣∣∣rm = i
)

ds

= hiL
2
i

∫ Tm+hi

Tm
E

(∣∣∣∣∫ s

Tm
∂if(x̃(t)) dt+

√
2(Bs −BTm)

∣∣∣∣2
∣∣∣∣∣rm = i

)
ds

(III)
≤ 2h2

iL
2
i

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂if(x̃(t))|2

∣∣∣rm = i
)

dtds

+ 4h2
iL

2
i

∫ Tm+hi

Tm
E|ξm|2 ds

(IV)
= h4

iL
2
iE
(
|∂if(x̃m)|2

)
+ 4h3

iL
2
i

(V)
= h4

iL
2
iEp|∂if |2 + 4h3

iL
2
i

(VI)
≤ h4

iL
3
i + 4h3

iL
2
i , (60)

where (II) comes from L-Lipschitz condition (11), (I) and (III) come from the use of Young’s in-
equality and Jensen’s inequality when we move the | · |2 from outside to inside of the integral, and
(IV) and (V) hold true because x̃(t) ∼ p for all t. In (VI) we use Ep|∂if |2 ≤ Li using (Dalalyan
and Karagulyan, 2019, Lemma 3).

By substituting (59) and (60) into the right hand side of (58), we obtain

E
(
|∆m+1

i |2 | rm = i
)

≤ (1 + a)E|∆m
i |2 − 2hi(1 + a)E [∆m

i (∂if(x̃m)− ∂if(xm))]

+ h2
i (1 + a)E |∂if(x̃m)− ∂if(xm)|2 +

(
1 +

1

a

)(
h4
iL

3
i + 4h3

iL
2
i

)
. (61)

By substituting (61) into (55), we have

E|∆m+1
i |2 ≤ (1 + aφi)E|∆m

i |2 − 2(1 + a)hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
(1 + a)h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

(
1 +

1

a

)(
h4L3

i

φ3
i

+
4h3L2

i

φ2
i

)
, (62)

where we have used hiφi = h.

Now, we need to choose a value of a > 0 appropriate to establish (54). By comparing the two
formulas, we see the need to set

aφi = hµ ⇒ a = hiµ =
hµ

φi
≤ 1 .

since h ≤ min{φi}/µ. It follows that 1 + 1
a ≤

2φi
hµ . By substituting into (62), we obtain

E|∆m+1
i |2 ≤ (1 + hµ)E|∆m

i |2 − 2hE [∆m
i (∂if(x̃m)− ∂if(xm))]

− 2h2µ

φi
E [∆m

i (∂if(x̃m)− ∂if(xm))] +
2h2

φi
E |∂if(x̃m)− ∂if(xm)|2

+

(
2h3L3

i

µφ2
i

+
8h2L2

i

µφi

)
. (63)

We conclude the lemma by using the following Cauchy-Schwartz inequality to control the third term
on the right hand side of this expression:

−2h2µ

φi
E [∆m

i (∂if(x̃m)− ∂if(xm))] ≤ h2µ2

φi
E|∆m

i |2 +
h2

φi
E|∂if(x̃m)− ∂if(xm)|2 .
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Proposition B.1 is obtained by simply summing all components in the lemma.

Proof of Proposion B.1. Noting

E|∆m+1|2 =

d∑
i=1

E|∆m+1
i |2 ,

we bound the right hand side by (54) and get

E|∆m+1|2 ≤
(

1 + hµ+
h2µ2

min{φi}

)
E|∆m|2 − 2hE 〈∆m,∇f(x̃m)−∇f(xm)〉

+
3h2

min{φi}
E |∇f(x̃m)−∇f(xm)|2 +

(
2h3

µ

d∑
i=1

L3
i

φ2
i

+
8h2

µ

d∑
i=1

L2
i

φi

)
.

