
A Fast, Robust Elliptical Slice Sampling Method for
Truncated Multivariate Normal Distributions

Kaiwen Wu
University of Pennsylvania

kaiwenwu@seas.upenn.edu

Jacob R. Gardner
University of Pennsylvania
jacobrg@seas.upenn.edu

Abstract

Elliptical slice sampling, when adapted to linearly truncated multivariate normal
distributions, is a rejection-free Markov chain Monte Carlo method. At its core, it
requires analytically constructing an ellipse-polytope intersection. The main nov-
elty of this paper is an algorithm that computes this intersection in O(m logm)
time, where m is the number of linear inequality constraints representing the poly-
tope. We show that an implementation based on this algorithm enhances numeri-
cal stability, speeds up running time, and is easy to parallelize for launching mul-
tiple Markov chains.

1 Introduction

Let x ∼ N (0, I) be a d-dimensional standard normal random variable. This paper is concerned with
sampling from the truncated multivariate normal distribution

p(x) =

{
1
Zϕ(x) x ∈ D,

0 x /∈ D,

where ϕ(x) ∝ exp
(
− 1

2x
⊤x
)

is the standard normal density, Z =
∫
x∈D ϕ(x) dx is a normalization

constant, and the domain D = {x ∈ Rd : Ax ≤ b} is a polytope defined by m linear inequalities
with A ∈ Rm×d and b ∈ Rm. We assume the polytope domain has a non-empty interior but
is not necessarily bounded. The standard normal assumption is without loss of generality, since
non-standard normal distributions can be handled by a change of variable, as shown in §A.

Truncated normal sampling has numerous applications in machine learning and statistics, with recent
ones in skew Gaussian processes (e.g., Benavoli et al., 2021) and preferential Bayesian optimiza-
tion (Benavoli et al., 2021; Takeno et al., 2023). In addition, truncated normal sampling is a key
building block of sophisticated numerical methods estimating integrals related to truncated normal
distributions (Gessner et al., 2020).

Linear elliptical slice sampling (e.g., Murray et al., 2010; Fagan et al., 2016; Gessner et al., 2020) is
a rejection-free tuning-free Markov chain Monte Carlo method for truncated normal distributions.
Each iteration analytically constructs the intersection of an ellipse and the polytope domain, from
which the next iterate is sampled. In principle, this method is particularly suitable for high dimen-
sional truncated normal distributions thanks to its rejection free property.

However, the devil is in the details. Despite its conceptual simplicity, constructing the ellipse-
polytope intersection is easier said than done. We will show that all existing implementations share
a worst-case time complexity of O(m2), which scales poorly as the number of constraints increases.
Moreover, existing implementations have complex control flows, which makes it hard, if not impos-
sible, to parallelize on GPUs. Indeed, to the best of our knowledge, there is no batch implementation
of elliptical slice sampling to this date, which is likely due to the programming complexity.

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

−2 0 2

−2

0

2

O

θ=0 (or 2π)

1
2π

xt

ν

1
8π

7
8π

9
8π 7

4π

2
5π

4
5π

Ellipse E = {xt cos θ + νt sin θ : θ ∈ R}

Polytope domain D = {x ∈ Rd : Ax ≤ b}
Hyperplanes that define the polytope domain

Ellipse-polytope intersection E ∩ D
Active intersections
Inactive intersections

Figure 1: An ellipse xt cos θ + νt sin θ whose angle θ ∈ [0, 2π] in-
creases counterclockwise. The next iterate xt+1 is sampled from the
ellipse-polytope intersection, as shown in red. The intersection consists
of two disjoint elliptical arcs. The left one is represented by [7

8
π, 9

8
π] and

the right one is represented by [0, 1
8
π] ∪ [7

4
π, 2π].

Contributions. We develop a new algorithm computing the ellipse-polytope intersection that has
a better time complexity and is easier to implement. The algorithm runs in O(m logm) time and
is faster than the existing implementations. Moreover, this algorithm has a simple control flow and
is particularly amenable to GPU parallelism. As a result, we are able to parallelize thousands of
independent Markov chains easily. Experiments show that our implementation accelerates truncated
normal sampling massively in high dimensions.

