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ABSTRACT

3D perception in LiDAR point clouds is crucial for an autonomous driving vehi-
cle to properly act in 3D environment. However, manually labeling point clouds is
hard and costly. There has been a growing interest in self-supervised pre-training
of 3D perception models. Following the success of contrastive learning in images,
current methods mostly conduct contrastive pre-training on point clouds only. Yet
a self-driving vehicle is typically supplied with multiple sensors including cam-
eras and LiDAR. In this context, we systematically study single modality, cross-
modality, and multi-modality for contrastive learning of point clouds, and find that
cross-modality wins over other alternatives. In addition, considering the huge dif-
ference between the training sources in 2D images and 3D point clouds, it remains
unclear how to design more effective contrastive units for LiDAR. We therefore
propose the instance-aware and similarity-balanced contrastive units that are tai-
lored for self-driving point clouds. Extensive experiments reveal that our approach
achieves remarkable performance gains over various point cloud models across the
downstream perception tasks of LiDAR based 3D object detection and 3D seman-
tic segmentation on the four popular benchmarks including Waymo Open Dataset,
nuScenes, SemanticKITTI and ONCE.

1 INTRODUCTION

Figure 1: (a) Our approach achieves consistent and significant performance gains compared to train-
ing from scratch and other state-of-the-art self-supervised point cloud learning methods across dif-
ferent fractions of fine-tuning data on Waymo Open Dataset. (b) Our comprehensive modality study
finds that cross-modality (ours) is superior to single modality (and its enhanced version +) and multi-
modality in terms of downstream performance and memory consumption of GPU (proportional to
bubble area), while requiring moderate pre-training time. (c) Illustration of single modality, cross-
modality, and multi-modality for contrastive learning of LiDAR point clouds. PC1 and PC2 denote
two independently augmented point clouds.
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3D perception is a pivotal module of an autonomous driving vehicle as it provides the fundamental
information to subsequent onboard modules ranging from prediction to planning (Guo et al., 2020;
Arnold et al., 2019; Sun et al., 2020a). LiDAR is one of the most commonly utilized sensor that a
self-driving system relies on to perceive its neighboring environment in 3D (Arnold et al., 2019).
However, annotating LiDAR point clouds is notoriously difficult, error-prone, and time-consuming.
For instance, it costs around 4.5 hours to label a single tile in SemanticKITTI (Behley et al., 2019).
Recently, there has been growing attention in making use of self-supervised learning (SSL) to al-
leviate the laborious human labeling efforts, and at the same time, to harvest the vast amount of
data continuously collected by the world-wide self-driving fleets. However, 3D SSL is still under
explored compared to the well-developed family of 2D SSL methods (Chen et al., 2021; He et al.,
2020; Xie et al., 2022; He et al., 2022; Chen et al., 2020).

As pioneers in 3D SSL, DepthContrast (Zhang et al., 2021) conducts contrastive pre-training by
using the holistic point cloud as a contrastive unit at the scene-level, while PointContrast (Xie et al.,
2020) performs point-level comparisons in two transformed point clouds with different views to
capture dense information at the point-level. Such methods are designed for indoor settings captured
by hundreds of scans from diverse positions per scene with limited occlusion. In contrast, LiDAR
point clouds in autonomous driving capture large-scale outdoor scenes with restricted viewing angles
and strong occlusions. Most LiDAR point clouds are very similar to each other from the scene-level
perspective as a result of the limited diversity in street views. These differences make such scene-
level 3D SSL methods incompatible with self-driving point clouds. Recently, GCC-3D (Liang et al.,
2021) and ProposalContrast (Yin et al., 2022) propose to generate more fine-grained contrastive units
in the region-level for LiDAR. They leverage preliminary geometric cues to drive contrastive pre-
training. However, our experiments reveal that using low-level geometry makes the self-supervised
objective easy to overfit and leads to the sub-optimal performance in downstream tasks.

Another track is to perform contrastive learning across images and point clouds. Pri3D (Hou et al.,
2021) and PPKT (Liu et al., 2021) take the first step in exploring pixel-point correspondence for
indoor point clouds. SLidR (Sautier et al., 2022) uses LiDAR point clouds and synchronized images
to carry out contrastive learning, where superpixels are used to group local pixels as contrastive units.
However, superpixels tend to over-segment an object into small fragments, leading to numerous false
negative pairs and imbalanced sampling in the contrastive objective. Our experiments show that the
pre-trained weights provided by SLidR deliver on par or even deteriorated results compared to the
randomly initialized weights when fine-tuning on the downstream (large-scale annotated) datasets.

In light of the above observations, we seek to answer two fundamental research questions for LiDAR
based 3D SSL: (1) which modalities are better suited for contrastive learning of point clouds, and
(2) how to design more effective contrastive units in self-driving scenarios.

First, an autonomous vehicle is typically equipped with a sensor suite including cameras and Li-
DAR (Liu et al., 2023), offering three possible modalities to perform contrastive pre-training on: (i)
single modality with point cloud only, (ii) cross-modality on image and point cloud, and (iii) multi-
modality by combining (i) and (ii), as depicted in Figure 1(c). We find that the cross-modality wins
over the other two alternatives in terms of both pre-training efficiency and downstream improve-
ment, as shown in Figure 1(a-b). Specifically, we show that the contrastive learning on point cloud
only is prone to overfit to the pre-training objective, while the multi-modality induces tremendous
extra memory and computational costs yet brings no additional performance gains.