(64)

The second and third terms on the right-hand side can be bounded in terms of E|∆m|2:

• By convexity, we have

E 〈∆m,∇f(x̃m)−∇f(xm)〉 ≥ µE|∆m|2 . (65)

• As the gradient is L-Lipschitz, we have

E |∇f(x̃m)−∇f(xm)|2 ≤ L2E|∆m|2 . (66)

By substituting (65) and (66) into (64) and using µ ≤ L, we obtain

E|∆m+1|2 ≤
(

1− hµ+
4h2L2

min{φi}

)
E|∆m|2 +

(
2h3

µ

d∑
i=1

L3
i

φ2
i

+
8h2

µ

d∑
i=1

L2
i

φi

)
. (67)

If we take h sufficiently small, the coefficient in front of E|∆m|2 is strictly smaller than 1, ensuring
the decay of the error. Indeed, by setting h ≤ µmin{φi}

8L2 , we have

4h2L2

min{φi}
≤ hµ

2
, and

hLi
φi
≤ µ

8L
≤ 1 ,

which leads to the iteration formula (51).

C PROOF OF THEOREM 4.2

Theorem 4.2 is based on the following proposition.
Proposition C.1. Suppose the assumptions of Theorem 4.2 and let {xm}, {x̃m}, and {∆m} be
defined as in (5), (48), and (50), respectively. Then we have

E|∆m+1|2 ≤
(

1− hµ

2

)
E|∆m|2 +

4h3

µ

d∑
i=1

(
L3
i +H2

i

)
φ2
i

. (68)

We prove this result in Appendix C.1. The proof of the theorem is now immediate.

Proof of Theorem 4.2. Use (68) iteratively, we have

E|∆m+1|2 ≤
(

1− hµ

2

)m
E|∆0|2 +

8h2

µ2

d∑
i=1

(
L3
i +H2

i

)
φ2
i

≤ exp

(
−µhm

2

)
E|∆0|2 +

8h2

µ2

d∑
i=1

(
L3
i +H2

i

)
φ2
i

.

Using W 2(q0, p) = E|∆0|2 and W 2(qm, p) ≤ E|∆m|2, we take the square root on both sides, we
obtain (23).
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The proof of Corollary 4.2 is also immediate.

Proof of Corollary 4.2. Use (23), to ensureWm ≤ ε, we set two terms on the right hand side of (23)
to be smaller than ε/2, which implies that

h = O

 εµ√∑d
i=1

(L3
i+H

2
i )

φ2
i

 , m ≥ 4

µh
log

(
2W0

ε

)
. (69)

To find optimal choice of φi, we need to minimize

d∑
i=1

(
L3
i +H2

i

)
φ2
i

under constraint
∑d
i φi = 1 and φi > 0. Introducing a Lagrange multiplier λ ∈ R, define the

Lagrangian function as follows:

F (φ1, φ2, . . . , φd, λ) =

d∑
i=1

(
L3
i +H2

i

)
φ2
i

+ λ

(
d∑
i=1

φi − 1

)
.

By setting ∂F/∂φi = 0 for all i, and substituting into the constraint
∑d
i φi = 1 to find the appro-

priate value of λ, we find that the optimal (φ1, φ2, . . . , φd) satisfies

φi =

(
L3
i +H2

i

)1/3∑d
i=1 (L3

i +H2
i )

1/3
, i = 1, 2, . . . , d.

By substituting into (69), we obtain (24).

C.1 PROOF OF PROPOSITION C.1

The strategy of the proof for this proposition is almost identical to that of the previous section. The
reference solution x̃ is defined as in (48). We will use the following lemma:
Lemma C.1. Under the conditions of Proposition C.1, for m ≥ 0 and i = 1, 2, . . . , d, we have

E|∆m+1
i |2 ≤

(
1 + hµ+

h2µ2

φi

)
E|∆m

i |2 − 2hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
3h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

4h3
(
L3
i +H2

i

)
φ2
iµ

. (70)

Proof. In the m-th time step, we have

P(rm = i) = φi, P(rm 6= i) = 1− φi ,

meaning that

E|∆m+1
i |2 = φiE

(
|∆m+1

i |2 | rm = i
)

+ (1− φi)E
(
|∆m+1

i |2 | rm 6= i
)

= φiE
(
|∆m+1

i |2 | rm = i
)

+ (1− φi)E |∆m
i |

2
.