2 Elliptical Slice Sampling for Truncated Normal Sampling

In the t-th iteration of linear elliptical slice sampling (e.g., Fagan et al., 2016; Gessner et al., 2020),
we sample a multivariate normal random variable νt ∼ N (0, I) and form an ellipse

E = {xt cos θ + νt sin θ : θ ∈ R}. (1)

The next iterate xt+1 is sampled from the ellipse-polytope intersection E ∩ D, i.e., the parts of
the ellipse that lie inside the polytope domain. This intersection can be constructed analytically
by exploiting the polytope structure, and thus no rejection sampling is needed. See Figure 1 for
an illustration and Algorithm 1 for the pseudocode. The arising questions are, of course, how to
“analytically construct” the ellipse-polytope intersection E ∩ D and how to do it efficiently.

Note that the polytope domain itself is the intersection of m halfspaces:

D =

m⋂
i=1

Hi =

m⋂
i=1

{x ∈ Rd : a⊤i x ≤ bi},

where ai is the i-th row of A. Thus, the ellipse-polytope intersection E ∩D reduces to constructing
each ellipse-halfspace intersection E ∩ Hi, which does admit an analytical construction.

The intersection of the ellipse and the i-th halfspace Hi is an elliptical arc. The end points of the
elliptical arc are identified by the intersection angles, i.e., the roots of the trigonometry equation

a⊤i xt cos θ + a⊤i νt sin θ = bi, (2)

which typically indeed has two distinct roots αi and βi in closed-forms (see §B). Without loss of
generality, we assume all intersection angles αi and βi are converted into [0, 2π] by, if necessary,

Algorithm 1: Elliptical Slice Sampling for Truncated Multivariate Normal Distributions
1 Initialize x0 ∈ D
2 for t = 1, 2, · · · do
3 sample νt ∼ N (0, I) and form an ellipse E = {xt cos θ + νt sin θ : θ ∈ R}
4 compute the active intervals Iact corresponding to the ellipse-polytope intersection
5 sample uniformly θ ∼ Iact
6 xt+1 = xt cos θ + νt sin θ
7 end

2

Algorithm 2: Constructing the Active Intervals Analytically
Input: Ii = [0, αi] ∪ [βi, 2π] with αi < βi for i = 1, 2, · · · ,m
Output: Iact = ∩m

i=1Ii
1 sort {αi}mi=1 in ascending order: 0 ≤ αi1 ≤ αi2 ≤ · · · ≤ αim ≤ 2π
2 compute γk = max{βi1 , βi2 , · · · , βik} for k = 1, 2, · · ·m
3 return [0, αi1] ∪

(⋃m
k=2[γk−1, αik]

)
∪ [γm, 2π] // define [γk−1, αik] = ∅ if γk−1 > αik

adding or subtracting a multiple of 2π. In addition, we assume αi is strictly smaller than βi. A
simple observation is that the ellipse-halfspace intersection E ∩ Hi is precisely represented by the
union of two disjoint intervals:

Ii = [0, αi] ∪ [βi, 2π].

Note that the interval Ii has two disjoint segments due to periodicity: The point xt is represented
by two distinct angles 0 and 2π. Intersecting all Ii’s gives the interval representation of the ellipse-
polytope intersection:

Iact =

m⋂
i=1

Ii,

which we call the active intervals. Note that the plural form is used because Iact may consist of
several disjoint intervals, each of which is an active interval. There is an one-to-one correspondence
between angles in the active intervals (except the repetition of θ = 0 and θ = 2π) and points in the
ellipse-polytope intersection.

Below we discuss existing methods constructing the active intervals.

Brute Force. The most straightforward algorithm follows the definition of the active intervals:

I
(0)
act = [0, 2π], I

(i)
act = I

(i−1)
act ∩

(
[0, αi] ∪ [βi, 2π]

)
.

In the end, I(m)
act equals to the desired active intervals Iact. However, this brute force intersection is

tedious to implement and hard to parallelize. Moreover, its worst-case time complexity is as slow as
O(m2). See §D for why it is not O(m), contrary to how it may appear.