Second, a huge discrepancy exists in the training sources between 2D and 3D SSL. ImageNet (Deng
et al., 2009) is the de facto training data for 2D SSL, and it is essentially a curated dataset that is
instance-concentrated and class-balanced. On the contrary, real-world driving data is naturally col-
lected at the scene-level consisting of an imbalanced compound of multiple instances and vast back-
ground with no specific focus. Inspired by this contrast, we devise instance-aware and similarity-
balanced contrastive units in 3D SSL to approximate the counterpart in 2D SSL. In practice, we
sample the initial contrastive units uniformly in a point cloud to ensure a thorough coverage of the
scene. An unsupervised geometry clustering method is then introduced to merge and grow a part of
the initial units into instance clusters to create the instance-aware contrastive units. As demonstrated
in Figure 3(a), we can discover a rich set of foreground instances such as vehicles and pedestrians via
the clustering. For the remaining initial units, a large portion are similar and monotonous from the
wide-open background such as vegetation and buildings. To better balance the contrastive objective,
we develop a similarity-balanced sampling to rule out the semantically similar units.
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Figure 2: Overview of the proposed cross-modal contrastive pre-training framework. We uniformly
sample initial contrastive units to maximally cover the point cloud scene. An unsupervised geometry
clustering is introduced to generate the instance-aware contrastive units. Leveraging on the image
features that are self-supervised pre-trained with rich semantics, we develop the similarity-balanced
sampling to balance the contrastive objective by ruling out those units that are semantically close.

Our main contributions are summarized as follows. (1) To our knowledge, this work provides the
first comprehensive study in term of modality for contrastive learning of point clouds in self-driving
scenarios. Our findings show that the cross-modal learning across images and point clouds performs
the best in pre-training efficiency and accuracy improvement for downstream tasks. (2) We propose
the instance-aware and similarity-balanced contrastive units such that contrastive pre-training can
be conducted at the instance-level with more balanced sampling. (3) Experiments reveal that our
approach achieves superior performance gains on multiple downstream tasks, as demonstrated in
our extensive evaluations. For instance, our pre-trained weights boost the training-from-scratch
performance by 2.96% L2 mAPH on Waymo Open Dataset, exceeding the previous best result (Yin
et al., 2022) by 1.91%. Our code and model will be released.

2 METHOD

In this section, we detail the proposed instance-aware and similarity-balanced contrastive units in
cross-modal 3D SSL. We start by introducing the point cloud and image feature representations, and
then describe the design of our contrastive units including instance-aware clustering and similarity-
balanced sampling. Finally, we present our contrastive pre-training objective.

2.1 FEATURE REPRESENTATIONS

Point Cloud Feature Representation. Data augmentation is important to contrastive learning since
it increases the difficulty of self-supervised learning, alleviates overfitting, and encourages the pre-
trained weights to learn invariant features. Given a point cloud P ∈ RN×3 with N points, we first
apply a set of transformations T to P , resulting in the augmented point cloud T (P). In this paper,
we use rotation, scaling, and random flipping as the augmentation set.

We denote Fpoint as a point cloud network to be self-supervised pre-trained. It is used to generate
the point cloud feature P = Fpoint(T (P)), where P ∈ RN×C and C is the feature dimension.
The goal of pre-training is to enable Fpoint to learn the high-level semantics that are essential for the
downstream perception tasks, but with no data labeling. Our approach is versatile to various network
architectures, including the point, voxel or pillar based models.

3



Under review as a conference paper at ICLR 2024

Image Feature Representation. Along with LiDAR point clouds, the synchronized multi-view im-
ages in a self-driving vehicle provide extra visual information. Built upon the large-scale and well-
established image datasets such as ImageNet (Deng et al., 2009), current self-supervised pre-trained
networks such as MoCo (Chen et al., 2021) and SimCLR (Chen et al., 2020) offer high-quality im-
age features with rich semantics. We therefore take advantage of such a frozen pre-trained network
as the image encoder, which brings the following three benefits. First, leveraging on the success of
2D SSL, the image features learned with high-level semantics can guide the contrastive pre-training
toward the high-level understanding beyond the low-level point cloud statistics. Second, the image
features involving visual texture and context provide complementary information in addition to the
geometric cues from point clouds. Third, the image features are frozen and utilized as “anchors” to
prevent contrastive learning from overfitting. As demonstrated in our experiments, only using the
point cloud features tends to lead to a “shortcut” of geometry to fulfill the pre-training objective and
lack of the desired understanding in semantics.

For a point cloud P , which is paired with M synchronized images {Ii ∈ RH×W×3, i = 1, . . . ,M},
we use a frozen pre-trained image network Fimage to generate each image feature as Ii = Fimage(Ii),
where Ii ∈ RH′×W ′×C′

and H ′,W ′, C ′ denote the feature map dimensions. In our implementation,
we adopt multi-scale image features from different abstraction levels as the final representation, by
upsampling and concatenating feature maps from multiple resolutions. This is found to be beneficial
for the downstream 3D detection and segmentation tasks in point clouds.

Correspondence. It is straightforward to set up the correspondence between image features and
point cloud features in self-driving data. With the available calibration parameters between cameras
and LiDAR, we project 3D point coordinates into 2D pixel coordinates to form the correspondence.
When sampling points for initial contrastive units, we only consider the points that can be projected
into at least one camera canvas. As for those points that can be projected into multiple cameras, we
simply use average pooling of their corresponding features to obtain the final image representation.

2.2 CONTRASTIVE UNITS

Ground Removal. For LiDAR point clouds captured in autonomous driving, a great deal of points
are collected on the ground. Sampling such points results in uninformative contrastive units in the
pre-training objective, hindering the learning of true foreground objects that are more relevant for
the downstream tasks. Thus, we apply a simple unsupervised ground segmentation algorithm (Him-
melsbach et al., 2010) to identify and remove the LiDAR returns from ground. As shown in Figure 2,
ground removal provides a more effective sampling space to generate contrastive units.

