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ABSTRACT

Inorganic crystals are periodic, highly-symmetric arrangements of atoms in three-
dimensional space. Their structures are constrained by the symmetry operations
of a crystallographic space group and restricted to lie in specific affine subspaces
known as Wyckoff positions. The frequency an atom appears in the crystal and its
rough positioning are determined by its Wyckoff position. Most generative mod-
els that predict atomic coordinates overlook these symmetry constraints, leading
to unrealistically high populations of proposed crystals exhibiting limited symme-
try. We introduce Space Group Conditional Flow Matching, a novel generative
framework that samples significantly closer to the target population of highly-
symmetric, stable crystals. We achieve this by conditioning the entire generation
process on a given space group and set of Wyckoff positions; specifically, we de-
fine a conditionally symmetric noise base distribution and a group-conditioned,
equivariant, parametric vector field that restricts the motion of atoms to their ini-
tial Wyckoff position. Our form of group-conditioned equivariance is achieved
using an efficient reformulation of group averaging tailored for symmetric crys-
tals. Importantly, it reduces the computational overhead of symmetrization to a
negligible level. We achieve state of the art results on crystal structure prediction
and de novo generation benchmarks. We also perform relevant ablations.

1 INTRODUCTION

Crystals are solid materials characterized by a periodic arrangement of their constituent atoms. The
crystalline structure is fundamentally represented by three components: lattice parameters (defining
the geometry of the repeating unit cell), fractional coordinates (specifying the position of each atom
within the cell), and the identity of the atom at each location. The discovery of novel crystalline
structures is critical for material design and recent progress in generative modeling has demonstrated
a promising approach to this problem. However, most existing generative methods overlook key
crystallographic properties, the space group and Wyckoff positions, making it challenging for them
to generate non-trivial symmetric crystals.

A crystal’s space group, a subgroup of the Euclidean group E(n), fully describes the symmetry
of the atoms arranged within the unit cell. Beyond its correlation with many optical, electrical,
magnetic, and structural properties (Chen et al., 2022; Tang et al., 2019; Malgrange et al., 2014;
Yang, 2005), the space group imposes constraints on atomic locations and lattice structure. These
manifests in form of Wyckoff positions, which are sets of symmetrically equivalent points within a
unit cell. More generally, the Wyckoff positions of a space group partition the unit cell according to
the structure of the orbits induced by the group (see fig. 2 for a 2D example).

In this work, we develop a generative model that samples crystals conditioned on a given space group
and associated Wyckoff positions. This approach offers two key benefits: (1) it provides greater
control over the structure and symmetry of the generated crystals and, and (2) it can leverage the
lower-dimensional constraints imposed by Wyckoff positions for improving generation. In contrast
to prior methods that incorporate space group information but rely on projection steps to correct
atomic placements (Jiao et al., 2024; Levy et al., 2025), our model is designed to inherently preserve
the assignment of atoms to their designated Wyckoff positions throughout the generation process.

Our proposed model, Space Group Conditional Flow Matching (SGFM), is based on the Flow
Matching (FM) generative framework (Albergo & Vanden-Eijnden, 2022; Liu et al., 2022; Lipman
et al., 2022). We chose the FM framework for two key reasons: it allows us to use customized source
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Figure 1: Visualization of the main components of SGFM. (a) Wyckoff position noise prior. General
points are sampled randomly and projected according to the conditioned Wyckoff positions. (b)
Space group equivariant vector field. The equivariance of the model combined with theG-symmetry
of the input crystal ensures that atoms preserve their symmetry structure. (c) Comparison between
group averaging and our optimization, heavy arrow implies expensive model forward pass.

distributions and provides known conditions for generating data that respects specified symmetries
(Köhler et al., 2020). Based on these advantages, we designed SGFM with two main components:
A space group and Wyckoff position conditioned noise prior, which have positive support only for
crystal structures that adhere to the symmetry constraints described by the Wyckoff positions; A
group conditioned equivariant vector field, which is a single neural network architecture that is able
to support arbitrary space group equivariance. Equivariance is achieved through Group Averaging
(GA) (Yarotsky, 2022), a symmetrization technique that projects arbitrary functions onto their equiv-
ariant versions. Although GA is typically computationally expensive and impractical, we introduce
an efficient formulation tailored for symmetric crystals, reducing the computational overhead of the
symmetrization operator to a negligible level.

The main contributions of this work are as follows:

• We formalized the problem of symmetric crystal generation in terms of distributional sym-
metry properties (section 3.1), and extended the conditions introduced by Köhler et al.
(2020) to enable flow-based models to sample from such distributions (section 3.2).

• We instantiate this flow model as SGFM (section 3.3), which consists of a noise prior
conditional on Wyckoff position along with a space group-equivariant vector field, ensuring
that the generated crystals preserve the specified symmetries.

• We propose a novel and efficient implementation of GA for symmetric crystals, equivalent
in output to the standard GA but significantly more efficient (see fig. 1 (c)), practically
minimizing the computational burden of symmetrization for symmetric crystals.

• SGFM achieves state-of-the-art performance on crystal structure prediction (CSP), a gen-
erative task centered on crystal structure generation, and de novo generation (DNG).

2 PRELIMINARIES

Equivariance & Invariance. A function φ : X → Y is equivariant with respect to a group G if the
action of any group element on the input corresponds to a consistent transformation of the output.
Equivariance implies φ(g ·x) = g ·φ(x) for all x ∈ X and g ∈ G. Invariance is a simplified case of
equivariance, with all g ∈ G mapping to a trivial group action on the output space φ(g · x) = φ(x).
Invariance and equivariance also extend to group products: Let (g1, g2) ∈ G1 ×G2, φ is G1 ×G2

equivariant if φ((g1, g2) · x) = (g1, g2) · φ(x). Additionally, G-invariant distributions refer to
distributions which have an G-invariant density function. We will use this to construct SGFM.

Crystal Representation. A crystal can be represented using the tuple c′ = (L,F ,A) ∈ C′, where
L ∈ R3×3 is a positive-determinant, invertible matrix defining the lengths, angles, and orientation
of the positive-volume unit cell; F ∈ [0, 1)n×3 denotes the fractional coordinates of n atoms within
the unit cell; and A ∈ {0, 1}n×h is a one-hot matrix indicating the atom types in F from a set of h
atom types. We adopt the space group–conditioned lattice parameterization proposed by Jiao et al.
(2024), which replaces L with a rotation-invariant vector k ∈ R6 of coefficients of a symmetric
matrix basis, and represent a crystal as c = (k,F ,A) ∈ C. Further details provided in appendix C.
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Symmetries & Crystals. Our method focuses on how symmetry groups act on crystals. The per-
mutation group Sn acts on c by permuting the rows of F and A. Namely, if σ ∈ Sn is represented
by a permutation matrix P ∈ {0, 1}n×n then σ · c = (k,PF ,PA). The group of isometries of R3

known as the Euclidean group E(3), acts on c by applying an orthogonal transformation R ∈ O(3)
and a translation τ ∈ R3 to the fractional coordinates. For a group element g = (R, τ) ∈ E(3),
the action is defined as g · c = (k,FRT + 1nτ

T − ⌊FRT + 1nτ
T ⌋,A) where 1n ∈ {1}n is a

column vector of ones and ⌊·⌋ is the element-wise floor function. We further specify the action of
the product group on c. Let (g, σ) ∈ G × Sn, we define (g, σ) · c := g · (σ · c). Puny et al. (2021)
showed that if G ⩽ E(3) then g · (σ · c) = σ · (g · c), i.e., the operators commute.