Angle Perturbation. In Figure 1, θ = 2
5π and θ = 4

5π are not active, since they do not contribute to
the active intervals. The hard part of computing the active intervals precisely lies in identifying those
active intersection angles. Gessner et al. (2020) identify the active angles by angle perturbations:
An intersection angle θ is active if and only if exactly one of the perturbations θi − ϵ and θi + ϵ
corresponds a point within the domain D. The time complexity is O(m2).

3 A Simple Method for the Ellipse-Polytope Intersection

Sorting αi’s in ascending order yields
0 ≤ αi1<

βi1

≤ αi2<

βi2

≤ · · · ≤ αik<

βik

≤ · · · ≤ αim<

βim

≤ 2π. (3)

Note that βik is not necessarily monotonic in k. Our algorithm is based on the observation below.
Proposition 1. Let αi < βi for all i ∈ [m] and let {αik}mk=1 be sorted in ascending order as in (3).
Then, the active intervals Iact = ∩m

i=1

(
[0, αi] ∪ [βi, 2π]

)
have an equivalent representation

Iact = [0, αi1] ∪

(
m⋃

k=2

[γk−1, αik]

)
∪ [γm, 2π],

where γk = max{βi1 , βi2 , · · · , βik} is the cumulative max until βik . We interpret the interval
[γk−1, αik] as an empty set if γk−1 > αik .

Proposition 1 gives a closed-form expression for the active intervals Iact, which yields Algorithm 2.
Despite a somewhat lengthy proof, the idea and the final expression are both very simple. The time
complexity is O(m logm), faster than the brute force algorithm and likelihood testing. In addition,
it is simple to program, amenable to GPU parallelism, and easy to batch, since the sorting and
cumulative max operations are well supported in every popular machine learning package nowadays.

3

0 2
0.0

0.2

0.4

density histogram

ground truth PDF

−1 ≤ N (0, 1) ≤ 3

15.0 15.5 16.0
0

5

10

15

density histogram

ground truth PDF

15 ≤ N (0, 1) ≤ 16
500 1000 1500 2000

num. of dimensions

10−1

100

101

ti
m

e
(s

)

CPU Running Time

botorch ess

ours (1 chain)

ours (10 chains)

2000 4000

num. of dimensions

10−1

100

101

ti
m

e
(s

)

GPU Running Time

botorch ess

ours (1 chain)

ours (10 chains)

Figure 2: 1st and 2nd subfigures: Draw 105 samples from two univariate truncated normal distri-
butions with parallel Markov chains. 3rd and 4th subfigures: Compare running time of drawing
1000 samples from high dimensional truncated normal distributions.

4 Experiments

All simulations are run on a single machine with a RTX 3090 GPU using single precision float-
ing points. We use the linear elliptical slice sampling implementation in BoTorch V0.11.1 as the
baseline. Our code will be released publicly.

4.1 Sanity Check: One Dimensional Truncated Normal Sampling

We run elliptical slice sampling with Algorithm 2 on two univariate truncated normal distributions:
N (0, 1) truncated by −1 ≤ x ≤ 3 and 15 ≤ x ≤ 16, respectively. We draw 105 samples from each
distribution by running 2000 independent Markov chains in parallel with 500 iterations of burn-in
and a thinning of 10. Hence, the total number of steps is 2000 × 500 + 10 × 105 = 2 × 106. The
mean and variance estimates are accurate at least to the second digit after the decimal point (see §E).

4.2 Accelerate High Dimensional Truncated Normal Sampling

We demonstrate Algorithm 2 accelerates high dimensional truncated normal sampling, especially
when the number of inequality constraints m is large. We generate a set of random instances with
varying dimensions as follows. First, we generate a d× d random matrix A whose entries are i.i.d.
samples from a univariate standard normal distribution. Second, we generate a random vector x0

drawn from a d-dimensional standard normal distribution, which will used as the initialization the
Markov chain. Third, we set b = Ax0 + u, where u is a random vector drawn uniformly from the
hypercube [0, 1]d. By construction, the initialization x0 lies in the interior of the domain. Note that
the number of constraints m = d increases as the number of dimensions increases.