Initial Contrastive Units. We start from sampling individual points in the ground-removed point
cloud as the initial contrastive units. Due to the scanning mechanism of LiDAR, point clouds are
extremely uneven, i.e., the point density close to the ego-vehicle is tremendously higher than that
far away. To initially acquire a thorough coverage of the entire scene, we utilize the farthest point
sampling (FPS). In addition, inspired by recent perception works in bird’s eye view (BEV) (Li et al.,
2022b), we ignore the height dimension in FPS. To supply an initial unit with more context, we
further sample and aggregate the features from its neighboring points, which can be sampled by
either K nearest neighbor points or all points inside the pillar centered at the initial unit. Given the
point cloud features or image features of an initial unit and its contextual points, we apply average
pooling to get the corresponding representations of the unit.

Instance-Aware Clustering. Though the initial contrastive units are designed to maximally cover
a scene, one foreground instance such as a vehicle can be segmented into several different units, as
can be seen in Figure 2. This results in undesirable negative pairs in the contrastive objective and is
detrimental to the learning of semantics at the object or instance level. Fortunately, unlike images,
point clouds possess accurate geometric measurements, making it possible to discover instances
in an unsupervised manner. Here we make use of a simple geometry clustering algorithm (Klasing
et al., 2008) after sampling the initial contrastive units using FPS, which employs a k-d tree to cluster
all neighboring points within a radius as one instance in the range image. Here k-d tree is employed
to gradually refine the discovered clusters, and the range image is a 2D representation of the point
cloud from range view (Wang et al., 2020). We then filter out the clusters with anomalous sizes
or aspect ratios (see more details in the supplementary material). As illustrated in Figure 3(a), we
discover plenty of clusters or instances with meaningful semantics.
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Figure 3: (a) Illustration of the instances such as vehicles and pedestrians discovered by the unsu-
pervised clustering. Note that some instances are missing due to the imperfection of the simple rule
based clustering. (b) Comparison of the contrastive accuracy of different modalities. If the similar-
ity of a contrastive unit with its positive sample is higher than those with all negative samples, it is
marked as a correct contrastive classification.

For the initial contrastive units that do not fall into any of the filtered clusters, their feature represen-
tations remain the same. As for the ones that fall into the same cluster, we merge them into a single
unit, and then apply average pooling on their corresponding features to obtain the instance-level
representation of the merged unit. In this way, we are able to substantially reduce the false negative
pairs that are initially sampled from same instances, and meanwhile, to promote the contrastive units
from initial points with relatively limited neighboring context to be instance-aware.

Similarity-Balanced Sampling. A lightweight multi-layer perceptron is applied as the projection
head to map the image features {Ii} and point cloud features {Pi} of the instance-aware contrastive
units to the final representations {Ĩi} and {P̃i} to compute the contrastive objective. A straightfor-
ward way to conduct the contrastive learning is to exploit the corresponding cross-modal features
from the same unit as a positive pair and all different units as negative pairs. However, due to the
extreme foreground-background imbalance in LiDAR point clouds, numerous semantically similar
units can be treated as negative pairs in the contrastive objective. For instance, if a unit is sampled
from the vegetation, then other vegetation units with similar semantics would constitute a great por-
tion of the negative pairs, as shown in Figure 2, misleading the contrastive pre-training. This is an
inherent difficulty for LiDAR as self-driving point clouds are dominated by vast background.

Fortunately, leveraging the frozen image network pre-trained with rich semantics, we can take ad-
vantage of the similarity of image features to reflect how semantically close any two contrastive units
are. Given two units in a point cloud, we denote their corresponding image features as Ĩi and Ĩj , and

use the cosine similarity sij =
〈

Ĩi
||Ĩi||2

,
Ĩj

||Ĩj ||2

〉
to measure their semantic similarity, as visualized in

Figure 2. Based on this measurement, we propose the similarity-balanced negative sampling strat-
egy. Given the i-th unit, we measure its similarity to all other units, and keep the least similar L units
to form the negative pairs involved in the contrastive objective. Let the L-th least similarity be siL,
then the similarity-balanced negative set for the i-th unit is Si = {j | sij < siL, j = 1, ..., B, j ̸= i},
where B is the number of instance-aware contrastive units. After excluding the negative pairs with
high similarity in semantics, we obtain a more expressive negative set for each unit.

2.3 CONTRASTIVE OBJECTIVE

Based on the instance-aware and similarity-balanced contrastive units, we compute the contrastive
objective by InfoNCE (Chen et al., 2020) on both image features and point cloud features of each
unit for pre-training. The overall objective can be formalized as image-point cloud feature matching:

L = − 1
2B

∑B
i=1 log

[
e(⟨Ĩi,P̃i⟩/τ)∑

j∈Si
e(⟨Ĩi,P̃j⟩/τ)+e(⟨Ĩi,P̃i⟩/τ)

]
− 1

2B

∑B
i=1 log

[
e(⟨P̃i,Ĩi⟩/τ)∑

j∈Si
e(⟨P̃i,Ĩj⟩/τ)+e(⟨P̃i,Ĩi⟩/τ)

]
where τ is the temperature and B is the number of contrastive units after instance-aware clustering.
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Performance Overall Vehicle Pedestrian CyclistPre-training Gain mAP/mAPH AP/APH AP/APH AP/APH
Scratch∗ - 59.14/55.25 - - -

PointContrast∗ (Xie et al., 2020) 0.90/1.06 60.04/56.31 - - -
GCC-3D∗ (Liang et al., 2021) 2.44/2.14 61.58/57.39 - - -

Scratch - 60.74/56.59 62.03/61.46 61.70/51.68 58.49/56.63
PPKT (Liu et al., 2021) 0.53/0.51 61.27/57.10 62.62/62.09 62.24/52.17 58.95/57.04

SLidR (Sautier et al., 2022) 0.66/0.64 61.40/57.23 62.40/61.87 62.49/52.20 59.30/57.64
SegContrast (Nunes et al., 2022) 0.54/0.49 61.28/57.08 62.44/61.90 62.39/52.10 59.00/57.24

ProposalContrast (Yin et al., 2022) 0.88/1.00 61.62/57.59 63.42/62.86 62.38/52.75 59.07/57.17
Ours 2.73/2.96 63.47/59.55 64.22/63.67 64.69/55.33 61.49/59.66

Table 1: Comparison of 3D object detection based on CenterPoint-Pillar. We report L2 AP and APH
on the validation set of WOD. ∗ denotes the results from (Liang et al., 2021).