Figure 2: A 2D example of a unit
cell with p4mm symmetry. Applying
a group element to this set permutes
“atoms” of the same type (shape and
color). The symmetry divides the unit
cell (black box) into four Wyckoff posi-
tion: the center, horizontal and vertical
coordinate axes, diagonal axes, and gen-
eral position (denoted by white space).

Space Groups. The space group concept formalizes the
intrinsic symmetry of a crystal. If c ∈ C is a crystal
and G ⩽ E(3) is its symmetry space group, then for
any g ∈ G there exist a permutation σ ∈ Sn that sat-
isfies the relation g · c = σ · c, a property we will de-
note as G-symmetry. In essence, any action of the space
group is equivalent to a permutation of the atom positions,
fig. 2 visualizes this property using a 2D example. The
p4mm symmetry group includes rotations by angles of
πz
2 for z ∈ Z. The corresponding permutation is invis-

ible, without fabricated labels, because it rearranges the
positions of identical shapes. Two Crystals c1, c2 ∈ C
are Mutually G-Symmetric if every space group element
g corresponds to the same permutation σ on both crys-
tals. Formally, c1 and c2 are mutually G-symmetric if
g · c1 = σ · c1 ⇐⇒ g · c2 = σ · c2. There exist 230 dis-
tinct space groups in three-dimensional crystallography.
Owing to the intrinsic periodicity of crystal structures,
all corresponding subgroups are finite subgroups of the
Euclidean group E(3). For non-orthogonal lattice struc-
tures, the space group acts on fractional coordinates as elements of the special affine group SA(3),
rather than E(3), fig. 5 demonstrates this in 2D. In simpler terms, we apply the group action after
mapping every lattice to the cube using L−1.

Figure 3: Projection of a coordi-
nate f using Wyckoff position w.

Wyckoff Positions. Intuitively, Wyckoff positions of a space
group G indicate regions with specific symmetry properties.
Atoms in general position occupy the least symmetric position
in the crystal, appear most frequently in the unit cell, and en-
joy the fewest restrictions on their coordinates. Meanwhile,
atoms in one of the several special positions occupy a region
of higher symmetry, appear less frequently in the unit cell, and
are restricted to lie in low-dimensional affine subspaces. More
formally, a Wyckoff position w, is defined by a set of |w| = m
affine projections {(Vi, τi)}mi=1 onto the corresponding affine
subspace, with Vi ∈ R3×3 and τi ∈ R3. We denote projection
of f ∈ [0, 1)3 onto each of these m affine subspaces by,

w(f) := {Vif + τi − ⌊Vif + τi⌋}mi=1 . (1)

If w is a Wyckoff postion of a space group G, for every y ∈ w(f) we have the property w(f) =
G · y where G · y := {g · y | g ∈ G} denotes the orbit of y under G. This is visualized in fig. 3;
it illustrates how f is mapped to an orbit induced by G through w. Each affine transformation
(Vi, τi) identifies with a subgroup G′ ⩽ G that fixes points on its corresponding image. Namely,
yi = Vif + τi − ⌊Vif + τi⌋ for some f ∈ [0, 1)3 if and only if G′ = {g ∈ G | g · yi = yi}. That
means that G′ = Gyi

, the site-symmetry (stabilizer) group of yi. We define the crystal c (with
fractional coordinates F ) to be W-constructable with respect to W = (w1, . . . , wk) if there exist k
points

{
xi ∈ [0, 1)3

}k
i=1

in the unit cell such that F =
⋃k

i=1 wi(xi) up to a permutation.

Flow Matching (FM) is a generative modeling framework that transform samples from a simple
base distribution p0 into a complex target distribution p1 using a time-dependent diffeomorphic
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map, called a flow, ψ : [0, 1]×X → X . This flow is defined through the differential equation:
d

dt
ψt(x) = vt(ψt(x)), ψ0(x) = x (2)

where vt : [0, 1] × X → X is a vector field governs the evolution of the ψt. The flow induces a
time-dependent probability density path pt : [0, 1] × X → R starting at p0 and ending with p1.
FM trains a parametric approximation ut of the true vector field vt (Lipman et al., 2024) by solving
a regression objective. A conditional flow ψ(· | y) : [0, 1] × X → X transports the entire base
distribution to a single target point y ∈ X and is governed by vector field vt(· | y), which is easy to
compute, unlike vt(·). Lipman et al. (2022) demonstrated that optimizing ut to match vt(· | y) with
regression leads to the same optimum as matching the marginal vector field vt.

3 METHOD

This section presents our proposed model, SGFM, a flow matching-based generative approach de-
signed to sample crystal structures conditioned on specified space groups and Wyckoff positions.
We start by formalizing the problem and defining the target distribution we aim to sample from in
section 3.1. Then, section 3.2 outlines sufficient conditions for a flow model to sample from this
distribution. Section 3.3 provides a detailed overview of the model, including its key components,
the noise prior and vector field. Finally, section 3.4 presents the training details of SGFM.

3.1 PROBLEM DEFINITION

Given a finite set of crystals {c1, . . . , cm}, each associated with a space group and Wyckoff posi-
tions (Gi,Wi) and drawn from an unknown target distribution q, our goal is to design a generative
model that samples crystals c ∼ p1 such that p1 ≈ q. To incorporate the structural information
encoded by G and W , we factorize the distribution as p1(c) = p1(c | G,W)q(G,W), enabling us
to model the crystal distribution conditionally on G and W . While G and W are jointly sampled
from empirical distribution, the proposed generative model focuses on sampling crystals from the
conditional distribution c ∼ p1(· | G,W), which satisfies the following properties:

• p(· |G,W) is a G-symmetric distribution, meaning that p(c |G,W) > 0 if c is G-
symmetric. The distribution assigns positive probability exclusively to crystals for which
G is their corresponding space group.

• p(· |G,W) is a W-constructable distribution, meaning that p(c |G,W) > 0 if c is W-
constructable. p only supports crystals with fractional coordinates constructible by W .

Our analysis is based upon the general conditions for invariant sampling in flow models (Köhler
et al., 2020; Rezende et al., 2019). Next, we will briefly revisit and extend those results to our setting.