In Figure 2, we draw 1000 samples from the general instances of truncated normal distributions
and compare the running time against BoTorch’s implementation. BoTorch’s implementation runs
a single Markov chain for 1000 steps. Our implementation runs either a single Markov chain for
1000 steps or 10 chains in parallel for 100 steps. Both of them use no burn-in and no thinning. No
rejection occurs when running our implementation on these high dimensional distributions. With a
single Markov chain, our implementation is over 10x faster than BoTorch’s implementation in high
dimensions, e.g., d ≥ 1000 on CPU and d ≥ 4000 on GPU. This speed-up solely comes from the
improved per iteration complexity O(m logm). Furthermore, running 10 Markov chains on GPU
in parallel yields an additional 10x speed-up in high dimensions.

5 Conclusion

We have presented a O(m logm) algorithm computing the active intervals in linear elliptical slice
sampling for linearly truncated normal distributions. We hope our algorithm and implementation
unlock the full potential of elliptical slice sampling for linearly truncated normal distributions, and
enable new applications that are previously bottlenecked by the speed of sampling.

We end this paper by mentioning two extensions. First, it is interesting to adapt elliptical slice
sampling to handle linear equality constraints, in which case the Markov chain has to run in the null
space of the linear equality constraints. Second, it is interesting to support differentiable samples by
adapting the idea of Zoltowski et al. (2021).

4

References
Murray, I., Adams, R., & MacKay, D. (2010). Elliptical Slice Sampling. Proceedings of the Thir-

teenth International Conference on Artificial Intelligence and Statistics, 541–548 (page 1).
Fagan, F., Bhandari, J., & Cunningham, J. P. (2016). Elliptical slice sampling with expectation prop-

agation. Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelli-
gence, 172–181 (pages 1, 2).

Gessner, A., Kanjilal, O., & Hennig, P. (2020). Integrals over Gaussians under Linear Domain Con-
straints. Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics, 2764–2774 (pages 1–3, 6).

Benavoli, A., Azzimonti, D., & Piga, D. (2021). A unified framework for closed-form nonparametric
regression, classification, preference and mixed problems with Skew Gaussian Processes.
Machine Learning, 110(11), 3095–3133 (pages 1, 6).

Zoltowski, D., Cai, D., & Adams, R. P. (2021). Slice Sampling Reparameterization Gradients. Ad-
vances in Neural Information Processing Systems, 34, 23532–23544 (page 4).

Takeno, S., Nomura, M., & Karasuyama, M. (2023). Towards Practical Preferential Bayesian Opti-
mization with Skew Gaussian Processes. Proceedings of the 40th International Conference
on Machine Learning, 33516–33533 (page 1).

5

A Non-Standard Normal Distributions

The standard normal assumption is without loss of generality, since non-standard normal distribu-
tions reduce to the standard one by a change of variable. Let x ∼ N (µ,Σ) and let LL⊤ = Σ
be the Cholesky decomposition. Let u ∼ N (0, I) be a standard normal variable. Truncat-
ing x by D = {x ∈ Rd : Ax ≤ b} is the same as truncating u by a transformed domain
D′ = {u ∈ Rd : ALu ≤ b − Aµ}. Thus, we can sample from the truncated standard normal,
truncated by D′, and then apply a linear transformation u 7→ Lu+ µ.

B Roots of the Trigonometry Equation

This section solves the trigonometry equation

a⊤x cos θ + a⊤ν sin θ = b.

Define p = a⊤x, q = a⊤ν, and r =
√
p2 + q2. WLOG, we assume r ̸= 0, otherwise the

corresponding inequality constraint is either invalid (b < 0) or a tautology (b ≥ 0). Note that the
ratio b/r ≥ −1, otherwise we have b < −r ≤ a⊤x. This causes a contradiction since x ∈ D is a
feasible point satisfying the linear inequality a⊤x ≤ b.

Dividing both sides by r gives
p

r
cos θ +

q

r
sin θ =

b

r
.