Performance Overall Vehicle Pedestrian CyclistPre-training Gain mAP/mAPH AP/APH AP/APH AP/APH
Scratch∗ - 63.46/60.95 61.81/61.30 63.62/57.79 64.96/63.77

GCC-3D∗ (Liang et al., 2021) 1.83/1.84 65.29/62.79 63.97/63.47 64.23/58.47 67.68/66.44
Scratch - 65.42/62.98 63.82/63.33 64.85/59.22 67.58/66.38

PPKT (Liu et al., 2021) 1.18/1.14 66.59/64.12 63.53/63.02 64.74/58.84 67.01/65.85
SLidR (Sautier et al., 2022) 0.69/0.67 66.11/63.65 64.34/63.84 66.10/60.45 67.87/66.68

ProposalContrast (Yin et al., 2022) 1.01/0.93 66.43/63.91 64.65/64.13 66.04/60.23 68.59/67.37
Ours 1.63/1.58 67.05/64.56 65.29/64.78 67.28/61.50 68.58/67.41

Table 2: Comparison of 3D object detection based on CenterPoint-Voxel. We report L2 AP and
APH on the validation set of WOD. ∗ denotes the results from (Liang et al., 2021).

3 EXPERIMENTS

We conduct extensive experiments on four datasets including Waymo Open Dataset (WOD) (Sun
et al., 2020b), nuScenes (Caesar et al., 2020), SemanticKITTI (Behley et al., 2019), and ONCE (Mao
et al., 2021). Our approach is applicable to various point cloud models. We select three representa-
tive networks in our experiments for fair comparison with previous works: CenterPoint (both pillar
and voxel versions) (Yin et al., 2021) and MinkowskiNet (Xie et al., 2020). As for the image based
network, we use the self-supervised pre-trained ResNet50 (Chen et al., 2021) to extract image fea-
tures. We provide the dataset and implementation details in the supplementary materials.

3.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Comparison on WOD. We first use CenterPoint-Pillar and follow the standard fine-tuning protocol
using 30 epochs and 20% of training samples of WOD. As shown in Table 1, our approach achieves
the most significant performance gain compared to training from scratch, even though GCC-3D is
built upon a lower baseline (relatively easier to produce a larger gain on a lower baseline). As ex-
pected, the overall performance of point-level pre-training in PointContrast is inferior due to the
fact that its granularity (dense points as contrastive units) is not suited for self-driving point clouds.
Among the cross-modal methods, our approach largely outperforms SLidR thanks to our design
of contrastive units that are instance-aware and similarity-balanced. Our approach remarkably im-
proves training from scratch by 2.73% mAP and 2.96% mAPH. In particular, we observe greater
boost on pedestrians (+3.65% APH) and cyclists (+3.03% APH) compared to vehicles (+2.21%
APH). In contrast, ProposalContrast receives larger improvement on vehicles (+1.40% APH) than
pedestrians (+1.07% APH) and cyclists (+0.54% APH). This clearly validates the advantage of vi-
sual cues provided in image features for the contrastive learning of small objects in point clouds,
and pre-training on point cloud only makes it hard to guide the learning of small objects.

We then evaluate our approach using a stronger point cloud network CenterPoint-Voxel. As shown
in Table 2, we find a similar trend in comparison with other contrastive learning methods, and
the proposed approach still achieves superior performance with a stronger baseline or backbone.
Furthermore, we compare with the leading generative masked modeling based 3D SSL in Table 3.
Our approach also compares favorably with the methods in this field.
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Performance Overall Vehicle Pedestrian CyclistPre-training Gain mAP/mAPH AP/APH AP/APH AP/APH
Scratch∗ - 65.60/63.21 64.18/63.69 65.22/59.68 67.41/66.25

BEV-MAE∗ (Lin & Wang, 2022) 1.32/1.24 66.92/64.45 64.78/64.29 66.25/60.53 69.73/68.52
Scratch† - 64.51/61.92 63.16/62.65 64.27/58.23 66.11/64.87

Voxel-MAE† (Min et al., 2022) 1.35/1.31 65.86/63.23 64.05/63.53 65.78/59.62 67.76/66.53
MAELi† (Krispel et al., 2022) 1.09/1.08 65.60/63.00 64.22/63.70 65.93/59.79 66.66/65.52

Scratch - 65.42/62.98 63.82/63.33 64.85/59.22 67.58/66.38
Ours 1.63/1.58 67.05/64.56 65.29/64.78 67.28/61.50 68.58/67.41

Table 3: Comparison of 3D object detection based on CenterPoint-Voxel. We report L2 AP and
APH on the validation set of WOD. ∗ denotes the results from (Lin & Wang, 2022) and † from (Min
et al., 2022; Krispel et al., 2022).

Pre-training mAP NDS mAP@1
Scratch∗ 49.60 60.20 -

GCC-3D∗ (Liang et al., 2021) 50.80+1.20 60.80+0.60 -
Scratch 51.34 61.22 24.66

SLidR (Sautier et al., 2022) 50.82−0.52 61.01−0.21 25.59+0.93

Ours 52.91+1.57 62.65+1.43 33.06+8.40

Table 4: Comparison of 3D object detection based on CenterPoint-Pillar. We report mAP, NDS, and
mAP at first epoch on the validation set of nuScenes. ∗ denotes the results from (Liang et al., 2021).