(71)

To bound the first term in (55) we use the definition of ∆m+1
i . Under the condition rm = i, we

have, with the same derivation as in (56):

∆m+1
i = ∆m

i − hi (∂if(x̃m)− ∂if(xm))−
∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(x̃m)) ds

= ∆m
i − hi (∂if(x̃m)− ∂if(xm))− V m ,

(72)

where we denoted V m =
∫ Tm+hi
Tm

(∂if(x̃(s))− ∂if(x̃m)) ds.
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However, different from (60), since f has higher regularity, we can find a tighter bound for the
integral. Denote

Um =

∫ Tm+hi

Tm

(
∂if(x̃(s))− ∂if(x̃m)−

√
2

∫ s

Tm
∂iif(x̃(z)) dBz

)
ds (73)

and

Φm =
√

2

∫ Tm+hi

Tm

∫ s

Tm
∂iif(x̃(z)) dBz ds . (74)

Then (72) can be written as

∆m+1
i = ∆m

i − hi (∂if(x̃m)− ∂if(xm))− Φm − Um , (75)

which implies, according to Young’s inequality, that, for any a:

E
(
|∆m+1

i |2
∣∣rm = i

)
= E

(
|∆m+1

i + Um − Um|2
∣∣rm = i

)
≤(1 + a)E

(
|∆m+1

i + Um|2
∣∣rm = i

)
+

(
1 +

1

a

)
E
(
|Um|2

∣∣rm = i
)
.

(76)

Both terms on the right-hand side of (76) are small. We now control the first term. Plug in the
definition (75), we have:

E
(
|∆m+1

i + Um|2 | rm = i
)

= E
(
|∆m

i − hi (∂if(x̃m)− ∂if(xm))− Φm|2
∣∣rm = i

)
. (77)

Noting that

E ((∆m
i − hi (∂if(x̃m)− ∂if(xm))) · Φm)

=
√

2

∫ Tm+hi

Tm
E
[∫ s

Tm
(∆m

i − hi (∂if(x̃m)− ∂if(xm))) · ∂iif(x̃(z)) dBz

]
ds = 0

because

E
[∫ s

Tm
(∆m

i − hi (∂if(x̃m)− ∂if(xm))) · ∂iif(x̃(z)) dBz

]
= 0 ,

according to the property of Itô’s integral, we can discard the cross terms with Φm in (77) to obtain

E
(
|∆m+1

i + Um|2 | rm = i
)

= E|∆m
i |2 − 2hiE [∆m

i (∂if(x̃m)− ∂if(xm))]

+ h2
iE |∂if(x̃m)− ∂if(xm)|2 + E

(
|Φm|2

∣∣rm = i
)
. (78)

For the last term of (78), we have the following control:

E
(
|Φm|2

∣∣rm = i
)

= E

2

∣∣∣∣∣
∫ Tm+hi

Tm

∫ s

Tm
∂iif(x̃(z)) dBz ds

∣∣∣∣∣
2
∣∣∣∣∣∣rm = i


(I)
≤ 2E

[(∫ Tm+hi

Tm
ds

)(∫ Tm+hi

Tm

∣∣∣∣∫ s

Tm
∂iif(x̃(z)) dBz

∣∣∣∣2 ds

)∣∣∣∣∣rm = i

]

≤ 2hi

∫ Tm+hi

Tm
E

(∣∣∣∣∫ s

Tm
∂iif(x̃(z)) dBz

∣∣∣∣2
∣∣∣∣∣rm = i

)
ds

(II)
= 2hi

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂iif(x̃(z))|2

∣∣∣rm = i
)

dz ds

(III)
= h3

iEp|∂iif |2 = h3
iL

2
i ,

where we use Hölder’s inequality in I and x̃(t) ∼ p for all t in III. In II, we use the following
property of Itô’s integral:

E

(∣∣∣∣∫ s

Tm
∂iif(x̃(z)) dBz

∣∣∣∣2
∣∣∣∣∣rm = i

)
=

∫ s

Tm
E
(
|∂iif(x̃(z))|2

∣∣∣rm = i
)

dz .
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By substituting into (78), we obtain
E
(
|∆m+1

i + Um|2 | rm = i
)
≤E|∆m

i |2 − 2hiE [∆m
i (∂if(x̃m)− ∂if(xm))]