There exists a unique angle τ ∈ [−π, π] (ignoring the repetition at the boundary) such that cos τ = p
r

and sin τ = q
r . In practice, τ is given by arctan2(q, p), a function implemented in many libraries.

Applying the angle sum formula gives

cos(θ − τ) =
b

r
.

It is clear that the ratio b/r determines the number of roots. When −1 < b/r < 1, the two distinct
roots are given by

θ = τ ± arccos

(
b

r

)
, (4)

A multiple of 2π has to be added to the roots, if necessary, to make sure the angles fall in into [0, 2π].

Note that (4) is not the only form of the roots. For instance, Gessner et al. (2020) used the roots of
the form

θ = ± arccos

(
b

r

)
+ 2arctan

(
q

r + p

)
.

Another root formula, used by Benavoli et al. (2021), is of the form

tan
1

2
θ =

q ±
√
r2 − b2

b+ p
.

Proving these root formulas is left as an exercise for the readers. Despite their equivalence, we rec-
ommend using our root formula (4). This is an unbiased opinion, since we arrive at this conclusion
after trying all formulas. The other two root formulas need to check additional edge cases when
r + p ≈ 0 and b+ p ≈ 0, which do happen annoyingly in certain extreme situation in practice.

C Proofs

Proposition 1. Let αi < βi for all i ∈ [m] and let {αik}mk=1 be sorted in ascending order as in (3).
Then, the active intervals Iact = ∩m

i=1

(
[0, αi] ∪ [βi, 2π]

)
have an equivalent representation

Iact = [0, αi1] ∪

(
m⋃

k=2

[γk−1, αik]

)
∪ [γm, 2π],

where γk = max{βi1 , βi2 , · · · , βik} is the cumulative max until βik . We interpret the interval
[γk−1, αik] as an empty set if γk−1 > αik .

6

Proof. The sorted angles {αik}mk=1 divide [0, 2π] into m+ 1 disjoint segments:
[0, 2π] = [0, αi1] ∪ (αi1 , αi2] ∪ · · · ∪ (αim−1

, αim] ∪ (αim , 2π].

The active intervals Iact are constructed by computing the intersection of Iact with each segment.
That is, we use the trivial identity

Iact = Iact ∩ [0, 2π] =
(
Iact ∩ [0, αi1]

)︸ ︷︷ ︸
part one

∪

(
m−1⋃
k=1

(
Iact ∩ (αik , αik+1

]
))

︸ ︷︷ ︸
part two

∪
(
Iact ∩ [αim , 2π]

)︸ ︷︷ ︸
part three

and compute each part analytically.

Part One. The intersection with the first segment is easy to compute:

Iact ∩ [0, αi1] =

(
m⋂
i=1

Ii

)
∩ [0, αi1] =

m⋂
i=1

(
Ii ∩ [0, αi1]

)
= [0, αi1],

where the first equality uses the definition of the active intervals Iact; the second equality swaps the
order of intersections; the third equality uses this observation: [0, ai1] is a subset of all Ii for i ∈ [m]
since αi1 is the smallest angle among all αi’s and βi’s.

Part Three. Similarly, the intersection with the last segment is also easy to compute:

Iact ∩ (aim , 2π] =

m⋂
i=1

(
Ii ∩ (αim , 2π]

)
=

m⋂
i=1

(
[βi, 2π] ∩ (αim , 2π]

)
=

[
max

1≤i≤m
βi, 2π

]
,

where the first equality plugs in the definition Iact = ∩m
i=1Ii; the second equality is because αim is

the largest angle among all αi’s and therefore we can ignore [0, αi]; the last equality is due to
αim < βim ≤ max

1≤i≤m
βi

and thus the chunk [αim ,max1≤i≤m βi) is removed from [aim , 2π].

Part Two. Now we deal with the remaining segments (aik−1
, aik] for k = 2, 3, · · · ,m. We assume

aik−1
is strictly smaller than aik for now and defer the case aik−1

= aik to the end. For a fixed k,
we must compute

Iact ∩ (aik−1
, aik] =

(
m⋂
i=1

Ii

)
∩ (aik−1

, aik] =

m⋂
i=1

(
Ii ∩ (aik−1

, aik]
)
.