Comparison on nuScenes. We pre-train CenterPoint-Pillar on nuScenes, and then fine-tune for 20
epochs using 100% labeled data under the strong setting of using 10 sweeps as input. Table 4 shows
that our approach enjoys not only better final performance but also faster convergence speed. After
the first fine-tuning epoch, our approach already obtains 33.06% mAP, 8.40% higher than training
from scratch. As for SLidR, although it gets 0.93% mAP improvement after the first epoch, its final
result is inferior to that of training from scratch. This suggests that the superpixel based contrastive
units are inadequate to fully drive the learning of essential semantics for downstream tasks, and its
pre-training effect would be diminished when the available fine-tuning data is relatively large.

3.2 MODALITY STUDY

As discussed earlier, we have three choices of modalities for contrastive pre-training on point clouds:
single modality (point cloud), cross-modality (image and point cloud), and multimodality (combina-
tion of the former two). For the single modality, we compare with the best point cloud based method
ProposalContrast, as well as a stronger version (single modality +) by using our contrastive units.

Modality mAPH Time Memory
Scratch 56.59 - -
Single Modality 57.59+1.00 0.8× 1.4×
Single Modality + 58.37+1.78 0.9× 1.4×
Cross-Modality 59.55+2.96 1.0× 1.0×
Multi-Modality 58.97+2.38 1.5× 1.9×

Table 5: Comparison of pre-training modalities
for 3D object detection based on CenterPoint-
Pillar on the validation set of WOD. We report L2
mAPH, pre-training time and GPU memory.

As shown in Table 5, cross-modality achieves
the best downstream performance with mod-
erate pre-training time and requires the least
GPU memory. We find that pre-training on sin-
gle modality tends to overfit at an early stage.
Figure 3(b) shows that the contrastive accu-
racy of single modality leaps to nearly 100%
after the first epoch. This indicates that point
clouds provide strong hints in fitting the ge-
ometry based contrastive objective, restraining
the model from learning the essential seman-
tics. Our contrastive units help to some extent,
but the overfitting (single modality +) is still obvious compared to cross-modality. As for the pre-
training of multi-modality, its point cloud part or cross-modality part follows a similar trend of each
individual setting, while receiving the intermediate performance, as compared in Table 5. Indeed,
multi-modality is unnecessary since the frozen image features already act as “anchors”, and aligning
cross-modal features is a harder task. If the point cloud features of two independently augmented
samples (a positive pair) are pushed close to each other, and meanwhile, they are moved toward their
corresponding image features that are sufficiently close as pre-trained by 2D SSL, it is adequate to
optimize the point cloud features of one sample to match to its image features.
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Pre-training 1% 5% 10% 20%
Scratch∗ - 44.35 51.14 55.25

PointContrast∗ (Xie et al., 2020) - 44.97+0.62 52.35+1.21 56.31+1.06

GCC-3D∗ (Liang et al., 2021) - 47.85+3.50 53.89+2.75 57.39+2.14

Scratch 26.05 47.17 52.73 56.59
SLidR (Sautier et al., 2022) 31.03+4.98 49.90+2.73 54.46+1.73 57.23+0.64

ProposalContrast (Yin et al., 2022) 33.30+7.25 51.60+4.43 55.67+2.94 57.59+1.00

Ours 38.55+12.50 54.62+7.45 57.35+4.62 59.55+2.96

Table 6: Comparison of 3D object detection using CenterPoint-Pillar with different amounts of data.
We report L2 mAPH on the validation set of WOD. ∗ denotes the results from (Liang et al., 2021).

Method Scratch SLidR (Sautier et al., 2022) ProposalContrast (Yin et al., 2022) Ours
mAP 49.40 49.87 50.87 52.20

Table 7: Comparison of 3D object detection based on CenterPoint-Pillar under the transfer learning
setting. We report mAP on the validation set of ONCE.

We further quantitatively compare the feature alignment under cross-modality and multi-modality.
Specifically, we compute the feature cosine similarity of a positive pair as the alignment score. By
randomly sampling 1× 107 positive pairs, we observe that the cross-modal pre-training has a much
higher alignment score (0.708) than that (0.532) of the multi-modal pre-training. This again shows
the advantage of cross-modality over multi-modality in contrastive learning of point clouds.

3.3 DATA-EFFICIENT FINE-TUNING AND TRANSFER LEARNING

Comparison on 3D Object Detection. We gradually increase the amount of annotated training
data from 1%, 5%, 10%, to 20%, and evaluate the fine-tuning performance on WOD. As shown in
Table 6, our approach exhibits greater performance gains over other methods when a small quantity
of labeled data is available. For instance, when merely having 1% data, we observe a dramatic im-
provement of 12.50% mAPH, which substantially outperforms other methods. It is also interesting
to note that with 10% data, we beat the performance of training from scratch using the standard
setting of 20% data, meaning that human labeling efforts can be halved with our approach.

We next study the transfer learning capability of our approach. Specifically, we adopt CenterPoint-
Pillar pre-trained on WOD, then fine-tune and evaluate on the standard training and validation
sets of ONCE. As shown in Table 7, our approach achieves superior improvement (+2.80% mAP)
over training from scratch, which largely outperforms SLidR (+0.47% mAP) and ProposalContrast
(+1.47% mAP), suggesting the strong generalizability of our approach.

Comparison on 3D Semantic Segmentation. We then extend our approach to 3D semantic seg-
mentation, where we first pre-train MinkowskiNet on nuScenes, and then fine-tune on nuScenes as
well as SemanticKITTI (transfer learning evaluation), following the experimental settings in SLidR.
As compared in Table 8, with 1% of labeled data, our approach achieve 8.9% and 6.2% perfor-
mance gains on nuScenes and SemanticKITTI, exceeding the improvement by other methods. For
this downstream task, the point cloud only based pre-training methods (PointContrast and Depth-
Contrast) produce much lower improvement in comparison to the cross-modal pre-training methods
(PPKT, SLidR, and ours), which indicates the benefit of visual information provided by image fea-
tures in contrastive pre-training to facilitate this fine-grained point-wise perception task.