3.2 THEORETICAL ANALYSIS

We now present the theoretical concepts underpinning the development of our generative model.
The following theorem establishes the conditions under which a flow-based model can sample from
a G-invariant distribution. This result has been proven in prior work by Köhler et al. (2020) and
Song et al. (2023). For completeness, we state the theorem here and provide a concise version of its
proof in appendix A.1, as it serves as a foundational component for our theoretical analysis.
Theorem 3.1. The probability path pt(x) defined by a flow generated by a G-equivariant vector
field ut from a G-invariant prior p is G-invariant for all t ∈ [0, 1].

The proof of this theorem consists of two parts. First, we demonstrate that the flow ψt(x), is G-
equivariant. Second, we show pt(x) is G-invariant. Building on this proof, we derive the conditions
under which a flow-based model can sample from a distribution that is both G-symmetric and W-
constructable. Achieving this requires extending the standard framework with two modifications:

1. Introducing a noise prior that is itself G-symmetric and W-constructable.
2. Ensuring that the vector field model ut is equivariant with respect to the space group G and

the permutation group Sn. To do so we extend the vector field (and corresponding flow)
equivariance to the group product G× Sn.

4
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Algorithm 1 Sample F0 ∼ p0(·|G,W)

1: Input: W = {w1, . . . , wk} s.t. wi is a Wyckoff position of the space group G.
2: Output: F0 ∈ [0, 1)n×3 s.t. n =

∑k
i=1 |wi|.

3: set F0 = [ ]
4: for i = 1 to k do
5: Sample x ∼ U [0, 1]

3

6: F0 = Concatenate([F0, wi(x)])
7: end for
8: return F0

Theorem 3.2. The probability path pt(x) defined by a flow generated by aG×Sn equivariant vector
field ut from a G-symmetric and W-constructable prior p is G-symmetric and W-constructable for
all t ∈ [0, 1].

This theorem follows directly from the lemma below (proof in appendix A.2) , which establishes
that if the initial point c0 of a G× Sn equivariant flow is a G-symmetric crystal structure, any point
along the flow will be mutually G-symmetric with c0. Furthermore, we demonstrate that the flow
preserves the site-symmetry structure of c0. This implies that if c0 is W-constructable, then ψt(c0) is
also W-constructable. Figure 1 (b) visualizes the core idea behind the theorem, illustrating how the
equivariant vector field constrains atoms to move solely within the image of their Wyckoff position.
Lemma 3.3. Let ψt be a G×Sn equivariant flow and c ∈ C be G-symmetric and W-constructable,
then ψt(c) is G-symmetric and W-constructable.

3.3 SGFM

In this section, we introduce the key components of SGFM, with emphasis on the prior model and the
learned vector field architecture. We explain how the previously outlined conditions are concretely
implemented. The main focus lies in the interaction between the method and the crystal’s fractional
coordinates, due to their strong dependence on the space group and Wyckoff positions.

Noise Prior. According to theorem 3.2, for the generated distribution to satisfy the conditions
outlined in section 3.1, the noise prior must also satisfy the same constraints. Algorithm 1 presents a
noise prior sampling pseudocode (with 2D visualizations in fig. 1 (a)) that generates initial fractional
coordinates compliant with these requirements. The sampling procedure for the lattice parameters
and atom types is described in section 3.4 for the reader’s convenience. The algorithm iterates over
the set of Wyckoff positions and samples orbits induced by G by projecting random points from the
unit cell. It follows directly from the algorithm’s construction that F0 is W-constructable and the
following lemma further establishes that F0 is also G-symmetric. The proof (appendix A.3) relies
on the fact that the action of a group element on an orbit defines a bijection.
Lemma 3.4. Let G ⩽ E(3) be a space group, W a corresponding set of Wyckoff positions and
F0 ∈ [0, 1)n×3 a W-constructable set of points in the unit cell, then F0 is G-symmetric.

Space Group Conditional Vector Field. As noted previously, ut must be G × Sn equivariant in
order for the flow to be G-symmetric and W-constructable. The challenge lies in using a single ut
model across crystals with varying space groups. Since some space groups (with non-orthogonal
lattice structure) act on the fractional coordinates with special affine structured transformations, (see
fig. 5), using an E(3)× Sn-equivariant model is inadequate. To address these limitations, we adopt
Group Averaging (GA) (Yarotsky, 2022), a symmetrization operator that projects a backbone model
onto the space of G-equivariant functions. It is defined as:

û(c |G) =
∑
g∈G

g · u(g−1 · c). (3)

Applying GA to enforce space group symmetry addresses the previously mentioned limitations.
Specifically, if the backbone u is Sn equivariant , then û(· |G) is G × Sn equivariant (Puny et al.,
2021). Additionally, GA is not limited to subgroups of E(3) and support all finite groups. Impor-
tantly, Puny et al. (2021) showed that symmetrization preserves the expressive power of the original
model. However, a drawback of GA is its computational burden: directly applying eq. (3) increases

5
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the number of evaluations of u by a factor of |G|, which can be as large as 192 for 3D space groups
(the average space group size in the MP-20 dataset is ∼ 45). To mitigate this computationally inten-
sive formulation, we leverage the fact that the inputs to û(· |G) are G-symmetric crystals, allowing
us to derive an efficient and equivalent formulation of GA specific to this case.
Lemma 3.5. Let c ∈ C be a crystal, G its space group, and u an Sn equivariant vector field. Then,
eq. (3) can be equivalently rewritten as follows:

û(c |G) =
∑
g∈G

g · σg−1|c · u(c) (4)

Where σg−1|c ∈ Sn satisfy the equation σg−1|c · c = g−1 · c.

Table 1: Training and generation
time comparison of different vec-
tor field models.

Model Training Generation
Batch size Time (s) Time (s)

SGFM 64 28.2 17.81
Non-Equivariant 64 26.3 16.39
GA 1 600 -

The formulation presented in eq. (4) requires only a single
evaluation of u, which dramatically improves the model ef-
ficiency. Figure 1 (c) compares between eq. (3) and eq. (4)
and visualize the efficiency gain. Furthermore, computing
σg−1|c is computationally efficient, since we can decompose
the problem according to the orbits of c, determined by W (ap-
pendix A.3). At inference time, these permutations only need
to be computed once for c0, since theorem 3.2 guarantees that the flow preserves G-symmetry struc-
ture. During training, permutations are computed only once during preprocessing for every data
point. Table 1 compares the training and generation runtimes between SGFM, a non-equivariant
variant (no symmetrization), and standard GA highlighting the efficiency gains of our GA implemen-
tation compared to the standard GA, and demonstrating that its computational cost is comparable to
using a backbone without symmetrization. Further details of this comparison are in appendix H.

3.4 TRAINING SGFM

This section provides an overview of the SGFM training process. Let c1 ∈ C be a crystal from
the training set with a corresponding space group G and Wyckoff positions W . We will denote
c0 ∼ p0(·|G,W, c1) a sample from the conditional noise prior, ct = ψt(c0 | c1) the conditional flow
where ct = (kt,Ft,At), vt(ct|c1) = (vkt (ct|c1), vFt (ct|c1), vAt (ct|c1)) is the conditional vector
field and ût(ct|G) = (ûkt (ct|G), ûFt (ct|G), ûAt (ct|G)) is the prediction of the G × Sn equivariant
vector field parametric model.