+ h2
iE |∂if(x̃m)− ∂if(xm)|2 + h3

iL
2
i (79)

To bound the second term on the right-hand side of (76), we first note that f is three times con-
tinuously differentiable, and (15) implies ‖∂iiif‖∞ ≤ Hi. Take dt on both sides of (48), under
condition rm = i, we first have

dx̃i(t) = −∂if(x̃(s)) ds+
√

2 dBs . (80)
According to Itô’s formula, we obtain

∂if(x̃(t))− ∂if(x̃m) =

∫ t

Tm
∂iif(x̃(s)) dx̃i(s) +

∫ t

Tm
∂iiif(x̃(s)) ds . (81)

Substituting (80) into (81), we have

∂if(x̃(t))− ∂if(x̃m)−
√

2

∫ t

Tm

∂iif(x̃(s)) dBs

=

∫ t

Tm
−∂iif(x̃(s))∂if(x̃(s)) + ∂iiif(x̃(s)) ds .

(82)

By substituting into (73), we obtain
E
(
|Um|2 | rm = i

)
(I)
≤ hi

∫ Tm+hi

Tm
E

(∣∣∣∣∂if(x̃(s))− ∂if(x̃m)−
√

2

∫ s

Tm
∂iif(x̃(z)) dBr

∣∣∣∣2
∣∣∣∣∣rm = i

)
ds

(II)
= hi

∫ Tm+hi

Tm
E

(∣∣∣∣∫ s

Tm
(−∂iif(x̃(z))∂if(x̃(z)) + ∂iiif(x̃(z))) dz

∣∣∣∣2
∣∣∣∣∣rm = i

)
ds

(III)
≤ h2

i

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂iif(x̃(z))∂if(x̃(z)) + ∂iiif(x̃(z))|2

∣∣∣rm = i
)

dz ds

(IV)
≤ 2h2

i

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂iif(x̃(z))∂if(x̃(z))|2

∣∣∣rm = i
)

dz ds

+ 2h2
i

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂iiif(x̃(z))|2

∣∣∣rm = i
)

dz ds

(V)
≤ h4

i

(
L3
i +H2

i

)
. (83)

In the derivation, (II) comes from plugging in (82), and (I) and (III) come from the use of Jensen’s
inequality, (V) comes from the use of Lipschitz continuity in the first and the second derivative ((11)
and (15) in particular), and the fact that x̃(t) ∼ p for all t. Note also Ep|∂if |2 ≤ Li by (Dalalyan
and Karagulyan, 2019, Lemma 3).

By plugging (79) and (83) into (71) and (76), we obtain
E|∆m+1

i |2 ≤ (1 + aφi)E|∆m
i |2 − 2(1 + a)hE [∆m

i (∂if(x̃m)− ∂if(xm))]

+
(1 + a)h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

(1 + a)h3L2
i

φ2
i

+

(
1 +

1

a

)
h4
(
L3
i +H2

i

)
φ3
i

,

(84)
where we use hiφi = h. Comparing with (70), we need to set

a = hiµ =
hµ

φi
< 1 ,

where we use h < µmin{φi}
8L2 . This leads to 1 + 1

a ≤
2φi
hµ . By substituting into (62), we obtain

E|∆m+1
i |2 ≤

(
1 + hµ+

h2µ2

φi

)
E|∆m

i |2 − 2hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
3h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

2h3L2
i

φ2
i

+
2h3

(
L3
i +H2

i

)
φ2
iµ

.
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Noting Li/µ > 1, we conclude the lemma.

The proof of Proposition C.1 is obtained by summing up all components and applying Lemma C.1.