Now we split the intersection index i into two cases {i ∈ [m] : αi ≥ αik} and {i ∈ [m] : αi ≤
αik−1

}. For the first case, notice that⋂
{i∈[m]:αi≥αik

}

(
Ii ∩ (aik−1

, aik]
)
= (αik−1

, αik],

because the choice of the index i implies (αik−1
, αik] ⊆ [0, αi] ⊆ Ii. For the second case, we have⋂

{i∈[m]:αi≤αik−1
}

(
Ii ∩ (aik−1

, aik]
)
=

⋂
{i∈[m]:αi≤αik−1

}

((
[0, αi] ∪ [βi, 2π]

)
∩ (αik−1

, αik]
)

=
⋂

{i∈[m]:αi≤αik−1
}

(
[βi, 2π] ∩ (αik−1

, αik]
)

=
[
max{βi1 , βi2 , · · · , βik−1

}, 2π
]
∩ (αik−1

, αik],

where the first equality plugs in the definition of Ii; the second equality is because the index i is
specifically chosen such that αi ≤ αik−1

; the last equality is because αi’s are sorted: the indices
such that αi ≤ αik−1

are precisely i1, i2, · · · , ik−1.

Define γk = max{βi1 , βi2 , · · · , βik−1
}. Combining the two cases, we obtain

Iact ∩ (aik−1
, aik] =

{
[γk, αik] if γk ≤ αik

∅ otherwise
for k = 2, 3, · · · ,m. Finally, we come back to the edge case aik−1

= aik , which implies
(aik−1

, aik] = ∅ by convention. Thus, the intersection Iact ∩ (aik−1
, aik] is automatically empty.

One can verify that the above expression outputs an empty set as well, since γk ≥ βik−1
> αik−1

=
αik .

7

Algorithm 3: Constructing the Active Intervals by Brute Force
Input: Ii = [0, αi] ∪ [βi, 2π] for i = 1, 2, · · · ,m
Output: Iact = ∩m

i=1Ii

1 I
(0)
act = [0, 2π]

2 for i = 1, 2, · · · ,m do
3 I

(i)
act = I

(i−1)
act ∩

(
[0, αi] ∪ [βi, 2π]

)
4 end
5 return I

(i)
act

D Brute Force Intersection Time Complexity

This section shows that the time complexity of Algorithm 3 is at least Ω(m2). To do so, we construct
a worst-case input on which Algorithm 3 takes at least Ω(m2) operations.

Without loss of generality, we will work with intervals of the form Ii = [0, αi] ∪ [βi, 1]. Consider
the following intersection intervals

Ii =

[
0,

(
1

3

)i
]
∪

[
2

(
1

3

)i

, 1

]
, i = 1, 2, · · · ,m.

By induction, it is easy to show that the intersection of the first k intervals is

k⋂
i=1

Ii =

[
0,
(1
3

)k]
∪

(
k⋃

i=1

[
2

(
1

3

)i

,

(
1

3

)i−1
])

.

In particular, ∩k
i=1Ii is an union of k + 1 intervals. Thus, the k-th inner loop of Algorithm 3 takes

Ω(k) operations. As a result, the algorithm takes Ω(m2) operations in total. It is also not hard to
verify that presorting {αi}mi=1, or {βi}mi=1, does not reduce the time complexity. The worse-case
inputs for these variants can be constructed similarly.

E Additional Experimental Details

The follow table presents the statistics of the MCMC runs in §4.

truncation [−1, 3] [15, 16]

true µ 0.2828 15.0661
estimates µ̂ 0.2820 15.0661

true σ2 0.6161 0.0043
estimates σ̂2 0.6148 0.0043

8

	Introduction
	Elliptical Slice Sampling for Truncated Normal Sampling
	A Simple Method for the Ellipse-Polytope Intersection
	Experiments
	Sanity Check: One Dimensional Truncated Normal Sampling
	Accelerate High Dimensional Truncated Normal Sampling

	Conclusion
	Non-Standard Normal Distributions
	Roots of the Trigonometry Equation
	Proofs
	Brute Force Intersection Time Complexity
	Additional Experimental Details