Lattice Parameters. As noted in section 2, we represent lattice parameters using the group-
conditioned form from (Jiao et al., 2024), where k ∈ R6 encodes the basis coefficients of a 3D
symmetric matrix constrained to G-specific subspaces. To sample k0 ∈ R6, we first draw coeffi-
cients k′ ∼ N (0, I) and apply a group condition mask: k0 = k′ ⊙m(G), where m(G) ∈ {0, 1}6 is
a group-dependent binary mask that zeros out the irrelevant coefficients. kt is computed as a linear
interpolation of k0 and k1, kt = (1 − t)k0 + tk1 and the corresponding component of the condi-
tional vector field is vkt (ct|c1) = k1 − k0. Since the group action does not directly act on the lattice
parameterization we need to apply them(G) on ûkt (ct|G), both in training and after each generation
step. The lattice optimization objective is:

Lk(θ) = Et,q(c1),p0(c0|G)

∥∥ûkt (ct|G)⊙m(G)− (k1 − k0)
∥∥2
2

(5)

Atom Types. For the DNG task, which involves predicting atom types, we follow the model-
ing approach introduced in Miller et al. (2024), where atom types are represented using a {−1, 1}
binary format instead of standard one-hot encoding. Specifically, A1 ∈ {0, 1}n×h is converted
into its binary representation Ã1 ∈ {−1, 1}n×⌈log2 h⌉. To ensure G-symmetry in the initial sam-
ple c0, atom types must be consistent within each orbit. Accordingly, we sample initial Gaus-
sian noise N (0, 1)⌈log2 h⌉ per orbit and broadcast it to all atoms within that orbit to sample
Ã0 ∈ {−1, 1}n×⌈log2 h⌉. We define Ãt = (1 − t)Ã0 + tÃ0 and vAt (ct|c1) = Ã1 − Ã0. The
atom types optimization objective is:

LA(θ) = Et,q(c1),p0(c0|G)

∥∥∥ûAt (ct|G)− (Ã1 − Ã0)
∥∥∥2
2

(6)

Our GA formulation (eq. (4)) ensures that ûAt (ct | G) is G-invariant, meaning the atom type vector
field is consistent across orbits, as required. During inference, we apply the sign function to convert
the continuous atom type predictions into their binary representation.
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Fractional Coordinates. Algorithm 1 describes a general procedure for sampling fractional coor-
dinates that are both G-symmetric and W-constructable. To ensure G-symmetry of the conditional
flow, the initial coordinates F0 ∼ p0(·, |, G,W) must be G-symmetric with F1. This requires that
the order of elements and operators in W match that used to generate F1, which we precompute dur-
ing preprocessing using the PyXtal library (Fredericks et al., 2021). We adopt the flat torus geometry
of the unit cell, following the approach proposed by Miller et al. (2024), and define the conditional
flow over the fractional coordinates -

ψt(F0|F1) = F0 + t · logF0
(F1) (7)

Where log(·)(·) (eq. (12)) is the element-wise logarithmic map over the flat tori. In appendix B
we demonstrate: (1) the conditional vector field logF0

(F1) is G-equivariant but with respect to a
different representation of G. Let g ∈ G then logg·F0

(g · F1) = g⋆ logF0
(F1) where g⋆ is defined

by the homomorphism (R, τ) 7→ R; (2) ψt(F0|F1) is mutuallyG-symmetric with F0 and F1, hence
G-symmetric and W-constructable. The fractional coordinates optimization objective is:

LF (θ) = Et,q(c1),p0(c0|G,W)

∥∥ûFt (ct|G)− logF0
(F1)

∥∥2
2

(8)

Combining all the components we obtain SGFM training objective:

LSGFM(θ) = λkLk(θ) + λFLF (θ) + λALA(θ) (9)
where λk, λF , λA ∈ R+ are hyperparameters.
Table 2: CSP Results over a collection of datasets. MR denotes match rate. Best results are bolded

Model MP-20 MPTS-52 Perov-5 Carbon-24 Alex-MP-20
MR (%) ↑ RMSE ↓ MR (%) ↑ RMSE ↓ MR (%) ↑ RMSE ↓ MR (%) ↑ RMSE ↓ MR (%) ↑ RMSE ↓

CDVAE 33.90 .1045 5.34 .2106 45.31 .1138 17.09 .2969 - -
FlowMM 61.39 .0566 17.54 .1726 53.15 .0992 23.47 .4122 - -
OMatG 69.83 .0741 27.38 .1970 83.06 .3753 - - 72.50 .1260
DiffCSP++ 80.27 .0295 46.29 .0896 98.44 .0430 - - - -
GCFM (ours) 82.74 .0288 51.79 .0827 98.57 .0188 55.02 .0952 81.98 .0243

4 EXPERIMENTS

The experiments can be divided into two sections: Crystal Structure Prediction (CSP) implies pre-
dicting the fractional coordinates and lattice parameters given atom types. We will show that con-
ditioning on the correct space groups and Wyckoff positions, enabled by SGFM, has a significantly
positive effect on the quality of predicted fractional coordinates and lattice parameters. Wyckoff
positions are not known prima facia, so we use a method to predict them. We test on five datasets
and perform extensive ablation studies to assess our method. In the second task De Novo Generation
(DNG), we generate the atom types along with the fractional coordinates and lattice parameters.

Datasets. We evaluate our method on five datasets: MP-20 (Jain et al., 2013), with 45,231 diverse
crystals from the Materials Project; MPTS-52, a time-ordered variant with 40, 476 crystals featur-
ing larger unit cells; and Alex-MP-20, a large-scale set of 607, 684 crystals combining MP-20 and
Alexandria data (Schmidt et al., 2022a;b). We also assess CSP on two unit-test style datasets: Perov-
5 (Castelli et al., 2012), with 18, 928 perovskites sharing a common structure but varying atom types,
and Carbon-24 (Pickard, 2020), containing 10, 153 carbon crystals with diverse structures.

Baselines. We compared SGFM to several state-of-the-art baselines. Methods that do not incorpo-
rate space group information in their generation process include CDVAE (Xie et al., 2021), ADiT
(Joshi et al., 2025), FlowMM (Miller et al., 2024), FlowLLM (Sriram et al., 2024), and OMatG
(Hoellmer et al., 2025). In contrast, SymmCD (Levy et al., 2025), DiffCSP++ (Jiao et al., 2024),
WyFormer (Kazeev et al., 2025), and SGEquiDiff (Chang et al., 2025) explicitly incorporate space
group information. Additional details on each baseline are provided in appendix C.