Proof of Proposition C.1. Noting that

E|∆m+1|2 =

d∑
i=1

E|∆m+1
i |2 ,

we substitute using (70) to obtain

E|∆m+1|2 ≤
(

1 + hµ+
h2µ2

min{φi}

)
E|∆m|2 − 2hE 〈∆m,∇f(x̃m)−∇f(xm)〉

+
3h2

min{φi}
E |∇f(x̃m)−∇f(xm)|2 +

4h3

µ

d∑
i=1

(
L3
i +H2

i

)
φ2
i

. (85)

The second and third terms in the right-hand side of this bound can be controlled by E|∆m|2, as
follows. By convexity, we have

E 〈∆m,∇f(x̃m)−∇f(xm)〉 ≥ µE|∆m|2 . (86)

By the L-Lipschitz property, we have

E |∇f(x̃m)−∇f(xm)|2 ≤ L2E|∆m|2 . (87)

By substituting (86) and (87) into (64), and using µ < L, we have

E|∆m+1|2 ≤
(

1− hµ+
4h2L2

min{φi}

)
E|∆m|2 +

4h3

µ

d∑
i=1

(
L3
i +H2

i

)
φ2
i

. (88)

Since h < µmin{φi}
8L2 , we obtain (68).

D PROOF OF PROPOSITION 4.2

Proof of Proposition 4.2. For this special target distribution p, the objective function is f(x) =∑d
i=1

|xi|2
2 . With α = 0 and φi = 1/d, we have: xm+1

i = xmi for all i 6= rm and

xm+1
rm = (1− dh)xmrm +

√
2dhξm .

Therefore for all i = 1, 2, . . . , d, we have

E|xm+1
i |2 =

1

d
E
(
|xm+1
i |2

∣∣rm = i
)

+

(
1− 1

d

)
E
(
|xm+1
i |2

∣∣ rm 6= i
)

=
1

d
E
(
|(1− dh)xmi +

√
2dhξm|2

∣∣∣rm = i
)

+

(
1− 1

d

)
E
(
|xmi |2

)
=
(
1− 2h+ dh2

)
E|xmi |2 + 2h (89)

where we use Eξ
∣∣∣xmi − dhxmi +

√
2dhξm

∣∣∣2 = (1 − dh)2|xmi |2 + 2dh in the last equation. By
summing (89) over i, we obtain

E|xm+1|2 =
(
1− 2h+ dh2

)
E|xm|2 + 2dh .

Using it iteratively, and considering E|x0|2 = 3d, we have:

E|xm|2 ≥ 3d
(
1− 2h+ dh2

)m
+
(

1−
(
1− 2h+ dh2

)m) 2dh

2h− dh2

= d
(
1− 2h+ dh2

)m
+

2d

2− dh
+ 2d

(
1− 1

2− dh

)(
1− 2h+ dh2

)m
≥ d (1− 2h)

m
+

2d

2− dh
,
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where we use dh ≤ 1 in the last inequality.

Since

W (qm, p) ≥
(∫
|x|2qm(x) dx

)1/2

−
(∫
|x|2p(x) dx

)1/2

=
(∫
|x|2qm(x) dx

)1/2

−
√
d ,

we have

W (qm, p) ≥
(∫
|x|2qm(x) dx

)1/2

−
√
d ≥

d (1− 2h)
m

+ 2d
2−dh − d√

d (1− 2h)
m

+ 2d
2−dh +

√
d

≥
√
d

3
(1− 2h)

m
+
d3/2h

6

≥ exp (−2mh)

√
d

3
+
d3/2h

6
,

where in the last inequality we use√
d (1− 2h)

m
+

2d

2− dh
+
√
d ≤ 3

√
d.

Therefore, we finally prove (26).

26


	Introduction
	Random Coordinate Langevin Monte Carlo
	Notations, assumptions and classical results
	Main results
	Convergence of the SDE (7)
	Convergence of RC-LMC. Case 1: Lipschitz gradient
	Convergence of RC-LMC. Case 2: Lipschitz Hessian
	Tightness of the complexity bound

	Numerical results
	Proof of Proposition 4.1
	Proof of Lemma A.1

	Proof of Theorem 4.1
	Proof of Proposition B.1

	Proof of Theorem 4.2
	Proof of Proposition C.1

	Proof of Proposition 4.2