3.4 ABLATION STUDY

We perform various ablation experiments to understand each individual component of our approach,
as shown in Table 9. We first evaluate different ways of feature aggregation for a contrastive unit
as mentioned in Section 2.2, including K nearest neighboring points of the unit or the points within
the pillar centered at the unit. It is observed that the two ways are overall comparable, showing the
flexibility of our approach. Compared to the full pre-training framework, removing either instance-
aware clustering or similarity-balanced sampling results in a performance drop. Moreover, changing
farthest point sampling to random sampling for initial contrastive units leads to lower performance.
These ablation study results collectively validate the proposed contrastive unit design.
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Pre-training nuScenes Gain SemanticKITTI Gain
Scratch 30.3 - 39.5 -

PointContrast (Xie et al., 2020) 32.5 2.2 41.1 1.6
DepthContrast (Zhang et al., 2021) 31.7 1.4 41.5 2.0

PPKT (Liu et al., 2021) 37.8 7.5 43.9 4.4
SLidR (Sautier et al., 2022) 38.3 8.0 44.6 5.1

SegContrast (Nunes et al., 2022) 31.9 1.6 - -
Ours 39.2 8.9 45.7 6.2

Table 8: Comparison of 3D semantic segmentation based on MinkowskiNet. We report mIOU on
the validation sets of nuScenes and SemanticKITTI (the latter is under the transfer learning setting).

Pillar Neighbor Instance Similarity FPS mAPH mAP
✓ ✓ ✓ 59.18 62.99
✓ ✓ ✓ ✓ 59.03 62.85

✓ ✓ ✓ 59.17 63.00
✓ ✓ ✓ 58.80 62.72
✓ ✓ ✓ 58.71 62.62
✓ ✓ ✓ ✓ 59.55 63.47

Table 9: Ablation study of different combinations of feature aggregation based on nearest neighbor
and pillar, instance-aware clustering, similarity-balanced sampling and FPS. We report L2 mAP and
mAPH using CenterPoint-Pillar on the validation set of WOD.

4 RELATED WORK

Self-Supervised Learning in 2D. Early works hinging on pretext tasks (Gidaris et al., 2018; Zhang
et al., 2016) are limited to learning low-level cues. More recent contrastive learning methods like
MoCo (He et al., 2020) and SimCLR (Chen et al., 2020) align the features of augmentations from
the same image while pushing away other images, and achieve similar linear probing performance
to fully supervised pre-training. Masked image modeling (MIM) (He et al., 2022) employs a high
mask ratio to reconstruct an image in a generative way and shows promising results.

Self-Supervised Learning in 3D. Inspired by 2D SSL, contrastive learning and masked modeling
are the two main tracks for 3D SSL. PointContrast (Xie et al., 2020) exploits point clouds from
two views to build the contrastive pre-training objective. DepthContrast (Zhang et al., 2021) applies
both point and voxel based backbones to extract features of each contrastive unit. Recently, GCC-
3D (Liang et al., 2021) introduces a two-stage pre-training paradigm to treat a local neighborhood
and motion group as the contrastive unit. In (Yin et al., 2022), ProposalContrast uses proposals and
online clustering to perform contrastive pre-training. Another line is to conduct contrastive learn-
ing across images and point clouds to alleviate the limitations of geometry-only SSL. Pri3D (Hou
et al., 2021) and PPKT (Liu et al., 2021) use pixel-point correspondences to build the pre-training
objective. SLidR (Sautier et al., 2022) introduces superpixels to group neighboring pixels in 2D as
a region-level contrastive unit. Generative masked auto-encoding has also been explored for point
clouds. Occupancy-MAE (Min et al., 2022), BEV-MAE (Lin & Wang, 2022) and MAELi (Krispel
et al., 2022) all utilize a masked auto-encoder in the space of BEV. GeoMAE (Tian et al., 2023) fur-
ther utilizes geometry clues such as surface normal and curvature as the self-supervised objective.

5 CONCLUSION

We present a cross-modal self-supervised learning framework with the proposed effective contrastive
units for self-driving point clouds. We provide the first comprehensive modality study of contrastive
learning for LiDAR, and show that cross-modal learning performs the best for both pre-training effi-
ciency and downstream improvement. Our contrastive units facilitate contrastive pre-training via the
design of instance-aware clustering and similarity-balanced sampling. Extensive experiments reveal
that our approach achieves remarkable performance gains. We hope our findings would encourage
the research community on the cross-modal and more targeted designs of self-driving point clouds.
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Figure 4: Comparison of qualitative results by training from scratch (left) and ours (right). We show
3D object detection results in bird’s eye view (cyan and yellow denote ground-truth and predicted
boxes) on the validation set of WOD. Our pre-training benefits this downstream task in tackling
more challenging cases such as the distant, occluded and small objects.

APPENDIX

We thank the reviewers for viewing this supplementary material. In Section A, we show the quali-
tative results of 3D object detection with our proposed approach. Section B visualizes the similarity
measurement used for similarity-balanced sampling. Section C reports more ablation studies for bet-
ter understanding of our design. Section D presents the dataset and implementation details. Finally,
we visualize the pre-trained point cloud features in Section E.

A QUALITATIVE RESULTS OF 3D OBJECT DETECTION

Our proposed cross-modal pre-training approach for LiDAR point clouds benefits downstream tasks
such as 3D object detection, especially for the distant, occluded or small objects. Figure 4 demon-
strates the 3D object detection results using CenterPoint-Pillar on WOD. In the left and right scenes,
with our pre-trained weights, more vehicles and pedestrians can be successfully detected.