Model Details. To model ût, we adopt the architecture used in Miller et al. (2024), which utilizes
EGNN (Satorras et al., 2022) to handle fractional coordinates. The model applies sinusoidal embed-
dings to the fractional coordinates, ensuring invariance to lattice translations in addition to the space
group equivariance. A description of the architecture and the hyperparameters used in each experi-
ment are provided in appendix G. For improved sampling quality, we apply inference anti-annealing
(Yim et al., 2023; Bose et al., 2023) that adjusts the prediction velocity during generation.
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Figure 4: MR (up) and RMSE
(down) as a function of generation
steps on MP-20.

CRYSTAL STRUCTURE PREDICTION

The generative task in CSP requires sampling from the condi-
tional target distribution c ∼ q(·|A), where A denotes a pre-
defined atom type composition. This conditioning implies that
during both training and generation At = A for all t ∈ [0, 1],
effectively ignoring the loss term LA and the atom type com-
ponent ûAt (ct|G). For evaluation, a crystal structure is gen-
erated for each entry in the test set—which provides empir-
ical samples of a space group, Wyckoff positions, and atom
types—and then compared against the corresponding ground
truth structure using pymatgen StructureMatcher (Ong
et al., 2013) with same threshold values as in Jiao et al. (2024).
We report two metrics: the match rate (MR), defined as the
fraction of generated structures that successfully match their
ground truth counterparts, and the RMSE, averaged over all
matched pairs. We conduct CSP across all datasets, with re-
sults summarized in table 2. Two key conclusions emerge:
first, incorporating space group and Wyckoff position informa-
tion significantly enhances structure generation performance;
second, among the methods that leverage this additional in-
formation, SGFM consistently outperforms others across all
shared datasets, achieving state-of-the-art results. Comparing
CSP accuracy as a function of generation steps (fig. 4), we
observe that SGFM reaches near-optimal accuracy within just
50–100 steps, whereas DiffCSP++ converges more slowly, requiring up to 1000 steps to approach
its best performance—while still showing a notable gap in match rate compared to SGFM.

Table 3: Noise prior vs. model type
comparison. The reported result is MR
on the MP-20 dataset.
Noise Prior \Model Equivariant Non-Equivariant
Wyckoff Conditional 82.74 68.16
Uniform - 64.49

We ran an experiment to evaluate the impact of SGFM’s
components. Table 3 compares the CSP evaluations of
several models: SGFM, another using a non-equivariant
vector field with a uniform noise prior, and a third us-
ing a non-equivariant vector field with a conditional noise
prior. The results show that starting with a conditional
noise prior offers some advantage on its own. Its combination with the equivariant model, however,
yields a significant improvement. The missing combination was not evaluated because the uniform
distribution does not provide the initial conditions useful for an equivariant vector field.

Table 4: CSPML evaluation.
The reported metric is MR.
Model MP-20 MPTS-52 Perov-5
CSPML 70.51 36.98 51.84
DiffCSP++ 70.58 37.17 52.17
SGFM 70.13 35.09 54.10

Obtaining the ground truth space group and Wyckoff positions cor-
responding to a given atom type composition can be challenging.
To address this, we leverage CSPML (Kusaba et al., 2022), a met-
ric learning-based model that, given an atom type composition, re-
trieves a similar composition from a template set—along with its as-
sociated space group and Wyckoff positions. Specifically, for each
crystal in the test set, we match its atom type composition A to a template composition A′, from
the training set. We then use the space group and Wyckoff positions of A′ as conditioning inputs
for SGFM. The generated structure is subsequently compared to the ground truth structure from the
test set. Table 4 presents a summary of our evaluation using CSPML and a comparison to baselines.

DE NOVO GENERATION

We evaluate the ability of our generative model to discover thermodynamically stable and novel
crystals, identify the validity of the generated samples, and investigate divergences in distributions
of properties. The results and baselines are shown in table 5. Next, we will describe the various
evaluation metrics. Validity % defines two different heuristics that realsitic crystals should satsify.
Structural validity implies that the pairwise atomic distances of a crystal’s atoms are all greater
than 0.5Å. Compositional validity implies that a crystal has a neutral charge according to so-called
SMACT (Davies et al., 2019) rules. The properties that we consider for computing divergences in-
clude ρ the atomic density defined by number of atoms divided by unit cell volume, elem (airity) the
number of unique elements in a crystal, and cn (coordination number) or the the number of bonds
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Table 5: DNG evaluation. Models were trained on the MP-20 dataset. NFE refers to the number of
generation steps per sample. We evaluated all the S.U.N. metrics, except those marked with ∗.

Model NFE Validity (%) ↑ Property ↓ Stable (%) ↑ S.U.N (%) ↑ Stable (%) ↑ S.U.N (%) ↑
Structural Composition dρ delem dcn Ehull < 100 meV/Atom Ehull < 0 meV/Atom

CDVAE 5000 100.00 86.70 0.688 0.278 - - - - -
ADiT 500 99.74 92.14 - - - 72.0 27.4 13.0 4.6
FlowMM 500 96.86 83.24 0.075 0.079 0.443 31.2 19.7 4.6 2.3
FlowLLM 250 99.81 89.05 0.660 0.090 - 67.9 21.9 14.2 3.6
OMatG 680 95.05 82.84 0.060 0.017 0.165 44.4 23.7 6.6 2.2
SymmCD 1000 90.34 85.81 0.230 0.400 - - - - -
DiffCSP++ (empirical) 1000 99.94 85.12 0.235 0.374 - 31.4 21.1 7.2 4.0
DiffCSP++ (Wyformer) 1000 99.66 80.34 0.670 0.098 - - - - 3.8∗

SGEquiDiff 1000 99.25 86.16 0.193 0.209 - - 25.8∗ - -
SGFM (empirical) 500 99.87 86.81 0.075 0.181 0.076 64.1 30.3 14.6 6.9
SGFM (Wyformer) 500 99.87 84.76 0.237 0.233 - 48.4 22.6 10.6 4.7

per atom on average. We report the Wasserstein divergence between the test set and a structurally
and compositionally valid subset of 1000 generated samples. Finally, we the thermodynamic sta-
bility, novelty, and uniqueness of generated crystals. Thermodynamic stability implies a structure
is at or near a local minima in composition space. This requires a short explanation which can
be read in appendix D. We then compute the uniqueness and novelty of each stable crystal (S.U.N.)
against other generations and the train and validation set, respectively using StructureMatcher
(Ong et al., 2013) with default settings. We trained SGFM on the MP-20 dataset, including an atom
type prediction module, and generated structures from each of our configurations for evaluation.
The configurations include using Wyckoff positions taken from the train set, denoted empirical, and
from the output of Wyformer (Kazeev et al., 2025), with an eponymous denotation. All systems were
evaluated with 10, 000 samples, except DiffCSP++ (empirical) that uses only 1, 000 samples. Dif-
fCSP++ (Wyformer) (Kazeev et al., 2025) and SGEquiDiff (Chang et al., 2025) are reported results
with slightly different density functional theory settings and only 100 relaxations, respectively.

5 RELATED WORK

There is a growing body of literature about generative models for inorganic crystals. We focus here
on works with similar inductive biases, namely explicit utilization of Wyckoff positions. We first
consider works that generate atomic coordinates. Cao et al. (2024) created an autoregressive model
that generates crystals sequentially in Wyckoff position’s lexicographic order. Jiao et al. (2024);
Levy et al. (2025) produced diffusion models that both represent crystals within the asymmetric
unit, a memory-efficient formulation that contains just one representative per orbit. Neither of these
methods utilize space group equivariance and both require projection steps to keep atomic coordi-
nates within the target Wyckoff positions. A concurrently developed diffusion model by Chang et al.
(2025) also utilizes the asymmetric unit; however, it does utilize space group equivariance via group
averaging. Working in the asymmetric unit does not allow for our efficient reformulation in eq. (4).
As written, Levy et al. (2025) do not address the crystal structure prediction problem. There are also
a class of models that generate coarse-grained Wyckoff positions alone, ignoring explicit atomic
coordinates. (Zhu et al., 2024; Kazeev et al., 2025) both take this approach, inspired by regression
methods (Goodall & Lee, 2020; Goodall et al., 2022). These models synergize with ours and gener-
ate Wyckoff positions for SGFM to use during de novo generation in section 4. Further discussion
of other relevant work is left for appendix E.

6 CONCLUSIONS

In this work, we introduced SGFM, a FM based generative model for crystal structures, conditioned
on space group and Wyckoff positions. By design, SGFM produces crystals that satisfy symmetry
constraints, relying on sufficient conditions we formulated over the noise prior and vector field. We
also implemented an efficient group averaging method, enabling the incorporation of space group
equivariance into the vector field model with minimal overhead. Evaluated on both CSP and DNG
tasks, SGFM achieved state-of-the-art performance. Future directions include extending the model
to an unconditional generation setting, where space group and Wyckoff positions are also generated
rather than specified.
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A PROOFS

A.1 PROOF OF THEOREM 3.1

Proof. The proof has two main parts. First, we will show that the flow ψt defined by the G-
equivariant vector field ut is G-equivariant. Then, we will use this property to demonstrate that
the resulting probability path pt is G-invariant. As a reminder, the flow ψ : [0, 1] × X → X is
defined by the following ODE:

d

dt
ψt(x) = ut(ψt(x)) (10)

ψ0(x) = x (11)

To demonstrate that ψt is equivariant, we will show that two functions, φt(x) := ψt(g · x) and
ϕt(x) = g · ψt(x) (for arbitrary g ∈ G) satisfy the same ODE with identical initial conditions.

d

dt
φt(x) =

d

dt
ψt(g · x) = ut(ψt(g · x)) = ut(φt(x))

φ0(x) = ψ0(g · x) = g · x

d

dt
ϕt(x) =

d

dt
g · ψt(x) = g · d

dt
ψt(x) = g · ut(ψt(x)) = ut(g · ψt(x)) = ut(ϕt(x))

ϕ0(x) = g·ψ0(x) = g · x

Where the forth equality uses the G-equivariance of ut. We can therefore conclude ψt(g · x) =
g · ψt(x) for every x ∈ X , g ∈ G and t ∈ [0, 1], which prove that ψt is G-equivariant.

13

https://arxiv.org/abs/2110.06197
https://arxiv.org/abs/2312.03687
https://arxiv.org/abs/2312.03687


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

It remains to show that pt defines an invariant probability path.

pt(g · x) = p0(ψ
−1
t (g · x)) det

[
∂ψ−1

t

∂x
(g · x)

]
= p0(ψ

−1
t (x)) det

[
∂ψ−1

t

∂x
(g · x)

]
= p0(ψ

−1
t (x)) det

[
g · ∂ψ

−1
t

∂x
(x) · g−1

]
= p0(ψ

−1
t (x)) det

[
∂ψ−1

t

∂x
(x)

]
= pt(x)

The second equality follows from the G-equivariance of ψ−1
t and the G-invariance of p0. The third

equality is a consequence of the definition of the Jacobian matrix for equivariant functions, and the
final equality relies on standard properties of the determinant.

A.2 PROOF OF THEOREM 3.3

Proof. The first part of the proof, which involves showing that ψt isG-symmetric, is straightforward
and follows directly from the equivariance properties ofψt. Sinceψt isG×Sn (and the group actions
commute) it trivial to see that it is equivariant to each of the groups separately. Let the g ∈ G then:

g · ψt(c) = ψt(g · c) = ψt(σ · c) = σ · ψt(c)

Where the first equality follows from the G-equivariance of ψt, the second holds because c is G-
symmetric, and the final equality follows from the Sn-equivariance of ψt. From the above equation,
we also conclude that c and ψt(c) are mutually G-symmetric. Now, let g′ ∈ Gfi , meaning the g′

belongs to the site-symmetry group of fi, the ith fractional coordinate of c. Since g′ ∈ G there exist
a permutation σ′ ∈ Sn s.t g′ · c = σ′ · c. Moreover, because g′ ∈ Gfi , the permutation must fix the
index i, σ′(i) = i. From the previous part of the proof, we know that g′ ·ψt(c) = σ′ ·ψt(c) and since
σ′(i) = i, it follows that g′ ∈ Gf ′

i
, where f ′i is the ith fractional coordinate of ψt(c). Therefore,

ψt(c) retains the same site-symmetry structure as c, and is thus also W-constructable.

A.3 PROOF OF THEOREM 3.4

let g ∈ G, our goal is to show that there exists a permutation σ ∈ Sn such that g ·F0 = σ ·F0. Since
F0 is W-constructable it can be written as a union of orbits under the action of G. Focusing on a
single orbit generated by wi, and denote it as Fwi

0 we can observe that g ·Fwi
0 = σ′ ·Fwi

0 for some
σ′ ∈ S|wi|. This holds because the action of a group element on an orbit is a bijection. Repeating
this process for each orbit contained in F0 yields a construction for the permutation σ.

A.4 PROOF OF THEOREM 3.5

Proof.

ût(c|G) =
∑
g∈G

g · ut(g−1 · c) =
∑
g∈G

g · ut(σg−1|c · c) =
∑
g∈G

g · σg−1|c · ut(c)

the second equation comes from the G-symmetry of c and the last comes from the Sn equivariance
of ut.

B CONDITIONAL FLOW ON FRACTIONAL COORDINATES

Lemma B.1. LetG be a space group, the flat tori logarithmic map logF0
(F1) isG×Sn equivariant.

14
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Figure 5: 2D visualization of the deformed geometry induced by moving to fractional coordinates
in a non-orthogonal lattices basis. This example demonstrates how a 3-fold rotational space group
becomes a set of special affine transformations when acting on fractional coordinates.