12



Under review as a conference paper at ICLR 2024

B SIMILARITY VISUALIZATION

Another benefit of our cross-modal paradigm is to utilize the frozen image features that are pre-
trained with rich semantics to measure the similarity between contrastive units, which serves as a
key in our design of similarity-balanced sampling. Here we show several scenes to demonstrate the
similarity measurement. As illustrated in Figure 5, the contrastive units that are semantically close
indeed share similar measurements. For instance, given the target unit from vegetation in (a), the
contrastive units from vegetation own highest similarities compared to others from regions such as
buildings and vehicles, similarly in (b-c).

C MORE ABLATION STUDIES

We provide more ablation studies to further evaluate and understand our approach. All experiments
in this section are fairly compared by pre-training CenterPoint-Pillar for 20 epochs on WOD. We
report L2 mAP and mAPH on the validation set of WOD.

C.1 IMAGE FEATURE LEVELS

Given the frozen image backbone MoCoV3, we extract and combine image features from different
levels. Based on three levels corresponding to the scales of 1/4 (P2), 1/8 (P3), and 1/16 (P4) of
the input image size, we evaluate the three choices, namely P2, P4, and P2+P3+P4. As shown in
Table 10, the image features concatenated from three levels achieve the best performance, and P4
outperforms P2 due to its high-level semantics from deep abstraction. This suggests that image
features from different levels are more advantageous to cross-modal contrastive learning.

Feature Level P2 P4 P2+P3+p4
mAP 62.09 62.67 62.89

mAPH 58.01 58.69 59.02

Table 10: Comparison of different image feature levels used in our cross-modal contrastive learning.

C.2 NUMBER OF INITIAL CONTRASTIVE UNITS

Here we study the effect of number of initial contrastive units. As shown in Table 11, the default
value 2,048 achieves the best performance, either a smaller or larger value results in a performance
drop. We hypothesize that a large amount of redundant units generate dense and similar samples
(eventually form negative pairs) from a scene, misleading the contrastive objective, while fewer
units are insufficient to construct a large contrastive pool (important for effective self-supervised
learning (Chen et al., 2020; He et al., 2020)).

# of Initial Contrastive Units 1024 2048 4096
mAP 62.64 62.89 62.48

mAPH 58.80 59.02 58.54

Table 11: Comparison of different numbers of sampling initial contrastive units in our approach.

C.3 NUMBER OF NEIGHBORING POINTS

In addition to the different feature aggregation ways as shown in Table 9 of the main paper, we
further evaluate different numbers of points for the nearest neighboring based feature aggregation.
As shown in Table 12, we observe that more neighboring points improve the performance, while the
improvement margin is diminishing.

# of Neighboring Points 8 16 32
mAP 62.62 62.89 62.95

mAPH 58.81 59.02 59.11

Table 12: Comparison of different numbers of points in nearest neighbor based feature aggregation.
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(a)

(b)

(c)

Figure 5: Visualization of similarity measurements between other contrastive units and the target
unit (indicated by the red arrow) from (a) vegetation, (b) vehicle, and (c) building. Color of each dot
denotes the similarity measurement from low (red) to high (green).
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C.4 IMAGE NETWORKS

By default, we use MoCoV3 (Chen et al., 2021), which is a CNN based (ResNet50) image back-
bone. We also experiment with the image network EsViT (Li et al., 2022a), which is based on
Transformers (Swin-T). We extract and concatenate image features from three levels, and conduct
the same contrastive pre-training. As shown in Table 13, EsViT also brings obvious improvement
compared to training from scratch, but its improvement is inferior to MoCoV3. We suspect that the
patch encoding in Transformers partially breaks the point-pixel feature correspondence because of
the large patch size. Moreover, we also apply a randomly initialized ResNet50 to extract image fea-
tures. As can be seen in Table 13, the randomly initialized image network only slightly improves the
downstream performance compared with training from scratch. This reveals that a self-supervised
pre-trained image network is crucial to the success of cross-modal contrastive pre-training.

Image Backbone Scratch MoCoV3 EsViT Random
mAP 60.74 62.89 62.51 61.18

mAPH 56.59 59.02 58.54 56.83

Table 13: Comparison of different image networks used in our cross-modal contrastive learning.

C.5 GROUND REMOVAL

The ground removal is a pre-processing step for our initial contrastive unit sampling. We show the
impact of this operation in Table 14. As we can see, without ground removal, there is a 0.37% mAP
performance drop, indicating that sampling points from vast ground area is detrimental.

Ground Removal w/ w/o
mAP 62.89 62.52

mAPH 59.02 58.57

Table 14: Comparison of the effect of ground removal in our approach.

D DATASET AND IMPLEMENTATION DETAILS

In this section, we provide more details regarding the four public benchmarks and our experimental
implementation in addition to the descriptions in the main paper.

D.1 DATASETS

We experiment on the four popular autonomous driving benchmarks including Waymo Open Dataset
(WOD) (Sun et al., 2020b), nuScenes (Caesar et al., 2020), SemanticKITTI (Behley et al., 2019),
and ONCE (Mao et al., 2021). WOD contains 798 scenes for training and 202 scenes for validation.
We use all data in the training set for pre-training without using any labels. Both images and point
clouds are collected at 10Hz synchronously, which naturally form the image and point cloud corre-
spondence. However, the camera horizontal field of view does not cover the full 360-degree view,
so we only pre-train on the points that can be mapped onto the cameras. nuScenes includes 700 and
150 scenes for training and validation. We adopt all training frames for pre-training with no labels
used. The frequency of cameras and LiDAR are 12Hz and 20Hz, and we use the minimal timestep
gap to decide the image and point cloud correspondence. SemanticKITTI is used to evaluate the
transfer learning generalizability of our approach to domain change. We pre-train on nuScenes and
conduct fine-tuning and evaluation on SemanticKITTI. ONCE is also utilized to show the transfer
learning capability of our approach. We pre-train on WOD then fine-tune and evaluate on ONCE.