Proof. let g ∈ G such that g = (R, τ). Since the orthogonal components of G maps the crystal to
itself, it preserve the lattice structure. combining with the following lemma (which is expressed with
respect to a single point) we get that logarithmic maps is equivariant with respect to the space group
and that the representation the acts on the output domain includes only the orthogonal part without
the translation. The Sn equivariance is trivial for an element wise function.

Lemma B.2. Let g ∈ G such that g = (R, τ). if R maps Z3 to itself R logx(y) = logg·x(g · y).

Proof. Let logx(y) = v that means that exist z ∈ Z3 s.t v = y − x + z where v ∈ [− 1
2 ,

1
2 )

3. Now
lets assume logg·x(g ·y) = v′, that means that there exist z′ ∈ Z3 s.t v′ = g ·y− g ·x+ z′. plugging
in g = (R, τ) results in v′ = R(y − x) + z′. combining both equations we get that v′ = Rv + z′′

(because Rz ∈ Z3). Since v′ ∈ [− 1
2 ,

1
2 )

3 and ∥v∥ = ∥Rv∥ we conclude that v′ = Rv.

Lemma B.3. The conditional flow ψt(F0|F1) is G-symmetric and W-constructable.

Proof.

g · ψt(F0|F1) = (F0 + t logF0
(F1))R

T + 1nτ
T

= F0R
T + 1nτ

T + t logF0
(F1)R

T

= g · F0 + t logg·F0
(g · F1)

= σ · F0 + t logσ·F0
(σ · F1)

= σ · ψt(F0|F1)

The fact that ψt(F0|F1) is W-constructable follows directly from the proof in appendix A.2 and the
fact the ψt(F0|F1) is mutually G-symmetric with F0 and F1.

C LATTICE REPRESENTATION

The lattice matrix L ∈ R3×3 characterizes the geometry of the unit cell. When L corresponds to
a physically valid lattice, i.e., it has positive volume, it is invertible and can be decomposed to the
product L = Q exp(S) where Q ∈ R3×3 is an orthogonal matrix and S ∈ R3×3 is a symmetric

15
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matrix. Representing the lattice parameters via S enjoys the benefits of orthogonal invariance (any
orthogonal transformation is added to Q), which makes this representation invariant to any space
group operations. Jiao et al. (2024) suggested representing S using the coefficients of the following
basis -

B1 =

(
0 1 0
1 0 0
0 0 0

)
,B2 =

(
0 0 1
0 0 0
1 0 0

)
,B3 =

(
0 0 0
0 0 1
0 1 0

)
,

B4 =

(
1 0 0
0 −1 0
0 0 0

)
,B5 =

(
1 0 0
0 1 0
0 0 −2

)
,B6 =

(
1 0 0
0 1 0
0 0 1

)
.

This basis enables clustering of the crystallographic space groups based on the basis coefficients
used to represent S. Table 6 summarizes the lattice and coefficient constraints for each crystal
family type.

Table 6: Relationship between the lattice shape and the constraint of the symmetric bases.
Crystal Family Space Group No. Lattice Shape Constraint of Symmetric Bases

Triclinic 1 ∼ 2 No Constraint No Constraint

Monoclinic 3 ∼ 15 α = γ = 90◦ k1 = k3 = 0

Orthorhombic 16 ∼ 74 α = β = γ = 90◦ k1 = k2 = k3 = 0

Tetragonal 75 ∼ 142
α = β = γ = 90◦ k1 = k2 = k3 = 0

a = b k4 = 0

Hexagonal 143 ∼ 194
α = β = 90◦, γ = 120◦ k2 = k3 = 0, k1 = −log(3)/4

a = b k4 = 0

Cubic 195 ∼ 230
α = β = γ = 90◦ k1 = k2 = k3 = 0

a = b = c k4 = k5 = 0

D DENSITY FUNCTIONAL THEORY

Crystals exist in competition for stability between alternatives with the same composition. If one
plots energy against composition, the lowest energy structures form a convex hull. We say a crystal is
thermodynamically stable if it is near or below this convex hull. Since we do not know all structures,
there is epistemic uncertainty in this characterization. The difference between the energy of a crystal
and this convex hull is denoted Ehull. We report Ehull < 100 meV/atom and Ehull < 0 meV/atom
rates for stability metrics. These values are computed by prerelaxation with a machine learning
interatomic potential (Barroso-Luque et al., 2024) followed by relaxation and energy evaluation
using density functional theory.

For the stability metrics, we applied the Vienna ab initio simulation package (VASP) (Kresse &
Furthmüller, 1996) to compute relaxed geometries and ground state energies at a temperature of
0 K and pressure of 0 atm. We used the default settings from the Materials Project (Jain et al.,
2013) known as the MPRelaxSet with the PBE functional (Perdew et al., 1996) and Hubbard U
corrections. These correspond with the settings that our prerelaxation network OMat24 (Barroso-
Luque et al., 2024) was trained on, so prerelaxation should reduce DFT energy, up to fitting error.

We did not make any guesses about oxidation states! This deviates from the Materials Project which
does make those guesses. For this reason, our energy above hull calculations for structures that need
to consider oxidation state are slightly high, implying that we might be under-predicting stability.
This applies to any stability result we calculated. We expect it to also be a negligible effect.

The results from DiffCSP++ WyFormer in table 5 were computed by Kazeev et al. (2025) and differ
slightly from ours. Specifically, they run a multiple relaxations to avoid errors that come from
using a poor initial guess before relaxation. Since we prerelax with OMat24 we expect that double
relaxation is unnecessary. Consult their work for further details, but we believe the differences are
negligible for this purpose.
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E RELATED WORK

As a continuation from section 5, we discuss other related work. We still limit the focus to the
most-relevant parts of this large body of literature.

Our method resembles non-deep learning based methods that propose structures using Wyckoff po-
sitions as inductive bias (Glass et al., 2006; Pickard & Needs, 2011) and refine the atomic positions
using density functional theory. This field is known as high-throughput screening of inorganic crys-
tals and it is responsible for generating several important datasets of stable materials (Saal et al.,
2013; Kirklin et al., 2015; Wang et al., 2021; Schmidt et al., 2022a;b). Recently, those searches have
been sped up by machine learning interatomic potentials that closely approximate density functional
theory (Merchant et al., 2023).

Now we take a step further away conceptually to discuss methods that are tangentially related to
ours. Crystal-GFN (Mila AI4Science et al., 2023) is a G-flow network that uses the space group,
but does not consider Wyckoff positions. Several other works generate crystals without considering
multiple types of atom (Wirnsberger et al., 2022), or molecule (Köhler et al., 2023). Additionally,
there is a large and growing cannon of generative models for materials that do not have general space
group equivariance (Xie et al., 2021; Yang et al., 2023; Zeni et al., 2023; Miller et al., 2024; Sriram
et al., 2024; Lin et al., 2024; Joshi et al., 2025; Hoellmer et al., 2025).

F BASELINES

We provide additional context on the core approach behind each baseline we compared against:
CDVAE, integrates a diffusion model with a variational autoencoder for crystal structure generation;
ADiT, which use latent-based diffusion model and train on additional information from the QM9
(Wu et al., 2018) dataset; FlowMM, an application of Riemannian Flow Matching (Chen & Lip-
man, 2024) that incorporates non-trivial geometries in the crystal representation space; FlowLLM,
combines FlowMM with a Large Language model that uses as base distribution generator. OMatG,
leverages Stochastic Interpolants (Albergo et al., 2023) for material generation; SymmCD, operates
on the asymmetric unit and incorporates Wyckoff positions as part of the generative process; Dif-
fCSP++, a diffusion-based model that conditions on space groups and projects each denoising step
through Wyckoff position transformations; WyFormer, which employs an autoregressive model to
generate Wyckoff positions (conditioned on space group) and subsequently uses DiffCSP++ model
for full structure generation to predict the structure; and finally, SGEquiDiff a diffusion based model
that enforce space group equivariance while working on the asymmetric unit.

G MODEL DETAILS

G.1 ARCHITECTURE

In this section, we present a comprehensive overview of our vector field model ût(· |G), along with
the hyperparameters employed during training and generation across all experiments. The model
takes as input a crystal c = (k,F ,A), where f i ∈ R3 denotes the ith fractional coordinate in F ,
and ai ∈ {0, 1}h represents the ith atom type indicator vector in A. The forward computation of s
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layers model û(c, |, G) is defined by the following set of equations:

aiembed = ϕa(ai)

tembed = SinusoidalTimeEmbedding(t)

hi(0) = ϕembed(
[
aiembed, tembed

]
)

mij
(l) = ϕedge

(l) (

[
hi(l−1), h

j
(l−1), k,SinusoidalEmbedding(logfi(f j)),

LTL logfi(f j)∥∥LTL logfi(f j)
∥∥
]
)

mi
(l) =

1

n

n∑
j=1

mij
(l)

hi(l) = ϕnode
(l) (

[
hi(l−1),m

i
(l)

]
)

ukt (ct) = ϕk(
1

n

n∑
j=1

hi(s))

(uFt (ct))
i = ϕF (hi(s))

(uAt (ct))
i = ϕA(hi(s))

ut(ct) = (ukt (ct), u
F
t (ct), u

A
t (ct))

ût(ct |G) =
∑
g∈G

g · σg−1|c · ut(ct)

We denote d as the hidden dimension of the model, dt as the Sinusoidal Time Embedding dimension,
and ds as the Sinusoidal Embedding dimension. Next, we list the learnable modules constructing the
model and denote their input and output dimension as x→ y. ϕa is a linear layer h→ d, ϕembed is a
linear layer d+dt → d dimension d, ϕedge

(l) is 2-layer Multi-layer Perceptron (MLP) 2d+dt+9 → d,
ϕnode
(l) is a 2-layer Multi-layer Perceptron (MLP) 2d → d, ϕk is a linear layer d → 6, ϕF is a linear

layer d → 3 and ϕA is a linear layer d → h. The last equation represents the group averaging
presented in eq. (4). The flat tori logarithmic map is defined by the equation:

logfi(f j) =
1

2π
atan2(

[
sin(f j − f i), cos(f j − f i)

]
) (12)

Table 7 summarize the hyperparameters used to train our SGFM models. Note that the same con-
figuration was applied uniformly across all datasets and tasks. The hyperparameter search was
performed on MP-20 (CSP) and the resulting settings were adopted for all other experiments.

Table 7: Hyperparameter details for all the models reported in the paper. Hyperparameter (bottom
row) search was conducted on the MP-20 dataset.

Dataset Number of Layers d dt ds Activation Layer Norm
CSP

MP-20 8 512 256 128 SiLU ✓
MPTS-52 8 512 256 128 SiLU ✓
Carbon-24 8 512 256 128 SiLU ✓
Perov-5 8 512 256 128 SiLU ✓
Alex-MP-20 8 512 256 128 SiLU ✓

DNG
MP-20 8 512 256 128 SiLU ✓

Hyperparameter Range
MP-20 {6, 7, 8, 9} {128, 256, 512} {128, 256} {128, 256} - -
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Table 8: Training hyperparameter details for all the models reported in the paper. Hyperparameter
(bottom row) search was conducted per experiment.

Dataset Batch Size/GPU Learning Rate Epochs λF λA λk

CSP
MP-20 64 0.0005 5000 100 - 1
MPTS-52 32 0.0005 5000 100 - 1
Carbon-24 64 0.0005 8000 100 - 1
Perov-5 256 0.0005 1000 100 - 1
Alex-MP-20 32 0.0005 1250 100 - 1

DNG
MP-20 64 0.0007 5000 100 1 1

Hyperparameter Range
- - {0.0002, 0.0005, 0.0007} {1000, 1250, 2000, 5000, 8000} {1, 10, 50, 100} {1, 10, 50, 100} {1, 10, 50, 100}

G.2 TRAINING & GENERATION

All of our models were trained using the ADAM optimizer (Kingma & Ba, 2014) on 8 NVIDIA A100
GPUs. Table 8 outlines the training configuration for each model, including the ranges explored dur-
ing hyperparameter search. We employed a cosine annealing learning rate schedule with a minimum
learning rate of 0.00001. As described in section 4, we applied inference anti-annealing to enhance
generation quality. This technique modifies the vector field by scaling it with a time-dependent func-
tion s(t) = 1 + s′t, where s′ ∈ R+ is a hyperparameter. We defined separate annealing parameters
for each crystal component: s′F and s′k (no annealing was applied to atom type prediction). For the
CSP experiments, we set s′F = 3, s′k = 3, and for DNG, we used s′F = 5, s′k = 3. All datasets have
60/20/20 train/validation/test split except Alex-MP-20 that has 80/10/10 split.

H RUNNING TIME ABLATIONS

This experimental ablation study aims to evaluate the efficiency of SGFM by comparing its per-
formance during both training and generation against two baseline models: (1) a non-equivariant
variant where the vector field does not incorporate group symmetry, and (2) a standard GA imple-
mentation as defined in eq. (3). For each model, we measured the time required to train a single
epoch on MP-20, as well as the time needed to generate a batch of 64 (with 500 generation steps).
The training time was averaged over 10 epochs, while the generation time was averaged over 100
batches. Training was conducted on an NVIDIA RTX8000 using 8 GPUs, while generation was
performed on a single NVIDIA A10 GPU. The results are summarized in table 1. Due to memory
constraints, the standard GA model was limited to a maximal batch size of 1 per GPU. As train-
ing under these conditions was not feasible, we do not report generation timings for this model.
The results highlight a significant efficiency gap between the SGFM implementation of GA and the
standard version, while showing minimal difference compared to the non-equivariant model.

I LARGE LANGUAGE MODELS

We utilized of large language models (LLMs) to assist with language refinement and proofreading.
No content, ideas, or analyses were produced by these tools. The usage was quite limited.
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