D.2 IMPLEMENTATION

Each point cloud based network is pre-trained for 50 epochs. In CenterPoint, we use Adam (Kingma
& Ba, 2015) and adopt the cosine annealing scheduler with warmup. We set the maximum learning
rate as 0.003 and the batch size as 4 on each GPU. In MinkowskiNet, we follow (Sautier et al., 2022)
to use SGD with an initial learning rate of 0.5 and a cosine annealing scheduler. Both pre-training
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and fine-tuning are conducted on 8 NVIDIA V100 GPUs. For MoCoV3, we extract and combine
image features at three levels corresponding to the scales of 1/4, 1/8, and 1/16 of the input image
size. We set the temperature τ = 0.1 in contrastive objective following SimCLR (Chen et al., 2020).
We use consistent hyper-parameters across all datasets, including ground removal, instance-aware
clustering, and similarity-balanced sampling.

For pre-training, we apply the same voxelization as in the downstream tasks. Our augmentations
applied on point clouds include random flipping along x and y axes, random scaling with a range
of [0.8, 1.25], and random rotation of [−π, π] along the z-axis. Color jittering is used for image
augmentation. We sample 2,048 initial contrastive units in FPS. In the similarity-balanced sampling,
we drop the negative pairs of a contrastive unit by the top 5% similarity measurement.

D.3 CONTRASTIVE UNIT SAMPLING

We apply the ground removal1 to refine the sampling space of initial contrastive units by removing
the points from vast ground area. To be specific, we fit a plane in the point clouds given the height
of LiDAR. As shown in Figure 2 of the main paper, the ground removal pre-processing provides a
more informative sampling space.

After that, we apply the unsupervised geometry clustering2 for the non-ground points, followed by
the simple filtering based on the shape of each cluster. For the clustering, we use 0.75m as the
maximum distance that two points can be grouped into a single cluster. For the filtering, we simply
exclude the clusters with anomalous sizes or aspect ratios. Suppose the length, width, and height
of a cluster are (L,W,H), this cluster would be ruled out if any of the following conditions is
satisfied: (1) L > 20m or W > 20m, (2) H > 2.5m or H < 0.4m, (3) L/W > 10 or W/L > 10,
(4)L/W < 0.1 or W/L < 0.1.

D.4 DOWNSTREAM FINE-TUNING

For the experiments of 3D object detection on WOD and nuScenes (Tables 1- 4 in the main paper),
we adopt the original implementation and setting in CenterPoint (Yin et al., 2021). We fine-tune 30
epochs on WOD and 20 epochs on nuScenes using 8 NVIDIA Tesla V100 GPUs.

For the data-efficient experiment of 3D object detection on WOD (Table 6 in the main paper), we
use the annotated frames proportional to the percentages, and meanwhile, sample the copy-and-
paste database from the corresponding frames for a fair comparison with ProposalContrast (Yin
et al., 2022) and GCC-3D (Liang et al., 2021). As for the transfer learning experiment on ONCE
(Table 7), we use the standard training and validation splits defined in the official codebase3, which
includes 4,961 frames for training and 3,321 frames for validation. In practice, we fine-tune 80
epochs on ONCE using 8 NVIDIA Tesla V100 GPUs.

For the data-efficient and transfer learning experiments of 3D semantic segmentation on nuScenes
and SemanticKITTI (Table 8 in the main paper), we apply the original setting in SLidR (Sautier
et al., 2022), including the labeled data and the point cloud network. Specifically, we fine-tune 100
epochs on each dataset using 1 NVIDIA Tesla V100 GPU.

D.5 FAIRNESS OF COMPARISON WITH OTHER METHODS

We strictly conduct all experiments to ensure fairness with other methods, including the amount of
pre-training data, pre-training epochs, and backbone models. (1) We only use LiDAR and camera
data from the annotated set in WOD and nuScenes, i.e., 158,081 and 28,130 samples, respectively.
Note we do not use the unlabeled data, so our pre-training data is exactly the same as ProposalCon-
trast, GCC-3D, SLidR, and MAE based methods. (2) We keep the same pre-training epochs (i.e.,
50) for all models that are open-sourced (ProposalContrast, PPKT, SLidR, and ours) in both WOD
and nuScenes. (3) For a specific network, we pre-train the same set of weights for each model, there
are no additional weights for pre-training in our approach.

1https://github.com/peiyunh/ff
2https://github.com/placeforyiming
3https://github.com/PointsCoder/Once_Benchmark
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Our implementation is built upon OpenPCDet4 and CenterPoint5. We reproduce ProposalCon-
trast (Yin et al., 2022) using the official codebase6. For SLidR (Sautier et al., 2022), we apply
the standard CenterPoint (Yin et al., 2021) backbones while keeping other settings the same as the
official implementation7. For the other competing methods, we report the original numbers from the
corresponding papers.

E VISUALIZATION OF PRE-TRAINED POINT CLOUD FEATURES

Our pre-trained point cloud networks learn the semantically meaningful features, which benefits
multiple downstream perception tasks. Here we show the t-SNE visualization of the pre-trained
point cloud features on WOD in Figure 6, where we colorize each point with the ground-truth label
(provided in 3D semantic segmentation). It is found that the features from each class group into
the same cluster, such as vegetation, car, and building. In addition, we observe that the features of
road are clustered into a tight region too. This is because our simple rule based ground removal
is by no means perfect, some ground points are left in pre-training. As a result, the segmentation
performance for the ground related class such as road in the downstream task would not be impaired.

Figure 6: t-SNE visualization of point cloud features extracted by the pre-trained network with our
cross-modal contrastive learning on WOD.

4https://github.com/open-mmlab/OpenPCDet
5https://github.com/tianweiy/CenterPoint
6https://github.com/yinjunbo/ProposalContrast
7https://github.com/valeoai/SLidR
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